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1. Introduction

In this paper we provide a presentation, in the level of classifying spaces, of the Chern

character and its relation to Chern classes. Although this is apparently a classical and well-

known subject, our constructions have the important feature of preserving the algebraic

geometric nature of the objects involved. The first manifestation of this lies in the fact is

that all spaces and maps involved are colimits of directed systems in the category Var � of

projective algebraic varieties and algebraic maps. We will then explain the relevance of this

fact for the study of the morphic cohomology introduced by E. Friedlander and B. Lawson

in [FL92] and of holomorhic K-theory performed by Cohen and Lima-Filho in [CLF]. We

expect that the constructions made here, as well as in [CLF], can be extended to a broader

context, such as [Fri97], once appropriate facts in motivic rational homotopy theory are in

place.

The constructions of classifying spaces made, together with their rationalizations, involve

three different algebraic geometric moduli spaces: symmetric products of projective spaces

SPq(P(Cn)), Grassmannians Grassq(C∨n ⊗ Cq) and Chow varieties Chowq
d

(

P(C∨n ⊗ Cq
)

of

projective spaces. Here we use C∨n to denote the dual of Cn. A fundamental link between

these spaces are the quotient varieties Grassq(C∨n ⊗ Cq)/Sq, consisting of Grassmannians

modulo the natural action of the symmetric group Sq. These symmetrized Grassmannians

also appear in the study of Conformal Field Theory.

The departing point is the observation, made in Section 2, that the natural direct

sum map P(Cn)×q = Grass1(C∨n)×q → Grassq(C∨n ⊗ Cq) descends to an algebraic map

SPq(P(Cn)) → Grassq(C∨n ⊗ Cq)/Sq. These maps fit into a directed system of algebraic

maps and varieties and induce a map

f : SP∞(P(C∞))→ BU/S∞

between the corresponding colimits. Section 2 is mostly devoted to setting up the di-

rected systems, understanding various “algebraic geometric” filtrations giving the topology

of SP∞(P(C∞)) and BU/S∞. The infinite symmetric product SP∞(P(C∞)) has a classical

structure of an abelian topological monoid whose addition is an algebraic map, and we

show in Proposition 2.8 that so is BU/S∞. We conclude Section 2 by proving in Proposi-

tion 2.15 that f : SP∞(P(C∞))→ BU/S∞ is a monoid morphism and a rational homotopy

equivalence.

Our guiding principle is to see colimits of directed systems of type {Mλ}λ∈Λ, with Mλ

an algebraic variety, as representing functors from the category of algebraic varieties to the

category of topological spaces. In particular, whenever they come equipped with algebraic
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maps making the colimit M∞ = lim−→
λ

Mλ into a topological monoid, then M∞ represents

a functor X 7→ Mor(X,M∞) from the category of algebraic varieties to the category of

topological monoids. In particular, all objects and maps in Section 2 must be seen as

representing, respectively, functors and natural transformations in this context.

We start Section 3 by introducing a method of constructing the Q-localization of an

abelian topological monoid in the category of projective varieties. In particular we present

natural directed systems in Var � to produce rationalization maps rP : SP∞(P(C∞)) →

SP∞(P(C∞)) � and rB : BU → {BU/S∞}
� , and think of the latter as a model for BU � in

view of Proposition 2.8. In these Q-local topological monoids, multiplication by an integer

is an invertible algebraic map. This localization scheme then can be used to discuss monoids

of the type Mor(X,M∞) as above, along with their group completions Mor(X,M∞)+; cf.

Appendix A. In particular, we discuss the canonical splittings of Mor(X,SP∞(Pn))+ and

their rationalizations.

We then study the functors represented by the constructions of Section 2 and their ratio-

nalization. First we consider the case X = {pt}. We use the fact, shown in Proposition 2.8,

that the projection ρ : BU → BU/S∞ is a rational equivalence, to identify H∗(BU,Q) with

H∗(BU/S∞,Q) via ρ∗. Then we denote by i2j the image in rational cohomology of the

integral class represented by the composition

SP∞(P(C∞))
'
−→
sp

∞
∏

j=1

K(Z, 2j) −−→
prj

K(Z, 2j),

where sp is the canonical splitting equivalence presented in [FL92], and prj is the projection.

The first main result is the following.

Theorem 3.7. Let f : SP∞(P(C∞)) → BU/S∞ be the homomorphism of Proposi-

tion 2.15, and identify H∗(BU/S∞; Q) with H∗(BU ; Q) via the projection ρ : BU →

BU/S∞. Then, for j ≥ 1 one has

f∗( j! chj ) = i2j ,

where chj is the 2j-th component of the universal Chern character ch ∈ H ∗(BU ; Q).

Therefore, it follows from Theorem 3.7, each Chern character can be realized by algebraic

maps. Alternatively, these localizations are natural and so they give rise to a homomorphism
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f � : SP∞(P(C∞)) � → BU � which makes the square in following diagram commute.

BU

ρ ��

ρB

��

ch

��

SP∞(P(C∞))

rP ��

f ��
BU/S∞

rB ��

SP∞(P(C∞)) � SP∞(P(C∞))Qe

�	 f 
 ��
{BU/S∞}Q ≡ BU

�

f−1


�� ��������

We produce a homotopy equivalence e : SP∞(P(C∞))Q → SP∞(P(C∞))Q and define

ch : BU → SP∞(P(C∞))Q =
∏∞
j=1K(Q, 2j) by ch = e ◦ f−1� ◦ ρ, where f−1� is a homotopy

inverse for f � . The equivalence e is chosen so that the following result holds.

Theorem 3.8. Let ch : BU → SP∞(P(C∞)) be the composition ch := e ◦ f−1� ◦ ρB. Then

ch represents the Chern character. In other words, ch∗(i2j) = ch2j ∈ H
2j(BU ; Q).

We then proceed to study the case X arbitrary. Here we must initially understand

the functors represented by our constructions. We first observe that the functor X →

Mor(X,SP∞(P(C∞)))+ represents the morphic cohomology of X. More precisely,

πi( Mor(X,SP∞(P(C∞)))+) ∼=
∏

j

LjH2j−i(X),

where LpHn(X) are the morphic cohomology groups introduced by Friedlander and Lawson

in [FL92]; see (36). Then we introduce the spaces K̃hol(X) := Mor(X,BU)+, called the

(reduced) holomorphic K-theory space ofX, and define the (reduced) holomorphic K-theory

groups of X as

K̃
−i
hol(X) := πi(K̃hol(X));

cf. Definition 3.14. These groups are also studied by Friedlander and Walker in [FW99].

The main result states that the algebraic maps between the classifying spaces under consid-

eration still induce uniquely determined homotopy class of maps between the corresponding

represented objects. In particular, we prove the following.

Theorem 3.16. Let X be a projective variety. The natural maps chX : Mor(X,BU)+ →

Mor(X,SP∞(P(C∞)))+� induce natural homomorphisms

chiX : K̃
−i
hol(X)→

∏

j≥0

LjH2j−i(X) �



AN ALGEBRAIC GEOMETRIC REALIZATION OF THE CHERN CHARACTER 5

from the holomorphic K-theory groups of X to its rational morphic cohomology. These

homomorphism fit into a commutative diagram

K̃
−i
hol(X) −−−→ K̃

−i
top(X)

ch
i
X





y





y
ch

i
X

∏

j≥0L
jH2j−i(X) � −−−→

∏

j≥0H
2j−i(X,Q),

where the right vertical arrow is the usual Chern character from topological K-theory to

ordinary cohomology category, cf. Theorem 3.8, and the horizontal arrows are given by the

usual forgetful functors.

In Section 4 we discuss the Chow varieties C
q
n,d = Chowq

d

(

P(C∨n ⊗ Cq)
)

parametrizing

effective algebraic cycles in projective spaces, and their relation to the Chern classes in

the present context. We start considering the case X = {pt}, and this is essentially a

survey of fundamental results of Lawson [Law89], Lawson and Michelsohn [LM88], Boyer,

Lawson, Lima-Filho, Mann and Michelsohn [BLLF+93] and Lima-Filho [LF99]. These form

a directed system {Cqn,d; t
q
n,(d,e), ε

(q,k)
d,n , sq(n,m),d}, whose colimit C has a canonical splitting

homotopy equivalence C '
∏∞
j=1K(Z, 2j); cf. [Law89]. An important fact is that this

equivalence comes from an equivalence between C and SP∞(P(C∞)) given by Lawson’s

complex suspension theorem [Law89], hence one can use C as a classifying space for morphic

cohomology in the category of varieties; cf. [FL92]. There is a natural map c : BU → C

which represents the total Chern class [LM88], and C has an infinite loop space structure

so that c is an infinite loop space map.

In the case X 6= {pt}, a subtle issue related to the group-completion functor requires the

smoothness of X in order to define a Chern class map

cX : Mor(X,BU)+ → Mor(X,C∞∞,∗)
+
1 .

This map induces higher Chern class maps

ciX : K̃
−i
hol(X)→

∏

p≥1

LpH2p−i(X);

cf. Definition 4.12.

In Section 5 we discuss relations between the Chern classes and the Chern character. The

starting point is the natural averaging map avq : C
q
n,d → C

q
n,dq!, coming from the evident

action of the symmetric group Sq. These maps assembles to give a natural rationalization
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map av∞ : C → C � fitting into a commutative diagram

BU
c

−−−→ C

ρ





y





y
av
∞

SP∞(P(C∞))Q −−−→
f

{BU/S∞} −−−→
γ∞

C � '
∏∞
j=1K(Q, 2j).

In the case of X = {pt} we observe that the composition γ∞ ◦f represents a cohomology

class R ∈
∏∞
j=1H

2j(SP∞(P(C∞)); Q), whose identification is rather clear. Consider the

polynomial with rational coefficients Rj(Y1, . . . , Yj) which expresses the j-th elementary

symmetric function ej as a polynomial ej = Rj(p1, · · · , pj) on the Newton power functions

pk, k = 1, . . . , j; cf. [Mac79]. Then we have the paper.

Proposition 5.9. Let Rj ∈ H2j(
∏

k≥1K(Z, 2k),Q) be the j-th component of R. Then

Rj = Rj(i2, . . . , i2j), where Rj is the universal polynomial in (60) and i2k is the rational

fundamental class (20).

When X is smooth we then apply the previous discussion to the universal case, obtaining

corresponding relations between the Chern classes and Characters; cf. Theorem 5.10 and

Corollary 5.11. In an Appendix we discuss generalities of group-completions of morphisms

spaces and set-up the appropriate machinery to deal with the constructions developed along

the paper.

The invariants studied in this paper, and the relations between them are further studied

in the forthcoming paper [CLF].

Acknowledgements: The second author would like to thank Jon McCammond for useful

references.

2. Symmetric Products and Symmetrized Grassmannnians

In this section we present the basic results relating Grassmannians to symmetric products

of projective spaces. Since the objects we study fit into various directed systems of algebraic

varieties, we first make some general considerations about such systems.

Consider a directed system {Yλ}λ∈Λ of projective algebraic varieties and morphisms.

Although the colimit lim−→
λ

Yλ does not exist in the category of algebraic varieties, it still

represents a functor from the category of projective varieties to spaces. More precisely, let

X be a projective algebraic variety, and let {Yλ}λ∈Λ be a directed system as above. We

denote by Map(X,Yλ) the space of continuous maps for the analytic topology from X to



AN ALGEBRAIC GEOMETRIC REALIZATION OF THE CHERN CHARACTER 7

Yλ, endowed with the compact-open topology. The set of algebraic morphisms Mor(X,Yλ)

can be topologized as a closed subspace of Map(X,Yλ).

Definition 2.1. Given X and {Yλ}λ∈Λ as above, define the morphism space from X to

lim−→
λ

Yλ as Mor(X,Y∞) := lim−→
λ

Mor(X,Yλ), where the latter colimit is taken in the cate-

gory of spaces. If {Xµ} and {Yλ} are two such directed systems, define Mor(X∞, Yλ) :=

lim←−
µ

Mor(Xµ, Y∞).

Remark 2.2. Let Y an
∞ denote Mor(pt, Y∞), i.e., the topological colimit of the Yλ’s with

their analytic topology. Suppose one has an operation ∗ : Y an
∞ × Y an

∞ → Y an
∞ which gives

Y an
∞ the structure of a topological monoid and such that the restrictions ∗|Yλ×Yµ

are induced

by compatible morphisms of varieties Yλ × Yµ → Yφ(λ,µ), for all λ and µ. Then, for each

projective variety X the operation ∗ naturally induces an structure of topological monoid

on Mor(X,Y∞) via pointwise multiplication.

2.1. Grassmannians and their symmetrization. Here we study actions of the sym-

metric group on the Grassmannians. Let Sq be the symmetric group on q letters and let

C∨n denote the dual of Cn. The permutation representation of Sq on Cq induces a repre-

sentation on C∨n⊗Cq, where Sq acts trivially on C∨n. We write the canonical basis of Cn

as B = {e1, e2, . . . en}, and for each J = {j1 < · · · < jk} ⊂ {1, . . . , n} we let

eJ : Ck ↪→ Cn(1)

be the linear embedding sending ei to eji , for i = 1, . . . , k, whose image is denoted by

CJ ⊂ Cn.

Definition 2.3.

a. Given q, n ∈ N, let Grqn = Grq(C∨n ⊗ Cq) denote the Grassmannian of subspaces of

codimension q in C∨n ⊗ Cq equipped with the base point lnq = e⊥1 ⊗ Cq, where e⊥1 is the

annihilator of e1 in C∨n. The Grassmannian Gr1n = Gr1(C∨n) is the projective space P(Cn)

of 1-dimensional subspaces of Cn.

b. The action of Sq on C∨n⊗Cq induces an algebraic action on Grqn. In particular, the orbit

space Grqn/Sq is a projective algebraic variety; cf. [Har92, p. 127]. Let ρnq : Grqn → Grqn/Sq

denote the corresponding quotient map, which is also an algebraic map. Note that the base

point lnq ∈ Grqn is fixed under Sq, and give Grqn/Sq the base point `nq = ρnq (l
n
q ).
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Using the identification C∨n ⊗ Cq+q′ = (C∨n ⊗ Cq) ⊕ (C∨n ⊗ Cq′), the direct sum of

subspaces induces a based algebraic map

⊕ : Grqn ×Grq
′

n → Grq+q
′

n(2)

(`, `′) 7→ `⊕ `′.

Let

ιq,q′ : Sq ×Sq′ → Sq+q′(3)

denote the usual inclusion, where Sq permutes the first q letters and Sq′ permutes the

last q′ letters. The particular inclusion ιq,1 which keeps the last letter fixed is denoted by

ιq : Sq → Sq+1.

Proposition 2.4. The direct sum operation ⊕ is equivariant, in the sense that if σ ∈ Sq

and τ ∈ Sq′, then (σ ∗ `) ⊕ (τ ∗ `′) = ιq,q′(σ, τ) ∗ (`⊕ `′) . In particular, it induces a based

morphism between the respective quotient varieties

? : Grqn/Sq ×Grq
′

n /Sq′ → Grq+q
′

n /Sq+q′ ,(4)

making the following diagram commute:

Grqn ×Grq
′

n
⊕

−−−→ Grq+q
′

n

ρn
q×ρ

n
q′





y





y

ρn
q+q′

Grqn/Sq ×Grq
′

n /Sq′ −−−→
?

Grq+q
′

n /Sq+q′ .

Furthermore, the induced maps ? are commutative and associative, in the obvious sense.

Proof. Evident.

We now describe classical stabilizations of the Grassmannians, which are equivariant for

the symmetric group action, and whose presentation is necessary for our book keeping.

Given integers n and q ≤ k, denote by

εq,kn : Grqn → Grkn(5)

the inclusion which sends ` ∈ Grqn to `⊕ lnk−q; cf. (2).

In order to define the second stabilization map, consider n ≤ m and J = {1, . . . , n} ⊂

{1, . . . ,m}, and let e∨J : C∨m → C∨n be the adjoint of the map eJ , defined in (1). Then,

the surjection e∨J ⊗ 1 : C∨m ⊗ Cq → C∨n ⊗ Cq defines a pull-back map

sqn,m : Grqn → Grqm,(6)
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by sending ` ⊂ C∨n ⊗ Cq to (e∨J ⊗ 1)−1(`) ⊂ C∨m ⊗Cq.

Properties 2.5. Let q ≤ k and n ≤ m be positive integers. Then

a. The maps εq,kn and sqn,m are algebraic embeddings and satisfy:

skn,m ◦ ε
q,k
n = εq,km ◦ s

q
n,m.

See diagram (8) below.

b. The maps εq,kn and sqn,m are equivariant in the sense that, if σ ∈ Sq then

sqn,m(σ ∗ `) = σ ∗ (sqn,m(`)) and εq,kn (σ ∗ `) = ιq,k−q(σ, e) ∗ ε
q,k
n ,

where e ∈ Sk−q is the identity element; cf. (3).

Since the stabilization maps ε∗,∗∗ and s∗∗,∗ are equivariant, they descend to morphisms

of the respective quotient varieties,

εq,kn : Grqn/Sq → Grkn/Sk and sqn,m : Grqn/Sq → Grqm/Sq.(7)

Definition 2.6. The colimit of the directed system (Grqn, ε
q,k
n , sqn,m) of algebraic varieties is

our model for BU , the classifying space for stable K-theory. This colimit comes with two

filtrations by closed subspaces:

· · · ⊂ BU(n) ⊂ BU(n+1) ⊂ · · · ⊂ BU

and

· · · ⊂ BU(q) ⊂ BU(q + 1) ⊂ · · · ⊂ BU.

The space BU(n) is defined as the colimit lim−→
q

Grqn, and each inclusion sn,m : BU(n) ↪→

BU(m) is a cofibration and a homotopy equivalence. In particular, the inclusions sm :

BU(m) ↪→ BU are homotopy equivalences. The space BU(q) is the classifying space of

q-plane bundles, defined as the colimit lim−→
n

Grqn. The induced maps εq,k : BU(q) ↪→ BU(k)

are cofibrations which induce isomorphism in cohomology up to order 2q.

Remark 2.7. After passing to quotients, one also has a directed system (Grqn/Sq, ε
q,k
n , sqn,m)

whose colimit, denoted by BU/S∞, is called the symmetrized BU . The filtrations of BU

described above descend, under the quotient map ρ : BU → BU/S∞, to filtrations of

BU/S∞ by cofibrations

· · · ⊂ BU(n)/S∞ ⊂ BU(n+1)/S∞ ⊂ · · · ⊂ BU/S∞

and

· · · ⊂ BU(q)/Sq ⊂ BU(q + 1)/Sq+1 ⊂ · · · ⊂ BU/S∞.
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All this information can be condensed in the following commutative diagram, where the

spaces in the bottom row and in the right column are colimits of their respective column

and row.

Grqn/Sq

sq
n,m ��

εq,k
n ��

Grkn/Sk

sk
n,m��

εkn ��
BU(n)/S∞

sn,m��

Grqm/Sq

sq
m ��

εm
q,k ��

Grkm/Sk

sk
m��

εkm ��
BU(m)/S∞

sm��

BU(q)/Sq
εq,k��

BU(k)/Sk
εk ��

BU/S∞

(8)

Recall that the (homotopy theoretic) group completion M+, of a topological monoid M ,

is the space ΩBM of loops in its classifying space. See Appendix A for further details.

Proposition 2.8.

a: The operations ?, defined in Proposition 2.4, induce the structure of a graded abelian

topological monoid on the coproduct Q(n) = qq≥0 Grqn/Sq, for all n. Furthermore, the

natural inclusions Q(n) ⊂ Q(m), induced by the maps sqn,m, are abelian monoid morphisms.

b: The same structure assembles to make BU/S∞ an abelian topological monoid, in such

a way that each BU(n)/S∞ is a closed submonoid.

c: The monoid BU(n)/S∞ is homotopy equivalent to the connected component of the group

completion of Q(n). Similarly, the monoid BU/S∞ is homotopy equivalent to the connected

component of the group completion of Q = qq≥0 BU(q)/Sq.

d: The natural projection ρ : (BU,⊕) → (BU/S∞, ?) is a rational homotopy equivalence

and a morphism of infinite loop spaces.

Proof. Assertions a and b follow from routine verification.

To prove assertion c, first recall that the connected component of the group completion

ΩBM of a topological monoid M is homotopy equivalent to the colimit lim−→
α∈Λ

Mα, where the

Mα’s are connected components of M , and Λ is a collection contained countably infinitely

many copies of each element in π0(M); cf. [Fri91]. This argument implies the following

lemma.
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Lemma 2.9. Let M be an abelian topological monoid, equipped with a continuous monoid

augmentation φ : M → Z+ onto the additive monoid of the non-negative integers, and let

M+ be its group completion; cf. Appendix A. Define Md := Φ−1(d) and chose 1 ∈ M1.

Then the colimit M∞ := lim−→
d

Md of the system Md
+1
−−→ Md+1 given by translation by 1 is

also an abelian topological monoid. Furthermore, φ induces a continuous monoid morphism

Φ : M+ → Z and M+
0 := Φ−1(0) is homotopy equivalent to the group-completion M+

∞.

In our case π0(Q(n)) = Z+ = π0(Q), and assertion c follows from the above considerations.

To prove assertion d, we shall use the following result.

Lemma 2.10. Let G be a finite group acting on a smooth, connected projective variety

X, and let ρ : X → X/G be the quotient map. Then ρ induces an isomorphism ρ∗ :

H∗(X/G; Q) → H∗(X; Q)G, where G denote the invariants of the cohomology of X under

the action of G. Furthermore, if X is simply connected and the fixed point set XG is

non-empty, then X/G is simply connected.

Proof. The first part of the theorem is well-known and follows from standard transfer argu-

ments. Consider a fixed point x ∈ XG and denote x = ρ(x) ∈ X/G. It follows from [Ver80]

that one can find an equivariant triangulation of X in which x is a vertex, and such the

quotient ρ : X → X/G becomes a simplicial map for the quotient triangulation of X/G. In

particular, given any n-simplex σ ⊂ X/G, there is a simplex σ̃ ⊂ X such that the restricion

of ρ to σ̃ is a homeomorphism onto σ.

Standard arguments show that any loop in X/G based on x is homotopic to a simplicial

loop γ : [0, 1] → X/G. Therefore, there is a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1]

such that γ|[ti−1,ti] maps [ti−1, ti] onto a 1-simplex σi of the triangulation in such a way that

γ becomes a homeomorphism from (ti−1, ti) onto the open simplex
◦
σi. For each i = 1, . . . , n

let σ̃i be a lift of σi, and let ri : [ti−1, ti] → X be a reparametrization of its characteristic

map by the interval [ti−1, ti].

Since ρ(r2(t1)) = γ(t1) = ρ(r1(t1)) one can find g1 ∈ G such that g1 ∗ r2(t1) = r1(t1), and

hence the path γ̃ : [0, t2]→ X defined as

γ̃(t) =







r1(t), t ∈ [0, t1]

g1 ∗ r2(t), t ∈ [t1, t2]

is a lifting of γ|[0,t2]. One then proceeds inductively to produce a lifting γ̃ of γ. Since

γ(0) = γ(1) = x and ρ−1(x) = {x} because x is a fixed point of the G-action, it follows that

γ̃ is a loop based on x. The result follows.
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Since the action of Sq on Grqn is induced by the natural representation Sq ⊂ GL(q,C) of the

general linear group on C∨n⊗Cq, one concludes that Sq acts trivially on the cohomology of

Grqn. The previous lemma then implies that ρqn : Grqn → Grqn/Sq induces an isomorphism

between the rational cohomology of two simply-connected spaces. Hence, ρqn is a rational

homotopy equivalence. It follows that ρ is also a rational homotopy equivalence. Since ρ is

compatible with the direct sum operation on BU , one concludes that it is a map of infinite

loop spaces, once we give BU/S∞ the infinite loop space structure coming from the abelian

topological monoid structure. We leave the details to the reader.

Results such as Lemma 2.10 appear in the study of discrete transformation groups. See

for example [Rat94, Theorem 13.1.7].

Remark 2.11. Using Remark 2.2 one sees that, given a projective algebraic variety X, the

morphism space Mor(X,BU/S∞) has the structure of an abelian topological monoid. It

then follows that the assignment X 7→ Mor(X,BU/S∞) defines a contravariant functor

from projective varieties to abelian topological monoids. This can be seen as a presheaf of

topological monoids on the site of projective algebraic varieties over C.

2.2. Infinite symmetric products of P(C∞).

Consider the projective space P(Cn) := Gr1(C∨n) of lines in Cn, and let SPq(P(Cn)) :=

P(Cn)×q/Sq be the q-fold symmetric product of P(Cn), with natural projection

tnd : P(Cn)×q → SPq(P(Cn)).(9)

The points in SPq(P(Cn)) are denoted by a1 + · · · + aq, ai ∈ P(Cn), and its base point is

q · ln1 ; cf. Definition 2.3.

In a similar fashion to Grqn and Grqn/Sq, given q ≤ k and n ≤ m we consider two

stabilizing maps

inq,k : SPq(P(Cn))→ SPk(P(Cn)) and jn,mq : SPq(P(Cn))→ SPq(P(Cm)),(10)

defined by inq,k(σ) = σ+(k−q)ln1 , and jn,mq (σ) = (s1n,m)∗(σ). The latter map is the natural

map of symmetric products induced by the inclusion s1
n,m of P(Cn) as a linear subspace in

P(Cm), see (6). The maps inq,k and jn,mq are algebraic embeddings which satisfy

jn,mk ◦ inq,k = imq,k ◦ j
n,m
q .

Definition 2.12. The colimit SP∞(P(C∞)) of the directed system (SPq(P(Cn)), inq,k, j
n,m
q )

is the infinite symmetric product of P(C∞). This space has two filtrations by closed sub-

spaces:

· · · ⊂ SP∞(P(Cn)) ⊂ SP∞(P(Cn+1)) ⊂ · · · ⊂ SP∞(P(C∞))
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and

· · · ⊂ SPq(P(C∞)) ⊂ SPq+1(P(C∞)) ⊂ · · · ⊂ SP∞(P(C∞)).

The subspace SP∞(P(Cn)) is defined as the colimit lim−→
q

SPq(P(Cn)), and each induced map

jn,m : SP∞(P(Cn)) ↪→ SP∞(P(Cm)) is a cofibration which induces an isomorphism on

the homotopy groups up to order 2n. The subspace SPq(P(C∞)) is defined as the colimit

lim−→
n

SPq(P(Cn)) and the induced maps iq,k : SPq(P(C∞)) ↪→ SPk(P(C∞)) are cofibrations

which induce isomorphisms in homology up to dimension q.

Proposition 2.13. The usual addition operation + between symmetric products assemble

to give SP∞(P(C∞)) the structure of an abelian topological monoid, in such a way that each

SP∞(P(Cn)) is a closed submonoid.

Observe that the direct sum induces a map

F qn : P(Cn)×q = {Gr1
n}

×q → Grqn(11)

which is equivariant for the action of the symmetric group Sq, and hence induces an alge-

braic map f qn between the respective quotients making the following diagram commute.

P(Cn)×q
F q

n−−−→ Grqn

tn
d





y





y
ρq

n

SPq(P(Cn)) −−−→
fq

n

Grqn/Sq

(12)

Remark 2.14. Let φi : P(Cn)×q → P(Cn) denote the projection onto the i-th factor, and

let O(1) be the hyperplane line bundle over P(Cn). It is a simple geometric fact that

(F nq )∗(Qqn) = φ∗1O(1)⊕· · ·⊕φ∗qO(1), where Qq
n denotes the universal quotient q-plane bundle

over Grqn.

Proposition 2.15.

a: The maps f qn form a morphism of directed systems of algebraic varieties

f∗∗ : (SPq(P(Cn)), i∗∗,∗, j
∗,∗
∗ )→ (Grqn/Sq, ε

∗,∗
∗ , s∗∗,∗),

so that the induced map of colimits f : SP∞(P(C∞))→ BU/S∞ is a morphism of abelian

topological monoids.

b: The map f preserves both filtrations of SP∞(P(C∞)) and BU/S∞. More precisely,

f(SP∞(P(Cn))) ⊂ f(BU(n)/S∞) and f(SPq(P(C∞))) ⊂ f(BU(q)/Sq).
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Furthermore, the restriction f q : SPq(P(C∞))→ BU(q)/Sq is a rational homotopy equiv-

alence for each q. Hence, f is a rational homotopy equivalence.

Proof. Part a follows from a simple routine verification. See diagram (13) below.

The filtration preserving property follows from the construction of the maps. It follows

from Lemma 2.10 that pull-back under tnq gives an isomorphism between H∗(SPd(P(Cn)); Q)

and the invariants H∗(P(Cn)×d; Q)
�

q under the action of Sq.

On the other hand, it is well-known that F n
q also induces an isomorphism (F n

q )∗ :

Hk(Grqn; Q)
∼=
−→ Hk(P(Cn)×d; Q)

�
q , whenever q(n − 1) > k; cf. [MS74]. Using the iso-

morphisms

Hk(Grqn/Sq; Q)
∼=
−−−→
(ρq

n)∗
Hk(Grqn; Q)

�
q ∼= Hk(Grqn; Q),

exhibited in the proof of Proposition 2.8, together with ρqn ◦F
q
n = f qn ◦ tnq , one concludes that

f qn induces an isomorphism in the k-th rational cohomology groups, for q(n − 1) > k. To

conclude the proof, first note that a simple inverse limit argument shows that f q induces an

isomorphism in rational cohomology. Then, Lemma 2.10 implies that both SPq(P(C∞)) and

BU(q)/Sq are simply-connected, and hence that f q is a rational homotopy equivalence.

The following commutative diagram summarizes all the filtrations, colimits and maps in-

volved in Proposition 2.15.

SPq(P(Cn))

eq
n,m

��

iq,k
n ��

fq
n

��� � � � � � � � � �
SPk(P(Cn))

ek
n,m

��

ikn ��

fk
n

��� � � � � � � � � �
SP∞(P(Cn))

en,m

��

fn

��� � � � � � � � � �

Grqn/Sq

sq
n,m

��

εq,k
n ��

Grkn/Sk

sk
n,m

��

εkn ��
Gr∞n /S∞

sn,m

��

SPq(P(Cm))

eq
m

��

iq,k
m ��

fq
m

��� � � � � � � � � �
SPk(P(Cm))

ek
m

��

ikm ��

fm
k

��� � � � � � � � � �
SP∞(P(Cm))

em

��

fm

��� � � � � � � � � �

Grqm/Sq

sq
m

��

εq,k
m ��

Grkm/Sk

sk
m

��

εkm ��
Gr∞m/S∞

sm

��

SPq(P(C∞))
iq,k ��

fq

��� � � � � � � � � �
SPk(P(C∞))

ik ��

fk

��� � � � � � � � � �
SP∞(P(C∞))

f

��� � � � � � � � � �

BU(q)/Sq
εq,k ��

BU(k)/Sk
εk ��

BU/S∞

(13)
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Remark 2.16. Using the same arguments of Remark 2.11 one sees that given a projective

variety X, the morphism space Mor(X,SP∞(P(C∞))) is an abelian topological monoid.

Furthermore, the map f : SP∞(P(C∞)) → BU/S∞ induces a morphism of abelian topo-

logical monoids f∗ : Mor(X,SP∞(P(C∞)))→ Mor(X,BU/S∞).

3. Rationalizations and the Chern Character

In this section we present a simple and concrete realization of the Chern character in the

level of classifying spaces, and explain the algebraic geometric nature of this realization.

We first describe come general facts concerning the localization at 0 of certain specific class

of monoids, a process which we call the rationalization of the monoid.

Consider an abelian topological monoid M , whose topology is given by an increasing

family · · · ⊂Mn ⊂Mn+1 ⊂ · · · ⊂M of closed submonoids. Given n ≤ m, let in,m : Mn ↪→

Mm denote the inclusion homomorphism, and define

λn,m : Mn →Mm(14)

σ 7→ (
m!

n!
) in,m( σ ).

Observe that the map rn : Mn → Mn, given by multiplication by n!, makes the following

diagram commute

Mn
rn−−−→ Mn

in,m





y





y

λn,m

Mm −−−→
rm

Mm.

(15)

It follows that the colimit M � of the system {Mn, λn,m}, has a natural structure of

abelian topological monoid, so that the map rM : M → M � induced by the rn’s is a

continuous monoid morphism.

Proposition 3.1. Let M be an abelian topological monoid with a filtration as above, where

each in,m is a cofibration. Then M � is a Q-local abelian topological monoid, in that mul-

tiplication by any integer ×m : M � → M � is invertible. Furthermore, the morphism

rM : M → M � is a rational homotopy equivalence which represents the localization at

0 of the space M in the homotopy category.
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Proof. It is clear that rM induces an isomorphism rM∗ : πk(M)⊗Q→ πk(M
� ), for all k.

Since an abelian topological monoid is simple, the result follows.

Remark 3.2. Consider the case where each member of the family { Mn } has the property

described in Remark 2.2. In other words, that each Mn has the form Y an
n,∞, where {Yn,λ}λ

is a directed system of projective varieties. Then the rationalization M � has the structure

of a colimit of algebraic varieties and the following properties hold.

1. If X is a projective variety, and M satisfies the property above, then Mor(X,M) is

a well-defined topological monoid (cf. Definition 2.1) whose topology is given by the

increasing sequence of closed submonoids · · · ⊂ Mor(X,Mn) ⊂ Mor(X,Mn+1) ⊂ · · · .

2. Let f : M → N be a monoid morphism where both M and N satisfy the hypothesis

of the proposition above. If f is filtration preserving, i.e. f(Mn) ⊂ Nn for all n, then

it induces a monoid morphism f � : M � → N � so that f � ◦ rN = rM ◦ f .

If X is a projective algebraic variety, and M satisfies the property described in the

remark above, then Mor(X,M � ) is well-defined, cf. Definition 2.1, and it is identified with

Mor(X,M) � .

Corollary 3.3. Let X be a projective algebraic variety, and let M satisfy the property

described in Remark 3.2. Then the group completions Mor(X,M � )+ and ( Mor(X,M) � )+

coincide.

Let us recall the canonical splitting of SP∞(P(Cn)) introduced by Steenrod and subse-

quently used by Friedlander and Lawson in [FL92].

The constructions rely on the classical identification Pn = SPn(P
1). First, choose x0 =

[1 : 0] ∈ P1 as a basepoint. Then for n ≤ q, the canonical coordinate plane inclusion Pn ⊂ Pq

can be identified with the map

in,q : Pn = SPn(P
1) −→ Pq = SPq(P

1)(16)

σ 7−→ σ + (q − n)x0.

Now, given n ≤ q, define a morphism rq,n : Pq → SP(q
n)

(Pn) by sending a1 + · · · + aq ∈

SPq(P
1) ≡ Pq to

∑

|I|=n{ai1 + · · ·+ ain} ∈ SP(q
n)

(SPn(P
1)) ≡ SP(q

n)
(Pn). This morphism, in

turn, naturally induces a map

rq,n : SP∞(Pq)→ SP∞(SP(q
n)

(Pn)).
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One has an evident “trace map” (see [FL92, Proposition 7.1]) tr : SP∞(SP(q
n)

(Pn)) →

SP∞(Pn) defined as the extension to the free monoid SP∞(SP(q
n)

(Pn)) of the natural inclu-

sion SP(q
n)

(Pn) ↪→ SP∞(Pn). This map can be used to define a monoid morphism

ρq,n : SP∞(Pq)→ SP∞(Pn)

as the composition SP∞(Pq)
rq,n
−−→ SP∞(SP(q

n)
(Pn))

tr
−→ SP∞(Pn). Note that ρn,n is the

identity map.

Given a projective algebraic variety X, the maps iq,n and ρq,r induce monoid mor-

phisms iq,n
∗

: Mor(X,SP∞(Pn)) → Mor(X,SP∞(Pq)) and ρq,n
∗

: Mor(X,SP∞(Pq)) →

Mor(X,SP∞(Pn)), which in turn induce maps between their respective group-completions

iq,n
∗

: Mor(X,SP∞(Pn))+ → Mor(X,SP∞(Pq))+

and

ρq,n
∗

: Mor(X,SP∞(Pq))+ → Mor(X,SP∞(Pn))+.

Definition 3.4. Given a projective variety X define

Mor(X,SP∞(S2n))+ := Mor(X,SP∞(Pn))+// Mor(X,SP∞(Pn−1))+,

for n ≥ 1, where the latter denotes the homotopy quotient.

Denote by ψn : Mor(X,SP∞(Pn))+ → Mor(X,SP∞(S2n))+ the natural homotopy

quotient map, and let

qq,n : Mor(X,SP∞(Pq))+ → Mor(X,SP∞(S2n))+

denote the composition ψn ◦ ρq,n
∗
.

It is shown in [FL92] that the map

Ψq : Mor(X,SP∞(Pq))+ −→

q
∏

j=1

Mor(X,SP∞(S2j))+(17)

defined as Ψq :=
∏q
j=1 qj,q, is a homotopy equivalence.

Definition 3.5. Let X be an algebraic variety. The colimit of the maps Ψq is denoted by

spX : Mor(X,SP∞(P(C∞)))+ −→
∞
∏

j=1

Mor(X,SP∞(S2j))+.

This map is a homotopy equivalence and is functorial on X.
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3.1. The case X = {pt}. Considering X = pt in the discussion above, one obtains the

canonical splitting of SP∞(P(Cn))

spn : SP∞(P(Cn))→
∏

1≤k≤n−1

SP∞(S2k),(18)

since the monoids in question are already group-complete. In this case, the maps spn are

homotopy equivalences which are also monoid morphisms compatible with both inclusions

SP∞(P(Cn)) ⊂ SP∞(P(Cn+1)) and
∏

1≤k≤n−1 SP∞(S2k) ⊂
∏

1≤k≤n SP∞(S2k). There-

fore, they induce a canonical filtration-preserving splitting homomorphism

sp : SP∞(P(C∞))→
∏

k≥1

SP∞(S2k).(19)

We use SP∞(S2j) as our model for the Eilenberg-MacLane space K(Z, 2j) (cf. [DT56]),

and denote by ı2j ∈ H
2j(SP∞(P(C∞)); Z) the class represented by the composition

SP∞(P(C∞))
sp
−→

∏

k≥1

SP∞(S2k)
prj
−−→ SP∞(S2j),(20)

where prj is the projection. Let i2j ∈ H
2j(SP∞(P(C∞)); Q) denote the image of ı2j under

the coefficient homomorphism ε∗ : H2j(SP∞(P(C∞)); Z)→ H2j(SP∞(P(C∞)); Q) induced

by the canonical inclusion ε : Z ↪→ Q.

Remark 3.6. We use the notation H∗(X;R) to denote the product
∏

j≥1H
j(X;R), for any

coefficient ring R.

Theorem 3.7. Let f : SP∞(P(C∞)) → BU/S∞ be the homomorphism of Proposition

2.15, and identify H∗(BU/S∞; Q) with H∗(BU ; Q) via the projection ρ : BU → BU/S∞.

Then, for j ≥ 1 one has

f∗( j! chj ) = i2j ,

where chj is the 2j-th component of the total Chern character ch ∈ H ∗(BU ; Q).

Proof. Let nq : SPq(P(Cn)) → SP∞(P(C∞)) denote the natural map, defined as the com-

position en ◦ inq ; cf. diagram (13). It suffices to show that (nq )
∗(i2j) = (nq )

∗(f∗(j!chj))

for all q, n ≥ j + 1. Since tnq : P(Cn) × · · · × P(Cn) → SPq(P(Cn)) induces an injection in

rational cohomology, we will then show that (tnq )
∗ ◦ (nq )

∗(i2j) = (tnq )
∗ ◦ (nq )

∗ ◦ f∗(j!chj), for

all q, n ≥ j + 1.

Let x = c1(O(1)) ∈ H2(P(Cn); Q) be the generator of the cohomology ring of P(Cn),

and let hr = [P(Cr+1)] ∈ H2r(P(Cn); Q), r = 1, . . . , n − 1, be the fundamental class of a

coordinate r-plane, the Kronecker dual to xr. Define xi ∈ H
2(P(Cn)×q; Q) as xi = φ∗i (x),

where φi : P(Cn)×q → P(Cn) denotes the i-th projection. Given a partition r1 + · · ·+rq = j
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where j ≤ n− 1, let hr1 ⊗ · · · ⊗ hrq be the associated generator of H2j(P(Cn)×q ; Q), dual

to xr11 · · · x
rq
q .

Given integers j ≤ n, one has a commutative diagram:

P(Cj)
×q t
−−−→ SPq(P(Cj))

i
−−−→ SP∞(P(Cj)) ∼=

∏j−1
s=1 SP∞(S2s)





y
T





ye′





y

e

P(Cn)×q −−−→
t′

SPq(P(Cn)) −−−→
i′

SP∞(P(Cn)) ∼=
∏n−1
s=1 SP∞(S2s) −−−→

p
SP∞(S2j),

where t = tjq, t′ = tnq , i = ijq, i′ = inq , e
′ = ej,nq , e = ej,n, following the notation of diagram

(13), and where T denotes the natural inclusion, and p is the projection.

Consider a partition r1 + · · · + rq = j. If some ri is strictly less than j, then hr1 ⊗

· · · ⊗ hrq = T∗(ϕ), where ϕ ∈ H2j(P(Cj)
×q

; Q). In this case, if ι2j is the canonical class of

SP∞(S2j) = K(Z, 2j), and 〈·, ·〉 denotes the Kronecker pairing, then

〈hr1 ⊗ · · · ⊗ hrq , t
′∗i′

∗
p∗(ι2j)〉 = 〈T∗(ϕ), t′

∗
i′
∗
p∗(ι2j)〉

= 〈p∗i
′
∗t
′
∗T∗(ϕ), ι2j〉 = 〈p∗e∗i∗t∗(ϕ), ι2j〉(21)

= 0,

where the last equality follows from the fact that p ◦ e = ∗. On the other hand, it follows

from the construction of the splittings spn that 〈p∗i
′
∗t
′
∗(L0 ⊗ · · · ⊗ Lk ⊗ · · · ⊗ L0), ι2j〉 = 1,

and hence

(tnq )
∗ ◦ (jnq )∗(i2j) = xj1 + · · ·+ xjq.(22)

By definition,

xj1 + · · · + xjq = φ∗1(x)
j + · · ·+ φ∗q(x)

j = c1(φ
∗
1O(1)))j + · · · + c1(φ

∗
q(O(1)))j(23)

= j!chj
(

φ∗1(O(1)) ⊕ · · · ⊕ φ∗q(O(1))
)

.

It follows from (2.14) that

φ∗1(O(1)) ⊕ · · · ⊕ φ∗q(O(1)) = (F qn)∗(Qqn),(24)

where Qq
n is the universal quotient q-plane bundle over Gq

n. Combining (22), (23) and (24),

one gets

(tnq )
∗(jnq )∗(i2j) = j!chj((F

q
n)∗(Qq)) = j!(F qn)∗(chj(Q

q
n)).(25)
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Write chj(Q
q
n) = (ρqn)∗(ε

q
n)∗s∗n(chj). Chasing diagram (13) one obtains

j!(F qn)∗(chj(Q
q
n)) = j!(F qn)∗(ρqn)

∗(εqn)
∗s∗n(chj))(26)

= j!(tnq )
∗(f qn)

∗(εqn)
∗s∗n(chj)

= j!(tnq )
∗(inq )

∗e∗nf
∗(chj)

= (tqn)
∗(jnq )∗f∗(j!chj).

This concludes the proof.

In order to obtain the actual Chern character, we apply Proposition 3.1 to our specific

situation.

First, define ρB : BU → {BU/S∞}
� as the composition BU

ρ
−→ BU/S∞

rB−→

{BU/S∞}
� , where rB is the rationalization map described in Proposition 3.1. Since ρ

is a rational homotopy equivalence, according to Proposition 2.8, we use ρB : BU →

{BU/S∞}
� as our model for the rationalization of BU . Then observe that the homomor-

phisms µn : SP∞(S2n)→ SP∞(S2n), which sends σ ∈ SP∞(S2n) to n!σ, induce a filtration

preserving endomorphism of the (weak) product

µ :
∏

n≥1

SP∞(S2n)→
∏

n≥1

SP∞(S2n).(27)

It follows from Remark 3.2 that µ descends to an endomorphism µ � of the rationalization
∏

j≥1 SP∞(S2j) � which is easily seen to be a homotopy equivalence.

Choose homotopy inverses f−1� , µ−1� and sp−1� and define

e : SP∞(P(C∞)) � → SP∞(P(C∞)) �(28)

as e := sp−1� ◦ µ−1� ◦ sp � . These fit into the following diagram whose solid arrows form

a commutative diagram, and which becomes homotopy commutative after including the

dashed ones.
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BU
ρ��

ρB

�� ��
��
��
��
��
��
��
��
�

ch

��

BU/S∞

rB

��

SP∞(P(C∞))
sp ��f�	

rP

��

∏

k≥1 SP∞(S2k)

rS

��

∏

k≥1 SP∞(S2k) �

µ

� �������������

rS

��

{BU/S∞}
�

f−1
 �
	
 � ��� �� � ���

SP∞(P(C∞)) �
sp 
 ��

f 

�	

e

��� � � � � � � � � � �

∏

k≥1 SP∞(S2k) �

µ−1
��

�����
���

SP∞(P(C∞)) �
sp 
 �� ∏

k≥1 SP∞(S2k) �

µ 
 � �������������

sp−1


�� �������

(29)

The following result is a simple corollary of the previous constructions and is the desired

presentation of the Chern character.

Theorem 3.8. Let ch : BU → SP∞(P(C∞)) be the composition ch := e◦f−1� ◦ρB. Then

ch represents the Chern character. In other words, ch∗(i2j) = ch2j ∈ H
2j(BU ; Q).

Proof. Just observe that the construction of µ implies that µ∗(ı2j) = j!ı2j , and hence

e∗(i2j) = 1
j! i2j . The result now follows from Theorem 3.7.

3.2. The case X arbitrary. We now describe the algebraic-geometric nature of our con-

struction of the Chern character. More precisely, we show that the homotopy inverses f −1� ,

µ−1� and sp−1 yield uniquely determined homotopy class of maps between group-completed

morphism spaces. Observe that, if M is any space in Diagram 29 then it represents a func-

tor X 7→ Mor(X,M)+ from the category of varieties to the category of spaces, as one sees

directly from Definition 2.1 and Remark 2.2, using the functoriality of the group completion

functor. We will show that the dashed arrows induce natural transformations between the

corresponding functors, after passage to the homotopy category.

Consider an algebraic variety X. The splitting map spX , introduced in Definition 3.5,

is a filtration preserving morphism of topological monoids. Therefore, it induces a natural

monoid morphism

spX� : Mor(X,SP∞(P(C∞)))+� →
∏

j≥1

Mor(X,SP∞(S2j))+� ,(30)

according to Remark 3.2(2). Note that this is still a homotopy equivalence.
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Now, let

µX :
∏

j≥1

Mor(X,SP∞(S2j))+ →
∏

j≥1

Mor(X,SP∞(S2j))+(31)

denote the map induced by the map µ, defined in (27). In other words, µX({fj}) = {j!fj}.

In a similar fashion to the case X = pt, one sees that µX induces a filtration preserving

endomorphism of
∏

j≥1 Mor(X,SP∞(S2j))+, and hence it induces an endomorphism of

the rationalized monoid

µX� :
∏

j≥1

Mor(X,SP∞(S2j))+� →
∏

j≥1

Mor(X,SP∞(S2j))+� .(32)

Since the monoid is 0-local, this is a homotopy equivalence which is natural on X.

Definition 3.9. Given an algebraic variety X, define

eX : Mor(X,SP∞(P(C∞)))+� → Mor(X,SP∞(P(C∞)))+�

as the unique homotopy class of maps given by eX =
(

spX�
)−1
◦

(

µX�
)−1
◦ spX� .

Consider a (smooth) generalized flag variety F , i.e. a compact homogeneous space of the

form F = G/P , where is a complex algebraic group and P < G is a parabolic subgroup. It

follows from the duality results in [FL92] and the computations in [LF92] that the forgetful

functor

Mor(F,SP∞(P(C∞)))+ → Map(F,SP∞(P(C∞)))+

is a homotopy equivalence. As a consequence one has the following.

Proposition 3.10. If G is a finite group of automorphisms of a generalized flag variety

F , then the forgetful functor Mor(F/G,SP∞(P(C∞)))+� → Map(F/G,SP∞(P(C∞)))+� is

a homotopy equivalence.

Proof. The argument is standard. The projection F → F/G gives a morphism F/G →

SP|G|(F ) which in turn it induces a “transfer map”

Mor(F,SP∞(P(C∞)))+� → Mor(F/G,SP∞(P(C∞)))+�

which is easily seen to be a homotopy equivalence. The same applies one one replaces

Mor(, ) by Map(, ) in the construction. The observation preceding the proposition completes

the argument.
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Corollary 3.11. The forgetful maps

Mor({BU/S∞}
� ,SP∞(P(C∞)))+� → Map({BU/S∞}

� ,SP∞(P(C∞)))+�

and

�����
({BU/ � ∞} 
 × {BU/ � ∞} 
 , SP∞( � ( � ∞ )))+
 →

�	��

({BU/ � ∞} 
 × {BU/ � ∞} 
 , SP∞( � ( � ∞ )))+


are homotopy equivalences.

Proof. One just needs to observe that these maps are induced by morphisms of inverse

systems whose components are maps of the type

Mor(F/G,SP∞(P(C∞)))+� → Map(F/G,SP∞(P(C∞)))+� ,

where F are generalized flag varieties and G is a finite group. Furthermore, all spaces are

0-local. The result follows.

Throughout the rest of this section we use the notation B := {BU/S∞}
� and S :=

SP∞(P(C∞)) � . Let f � : S → B denote the rationalization of the map introduced in

Proposition 2.15. This is a monoid morphism which belongs to Mor(S,B). Since f �

is also a homotopy equivalence, there is a homotopy inverse f−1� ∈ Map(B,S). The

corollary above show that the forgetful functor Mor(B,S)+ → Map(B,S)+ is a homotopy

equivalence, and hence there is a unique element [α] ∈ π0 Mor(B,S)+ which maps onto

[f−1� ] ∈ π0 Map(B,S)+. Let α ∈ Mor(B,S)+ be a representative for [α].

Lemma 3.12. The element α ∈ Mor(B,S)+ described above is a homotopy homomor-

phism in the sense of Definition A.4.

Proof. We know that f � is a monoid morphism, hence µB ◦ (f
� × f � ) = f � ◦µS . Therefore,

f−1� ◦ µB ∼ µS ◦ (f−1� × f−1� ) as maps. In other words, [f−1� ◦ µB] = [µS ◦ (f � × f � )] ∈

π0( Map(B,S)+). This is equivalent to say that

[(f−1� )B×B∗ (µB)] = [µB×BS,+ (f � × f � )],(33)

in the language of Appendix A.

We now use Proposition A.2(b) with Mor(, ) replaced by Map(, ), cf. Remark A.7), to

conclude that αB×B∗ is homotopic to (f−1� )B×B∗ . This together with (33) and the definition

of α gives the equalities

[αB×B∗ (µB)] = [(f−1� )B×B∗ (µB)] = [µB×BS,+ (f � × f � )] = [µB×BS,+ (α× α)]

of elements in π0 Map(B ×B,S)+. The result now follows from Proposition A.5.
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We denote a representative for [α] by f−1� ∈ Mor({BU/S∞}
� ,SP∞(P(C∞)))+. It follows

from Proposition A.6 that f−1� induces an H-space map

(f−1� )X∗ : Mor(X, {BU/S∞}
� )→ Mor(X,SP∞(P(C∞)))+,(34)

and this assignment is functorial on X.

Theorem 3.13. The map (f−1� )X∗ induces a unique homotopy class of maps (f−1� )X+ :

Mor(X, {BU/S∞}
� )+ → Mor(X,SP∞(P(C∞)))+, such that (f−1� )X+ ◦ u = (f−1� )X∗ ,

where u : Mor(X, {BU/S∞}
� ) → Mor(X, {BU/S∞}

� )+ is the canonical map from the

monoid into its group-completion.

Proof. Denote M = Mor(X, {BU/S∞}
� ), N = Mor(X, {BU/S∞}

� ) and α = (f−1� )X∗ .

The multiplicative system π0(M) of the Pontrjagin ring H∗(M) is sent by α to the multi-

plicative subgroup π0(N
+) of the units of H∗(N

+). Recall that H∗(M
+) is isomorphic to

the localization H∗(M)[π0(M)]−1; cf. [Q]. Therefore, there is a unique ring homomorphism

α+ : H∗(M
+) → H∗(N

+) satisfying α+ ◦ u∗ = α∗. Since both M+ and N+ are 0-local

abelian topological monoids, they are a product of rational Eilenberg-MacLane spaces and

the homomorphism α+ determines a unique homotopy class of maps satisfying the desired

property.

Following the same steps as in the case X = pt, given an algebraic variety X, we define

the map chX : Mor(X,BU)+ → Mor(X,SP∞(P(C∞)))+� as the composition

chX = eX ◦ (f−1� )X∗ ◦ ρ
X
B,∗,(35)

where eX is introduced in Definition 3.9, and ρXB,∗ : Mor(X,BU)+ → Mor(X, {BU/S∞}
� )+

is the map induced by the projection ρB . See Diagram 29.

Let us explain the significance of these constructions. Given a projective algebraic variety

X, the homotopy groups

LjH2j−i(X) := πi( Mor(X,SP∞(S2j))+)(36)

were introduced in [FL92] and are called the morphic cohomology groups of X.

Definition 3.14. The (reduced) holomorphicK-theory space ofX is defined as K̃hol(X) :=

Mor(X,BU)+, and the (reduced) holomorphic K-theory groups ofX are defined as K̃
−i
hol(X) :=

πi(K̃hol(X)).

Remark 3.15. 1. Our holomorphic K-groups coincides with the “semi-topological” K-

groups studied in [FW99]. We study holomorphic K-theory in greater generality and

in much more depth in [CLF].
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2. As shown in [CLF], K̃hol(X) is an infinite loop space that corresponds to the zero-

th space of the spectrum introduced in [LLFM96] and whose basic properties are

discussed in [LF99].

As a main consequence of the constructions in this section, we obtain the following result.

Theorem 3.16. Let X be a projective variety. The natural maps chX : Mor(X,BU)+ →

Mor(X,SP∞(P(C∞)))+� induce natural homomorphisms

chiX : K̃
−i
hol(X)→

∏

j≥0

LjH2j−i(X) �

from the holomorphic K-theory groups of X to its rational morphic cohomology. These

homomorphism fit into a commutative diagram

K̃
−i
hol(X) −−−→ K̃

−i
top(X)

ch
i
X





y





y
ch

i
X

∏

j≥0L
jH2j−i(X) � −−−→

∏

j≥0H
2j−i(X,Q),

where the right vertical arrow is the usual Chern character from topological K-theory to

ordinary cohomology category, cf. Theorem 3.8, and the horizontal arrows are given by the

usual forgetful functors.

Proof. The result follows from the naturality of the constructions and the caseX = {pt}.

Remark 3.17. The lower horizontal arrow in the diagram is the “cycle map” from the mor-

phic cohomology of X to its singular cohomology; cf. [FL92].

Definition 3.18. We call the natural maps

chiX : K̃
−i
hol(X)→

∏

j≥0

LjH2j−i(X) �

the Chern character from the (reduced) holomorphic K-theory of X to its morphic co-

homology. Setting X = BU one obtains the the tautological Chern character element

ch ∈ Mor(BU,SP∞(P(C∞)))+� defined as ch := chBU (Id), where Id ∈ Mor(BU,BU)+ is

the identity.

Remark 3.19. The space Mor(X,SP∞(P(C∞)))+ can be made into a homotopy ring in such

a way that the forgetful functor Mor(X,SP∞(P(C∞)))+ → Map(X,SP∞(P(C∞)))+ is a

homotopy ring homomorphism when the latter space is given the multiplicative structure

corresponding to the cup product. This will be explained in §4.2, after the discussion of the

join pairing in Theorem 4.9. We will then see that the tensor product of bundles induces
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a pairing ⊗X : K̃hol(X) ∧ K̃hol(X) → K̃hol(X) which makes the Chern character into a

homotopy ring homomorphism; cf. Proposition 4.11.

4. Chow varieties and Chern Classes

In this section we consider spaces of algebraic cycles on projective spaces, together with

their stabilizations and rationalizations. These spaces are natural recipients for Chern

classes and give another algebraic-geometric model for products of Eilenberg-MacLane

spaces. Most of the results presented here are an adaptation of results from [BLLF+93],

[LLFM96] and [LF99] to the present context.

4.1. Algebraic cycles on P(C∞) and Chern classes; the case X = {pt}.

Definition 4.1. Given n > 0 and q ≥ 0, let C
q
n,d = Chowq

d

(

P(C∨n ⊗Cq)
)

be the

Chow variety consisting of the effective algebraic cycles of codimension q and degree d in

P(C∨n ⊗ Cq); cf. [Law95]. The formal addition of cycles

+ : C
q
n,d × C

q
n,d′ → C

q
n,d+d′

is an algebraic map which makes C
q
n,∗ := qd≥0C

q
n,d, into a graded abelian topological monoid,

called the Chow monoid of effective cycles of codimension q in P(C∨n⊗Cq). This is the free

abelian monoid generated by the irreducible subvarieties of codimension q in P(C∨n ⊗Cq).

Remark 4.2. Given a complex vector space V , there is a 1-1 correspondence between ir-

reducible subvarieties Z ⊂ P(V ) and irreducible cones Cone(Z) ⊂ V . This correspon-

dence identifies the Chow variety C
q
n,1 = Chowq

1

(

P(C∨n ⊗ Cq)
)

of cycles of degree one in

P(C∨n ⊗ Cq) with the Grassmannian Grqn. Under this identification one obtains a natural

embedding cq : Grqn ↪→ C
q
n,∗ as a connected component.

An important feature of the Chow monoids is the fact that they come equipped with an

“exterior” bilinear multiplication

] : C
q
n,d × C

q′
n,e → C

q+q′

n,de(37)

given by the ruled join of cycles; cf. [Law95]. This operation is described as follows. Let

i : C∨n ⊗ Cq → C∨n ⊗ Cq+q′ and j : C∨n ⊗ Cq′ → C∨n ⊗ Cq+q′ be the complementary

embeddings induced by the inclusion of Cq into Cq+q′ given by the first q coordinates and

of Cq′ into Cq+q′ as the last q′ ones. Consider a pair of subvarieties Z ⊂ P(C∨n ⊗ Cq) and

W ⊂ P(C∨n ⊗ Cq′). One defines the subvariety Z]W ⊂ P(C∨n ⊗ Cq+q′) as the union of all

projective lines in P(C∨n⊗Cq+q′) which join points in i(Z) to points in j(W ). One extends

] to arbitrary cycles by linearity.
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The join satisfies the following properties:

Facts 4.3.

a. The join is a strictly associative operation.

b. Its restriction to the connected components yields an algebraic map

] : C
q
n,d × C

q′
n,e → C

q+q′

n,de ;(38)

cf. [Plü97] and [Bar91].

c. In the particular case of cycles of degree one (d = d′ = 1), the join coincides with the

usual direct sum operation

⊕ : Grqn ×Grq
′

n → Grq+q
′

n ;(39)

cf. Remark 4.2.

We now proceed to introduce three algebraic maps

tqn,(d,e) : C
q
n,d → C

q
n,e,(40)

ε
(q,k)
n,d : C

q
n,d → C

k
n,d,(41)

sq(n,m),d : C
q
n,d → C

q
m,d,(42)

which will define a directed system

{Cqn,d; t
q
n,(d,e), ε

(q,k)
d,n , sq(n,m),d}.(43)

Given d ≤ e, we define tqn,(d,e) : C
q
n,d → C

q
n,e by tqn,(d,e)(σ) = σ+ (e− d)lnq . This uses the

additive structure of the Chow monoid. The maps ε
(q,k)
n,d and sq(n,m),d are extensions to

higher degrees of the maps εq,kn and sqn,m introduced in (5) and (6), and are defined as

follows.

First, given J ⊂ {1, . . . , k} with |J | = q, let J c denote its complement. Then let shJ ∈ Sk

denote the shuffle permutation which sends the ordered k-tuple (J, J c) to (1, . . . , k). Under

the permutation representation, shJ induces an isomorphism shJ : Ck → Ck and we define

eJ : Cq ↪→ Ck and eJc : Ck−q ↪→ Ck as the compositions Cq i
−→ Ck shJ−−→ Ck and

Ck−q j
−→Ck shJ−−→ Ck. These are the maps defined in (1). Define

εJn,d : C
q
n,d → C

k
n,d(44)

by εJn,d(σ) = shJ∗(σ]l
n
k−q), where shJ∗ is the map on cycles induced by the shuffle map; see

cf. (37). In the particular case where J = {1, . . . , q} ⊂ {1, . . . , k} we denote εJn,d by ε
(q,k)
n,d .
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Remark 4.4. Observe that the maps eJn,d are all homotopic to e
(q,k)
n,d for all choices of J ⊂

{1, . . . , k} with |J | = q.

In order to define the third stabilization map, we consider n ≤ m and J = {1, . . . , n} ⊂

{1, . . . ,m}, and let e∨J : C∨m → C∨n be the adjoint of the map eJ , defined in (1). Then,

the surjection e∨J ⊗ 1 : C∨m ⊗ Cq → C∨n ⊗ Cq induces a map

sq(n,m),d : C
q
n,d → C

q
m,d,(45)

defined as follows. Given an irreducible subvariety Z ⊂ P(C∨n ⊗ Cq) of degree d, let

sq(n,m),d(Z) ⊂ P(C∨m ⊗ Cq) be the irreducible variety of whose cone Cone(sq(n,m),d(Z)) ⊂

C∨m ⊗ Cq is defined as (e∨J ⊗ 1)−1(Cone(Z)). Then, extend sq(n,m),d linearly to arbitrary

cycles.

Remark 4.5. One could rephrase the last definition in terms of a suitable join operation, and

vice-versa. We prefer this approach, for it is a direct generalization of the Grassmannians

case.

Lemma 4.6. Given q ≤ k, n ≤ m and d ≤ e, the following diagram commutes.

C
q
n,d

ε
(q,k)
n,d ��

sq

(n,m),d

��

tq
n,(d,e)

��� �
� � �
� � �

C
k
n,d

sk
(n,m),d

��

tk
n,(d,e)

��� �
� � �
� � �

C
q
n,e

ε
(q,k)
n,e

��

sq

(n,m),e

��

Ckn,e

sk
(n,m),e

��

C
q
m,d

ε
(q,k)
m,d ��

tq
m,(d,e)

��� �
� � �
� � �

Ckm,d

tk
m,(d,e)

��� �
� � �
� � �

C
q
m,e

ε
(q,k)
m,e

��
Ckm,e

Proof. This is just a careful diagram chase using the definitions.

Definition 4.7. The colimit C := lim−→
q,n,d

C
q
n,d of the directed system {Cqn,d; t

q
n,(d,e), ε

(q,k)
d,n , sq(n,m),d}

is the “stabilized” Chow variety of effective cycles cycles in P(C∨∞ ⊗ C∞).

Remark 4.8. We may fix some of the parameters q, n, d and let the other(s) go to infinity,

obtaining intermediate spaces. The corresponding notation will use the symbol∞ whenever

appropriate, to denote the colimits, and maps between them. For example, by fixing one
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of the parameters q, n or d, we have the spaces C
q
∞,∞, C∞n,∞ and C∞∞,d when the colimit is

taken over the remaining two parameters. This gives three filtrations of C by cofibrations:

. . . ⊂ C
∞
∞,d ⊂ C

∞
∞,d+1 ⊂ · · · ⊂ C,(46)

. . . ⊂ C
q
∞,∞ ⊂ C

q+1
∞,∞ ⊂ · · · ⊂ C,(47)

and

. . . ⊂ C
∞
n,∞ ⊂ C

∞
n+1,∞ ⊂ · · · ⊂ C.(48)

We have seen that C
q
n,∗ := qd≥0C

q
n,d is an abelian topological monoid and that sq(n,m),d

and ε
(q,k)
n,d are both monoid morphisms. Therefore, the colimit C∞∞,∗ := qd≥0C

∞
∞,d is also an

abelian topological monoid with a continuous augmentation φ : C∞∞,∗. In [LM88], C∞∞,d is

denoted by Dd, and C is denoted by D∞.

The following theorem summarizes various results proven in [Law89], [LM88], [FL92] and

[BLLF+93]. The presentation here is chosen to provide a parallel with the analogous results

in the previous presentation of symmetric products and Grassmannians.

Theorem 4.9.

a. Addition of cycles gives C the structure of an abelian topological monoid. With this

structure, C is homotopy equivalent to the connected component of the group completion

(C∞∞,∗)
+ =

(

qd≥0C
∞
∞,d

)+
.

b. Each monomorphism C
q
n,∞ ⊂ C

q
n+1,∞ is a homotopy equivalence, and there are compatible

canonical splittings C
q
n,∞ '

∏q
j=1K(Z, 2j), fitting in a commutative diagram

C
q
n,∞

�
� ��

�
� ����

�
����

��

C
q
n+1,∞

��� � � � � � � � � � �

∏q
j=1K(Z, 2j)

c. Each monomorphism C
q
n,∞ ⊂ C

q+1
n,∞ is homotopic to the inclusion of C

q
n,∞ '

∏q
j=1K(Z, 2j)

as a factor in C
q+1
n,∞ '

∏q+1
j=1 K(Z, 2j).

d. The natural inclusions Grqn ≡ C
q
n,1 ↪→ C

q
n,∞ '

∏q
j=1K(Z, 2j) stabilize as n→∞ to give

the truncated total Chern class cq : BU(q)→ C
q
∞,∞ '

∏q
j=1K(Z, 2j).

e. By sending q →∞ one gets the total Chern class c : BU → C '
∏∞
j=1K(Z, 2j). This is

a bi-filtration preserving map, satisfying c(BU(q)) ⊂ C
q
∞,∞ ⊂ C and c(BU(n)) ⊂ C∞n,∞ ⊂ C.

f. Under the join operation ], the monoid C∞∞,∗ = qd≥0C
∞
∞,d becomes an E∞-ring space.

Therefore the group completion
(

C∞∞,∗

)+
has an E∞-ring augmentation induced by the degree
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of cycles Φ :
(

C∞∞,∗

)+
→ Z. Furthermore, the connected component of 1 in the group

completion
(

C∞∞,∗

)+

1
:= Φ−1(1) , which can be identified with C, has a “multiplicative”

infinite loop space structure for which the total Chern class map c : (BU,⊕) → (C, ]) is a

map of infinite loop spaces.

Proof. Assertion a is proven in [Fri91], and the arguments in the proof are outlined in the

proof of Proposition 2.8. Assertions b and c follow from Lawson’s complex suspension

theorem [Law89] and the splittings of [FL92]. Assertions d and e follow from [LM88]

and a mere inspection of the definitions of the filtrations. The last assertion is proven in

[BLLF+93].

4.2. The case X arbitrary.

Let X be a projective algebraic variety. The identification BU(q) = Grq∞ = C
q
∞,1 gives

an inclusion BU(q) ↪→ qd C
q
∞,d, and letting q go to infinity, one gets a map Mor(X,BU)→

Mor(X,C∞∞,∗), where C∞∞,∗ = qd C
q
∞,d. Denote by

cX : Mor(X,BU)→ Mor(X,C∞∞,∗)
+(49)

the composition of the map above with the universal map Mor(X,C∞∞,∗)→ Mor(X,C∞∞,∗)
+

from Mor(X,C∞∞,∗) to its additive group-completion; cf. Appendix A.

In [LLFM96] and [LF99] it is shown that Mor(X,C∞∞,∗)
+ is an abelian topological monoid

with a multiplicative action of the linear isometries operad L induced by the join pairing

on algebraic cycles. This gives Mor(X,C∞∞,∗)
+ the structure of an augmented E∞-ring

space, in the language of [LLFM96], with augmentation Φ : Mor(X,C∞∞,∗)
+ → Z. De-

fine Mor(X,C∞∞,∗)
+
d := Φ−1(d) and recall that Lemma 2.9 gives a homotopy equivalence

Mor(X,C∞∞,∗)
+
0
∼= Mor(X,C)+. Hence one has natural equivalences

Mor(X,C∞∞,∗)
+
1
∼= Mor(X,C∞∞,∗)

+
0
∼= Mor(X,C)+,(50)

where the former one is given by translation by the element 1 ∈ Mor(X,C∞∞,∗)
+
1 , represented

by a constant map X → C∞∞,1.

Remark 4.10. Using the complex suspension theorem of [FL92], one obtains a canonical

homotopy equivalence

Σ/X : Mor(X,SP∞(P(C∞)))+ → Mor(X,C)+,

hence Mor(X,SP∞(P(C∞)))+ becomes a homotopy ring space, with mutiplication

# : Mor(X,C)+ × Mor(X,C)+ → Mor(X,C)+
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induced by the join of cycles. It follows from [LM88] that the forgetful functor

Mor(X,SP∞(P(C∞)))+ → Map(X,SP∞(P(C∞)))+

is a map of ring spaces where the homotopy ring structure in the later is induced by the

cup product.

We make a brief digression here to explore this multiplicative structure further. The

tensor product of vector bundles gives an element ⊗ ∈ Mor(BU × BU,BU)+, which

satisfies the following property. Let ch ∈ Mor(BU × BU,BU) be the Chern character

element, cf. Definition 3.18, and consider the elements #BU×BU
S (ch) and chBU×BU (⊗) ∈

Mor(BU × BU,SP∞(P(C∞))+� ,). The fact that the topological Chern character is a ring

homomorphism implies that these elements represent the same element in π0( Map(BU ×

BU,SP∞(P(C∞))+� , )). Then it follows from Corollary 3.11 that they represent the same

element in π0( Mor(BU × BU,SP∞(P(C∞))+� , )). Another application of Proposition A.6

proves the following.

Proposition 4.11. Given a projective algebraic variety X, the Chern character map chX :

Mor(X,BU)+ → Mor(X,SP∞(P(C∞)))+� is a homotopy ring homorphism. In particu-

lar ch0
X : K̃0

hol(X) →
∏

j≥0 L
jH2j(X) � is a ring homomorphism and chiX : K̃

−i
hol(X) →

∏

j≥0 L
jH2j−i(X) � is a homomorphism of modules over K̃0

hol(X).

It is easy to see that cX factors as Mor(X,BU)→ Mor(X,C∞∞,∗)
+
1 → Mor(X,C∞∞,∗)

+.

Furthermore, the map Mor(X,BU) → Mor(X,C∞∞,∗)
+
1 is a map of L-spaces, cf. [LF99],

and hence it induces a map between their respective group completions

cX : Mor(X,BU)+ → ΩB
(

Mor(X,C∞∞,∗)
+
1

)

.(51)

Observe that the latter group-completion is taken with respect to the join pairing structure

on Mor(X,C∞∞,∗)
+
1 .

In [LF99] it is shown that, for X smooth, Mor(X,C∞∞,∗)
+
1 is group-complete with respect

to the join pairing, hence

Mor(X,C∞∞,∗)
+
1
∼= ΩB

(

Mor(X,C∞∞,∗)
+
1

)

.(52)

The argument goes as follows. Consider π0( Mor(X,C∞∞,∗)
+
1 ) ∼= 1 ×

∏

p≥1 LpH2p(X),

where L∗H∗(X) denotes the morphic cohomology groups (36). It is shown in [FL92] that

whenever X is smooth then LpH2p(X) ∼= A2p(X), where the latter denotes the Chow

group of algebraic cycles of codimension p modulo algebraic equivalence. Furthermore, the

multiplication on 1 ×
∏

p≥1 LpH2p(X) induced by the join coincides with the intersection

pairing. Hence π0( Mor(X,C∞∞,∗)
+
1 ) is a group under the join multiplication.
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Definition 4.12. Let X be a smooth algebraic variety. Using (51) and (52) we can con-

struct the total Chern class map

cX : Mor(X,BU)+ → Mor(X,C∞∞,∗)
+
1 .

One can combine the suspension equivalence Σ/ X , with the splitting in Definition 3.5 and

(36), and then take homotopy groups to define the higher Chern class maps

ciX : K̃
−i
hol(X)→

∏

p≥1

LpH2p−i(X)

from the (reduced) holomorphic K-theory of X to its morphic cohomology. The individual

components of this map are denoted by c
p,i
X : K̃

−i
hol(X)→ LpH2p−i(X).

Remark 4.13. a: The identification (50) allows one to identify cX : Mor(X,BU)+ →

Mor(X,C∞∞,∗)
+
1 with a map cX : Mor(X,BU)+ → Mor(X,C)+.

b: It is shown in [LF99] that cX is a map of spectra from the holomorphic K-theory

spectrum of X to its morphic spectrum, in the terminology of [LLFM96].

c: Under the forgetful functor Mor(, )→ Map(, ) one obtains a commutative diagram

K̃
−i
hol(X)

ci
X−−−→

∏

p≥1 L
pH2p−i(X)





y





y

K̃
−i
top(X)

c
−−−→

∏

p≥1H
2p−i(X; Z)

where K̃
−i
top(X) is the reduced topological K-theory of X and c is the usual Chern

class map into singular cohomology.

5. Relations between the Chern character and Chern classes

In this section we present a relation between the Chern characters and the Chern classes

contructed in the previous sections. This requires an alternative description of the rational

Chern class map, and some new constructions with cycle spaces.

5.1. Rationalization of cycle spaces. We first describe a modification of the directed

system (43), aiming at rationalizing C. Adding all maps εJ∞,d (44) together, one defines a

map

εqq′ : C
q
∞,d → C

q+q′

∞,(q+q′

q )d
(53)

σ 7→
∑

J

εJ∞,d(σ).
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Lemma 5.1. The following diagram commutes:

C
q
∞,d

εq1−−−→ C
q+1
∞,(q+1)d

tq
∞,(d,d+1)





y





y

tq+1
∞,(d(q+1),(d+1)(q+1))

C
q
∞,d+1 −−−→

εq1

C
q+1
∞,(q+1)(d+1).

Definition 5.2. The maps above generate a directed system {Cq∞,d, t
q
∞,(d,e), ε

q
q′}, whose

colimit we denote by C � . For this system one can also define the additive monoid C∞∞,∗ 
 :=

lim−→
d

qd C
q
∞,d. Define #av : C

q
∞,d × C

q′

∞,d′ → C
q

∞, (q+q′

q )dd′
by

σ#avσ
′ =

∑

|J |=q

shJ∗(σ#σ′).

Proposition 5.3. 1. The directed system above has a cofinal subsystem given by the

spaces C
q
∞,q! together with the maps εq1 : C

q
∞,q!→ C

q+1
∞,(q+1)!.

2. The maps #av assemble to give a map of directed systems and satisfy σ#avσ
′ =

σ′#avσ. In particular, both colimits C � and C∞∞,∗ � have the structure of commutative

topological rings, whose operations are given by algebraic maps.

Proof. Follows directly from the definitions.

Theorem 5.4. The colimit C � is homotopy equivalent to the rationalization of C.

Proof. The directed system can be visualized with the aid of the following diagram.

C
q
∞,d

εq1 ��

tq
∞,(d,d+1)��

C
q+1
∞,d(q+1)

tq+1
∞,(d(q+1),(d+1)(q+1))��

��

C
q
∞,d+1

εq1 ��

��

C
q+1
∞,(d+1)(q+1)

��

��

C
q
∞,∞

εq ��
C
q+1
∞,∞

��

∏q
j=1K(Z, 2j)

εq �� ∏q+1
j=1K(Z, 2j)

�� ∏∞
j=1K(Z, 2j)

(54)
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Note that the bottom horizontal arrow

εq : C
q
∞,∞ =

q
∏

j=1

K(Z, 2j) −→ C
q+1
∞,∞ =

q+1
∏

j=1

K(Z, 2j)

is homotopic to (q+ 1) · ε
(q,q+1)
∞,∞ ; cf. Remark 4.4. A minor modification of the arguments in

Proposition 3.1 ends the proof.

We now exhibit an explicit “algebraic” rationalization map from C to C � . The con-

structions below provide an essential link to the previous constructions with BU(q) and

symmetric products.

The main ingredient here is the “averaging map”

avq : C
q
∞,d → C

q
∞,d·q!,(55)

which sends σ ∈ C
q
∞,d to

∑

g∈
�

q
g ∗ σ ∈

(

C
q
∞,d·q!

)

�
q

.

Lemma 5.5. The following diagrams commute:

C
q
∞,d

ε
(q,q+1)
∞,d

��

av
q ��

tq
∞,(d,d+1)

�� �
�

�
�

�
�

�
�

�

C
q
∞,d·q!

εq
q′

��

tq
∞,(dq!,(d+1)q!)

�
� �����������

C
q
∞,d+1

ε
(q,q+1)
∞,d+1

��

avq ��
C
q
∞,(d+1)·q!

εq
q′

��

C
q+1
∞,d

av
q+1 ��

tq+1
∞,(d,d+1)

�� �
�

�
�

�
�

�
�

C
q+1
∞,d·(q+1)!

tq+1
∞,(d(q+1)!,(d+1)(q+1)!)

�
� �����������

C
q+1
∞,d+1

av
q+1

��
C
q+1
∞,(d+1)·(q+1)!

and

C
q
∞,d × C

q′

∞,d′

avq×avq′ ��

#

��
C
q+q′

∞,dd′

av
q+q′ ��

C
q
∞,dq! × C

q′

∞,d′q! #av

��
C
q+q′

∞,dd′(q+q′)!
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Proof. In the first diagram, the left vertical face commutes by Lemma 4.6, and the right

vertical face commutes by Lemma 5.1. The top and bottom faces commute because avq can

be seen as an additive endomorphism of C
q
∞,∗ which sends l∞q to q!l∞q . The commutativity

of last diagram follows from an inspection of the definitions.

It follows from this lemma that the averaging maps, when put together, induce an alge-

braic map av∞ : C → C � , from the colimit of the left vertical faces, to the colimit of the right

vertical faces. Furthermore, this map is a map of E∞-ring spaces, for the multiplication

given by the join of cycles.

Corollary 5.6. The map av∞ gives the rationalization map C '
∏∞
j=1K(Z, 2j) → C � '

∏∞
j=1K(Q, 2j) induced by the inclusion Z→ Q.

5.2. Exponential maps, the case X = {pt}. The averaging map (55) defines a morphism

avq : BU(q)→ C
q
∞,q!.(56)

satisfying the following properties.

Lemma 5.7. The averaging map (56) factors through the quotient BU(q)/Sq, inducing a

map γq : BU(q)/Sq → C
q
∞,q!, which makes the diagram commute

BU(q)/Sq
γq

−−−→ C
q
∞,q!





y





y

εq1

BU(q + 1)/Sq+1 −−−→
γq+1

C
q+1
∞,(q+1)!.

(57)

Corollary 5.8. The maps γq give, by passage to colimits, commutative diagrams of E∞-

spaces

BU
c

−−−→ C




y





y
av∞

BU/S∞ −−−→
γ∞

C � ,

and

BU
c

−−−→ C∞∞,∗




y





y
av∞

BU/S∞ −−−→
γ∞

C∞∞,∗ � ,

(58)

where av∞ is described in Corollary 5.6, and c is described in Theorem 4.9(e). Hence, γ∞

represents the rational total Chern class and is a rational homotopy equivalence.

In Proposition 2.15 we construct an algebraic map f : SP∞(P(C∞)) → BU/S∞ with

the property that f ∗(j!chj) = i2j in rational cohomology. The homotopy class of the



36 R.L. COHEN AND P. LIMA-FILHO

composition

R : SP∞(P(C∞)) '
∏

j≥1

K(Z, 2j)
f
−→ BU/S∞

γ∞
−−→ C � '

∏

j≥1

K(Q, 2j),(59)

in the topological category, has the following evident interpretation as a cohomology class

R ∈ H∗(
∏

j≥1K(Z, 2j); Q).

Let Λ = ⊕∞n=0Λn denote the ring of symmetric functions p(x1, x2, . . . ) on infinitely many

variables, where Λn denotes the functions of degree n. Here we follow the notation of [Ful97].

Let ek =
∑

i1<···<ik
xi1 · · · xik be the k-th elementary symmetric function and pk =

∑

i x
k
i

be the k-th Newton power sum. It is well-known that Λ is a polynomial ring over Z in the

variables {e1, e2, . . . } and that Λ⊗Q is a polynomial ring over Q in the variables {p1, p2, . . . }.

In particular, there are universal polynomials Rj(Y1, . . . , Yj) with rational coefficients such

that

ek = Rj(p1, . . . , pj);(60)

cf. [Ful97].

Proposition 5.9. Let Rj ∈ H2j(
∏

j≥1K(Z, 2j),Q) be the j-th component of R. Then

Rj = Rj(i2, . . . , i2j), where Rj is the universal polynomial in (60) and i2k is the rational

fundamental class (20).

Proof. Consider the following diagram.

P∞ × · · · × P∞
F q
∞ ��

t∞q��

BU(q)
= ��

ρq
∞��εq

��� �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

C
q
∞,1

av
q

��cq

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

SPq(P
∞)

fq

��

iq∞

��� �
� �
� � �
� � �
� �
� � �
� � �
� �

BU(q)/Sq
avq

��

εq�
�

�
�

�
�

�
�

��� �
�

�
�

�
�

�

C
q
∞,q!

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

BU
c

��

ρ ��

C

av
∞ ��

SP∞(P∞)
f

��
BU/S∞

γ∞

��
C �

It follows from definitions that (F q
∞)∗◦(εq)∗◦ρ∗(cj) =

∑

1≤i1<···ij≤q
xi1 · · · xij = ej(xi1 , . . . , xij )

and that (F q∞)∗ ◦ (εq)∗ ◦ρ∗(j!chj) = xj1 + · · ·+xjq. Hence, one has cj = Rj(1!ch1, . . . , j!chj).
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Therefore,

Rj = f∗(γ∞)∗(i2j) = f∗(cj)

= f∗(Rj(1!ch1, . . . , j!chj)) = Rj(f
∗(1!ch1), . . . , f ∗(j!chj))

= Rj(i2, · · · , i2j);

where the last equality comes from Theorem 3.7.

5.3. Exponential maps, the case X arbitrary. Throughout the rest of this paper,X is a

smooth projective algebraic variety. The complex suspension Σ/ X : Mor(X,SP∞(P(C∞)))+ →

Mor(X,C)+ (cf. Remark 4.10) provides a filtration preserving additive monoid morphism.

In particular, it gives an equivalence

Σ/X� : Mor(X,SP∞(P(C∞)) � )+ → Mor(X,C)+�(61)

compatible with the various geometric constructions described in previous sections.

Using the map γ∞, cf. (58), one obtains a composition of maps Mor(X,BU/S∞) →

Mor(X,C∞∞,∗ 
 )→ Mor(X,C∞∞,∗ 
 )+ which factors through

Mor(X,BU/S∞)→ Mor(X,C∞∞,∗ 
 )+1 → Mor(X,C∞∞,∗ 
 )+,

where Mor(X,C∞∞,∗ 
 )+1 := Φ−1(1) for the natural augmentation Φ : Mor(X,C∞∞,∗ 
 )+ → Z.

One can use the complex suspension Σ/ X� equivalence, along with the arguments preceding

Definition 4.12 and Proposition 3.1 applied to the filtration
(

qd C∞n,d

)

⊂
(

qd C∞n+1,d

)

⊂

· · · ⊂ C∞∞,∗, to obtain a map γ∞X,
� which fits into a homotopy commutative diagram

Mor(X,BU)+
cX ��

ρ
��

Mor(X,C∞∞,∗)
+
1

av∞
X��

Mor(X,BU/S∞)+
γ∞X ��

��

Mor(X,C∞∞,∗ 
 )+1

Mor(X, {BU/S∞} � )+
γ∞

X, 


� ����������������

.(62)

It follows from Remark 50 that Mor(X,C∞∞,∗ 
 )+1 can be identified with the rationalization

of Mor(X,C)+, and hence the composition γ∞X ◦ρ gives the rational total Chern class map.

Our goal now is to provide an alternative description of the composition

Mor(X,SP∞(P(C∞) � )+
fX

−−→ Mor(X, {BU/S∞} � )+

γ∞
X, 

−−−→ Mor(X,C � )+.
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First, let πXj : Mor(X,SP∞(P(C∞)) � ) → Mor(X,SP∞(S2j) � ) be the composition of the

splitting map (30) with the projection onto the j-th factor. Then define

iXj : Mor(X,SP∞(P(C∞)) � )+ → Mor(X,C � )+

as the composition

Mor(X,SP∞(P(C∞) � )+
iXj
−→ Mor(X,SP∞(S2j) � ) ↪→

∏

p

Mor(X,SP∞(S2p) � )

(spX
 )−1

−−−−−→ Mor(X,SP∞(P(C∞) � )+
Σ/X

−−→ Mor(X,C � )+.

Then, let Rp(Y1, . . . , Yp) be the polynomial defined in 60. Since Mor(X,C � )+ is an abelian

topological ring one can use Rp and the maps iXj introduced above to define

Rp(i
X
1 , . . . , i

X
p ) : Mor(X,SP∞(P(C∞)) � )+ → Mor(X,C � )+.(63)

These maps then assemble to give unique homotopy class of maps

RX : Mor(X,SP∞(P(C∞)) � )+ → Mor(X,SP∞(P(C∞)) � )+

satisfying πXp ◦R
X = πXp ◦

{

Σ/X�
}−1
◦Rp(i

X
1 , . . . , i

X
p ). This construction is functorial on X.

Theorem 5.10. The composition
{

Σ/X�
}−1
◦ γX� ◦ fX� is homotopic to RX .

Proof. This follows from the universal case X = SP∞(P(C∞)) � and the fact that the forget-

ful functor from Mor(SP∞(P(C∞)) � ,SP∞(P(C∞)) � ) to Map(SP∞(P(C∞)) � ,SP∞(P(C∞)) � )

is a homotopy equivalence.

Corollary 5.11. The p-th component cp,jX of the j-th Chern class

cjX : K̃
−j
hol(X)→

∏

p≥1

LpH2p−j(X)

is given by the universal polynomial

cp,jX =
1

p!
Rp(1!ch

X
1,p, . . . , p!ch

X
j,p).

on the Chern characters.

Proof. This is similar to the case X = {pt}. The theorem above gives an equivalence

(

Σ/X�
)−1
◦ γ∞X,

� ∼ RX ◦
(

fX�
)−1

= (RX ◦ e−1) ◦ (e ◦
(

fX�
)−1

).
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Composing both sides with the projections Mor(X,BU)+ ρX

−−→ Mor(X,BU/S∞)+
rX
B−→

Mor(X, {BU/S∞} � )+, and using the definitions of the rational Chern classes and the Chern

character, concludes the proof.

Appendix A. Group completions of morphism spaces

Throughout this appendix, B and S will denote abelian topological monoids, with op-

erations µB : B × B → B and µS : S × S → S, respectively, which satisfy the conditions

of Remark 2.2. In other words, both B and S are colimits of algebraic varieties whose

operations are induced by algebraic maps of the corresponding directed systems. Given

any algebraic variety X, or a colimit of varieties, the morphism spaces Mor(X,B) and

Mor(X,S) become abelian topological monoids under pointwise addition; cf. Remark 2.2.

Consider an arbitrary topological monoidM . If (A,M,B) is a triple where A is a rightM -

space andB is a leftM -space, then one can construct the triple bar construction B(A,M,B).

This is a functorial construction on such triples satisfying the following properties.

1. If (A,M,B) is such a triple and M acts trivially on C, then B(C × A,M,B) =

C ×B(A,M,B), where M acts diagonally on C ×A; cf. [May75].

2. B(∗,M, ∗) = BM is the classifying space of M and the map EM := B(M,M, ∗) →

BM induced by the obvious map of triples (M,M, ∗) → (∗,M, ∗) is the universal

quasifibration for M ; cf. [May75].

3. If M is abelian, then BM is an abelian monoid and so is ΩBM under pointwise

addition.

4. If M is abelian, and (M ×M,M, ∗) is the triple where M acts diagonally on M ×

M , then ΩBM is naturally homotopy equivalent to B(M ×M,M, ∗), which is the

homotopy quotient of M × M by the diagonal action; cf. [LF93, ]. Furthermore,

the involution M × M → M × M sending (m,n) to (n,m) induces an involution

ιM : B(M ×M,M, ∗) → B(M ×M,M, ∗) which is natural on M and corresponds to

giving the “inverse” of an element. In other words, id+ ιM is naturally homotopic to

zero.

The last property allows one to use the model M+ = B(M ×M,M, ∗) for the homotopy

theoretic group-completion ΩBM of an abelian monoid M .
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Let B and S be monoids as above, and let X be an algebraic variety. The composition

map

ψ : Mor(X,B)× Mor(B,S) 7−→ Mor(X,S)(64)

(f, a) 7−→ a ◦ f

induces an evident map of triples

ψ : (
�	� �

(X,B)× (
��� �

(B, S)×
��� �

(B, S)),
�	� �

(B, S), ∗) → (
��� �

(X,S)×
�����

(X,S),
��� �

(X,S), ∗) ,

where the monoid Mor(B,S) acts on Mor(X,B) trivially, and the other monoid actions

are diagonal actions. Therefore, ψ induces a map of respective triple bar constructions

Ψ : Mor(X,B) × Mor(B,S)+ → Mor(X,S)+,(65)

which makes the following diagram commute,

Mor(X,B) × Mor(B,S)
ψ

−−−→ Mor(X,S)

id×u1





y





y

u2

Mor(X,B)× Mor(B,S)+
Ψ

−−−→ Mor(X,S)+,

where u1 and u2 denote the universal maps from the monoids to their group-completion.

Definition A.1. Let B, S and X be as above. Given α ∈ Mor(B,S)+ define

αX∗ : Mor(X,B)→ Mor(X,S)+

by αX∗ (f) = Ψ(f, α), where Ψ is defined in (65).

If τ ∈ Mor(M,N) is a monoid morphism, then it naturally induces a monoid morphism

τX+ : Mor(X,M)+ → Mor(X,N)+,

due to the functoriality of bar constructions. Examples of interest are given by multiplica-

tion morphisms µB : B ×B → B and µS : S × S → S, when B and S are abelian monoids

as above.

Proposition A.2.

a: The assignment X 7→ αX∗ is contravariantly functorial on X.

b: Given α, β ∈ Mor(B,S)+, if [α] = [β] ∈ π0 Mor(B,S)+, then αX∗ is naturally

homotopic to βX∗ .

Proof. The first assertion is evident.

If γt is a path between α and β, then Ψ(−, γt) provides the natural homotopy between

αX∗ and βX∗ .
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Remark A.3. For an explicit and natural description of αX∗ , up to a homotopy natural onX,

one proceeds as follows. Write [α] ∈ π0( Mor(B,S)+) = (π0( Mor(B,S)))+ as a difference

of two homotopy classes [a+]− [a−], where a+, a− ∈ Mor(S,B). Then, for each X one has

a map of triples

( Mor(X,B), ∗, ∗) −→ ( Mor(X,S)× Mor(X,S), Mor(X,S), ∗)

(f, ∗, ∗) 7−→ (a+ ◦ f × a− ◦ f, 0, ∗),

inducing a map Mor(X,B) → Mor(X,S)+ which is in the same homotopy class of αX∗ .

This is equivalent to say that αX∗ is naturally homotopic to a+,X
∗ + ι ◦ a−,X∗ , where ι is the

involution of Mor(X,S)+ described in the properties of the bar construction above.

The natural map Mor(B,S)× Mor(B,S)→ Mor(B×B,S×S) is a monoid morphism

and hence it induces a monoid morphism

Mor(B,S)+ × Mor(B,S)+ → Mor(B ×B,S × S)+(66)

between their completions. In particular, given α ∈ Mor(B,S)+, we denote by α×α both

the obvious element in Mor(B,S)+ × Mor(B,S)+ and its image in Mor(B ×B,S × S)+

under the map above.

Definition A.4. We say that an element α ∈ Mor(B,S)+ is a homotopy homomorphism

if µB×BS,+ (α× α) and αB×B∗ (µB) represent the same class in π0( Mor(B ×B,S)+).

This definition is the translation to the completed level of the statement that an element

τ ∈ Mor(B,S) is anH-space map. The following result follows directly from the definitions.

Proposition A.5. Let f1 : Mor(B,S)+ → Map(B,S)+ and f2 : Mor(B × B,S)+ →

Map(B ×B,S)+ denote the forgetful functors, and let α ∈ Mor(B,S)+ be such that f1(α)

is a homotopy homomorphism in the topological category. If f1 and f2 are are homotopy

equivalences, then α is a homotopy homomorphism; cf. Definition A.4.

Proposition A.6. Let X be an algebraic variety and α ∈ Mor(B,S)+, with B and S

abelian monoids as above. If α is a homotopy homomorphism, then αX∗ : Mor(X,B) →

Mor(X,S)+ is an H-space map. Furthermore, the homotopy making the diagram below

commute is functorial on X.

Mor(X,B) × Mor(X,B)
µX

B−−−→ Mor(X,B)

αX
∗
×αX

∗





y





y
αX
∗

Mor(X,S)+ × Mor(X,S)+
µX

B,+
−−−→ Mor(X,S)+
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Proof. It follows from the definitions that, given f, g ∈ Mor(X,B)+, one has

αX∗ ◦ µ
X
B (f × g) =

{

αB×B∗ (µB)
}X

∗
(f × g)

and

µXS,+ ◦ (αX∗ × α
X
∗ )(f × g) =

{

µB×BS,+ (α× α)
}X

∗
(f × g).

By hypothesis one has that αB×B∗ (µB) is homotopic to µB×BS,+ (α × α), and the result now

follows from Proposition A.2.

Remark A.7. We must point out that all constructions of this Appendix could have been

made replacing Mor(, ) by Map(, ), and that the forgetful functor Mor(, ) → Map(, )

would then induce natural transformations between all functors studied in the Appendix.
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