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Graph Moduli Spaces and Cohomology Operations

Martin Betz € Ralph L. Cohen

Abstract

In this paper we define a moduli space of “Graph flows” in a manifold, and use them
to define analogues of Donaldson invariants. These take values in tensor products of
the cohomology and homology of the manifold and can be interpreted as generalized
cohomology operations. We show how to construct classical invariants such as the
Stiefel - Whitney classes and the Steenrod operations in this way. We also give
homotopy theoretic descriptions of these invariants which will allow the definition of
higher order Donaldson type invariants.

The polynomial invariants defined by Donaldson [4] have had a dramatic impact on
four dimensional differential topology in recent years. The simplest, zero degree invariant
qo(X), of a closed, simply connected, smooth Riemannian four manifold X, is an integer
which is given by counting (with sign) the components of M%(X), the zero dimensional
moduli space of anti- self dual connections on an SU(2) bundle over X. (Recall that
the dimension of Mj,(X), the moduli space of ASD connections on the principal SU(2) -
bundle of Chern class k € H*(X) 2 Z, is 8k — 3(1 + b+ (X)) where b*(X) is the rank of
the maximal positive definite subspace of the intersection form.)

For manifolds with boundary, the analogous invariants take values in the Floer (co)ho-
mology of the boundary. For example, if X is a four manifold with boundary a homology
3 - sphere, say 0X =Y, then the zero degree invariant go(X) € HF,.(Y). Roughly, this
invariant is defined as follows.

Given a connection v € M%(X) with finite Yang - Mills energy, then it approaches a
flat connection, say p(7), on the trivial SU(2) bundle over Y. After suitable perturbations
of the metric this limiting connection p can be viewed as an element of the chain complex
CF,(Y), of Floer’s “instanton homology” of Y. (A sign is assigned to the flat connection
coming from orientation considerations.) Omne can then define the resulting Donaldson
invariant by

w(X)= > p(v) € CRY).
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It is proved in [5] that this class is a cycle in the Floer chain complex and determines an
element
q(X) € HF.(Y)

which is independent of the choices of perturbations and metrics, and is an invariant of
the smooth structure on X. (Actually whether go(X) lies in Floer homology or Floer
cohomology depends on choice of normal vector field of Y.)

Now if X is an oriented four manifold with several boundary components, say

X =Y, U---UY;

where the Y;’s are homology spheres, then the Donaldson invariant takes values in the
tensor product

W(X) e HFF(V1)®@ - @ HF*(Y;)  HF.(Yj41) ® - - - @ HF,(Yy,)

where Y7, - - - Y; are the boundary components whose normal bundles are oriented with an
inward pointing vector field, and Yj41 --- Y} are the boundary components oriented with
outward pointing vector fields. When we take field coefficients and use the identity

HF*®@ HF, 2 Hom(HF*,HF™")

we can think of these Donaldson invariants as operations in Floer cohomology.

Now similar invariants exist in the setting of pseudo-holomorphic curves in a symplectic
manifold. These were first defined in [8] [7]. More specifically, let (M?™,w), be a closed,
simply connected symplectic manifold. Let ¥ be a Riemann surface with k& - boundary
components. Then let M(X, M) be the moduli space of pseudo - holomorphic maps

vy — M

which when restricted to a boundary component circle is a constant loop in M. Let M°
denote the zero dimensional component of this space. After suitable perturbations, an
element v € M? determines an element of the tensor product of Floer chain complexes,

p(v) € CE.(M)®*

given by the restriction of v to the boundary components. Here C'F} is the Floer chain
complex of the symplectic action functional on the loop space L(M). Again, the Donald-
son invariant is defined by counting with sign

(S, M) = Y p(v) € CE.(M)®*.
yEMPO

which is shown to be a cycle in [1], and represents an element
qo(2, M) € HF,.(M)®*

which is an invariant of the symplectic structure on M. Again, this invariant may be
interpreted as an operation on the Floer cohomology. This point of view was introduced
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by Witten in [8] in which he used this invariant to construct cup product structures on
the Floer cohomology of the symplectic action on the loop space LCP™.

Our goal is to understand in more depth the relationship between Donaldson invariants,
and more generally, the homotopy type of thes types of moduli spaces “with ends”, and
the Floer homology (and more generally the “Floer homotopy type” in the sense of [3])
of the ends.

In order to understand the basic structure of this relationship we will examine an
example of a “moduli space with ends” where the resulting “Floer cohomology” of the
ends is usual cohomology. This is a moduli space of graphs in a closed manifold, which
was defined and studied in [1]. We will describe some of the results of [1] here and expand
upon them. In particular we will show how the classical operations in the cohomology of a
manifold, including characteristic classes and the Steenrod operations can be obtained as
Donaldson invariants in this theory.” We will also describe a homotopy theoretic approach
to these Donaldson invariants which will allow us to view secondary (and higher order)
Steenrod operations as invariants defined by these moduli spaces. The goal is to use this
approach to define secondary and higher order Donaldson invariants for four manifolds
and symplectic manifolds when certain primary Donaldson invariants vanish. This will
be studied in a future paper. ‘

This paper is organized as follows. In section one we will define the moduli space
of graphs, the resulting Donaldson invariants, and prove a basic gluing theorem. Some
examples will also be discussed. In section two we show how to produce equivariant
analogues of these invariants using the symmetry groups of these graphs and show how
the Steenrod operations are examples. These two sections summarize some of the results
of the first author in his Ph.D thesis [1]. In section three we describe the beginning of
a joint project in which we apply the categorical and homotopy theoretic viewpoint of
Morse theory and Floer theory developed by the second author, J. Jones, and G. Segal
[2], [3] to study these invariants and to define higher order invariants.

The second author would like to thank the organizers of the Gokova conference for the
opportunity to participate in an exciting conference in a beautiful part of the world.

1. The Moduli Space of Graph Flows

Let M be a closed, compact, smooth Riemannian manifold of dimension d, and let
Let I be an oriented, finite, possibly non-compact, graph with m edges parametrized
by [0,1], (—o0,0], and [0, c0). We call these edges “internal”, incoming”, and “outgoing”
respectively. Let these edges be indexed {E1, ..., Ey, }. such that the first n are noncompact,
and the rest are internal. Among the n noncompact edges the first n; are assumed to
be incoming, the next ny = n — n; are are assumed to be outgoing. In this section we
define the moduli space M(T', M) of “graph flows”, and use these to define the analogues
of Donaldson invariants mentioned in the 1ntr0duct10n We show that these 1nvar1ants
can be viewed as operations in H*(M), and compute some examples.
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We begin by defining the notion of an M -structure for our graph I'. The space of all
such M-structures will play a significant roll in our constructions.

Definition 1. Fiz an oriented, parameterized graph T' and a closed Riemannian manifold
M as above. An M-structure o on I' consists of the following:

1. A real number {; associated to each internal edge of E; of I'. We think of £; as the
length of E;, even though we allow ¢; < 0.

2. A function f; € C°(M) associated to each edge E; of I'. We assume the f;’s are
distinct.

The space of all M-structures will be denoted S(T', M). Notice that there is a homeo-

morphism
ST, M) 2R™ ™ x F,(C®(M))

where F,,,(X) C X™ is the configuration space of m distinct points in X.

For fixed choice of such a structure o, we are now ready to define the moduli space
My, M) of “I" - flows in M.

let v:I' — M be a continuous map, smooth on the edges. For each internal edge E;
let 7y; : [0,1] — M be the restriction of v to E; composed with the parameterization of F;
by [0, 1] given as part of the data of I'. For the incoming and outgoing edges we define
¥ 1 (—00,0] = M or v; : [0,00) — M similarly.

Definition 2. v lies in M, (', M) if and only if for each edge E; it satisfies the differ-
ential equation

d’yi/dt'f‘ el sz =0.
For the noncompact edges (i.e the incoming and outgoing edges) in this equation £; is
assumed to be 1. Here V f; is the gradient vector field. M, (I, M) is topologized as a
subspace of CO(T', M).

We let M(T', M) be the union of the spaces M, (I', M) where the structures o vary in
S(I',M). M(T', M) is topologized so that natural the projection map

7 M(I,M) — ST, M)

is continuous.

Given P C S(I', M), let Mp(I', M) = 7~ *(P). These spaces will be important in
general, but in this chapter we restrict ourselves to studying M, (I', M), the moduli
space associated to a single structure.

We now describe some basic properties of these moduli spaces. These properties are
analogues of properties of moduli spaces of anti-self dual connections and of pseudo-
holomorphic curves, and have similar (in fact easier) proofs. See [1] for details.

Again, fix a structure ¢ € S(I', M). This defines a vector of labelling functions of
the edges. Let f = (f1,...fn) be the n - tuple of functions labelling the noncompact
edges. Observe that every v € M, (T", M) has the property that its restriction to each
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noncompact edge v; is a gradient, flow line, so it therefore converges to a critical point,
say a;, of the function f;. Thus v can be associated to an n - tuple @ = (a1, -+ ,an) where
a; is a critical point of f;. For a fixed n - tuple &, let

Mo (T, M;d) € Mo(T', M)

be the subspace of those v € M, (T", M) which converge on the ith edge to the critical
point a;.

Theorem 1. For a generic choice of structure o € S(I', M), the moduli spaces M, (T, M; @)
are manifolds for every n- tuple of critical points @. The dimension of M, (T, M;d) is
given by the formula

dim(M, (T, M; @) = Y12 [index(a;)] — S.72, [index(an, 14)] — d(ny — 1) |
— d- dim(H,(T,R))

where, as above, ny and ny are the number of incoming and outgoing edges of I' respec-
tively. Furthermore an orientation on the manifold M induces orientations on the moduli
spaces M, (T, M; @).

The generic condition on the structure o in this theorem is that the labelling functions
Ji are Morse, and satisfy the “Morse - Smale transversality properties”. That is, the
stable and unstable manifolds of the critical points all intersect transversally.

Fix a structure ¢ satisfying this generic property. We will now construct a natural
compactification of the space M, (T', M;@). To do this we first recall the natural com-
pactification of the space of gradient flow lines of a Morse function converging to two fixed
critical points. We will refer to the space of flow-lines from critical point a; to critical
point b; by M, (a;,b;). The following is a standard result in classical Morse theory. See
[2] for example.

Lemma 2. Let M(a,b) denote the space of “piecewise flow lines” connecting connecting
critical points a and b. That is

M(a,b) = U M(a,a1) x ... x M(aj_1,b),

a=ag>a1>...>a;=b
where the union is taken over decreasing finite sequences of critical points. (The partial

ordering is defined by o > (3 iff M(«, () is nonempty.) Then M(a,b) is compact and
contains M(a,b) as an open dense subspace.
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There is a similar compactification for the moduli spaces of I' - flows. Namely, let

HU(F,M;EZ) = UM,;(F,M; g) X T/\717(1)170'1) X X HU(anabn)'
b

Whether we use M, (b;, a;) or M(a;,b;) in the above union depends on whether the ith
edge is incoming or outgoing. M, (T, M;@) consists of ' - flows that are allowed to be
piecewise flows on the noncompact edges. We refer to these as “piecewise I' - flows”.
There is an obvious way to topologize M, (T, M;&@). The proof of the following is simply

an adaptation of the proof of the above lemma, and is carried out in [1].

Theorem 3. The space M, (T, M;@) is compact and contains M, (I, M;a@) as an open
dense subspace.

This result can be improved in such a way so as to identify the ends of the moduli
space M, (T, M;d). To do this we set up the following notation. For n - tuples of critical
points @ and b associated to the structure o, consider the oriented spaces of flow lines

M; = My, (b;,a;) for incoming E;
M; = My, (a;,b;) for outgoing E;.

Theorem 4. There exist “gluing” maps

-,

25 Mo(T,M;d@) x [ Mi x [0,1) = M, (T, M;b),
a;#b;

d

that are orientation preserving homeomorphisms onto disjoint images. Moreover the com-
plement of the images,
M, (T, M;0) — [ @

a

St

a,
is compact.

In this paper we will be primarily concerned with the moduli spaces of dimension zero
and one, M?(I', M;@) and ML(I', M;@). These theorems tell us that M2(T', M;@) =
ﬂg(F, M:; @) is a finite set of points with signs (orientation). Moreover if an end of one
of these isolated I' - flows glues to an isolated flow line, then the pair forms one end of a
compact interval of I' - flows. The other end of this interval is modelled by another such
pair.

This information will allow us to define a Donaldson - type invariant for these moduli
spaces, which we now proceed to do.

Fix a generic structure o € S(I', M) as above. Given our Morse-Smale functions f;, let

C.(M, f;) be the associated Morse-Smale chain complex generated by the critical points,
and let C*(M, f;) be the dual cochain complex.
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We define a class ¢(I', M) to be an element of the complex
@ (M, 1) Q  CuM,fy)
1<i<ny n1+1<i<n

in the following manner. Consider those n - tuples of critical points @ such that dim (M, (T, M;a)) =
0. These spaces contain a finite number of oriented points which can be counted with

sign (if M is oriented - otherwise this is well defined mod 2, and we take coefficients to
be ZQ)

Definition 3. .
o, M) =) #M, (O, M;d)d e Q C (M, fi) & CuM,fp).

1<i<ng n1+1<i<n

Using the gluing theorem above and the definition of the boundary and coboundary
operators in the Morse-Smale complex, one can show the following (see [1]):

Lemma 5.
dq = 0.

We shall therefore view ¢(T', M) as an element of the associated homology,

q(T, M) € H*(M)®™ @ H,(M)®.
The following says that ¢(I', M) is indeed an invariant of M.

Theorem 6. The homology class q(T', M) does not depend on the choice of structure
o€ S(T,M). :

Sketch of Proof: Since the space of generic structures inside S(I', M) is connected
we can find curves connecting any two generic structures. The induced paths give chain
homotopy equivalences that preserve the ¢(T', M)’s O

We now describe four basic examples of these invariants.
Example 1. T" =

In this case M (I', M;d) has dimension zero if and only if @ = (a) is a maximum. Thus
q(T', M) € Hq(M), and it can easily be seen to be the fundamental class. (Coefficients
should be taken in Z, if M is not orientable).
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Example 2. T' =

In this case M (T, M; @) has dimension ind(a1) + ind(az) — d, where @ = (a1, az). Thus
L q(T, M) € @ HY(M)®H* (M), which defines an element in &, Hom(H9(M), Hy_,(M)).
This is the Poincare duality isomorphism, given by taking the cap product with the fun-

damental class.

In this case M, (I, M;d) has dimension ind(a;) — ind(az) — ind(a3), where @ =
(a1, ag,a3). Thus

Example 3. T =

q(T, M) € @< H* (M) @ H.(M) ® Hy_,(M)

and defines an element in &,<xHom(H"(M)®@H*~"(M), H*(M)). This is the cup product
operation.

Example 4. T' =

In this case M, (I', M;d) has dimension ind(a) — d, where @ = (a). Thus ¢(I', M) €
HY(M). It is easily seen to be the Euler class (or Stiefel - Whitney class wy if M is not
orientable).

We end this section by discussing some basic structure properties of the invariants
q(I', M). (See [1] for details.) In particular the following three results say that the four
examples above can be used to compute the invariant for any graph.

Proposition 7. If I'y and 'y are homotopy equivalent via a homotopy that preserves
orientations on their end, then q(I'y, M) = q(T's, M).

Now let I'; and I'; be oriented graphs. Let I‘ﬁgj be the oriented graph obtained by
gluing incoming edge ¢ of I'; to outgoing edge j of I's.

Proposition 8. o N
a(TY%, M) = q(T'1, M) 07 q(Ty, M),

where OBI denotes tensorial contraction of cohomology in the ith coordinate with homology
in the jth coordinate.
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Corollary 9. Changing the orientation of a non-compact edge induces the Poincare du-
ality isomorphism on the relevent tensor coordinate of the invariant q(T', M).

2. The Equivariant Invariants

In this section we will generalize the construction of section one to moduli spaces that
are associated to families of M-structures. The invariants that we define will be elements
of an equivariant (co)homology of the n-fold product of M. In basic cases we extract
operations from H*(M) to H*(M) which are associated to elements of the homology of
the orientation preserving symmetry group of I', . In particular we will show how the
classical Steenrod operations arise this way. The details of the results in this section can
be found in [1].

Let M be a closed Riemannian manifold of dimension d and T" an oriented graph as in
the last secton. Recall the projection onto the space of structures

T MT,M)— ST, M).

The group of automorphisms of the oriented graph X acts naturally on both M(T, M)
and S(I', M) and the map 7 is equivariant. Notice that these actions are free because a
structure associates distinct functions to different edges. Furthermore, since S(I', M) is
contractible, S(I', M')/%r is a classifying space BXr.

We will be considering the induced map on orbit spaces

m: M(T, M)/Sr — S(T, M)/Sp ~ BSr.

We will be interested in the pull back under 7 of certain families of structures. We choose
to find these families in smaller structure spaces which are easier to deal with.

Let f : M — R be a Morse-Smale function and let Uy C C°°(M) be a contractible
neighborhood of f that contains only Morse-Smale functions. Consider the structure
space Sy(I', M) defined by only allowing functions from this smaller set, U ¢. The ¥p
action restricts to Sy(I', M) C S(I', M), so the quotient S;(I', M)/Er is well defined. We
note that the inclusion of Sy(I', M)/Yr in S(I', M)/Yr is a homotopy equivalence and
both spaces are homotopy equivalent to BXr.

Each Morse-Smale function g € Uy has a set of isolated critical points which we call
Crit(g). Using a contraction of the neighborhood U; one can define a fixed bijective
correspondence ¢, : Crit(g) — Crit(f).

As in section one we distinguish elements of a moduli space,

My, M) = 7= 1(Sy(I', M)/Zr), by the asymptotic behavior of each I-flow along its
ends. To do this notice that the sets of critical points to which a I" - flow converge are
permuted by the Y action. Given v € M4(T', M), let @ denote the orbit of the set of
critical points. We call this the critical orbit of . Let

Mf(F,M;E:) C Mf(F,M)/ZF
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be the subspace of those v € M¢(T', M) whose critical orbits correspond to @ under the
correspondence ¢ above.

Now given a singular i-simplex, § : A® — Sy(T', M)/Sr, define the pullback moduli
space
Ms(T, M;d) = 8" (M (T, M;))
which projects onto the standard i-simplex, A’
The following are basic properties of these moduli spaces, and are analogous to ones
proved in section one.

Theorem 10. For a generic singular i-simplez § : A* — S¢(I', M)/, the moduli space
Ms(T, M;a) is a manifold. The dimension of Ms(T', M; @) is given by the formula
dim(Ms(T, M;a)) = dim(M(T, M; d)) + i.

Furthermore, orientations of the manifold M and of the simplex A induce orientations
on the moduli spaces Ms(I', M;@).

Lemma 11. The zero dimensional moduli spaces Mg(F,M;Ei) are compact, and thus
finite.

Let #M2(T', M;d@) be the number of points in the moduli space counted with Z or Zs
coefficients. We must count with Zsy coefficients when the moduli space is not oriented.
We will use these moduli spaces to construct Q(I', M), an element of

H*(EXr xg; (M)™ x (M)"),
where Y acts on (M)™ x (M)™ via the map
Xr — X, X g,
which assigns to a symmetry the associated permutation of the ends.

First note that the inclusion of any finite subcomplex P of S;(I', M)/Zr can be per-
turbed so that each simplex is generic in the sense of Theorem 1. This complex is covered
by another complex P C S¢(T',M). Over §¢(I', M), each T - flow v as associated to it
(via the correspondence @) a well defined n-tuple of critical points of f.

We can then define the class

Qp(I, M) € Homs, (C.(P);C* (M, f)®™ @ C,(M, f)®"2)

in the following manner. For each simplex § in P consider those n - tuples of critical
points @ such that dim Ms(T', M;@) = 0. These spaces contain a finite number of points
which can be counted with sign (if M is not we count mod 2). Taking all these simplices
together, we construct the desired element Qp (T, M).
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Definition 4.
Qp(T, M)(8) = Y # MR, M;a@)[d] € C*(M, [)®™ ® C.(M, f)®"2.

Qp(T', M) is clearly an equivariant homomorphism and so lies in
Homs, (C.(P); C*(M, )®™ @ C.(M, f)®"2).

This (tri) graded group is a cochain complex (i.e has a natural coboundary operator).
The analogue of Lemma 2 in section one is the following.

Lemma 12. Qp(I', M) is a X invariant cocycle. Thus it represents a cohomology class

Qp(T, M) € H*(P xx, (M)™ x (M)").

Since this construction is valid for every finite subcomplex of S¢(I', M)/Sr and is
easily seen not to depend on the choices of perturbations, this process actually defines a
cohomology class

Qp(l,M) € H*(8¢(I', M) xz, (M)™ x (M)"2)
= H*(EEF X (M)nl X (M)nz)

Notice that this class does not depend on the original function f. In order to produce
cohomology operations from the class Q(I', M) we apply it to elements in H,.(BXr).

Definition 5. For a class o € H,(BXr) define the invariant q, (T, M) to be the equiv-
artant homology class,

6o(D, M) € Hy (M)™) @ H2™((M)")

gwen by evaluating Q(I', M) on o and using the homomorphism S — %, x ., described
above.

Note that the same construction works for any subgroup G C ¥p. The invariants of
section one are those that arise when G is trivial.
We now describe two examples of these equivariant invariants.

Example 1. Let I" be the graph used in section one to obtain the Euler class. The
symmetry group Xr = Z which acts by exchanging the two internal edges. Since the
group acts trivially on the noncompact end, the class Q(I', M) takes its value in the Zj
cohomology of the product, BZs x M. Thus for each generator

o; € Hl(BZZ,Zz) = 7o
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we have q,, (', M) € H¥%(M;Zs). It is not difficult to see that this is the Stiefel-Whitney
class wq—;(M).

Example 2. Let I' be the 3-ended graph used to obtain the cup product in section 1.
Again the symmetry group ¥ = Zs which acts by exchanging the two outgoing ends. In
this case for the class «; € H;(BZs;Zs) the invariant

4o (T, M) € 5 (HP(M x M;Z) @ H' ™ (M3 25))
and so may be viewed as a homomorphism
Go, (T, M) : HY (M x M;Zy) — H™H(M; Zy).

This is the cup —i product. The Steenrod squaring operation S¢®*~* occurs when precom-
posing this operation with the natural inclusion

HY(M;Zy) — HZM(M x M;Zs)
B — B®B.

The composition of two Steenrod squares can be obtained here by considering a graph
of the following type,

Here the symmetry group is the dihedral group Dy. It is easy to see that the moduli
space of this graph is homotopy equivalent to the moduli space of the following graph

This graph has larger symmetry group, 4. Thus the above dihedral group invariant
factors through the symmetric group invariant. This produces the Adem relations among
the Steenrod squares.

A similar situation occurs when we compose the Steenrod squares with the cup product.
In this case we need only consider the Zs action on the first vertex of the big graph. This
gives the operations Sq’(awU ). Shrink the two internal edges and consider the larger
symmetry Zs X Zs. The original symmetry maps into this one by the diagonal map. The
kernel of the associated homology map is exactly the Cartan relations.
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3. A Categorical Approach

In this section we describe a more homotopy theoretic way of viewing the invariants. We
describe categories Cq(r a7y and Ce that have as their classifying spaces the moduli space
M(T', M) and the space of ends of M(T, M) respectively. We then define an equivariant
“ends” functor

E:Cpmr,my — Ce
whose equivariant homological properties determine the invariants q(T'y M). The feature
of studying the invariants this way is that it gives a clear method of calculation, and the
homotopy nature of this definition will allow for the definition of higher order invariants
defined when the primary invariants q(I', M) vanish. The details of the constructions in
this section and the proofs of their properties will appear elsewhere in due course.

We begin by recalling from [2] a categorical approach to Morse theory. The construc-
tions in this section may be viewed as generalizations (or applications) of the results in
[2].

Let f: M — R be a smooth map on a closed, finite dimensional Riemannian manifold.
Let Cy be the topological category whose objects are the critical points of f, and the
morphisms between two critical points Mor(a,b) is given by

Mor(a,b) = M(a,b),
the compactification of the space of gradient flow lines given by “piecewise flow lines”
as discussed in section one. Let BC; be the classifying space of this category. This is a
standard construction which defines a simplicial space which one % - simplex for every k
-tuple of composable morphisms. The following is the main result of [2].

Theorem 13. There is a natural homotopy equivalence
¢:BCp~ M.

For a generic f, (i.e a Morse function satisfying the Morse - Smale transversality condi-
tions) ¢ is a homeomorphism.

This theorem will be useful when we are dealing with the moduli spaces with a fixed
structure, M, (I, M). However, as seen in the last section we often need to allow the
structures to vary. For this we will need the following corollary of this theorem.

Given a closed manifold M, let Cp; denote the topological category whose objects are
pairs (f,a), where f : M — R is a smooth function and @ € M is a critical point of f.
For morphisms we set

0 it f1# fa

M0T<<f17a1>’<f2’a2)>={ My(ab) it fo=fy
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where M (a,b) is the space of piecewise gradient flow lines of the function f = f1 = fa.
‘We then have the following result.

Corollary 14. There is a natural homotopy equivalence

BCM ~ M.

Sketch of Proof. Let C° (M) denote the constant category whose objects are smooth
functions on M. (By constant we mean a category whose only morphisms are the identity
morphisms.) There is a clear functor

P Cy — C°(M)

defined on objects by sending (f,a) to f. The fiber category at any object f is Cs. By
the theorem, on the classifying space level all these fibers are homotopy equivalent to M.
This will be the key fact in proving that ¢ is a quasi- fibration of categories. That is,
on the classifying space level ¢ : BCpy — C*(M) is a quasi-fibration. Since C*°(M) is
contractible, the result will follow [

We will now use these results to study the moduli space M(I', M) and the invariants
q(T, M) categorically.

First, consider the compactified moduli space M(T', M) described in section one. Recall
that an element v € M(T', M) is a continuous map v : I' = M and a M - structure o, so
that when restricted to any internal edge v is a gradient flow line, and restricted to any
noncompact edge v is a piecewise flow with respect to the structure o. Recall that we
called such elements “piecewise I' - flows”.

Notice that when viewed simply as a set, there is a natural partial ordering on the
elements of M(I', M). Namely 71 < 72 if 72 is obtained from v, by gluing on piecewise
flows on the noncompact (incoming or outgoing) edges. Notice therefore that a minimal
element in this partial ordering is any actual I' - flow

v e M(T, M) C M(T,M).

Now any partially order set X can be viewed as a category, where the objects are the
elements in X. There exists a unique morphism between points = and y if and only if
z < y. If X is a topological space the resulting category may be viewed as a topological
category.

Let Caq(r,ar) be the topological category associated to this partial ordering on the space
M(T', M). We then have the following.

Theorem 15. There is a natural homotopy equivalence between the classifying space of

the category Caqr,ar) and the moduli space M(T', M),
BCM(F,M) ~ M(F, M)
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Sketch of Proof. Given any partially ordered set X viewed as a category, we can
consider the quotient category X/ = whose space of objects is X modulo the equivalence
relation generated by the partial ordering. There are no morphisms other than the identity
morphisms. Notice that there is a natural projection functor

X — X/ =.

In the case of the category Cur, ) defined from the partial ordering on M(T, M),
the quotient category M(T', M)/ = is homeomorphic to M(I', M) (that is the space
of objects is homeomorphic to M(I", M) which can be viewed as a constant category).
This is because every element in M(I', M)/ = is uniquely represented by an element
v € M(I', M). This in turn is because every piecewise I - flow 7 is > to a unique I' - flow
v € M(T', M). This fact also implies that if one considers the fiber category Cuqr,ar)(7)
of the projection functor

™ Cprmy — M(D, M)/ = = M(T,M)

over any I' - flow v, then Cqr a)(7) is a partially ordered set with a unique minimal
element. Therefore its classifying space is contractible. Then by applying Quillen’s the-
ory [6] one can conclude that the projection map 7 : Camr,my — M(I', M) induces a
homotopy equivalence on classifying spaces [

We are now ready to define our “ends functor” with which we will define the invariants
q(I', M). First we define the “end category” Cg (I') as follows. Suppose the oriented graph
I" has n; incoming (noncompact) edges and ny outgoing edges, where ny +ns = n. Define
the category C¢ as follows.

Definition 6. Define C¢(I') to be the product category
ce(l) =[Tcit x[[ewm
n1 no

where C{7 denotes the “opposite category”, that is the category whose objects are the same
as those of Cpr, but Morces(a,b) = Morc(b, a).

We now define a functor
& Cper,my — Ce(D)
as follows. An object v € Crq(r, ) is a piecewise I' -flow with respect to some M - struc-
ture o € S(I', M). As described in section one vy converges to critical points of the func-
tions labelling the incoming and outgoing edges that are given as part of the data of the
structure . Thus v determines an n tuple (f1,a1), -+, (fay, @ny )y (Frr 15 @nyt1)s - 5 (fs an)
of labelling functions and critical points, where the first ny f;’s label the incoming edges
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and the next ny = n —ny label the outgoing edges. Notice that this n - tuple is an object
in the category Cg¢(I'). Therefore on objects we define

8(7) = (flval)v"' ’(fnwam)v(-fn1+laan1+1)7"' 7<fman)'

To define £ on morphisms recall that in Cpyr ) there is a unique morphism from v,
to vz if and only if 5 > ;. That means there exists an n - tuple of piecewise flow lines
(a1, -+ ,ap) of the functions fi,- -, f,, respectively, so that -y, is obtained by gluing the
a;’s onto the ends of ;. The first nq of the a;’s are glued with an incomingorientation and
the next no are glued with an outgoing orientation. Notice that the n - tuple (aq,- - )
is a morphism in C¢(I') = [],, €37 X [1,,, Cn. Therefore if ©(71,72) denotes the unique
morphism from v; to v2 in Cayr,ar), we define

E(O(71,72)) = (a1, o).

As in section two let Yr be the symmetry group of the oriented graph I'. Notice that
I" acts freely on the category Cuqr, ar). Furthermore the product of the symmetric groups
Yp, X Xy, acts freely on the end category C¢(I'). The following is a straightforward check
of definitions.

Proposition 16. The map
& Cper,my — Ce(D)

is a well defined equivariant functor with respect to the homomorphism Yr — X, X X,
given by sending a symmetry to the associated permutation of the ends.

To define the invariants ¢(T', M) in this context we will be studying the map induced
by &€ in equivariant homology. Specifically, consider the composition

Q: Hy" (BCarny) = Hy" (M(T, M)
— Hy 2 (BCe() = @ ikomi . ([, BES) © Hy* (11, BCw)
= @, ko HY T (M)™) @ Hy® (M)72)
— @hykamk Hom (HE ((M)™=); HE R (M)™))

In the previous. section we discussed how to define an invariant ¢, (T, M) given any
element o € H,.(BYr). Here will describe how ¢,(I", M) is simply the image under the
above map @ of an equivariant homology class 6(a) € HZT(M(T, M)). The first step is
to study the relation of the equivariant moduli space to the space of ends equivariantly.
For this consider the map to the structure space

7: MT, M) — S(I', M)
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studied previously. By abuse of notation we will let S(T', M) also denote vhe constant
topological category whose objects are the space of structures. Then the map 7 can be
realized on the categorical level

™ CM(F,M) — S(F,M)
which is ¥ - equivariant. Consider the induced functor on orbit categories,
VI CM(F,M)/EF — S(F,M)/E[‘ >~ BZP

The following result is the main technical result, but is proved by relatively straightforward
transversality arguments.

Theorem 17. Let N C S(I', M)/Sr ~ BYr be a closed submanifold of dimension p. Let
Crmrm(N) =7"1(N) C Cam(r,m)/Zr be the subcategory of Caq(r,ay/Sr whose objects
have structures lying in N. Then for a generic embedding of N in ST, M)/%r the
classifying space BCaqr p)(N) has the homotopy type of a closed manifold of dimension

where, as before, r = rankHy(T') and d = dim M.

We use this result as follows. Let N, — S(T', M) ~ BYr be a closed manifold of
dimension p representing o € Hy,(BXr). Let

0(0{) S HE_F(T_l)d(M(FzM))

be the homology represented by the inclusion BCqr ar)(No) C BC iy = M(T', M)
given by the above theorem. Consider the class

Q(0()) € @xHom(HE ((M)™);  Hy mHr=0=r(agymy)

1

defined as the image of 6(c) under the composite map Q defined above. The following
is the main result of this section, and is proved using standard techniques that describe
intersections in terms of homology.

Theorem 18. Given any o € H,(BYr),

39



BETZ & COHEN

The main effect of this result is that the invariants ¢, (T, M) can be defined globally
in terms of equivariant homology. In particular one does not need to perturb metrics or
functions to define these invariants. This may have calculational advantages. We end this
paper by describing how, in practice, these invariants may be computed.

Any oriented graph I' is homotopy equivalent relative to its (oriented) ends to a graph
I with a single vertex vg, with n; incoming noncompact edges, ny outgoing noncompact
edges, and 7 loops (internal edges which both start and end at v,) for some nj, na,
r = rank H1(T'). The symmetry goup of I is given by

Y =30 X X, X iy
Via this homotopy equivalence an element « € H,(BXr) determines an element

a' € Ho(B(Xn, X Zp, X Z,)).
Now by pinching the r looped internal edges in the graph I” to a point, one gets a
projection map to the simply simply connected graph I'° that has a single vertex vg, ng

incoming noncompact edges, ns outgoing noncompact edges, and no internal edges. The
map of graphs I' ~ IV — I'% induces a homomorphism of their symmetry groups

Zr — Epo = an X Eng

which is the homomorphism described above given by sending a symmetry of I' to the
induced permutation of the ends. Thus o € H,(BYr) is mapped to a class o €
H.(B(Z,, X £,,)). Also the class 8(a) € HXT(M(T, M)) is mapped to

0° € H™ T (MO, M)
. By the naturality of the construction we see that g, (T'; M) is given by
QU°) € Hom(Hy,_(M)™); Hy, (M)™)
where @ here is the homomorphism in equivariant homology induced by the end functor
&+ BCpmro;m) — BCe(T') = (BCH)™ x (BCum)™

as above. Thus what remains is to study the equivariant homotopy type of this map.
This is done as follows.

Theorem 19. There is a natural equivariant homeomorphism
h: M@ M) =S m)x M

defined by sending v to (o,v(vo)) where o is the structure associated to . Furthermore,
after passing to orbit spaces the realization of the end functor is homotopy equivalent to
the equivariant diagonal map: ’

A B(Zn, X Tny) X M — (B, x5, (M)™) x (ESn, x5, (M)").
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Notice that this theorem and the above observation says that calculation of an invariant
4o (T, M) reduces to computing the above equivariant diagonal maps A in homology.
These can be viewed as generalized cup; products and their calculations are equivalent to
the calculation in homology of groups of the inclusion of products of symmetric groups
into larger symmetric groups. These calculations are well known.

Notice also that since the invariants g, (I, M) can be defined entirely in terms of the
equivariant properties of the induced map on classifying spaces of the end functor BE,
then by taking the homotopy fiber of this map we can define functional and higher order
operations. We will return to this topic in another paper.

References

1. M. Betz, Categorical constructions in Morse theory and cohomology operations Stanford Univ. Ph.D
thesis, 1993.

2. R.L. Cohen, J.D.S. Jones, and G.B. Segal, Morse theory and classifying spaces Stanford University
preprint, 1991.

3. R.L. Cohen, J.D.S. Jones, and G.B. Segal, Floer’s infinite dimensional Morse theory and homotopy
theory to appear, Proceedings of Floer Memorial Conference, 1993.

4. S.K. Donaldson, Polynomial invariants for smooth four- manifolds Topology vol. 29 no. 3 (1990),

257-316.

. S.K. Donaldson and M. Furuta Floer Homology Theory, to appear.

. D. Quillen Higher algebraic K - theory I Springer Lect. Notes vol. 341 (1973), 77-139.

7. Y. Ruan Symplectic topology on algebraic 3-folds to appear, Proceedings of Floer Memorial Confer-
ence, 1993.

8. E. Witten Topological quantum field theory Comm. Math. Physics vol. 117 (1988), 353-386.

9. E. Witten Two dimensional gravity and intersection theory on moduli spaces Surveys in Diff. Geo.
vol. 1 (1991), 243-310.

[=2 3%}

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS,AUSTIN, TEXAS

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD CA 94305
E-mail address: ralph@math.stanford.edu

41



