#1. If \(\pi_1(X) \) is finite, \(f_* (\pi_1(X)) \leq \pi_1(S^4) \cong \mathbb{Z} \) is also finite, hence trivial. Therefore \(f : X \to S^4 \) can be lifted to the universal cover \(p : \mathbb{R} \to S^4 \); in other words, we can factor \(f \) as \(X \xrightarrow{\phi} \mathbb{R}^2 \xrightarrow{p} S^4 \). Since \(\mathbb{R} \) is contractible, \(f \) is null homotopic.

#2. Consider the cover of \(S^4 \cup S^4 \) given by the 2-oriented graph \(X \) shown below.

Let \(\sigma : X \to X \) be the homeomorphism obtained by rotating \(X \) about the centre \(O \) by a \(\pi/2 \) clockwise angle.

Let \(\tau : X \to X \) be the homeomorphism obtained by composing the reflection about the line \(L \) with the reflection about the circle \(C \).

Both \(\sigma \) and \(\tau \) are deck transformations. Moreover, any vertex of \(X \) can be taken to any other vertex of \(X \) by repeatedly applying \(\sigma \) or \(\tau \) to \(X \). Hence \(p : X \to S^4 \cup S^4 \) is normal, hence \(N := p_* (\pi_1(X,x_0)) \leq \pi_1(S^4 \cup S^4) \) is a normal subgroup. Van Kampen's theorem shows that \(\pi_1(X,x_0) \) is free on the generators \(\{a^2, ab^2a^{-1}, (ab)a^2(ab)^{-1}, (aba)b^2(abab)^{-1}, (ab)^2a^2(ab)^{-2}, (ababa)b^2(abab)^{-1}, \} \), as shown below:

Therefore \(a^2, b^2 \) and \((ab)^4 \) are in \(N \), so that \(N \) contains the normal subgroup of \(\pi_1(S^4 \cup S^4, x) \) generated by \(a^2, b^2 \) and \((ab)^4 \). On the other hand, conjugates of these three words have been shown to generate \(N \), so we also have the other inclusion. It follows that \(N = p_* (\pi_1(X,x_0)) \) is precisely the normal subgroup of \(\pi_1(S^4 \cup S^4, x) \) generated by \(a^2, b^2 \) and \((ab)^4 \), as desired.

#3. Observe that any word \(w \in L \langle a,b \rangle / L \langle a^2, b^2 \rangle \) is either \((ab)^n \), \((ba)^n \) for some \(n \in \mathbb{Z} \) or conjugate to either \(a \) or \(b \). It follows that up to conjugacy the only subgroups of \(L \langle a,b \rangle / L \langle a^2, b^2 \rangle \cong \pi_4(\mathbb{R}P^2 \vee \mathbb{R}P^2) \) are:

\[\langle a^2 \rangle, \langle b^2 \rangle, \langle a, b(ab)^n \rangle, \langle b, a(ba)^n \rangle, \langle (ab)^n \rangle, \langle a/b \rangle. \]
where we have also used that $b \cdot (ab)^n \cdot b^{-1} = (ba)^n$, so $<ab^n> \sim <(ba)^n>$.
Since unbased connected covers of $\mathbb{RP}^2 \vee \mathbb{RP}^2$ are in 1-1 correspondence with the conjugacy classes of subgroups of $\pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2)$, it will suffice to produce connected covers $p: X \to \mathbb{RP}^2 \vee \mathbb{RP}^2$ with $p_\ast(\pi_1(X)) \leq \pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2)$ equal to each of these groups. Consider the basic covers:

If we let i_1 and i_2 be the compositions of i and π with the inclusion of \mathbb{RP}^2 into the first copy of the wedge $\mathbb{RP}^2 \vee \mathbb{RP}^2$ and $i_2 \circ \pi_2$ be the composition of i and π with the inclusion of \mathbb{RP}^2 into the second copy, we have explicit covers given by:

- $<a, b> \leftrightarrow i_1 \vee i_2$ (here and below wedge of maps will be used);
- $1 \leftrightarrow i_1 \vee i_2 \vee i_1 \vee i_2 \vee i_1 \vee i_2$;
- $<a> \leftrightarrow i_2 \vee i_1 \vee i_2 \vee i_1 \vee i_2$;
- $ \leftrightarrow i_2 \vee i_1 \vee i_2 \vee i_1 \vee i_2$;
- $<a, b(ab)^{2n-1}> \leftrightarrow \text{wedge of } 2n \text{ spheres}$;
- $<b, a(ab)> \leftrightarrow \text{wedge of } 2n \text{ spheres}$.

Since $<a, b(ab)^{2n}>$ is conjugate to $<b, a(ba)^{2n}>$, we are done.

#4 Let $x \in X$ and choose a neighborhood U of x such that $U \cap g(U) = \emptyset$ only for $g = g_1g_2\cdots g_n \in G$. Since G acts freely on X, $g_0x = x \forall k = 1, \ldots, n$. Choose neighborhoods U_k and V_k of x and g_0x such that $U_k \cap V_k = \emptyset$. Set $W_k = U_k \cap g_1^{-1} V_k$ and $W = \cap_{k=1}^n W_k$, a neighborhood of x. Then $W \cap gW = \emptyset$ for all $g \in G$, so indeed $G \times X$ is a covering space action.

#5 For $(x, y) \in \mathbb{R}^2$ such that $x \neq 0$, $U = (3x/4, 3x/2) \times \mathbb{R}$ satisfies $nU = \emptyset \forall n \neq 0$. Similarly, for $(x, y) \in \mathbb{R}^2$ such that $y \neq 0$, $U = \mathbb{R} \times (3y/4, 3y/2)$ satisfies $nU = \emptyset \forall n \neq 0$. Observe:

Proves that the orbits of $(\delta, 0)$ and $(0, \delta)$ cannot be separated by open neighborhood so X/\mathbb{Z} is not Hausdorff.
Repeated application of Van Kampen shows that \(\pi_1(X, \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z} \).

\[\pi_1 = \mathbb{Z} \quad \Rightarrow \quad \pi_1 = \mathbb{Z} \quad \Rightarrow \quad \pi_1 = \mathbb{Z} \times \mathbb{Z} \quad \Rightarrow \quad \pi_1 = \mathbb{Z} \times \mathbb{Z} \]

Alternatively, we know that \(\pi_1(X, \mathbb{Z})/\pi_1(X, \mathbb{Z}) \cong G \), so \(\pi_1(X, \mathbb{Z})/\mathbb{Z} \cong \mathbb{Z} \). If we also know that \(\pi_1(X, \mathbb{Z}) \) is abelian, this implies that \(\pi_1(X, \mathbb{Z})/\mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z} \). To see this, let \(x_0 = (1, 0) \), take paths \(\alpha, \delta_0 \) and \(\delta_1 \) in \(X \) as shown, note \([p \delta_0/p \delta_0] \) or \([p \delta_1/p \delta_1] \) each generate \(\pi_1(X, \mathbb{Z}) \), and:

\[[\alpha] \cdot [p \delta_1] \cdot [p \delta_0] = [p \delta_0] \Rightarrow \pi_1(X, \mathbb{Z}) \text{ abelian} \]