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Introduction

Differential Topology is the study of the topology of differentiable manifolds
and differentiable mappings between them. This subject is of central impor-
tance throughout most mathematics, especially those areas with a geometric
perspective, such as differential geometry, geometric analysis, and algebraic
geometry.

In these notes we will assume the reader is familiar with the basics of
algebraic topology, such as the fundamental group, homology, and cohomology,
through the statement of the famous Poincaré Duality theorem. The text by
Hatcher [27] is an excellent reference for these topics.

These notes will cover a variety of topics in differential topology such as

The basics of differentiable manifolds (tangent spaces, vector fields, tensor
fields, differential forms)

Embeddings, immersions, tubular neighborhoods, and normal bundles

The Pontrjagin-Thom construction and cobordism

Intersection theory using Poincaré duality
e Morse theory

These notes emanated from my class lecture notes for a graduate level
course on Differential Topology, Math 215b, given at Stanford University in
2018. The author is grateful to the students in that course for their feedback.

xi






1

Topological Manifolds and Poincaré
Duality

The subject of much of this book is the topology of manifolds. n-dimensional
manifolds are topological spaces that have a well defined local topology (they
are locally homeomorphic to R™), but globally, two n-dimensional manifolds
may have very different topologies.

Nonetheless we will find that the homological structure of manifolds is
quite striking. In particular they satisfy an important, unifying property, called
“Poincaré Duality”. The discussion and proof of this property is the subject
of this chapter. As the reader will see, this property will be used throughout
the book, and is used in a basic way in many areas of topology and geometry.

Definition 1.1. An n-dimensional (topological) manifold is a Hausdor(f space
M™ that is locally homeomorphic to R™. That is, each point x € M"™ has a
neighborhood U, which is homeomorphic to R™, or equivalently, to the open
ball B = {v € R™ : |v| < 1}. A specific homeomorphism ¢ : U, — R™ is
called a chart around z. An open cover of M"™ consisting of charts is called an
atlas.

1.0.1 Orientations

We observe that the local-Euclidean property of manifolds has a manifestation
homologically. Namely, suppose M™ is a connected, n-dimensional manifold,
and let x € M™. Then the relative homology:

H,(M", M —z)= H,(UU—=x) by excision
~ H,(R",R" —{0}) Dby the local-Euclidean property

~ g (R n_{o})g{z ifq=0,n

0 otherwise

In particular, observe that the dimension n, is determined homologically.

Definition 1.2. Let M™ be an n-dimensional manifold. A local orientation
of M™ at x is a choice of generator of H,(M"™, M"™ — {z}) =2 Z
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FIGURE 1.1
These surfaces are all 2-dimensional manifolds, as they are all locally homeo-
morphic to R?. However their global topologies are quite different.
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Notice that there are two choices of local orientations at any point = €
M™, and a choice of orientation is equivalent to choosing an isomorphism

&, : Hy(M™, M"™ — {2}) = Z.

Definition 1.3. A manifold M™ is orientable, if there is a continuous choice of
local orientations at each point x € M™. A specific choice of such a continuous
choice of local orientations is called a (global) orientation of M™.

Of course this definition is not yet complete, because we have not yet
defined what is meant by a “continuous choice of local orientations”. To make
this precise, we use the theory of covering spaces.

For x € M", let Or,(M™) be the set of local orientations of M™ at .
That is, it is the set of generators of H,(M™, M™ — x). As observed above,
this is a set with two elements, as there are two possible choices of generators
for the infinite cyclic group. Let Or(M™) be the space of all local orientations
on M™". That is, as a set,

or(M™) = | J Or.(M™). (1.1)

zeEM™

Proposition 1.1. There is a natural topology on Or(M™) with respect to
which the map p : Or(M™) — M" defined by p(v) = z if and only if v €
Or,(M™), is a two-fold covering space.

Before we prove this proposition, we note that we can, as a result, de-
fine what we mean by a “continuous choice of local orientations”. That
is, such a continuous choice would simply be a continuous cross section
o: M™— Or(M™) of this covering space. This means that ¢ is a continuous
map with the property that p(o(z)) = « for all z € M™. Notice that such
a continuous section z — o(x) € Or,(M™) is precisely a continuous choice
of local orientation as x varies over all points of x € M™. The continuity is
reflected by the topology of Or(M™) stated in Proposition 1.1.

We now prove Proposition 1.1.

Proof. Let U = {(Uq, ¢u, ) : @ € A} be an open cover of M™ by charts. That
is, M = UaeA U,, and each ¢, : U, — R" is a homeomorphism. Notice that
for each pair «, § € A, there is a continuous map

Va,3: Ua NUg — Homeo(¢Ua(Ua n Uﬁ); ¢Uﬁ (Ua N Ug)

where the target is the space of homeomorphisms between these two open
subspaces of R™. This space of homeomorphism is endowed with the compact-
open topology. Each such homeomorphism determines an isomorphism

Hp (90 (UaNUp); ¢a(UaNUp) —{¢a()}) = H, (¢5(UaNUg); d5(UaNUg)—{¢p(2)}).
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By excision, this in turn determines a self-isomorphism
H,(R",R" — {0}) = H,(R",R" — {0}).

Notice that since Hy, (R",R™ — {0}) = Z, The group of such self isomorphisms
consists of the identity and minus the identity. That is, this isomorphism group
is Z/2.

Thus 1, s determines a continuous locally constant (i.e constant on each
path component) map

\I/a’g Uy N U5 — Z/2 = {:I:l}.
We then define

Or(M") = [] Ua x Gen(H,(R",R" — {0}))/ ~ (1.2)
aEN

where Gen(H,(R",R™ — {0}) is the two-point set of generators of this ho-
mology group, and the equivalence relation ~ is defined by the following: If
x € Uy NUg and 7y € Gen(H,(R",R™ — {0})), then

(@,7) ~ (x,¥a,5(7))

where (z,v) € U, x Gen(H,(R",R™ — {0})) and (x,¥,5(y)) € Ug x
Gen(H,(R™,R™ — {0})).
Or(M™), as defined by (1.2) then is given the quotient topology.
O

Exercise. Finish the proof of Proposition 1.1. Specifically show that as sets,
the two definitions of Or(M™) given in (1.1) and (1.2) are the same, and that
the map

p:Or(M™) — M"
(z,7) =

is a two-fold covering map.

Notice that if M™ is orientable, which is to say, the orientation double
cover admits a section, o : M™ — Or(M™), then it has another orientation,
called the opposite orientaion, and written —o, whose value on a point x € M™
is the unique point in Or,(M™) that is not equal to o(z).

Corollary 1.2. A manifold M™ admits an orientation if and only if the
orientation double covering p : Or(M™) — M™ is trivial. That is, it admits
an isomorphism of covering spaces, to the trivial double covering space, T :
M x Z/2 — M defined by projecting onto the first coordinate.
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Proof. Suppose M™ is orientable. Then the orientation double cover p :
Or(M™) — M™ admits a continuous section ¢ : M"™ — Or(M™). We can
then define a trivialization © of the covering space

M" x 72 —2— Or(M™)

d! |7

Mr s M"

by O(z,1) = o(z), and O(z, —1) = —o(x).

Conversely, assume that Or(M™) is trivial. That is, Or(M™) is isomorphic
to M X Z/2 as covering spaces. Since 7w : M™ x Z/2 — M™ clearly admits two
distinct sections, then so does p : Or(M™) — M™. O

It will be quite helpful to have the following homological characterization
of orientability.

Theorem 1.3. Let M™ be an n-manifold and A C M™ a compact subspace.
Then

1. If a : M™ — Or(M™) is a section of the orientation double cover (i.e
an orientation of M™), then there exists a unique homology class as €
H,(M,M — A) whose image in H,(M,M — x) is a(z) for every x € A.

2. Hi(M,M — A) =0 fori>n.

Observation. A compact manifold is often called “closed”. Notice that if
M™ is a closed oriented manifold, we can let A = M™ and then the above
theorem implies that exists a unique “orientation class” or “fundamental class”
[M"] = apr € H, (M) = Z with the property that the restriction of [M"] to
H, (M"™, M™ — z) is the value of the orientation a(z).

Proof. We sketch the proof here. We refer the reader to Hatcher [27] Lemma
3.27.

The idea of the proof follows a theme that is often followed in studying
homological properties of manifolds. Namely, one proves the theorem first for
R™, which will imply a local version of the theorem for every manifold, and
then use “patching arguments” such as the Mayer-Vietoris sequence, to prove
the theorem for general manifolds.

We break down the proof of this theorem into four steps.

Step 1. We first observe that if the theorem is true for A and B (both
compact), as well as AN B, then the theorem is true for AU B.
Consider the following Mayer-Vietoris sequence:
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0— H,(M,M — (AUB)) 2 H,(M,M — A) & H, (M, M — B)
2 Hy(M,M — (AN B)) — - --

Here we are using the facts that (M — A)U(M — B) =M — (AN B) and
(M-—A)N(M-B)=M—-(AUB).

Notice that the zero on the left side is the assumption that H,, 41 (M, M —
(AnB))=0.

Notice that U(aa @ ap) = 0, since by assumption, a4 and ap re-
strict to the same class in H,(M,M — (AN B)). Using the fact that & is
a monomorphism, one can conclude that there is a unique class asup €
H,(M™ M™ — (AU B)) that restricts to ay in H,(M", M™ — A) and to
ap in H,(M™, M™ — B). This completes Step 1.

Step 2. Assume the theorem is true for M™ = R"™. We then prove the theorem
for general n-manifolds M™.

Notice that a compact set A C M™ can be written as a finite union A =
Ay U - U Ag, where each A; is a subspace of a chart A; C U;. We apply the
result of Step 1 to (A1 U---U Ag_1) and Ay. Notice that the intersection of
these two spaces is (A1 N Ag) U -+ U (Ag—1 N Ag). This is a union of k — 1
compact subspaces, each of which is contained in a chart. By induction, we
could conclude the validity of the result in this step, if we knew it to be true
for k =1, i.e compact subsets A that are contained in a chart, A C U. But in

this case,
H,(M",M" - A) = H,(U,U - A)

by excision, which is isomorphic to H,(R"™,R™ — C), where C is a compact
subspace of R™. But by the assumptions of this step, we know the theorem to
be true in this case.

We are therefore reduced to proving the theorem for M™ = R"™.

Step 3. Assume M™ = R", and prove the theorem for the case A = A;U---U
Ay, where each A; is convex. The same argument as was used to prove Step 2
reduces this to the case when A is itself convex. In this case

HR",R" — A) =~ H,(R",R" — 1)

since A is contractible with a canonical contraction to any x € A. In particular
R" — A~R"—z.

We leave the general case of an arbitrary compact subspace A C R™ to the

reader. This argument is carried out in detail in Hatcher’s book [27].
O

We observe that if R is any commutative ring with unit, we could have
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done the entire discussion above using homology with R-coefficients. That is,
we may define a covering space

p:Or(M™ R) — M"
with the property that
p 1 (x) = Ory(M™; R) = Gen(H,(M", M™ — z; R)).

By Gen(H,(M™, M™ — x; R) we mean the following. By choosing a chart U
around z, one has an isomorphism H,,(M™, M™ —x; R) &2 H,(U,U — x; R) &
H,(R™",R" — z;R) = R. A generator of R is an element v € R such that
Ru=R. Gen(H,(M™, M™—z; R) is the preimage of the group of generators
of R under this isomorphism. We observe that this group of “generators” is
well defined. That is, it is independent of the choice of chart, even though the
chart is what defines the isormorphism of

Gen(H,(M"™, M™ — z; R)

with Gen(R).

Definition 1.4. If R is a commutative ring with unit, then an R-orientation
of an n-dimensional manifold M™ is a section of the “R-orientation covering
space” p: Or(M™; R) — M™.

Observations.

1. By sending 1 € Z to 1 € R, there is always a canonical ring homomorphism
Z — R. This induces a map of covering spaces Or(M"™) — Or(M™; R).
Thus if M™ is (Z) orientable, it is orientable with respect to any ring R.
In fact a choice of (Z) orientation of M™ induces an R-orientation.

2. Let R = Z/2. Then since Gen(Z/2) = {1} is the trivial, one-element group,
then the covering space p : Or(M™;Z/2) — M™ is a homeomorphism.
Thus it has a unique section. So every manifold is Z/2-orientable, and has
a unique Z/2-orientation.

3. Finally observe that Theorem 1.3 can be generalized to a statement about
R-orientations for any commutative ring R. In particular when R = Z/2
one has the following consequence.

Corollary 1.4. Let M™ be a connected, closed n-dimensional manifold. Then

Ho(M™Z)2) = 7)2.
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1.0.2 Poincaré Duality

Poincaré duality states that for a closed, orientable n-dimensional manifold
M™, the k*"-cohomology group and the (n — k)*"* homology group are isomor-
phic. The isomorphism is given by the “cap product” with the fundamental,
or orientation class [M"] € H,(M). Before we state the Poincaré Duality
theorem more carefully, and in more generality, we recall the cap product op-
eration. We refer the reader to any introductory text in algebraic topology for
details.

Let X be any topological space, and R aa commutative ring with unit.
The cap product operation is an operation of the form
N:CrL(X;R) x CYX;R) — Cr_¢(X;R) for k> ¢

Let [vo, - --v;] represent the k- simplex spanned by vectors vg,---v; € RV,
where N is large. Let o € Cy(X; R), and ¢ € C*(X; R). Then one defines

cNG=000),, ) Tl o (1.3)
One will then find that the boundary of this cap product chain is given by
AoNe)=(-1)doNe¢—ondp) (1.4)

where 0 : C.(X;R) — C,_1(X;R) is the boundary operator and J :
CP(X;R) — CPTY(X;R) is the coboundary operator. Notice that this for-
mula quickly implies that the cap product of a cycle with a cocycle is a cycle,
and hence induces an operation

N: Hy(X;R) x HY(X;R) — Hy_¢(X;R). (1.5)

And indeed it gives operations on relative (co)homology:

N:Hy(X,A;R) x HY(X;R) — Hy_4(X, A; R) (1.6)
Hy(XA;R) x HY (X, A; R) — Hy_¢(X; R)

The reader can check that the cap product satisfies the following rather
odd naturality property:

fil@)ng = flan f*(¢)). (1.7)

This property becomes more reasonable (and easier to remember) when

one realizes that it simply says that if f : X — Y, then the following diagram
commutes:

Hi(X)xHY(X) —— Hp_(X)

T I

Hk(Y) XHE(Y) T) Hk_g(Y)
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Exercise. Show that the cap product is adjoint to the cup product in
cohomology. That is, prove that for ¢ € HYX;R), 0 € Hp(X;R), and
¥ € H**(X; R), then

(YUg;0) = (Y, 0N ). (1.8)
Here <, > represents the evaluation pairing of cohomology on homology.

The following is the basic statement of Poincaré Duality:

Theorem 1.5. (Poincaré Duality) If M™ is a closed, R-oriented n-
dimensional manifold with fundamental class [M"] € H,(M™; R), then the

map
D=[M"|n_:H*(M":R) - H,_(M"; R)

is an isomorphism for all k.

Exercise. Show that the Poincaré Duality theorem implies that if F' is a
field and M™ is a closed F-oriented manifold with fundamental class [M™] €
H,(M™; F), then the pairing
HY(M™ F) x H" *(M"™,F) — F (1.9)
¢ x = (pU, [M"])
is nonsingular for every k =0, -+ ,n.
In order to prove the Poincaré Duality theorem for compact manifolds,
it actually is useful to generalize the theorem to the setting of noncompact

manifolds. In this setting, however, one must use the notion of “cohomology
with compact supports”.

Roughly, a cochain with compact supports is one which is zero on chains
living outside some compact set. More carefully,

Cix;6) = |J CXX-KQ).
K compact

(Strictly speaking, by the union sign we mean the colimit.) The ordinary
coboundary map defines a cochain complex

L OUXG) S oYX G) S (1.10)
The resulting cohomology is written as H}(X; G).

Exercise. Show that ~
HZ(R™;G) = H*(S™;G)

and more generally that

H*(X;G) = H*(X Uoo;G)
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where X U oo is the one-point compactification of X. Here we must assume
that the point at infinity in the one-point compactification has a contractible
neighborhood.

Notice that by Theorem 1.3, that if M™ is an R-orientable n-manifold
with orientation «, then for every compact subspace K C M™", there is a
well-defined orientation class ax € H,(M™; M™ — K; R) that restricts to the
R-orientation a(z) € H,(M"™, M™ — {z}; R). Consider the cap product

H¥(M™ M™ — K;R) x H,(M",M" — K;R) — H,_,(M"; R).
Capping with a g defines an operation
Nag : H*(M™, M™ — K; R) — H,_(M™; R).

Taking the colimit over K defines a duality operation from the cohomology
with compact supports:

Dy - HS(M™ R) — H,_,(M™; R).
The following is the generalized form of Poincaré that we will prove:

Theorem 1.6. Let M™ be an R-oriented manifold. Then the duality map
Dy - HSY(M™; R) — H,_,(M™; R).
is an isomorphism for all k.

The proof of Theorem 1.6 (and thereby Theorem 1.5) involves a “patch-
ing” argument, for which we will need a lemma involving the Mayer Vietoris
sequence.

Notice that if K and L are compact subspaces of M, we have the set
theoretic properties,

(M-K)UM—-L)y=M—(KNL) and
(M—-K)n(M—-L)=M— (KUL).

So in cohomology there is a Mayer-Vietoris sequence

o= HYM;M — (KN L)) — H*(M,M — K)& H*(M,M — L) (1.11)
—H*(M,M — (KUL)) - H*Y(M,M — (KNL))—---

Now suppose M™ = U U W, where both U and W are open subsets. By
taking a limit over compact subsets, Mayer-Vietoris sequence (1.11) yields the
following Mayer-Vietoris sequence of cohomologies with compact supports:

= HYUNW) - HYU)® HY (W) - HFY(M™) - B Y U NW) — -

We leave to the reader to check the following lemma.



Topological Manifolds and Poincaré Duality 11

Lemma 1.7. Let M™ be an R- oriented n-manifold with M = U UW | where
both U and W are open subsets. Then there is a commutative diagram of
Mayer-Vietoris sequences:

HYUNW) —rn  HFU)® HY(W) —wn HYM") —— HMYUNW) ——

lDUmW J/DU@DW lDM" J/DUHV

Hy (UMW) —— Hy o (U) @ Hyp (W) ——— Hy_y(M™) —— Hy oy (UNW) ——

Here all (co)homologies are taken with R-coefficients.

We now prove Theorem 1.6.

Proof. This proof has several steps.
Step 1. If M" = U UW, and Dy, Dw and Dynw are isomorphisms, then so
is DM,

This follows from the above Lemma 1.7 and the five lemma.

Step 2. The theorem holds for M™ = R".

Proof. Think of R™ as the interior of the closed unit ball around the origin,
B;. Let r be a number strictly between 0 and 1. Notice that

H,(B1, By — B,) = H,(B,,0B,) = H,(By,0B,) = H,(5") = Z.

Since any compact set K C R™ = interior(By) is a subset of By for some R,
we see that H}(R™) = H*(B;,0B;), and the reader can readily check that
taking the cap product with the generator of H,,(B1,9B1) gives the evaluation
map

H™(By,0B) = Hom(H,(By,0B,),7) = Hom(Z,Z) = 7.

where the last isomorphism s given by evaluating on a generator of
H, (B1,0By), which is to say, its fundamental class.

Step 3. The theorem holds for M™ an arbitrary open subset of R™.

Proof. Write M™ as a countable union of convex open sets in R™.
M= Ju;.
J

Let V; = Uj<i U;. Notice that both V; and V; N U; are unions of 4 — 1 convex
open sets. So we may make an inductive assumption that the theorem holds
for manifolds that are the union of less than or equal to ¢ — 1 convex open
sets in R™. So Dy, and Dy,ny, are isomorphisms. Then Step 1 implies that
Dy, uy, is an isomorphism. But V; UU; = V4. This completes the inductive
step.
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Step 4. The theorem holds if M™ is a countable union of open sets U; each
homeomorphic to R”.

Proof. This follows by the same argument as in Step 3, with “open set in
R™” replacing “convex open set in R™. We leave the details to the reader.

We are now done for manifolds that can be expressed as a countable union
of charts. We now prove the general case.

Step 5. The general case.

Proof. Consider the collection of open sets U € M™ for which Dy is an
isomorphism. This collection is partially ordered by inclusion. Notice that the
union of every totally ordered subcollection is again in this collection, by the
argument in Step 3.

Zorn’s Lemma implies that there is a maximal open set U for which this
theorem holds. We claim that U = M™. If U £ M"™, let x € M™ — U, and let
V be a chart around z. Since V' is homeomorphic to R™, the theorem holds
for V by Step 2. It also holds for U NV by Step 3. Therefore by Step 1, the
theorem holds for U U V. This contradicts the maximality of U, so we must
conclude that U = M™. O



2
Fiber Bundles

In this chapter we define our basic object of study: locally trivial fibrations, or
“fiber bundles”. We discuss many examples, including covering spaces, vector
bundles, and principal bundles. We also describe various constructions on
bundles, including pull-backs, sums, and products.

Throughout all that follows, all spaces will be Hausdorff and paracompact.

2.1 Definitions and examples

Let B be connected space with a basepoint by € B, and p : E — B be a
continuous map.

Definition 2.1. The map p : E — B is alocally trivial fibration, or fiber
bundle, with fiber F if it satisfies the following properties:

L p~t(bo) = F
2. p: F — B is surjective

3. For every point z € B there is an open neighborhood U, C B and a
“fiber preserving homeomorphism” ¥y : p~1(U,) — U, x F, that is a
homeomorphism making the following diagram commute:

YU, —y U, x F

/| [pre

Ux - Ux

1R

Some examples:

e The projection map X x F' — X is the trivial fibration over X with fiber
F.

13
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Let S' C C be the unit circle with basepoint 1 € S'. Consider the map
fn: S — St given by f,(z) = z". Then f, : S' — St is a locally trivial
fibration with fiber a set of n distinct points (the n'”* roots of unity in S').

Let exp : R — S! be given by
exp(t) = > € St
Then exp is a locally trivial fibration with fiber the integers Z.
Recall that the n - dimensional real projective space RP™ is defined by
RP" = 5"/ ~

where z ~ —z, for x € S™ C R™t1,
Let p: S™ — RP™ be the projection map. This is a locally trivial fibration
with fiber the two point set.

Here is the complex analogue of the last example. Let S?"*1 be the unit
sphere in C™*!. Recall that the complex projective space CP" is defined
by

CP" = 52n+1/ ~

where © ~ uzx, where z € $?"*1 c C?, and v € S' C C. Then the
projection p : $?"T1 — CP" is a locally trivial fibration with fiber S*.

Consider the Moebeus band M = [0,1] x [0,1]/ ~ where (¢,0) ~ (1 —
t,1). Let C be the “center circle” C' = {(1/2,s) € M} and consider the
projection

p:M—C
(t,s) — (1/2,5).

This map is a locally trivial fibration with fiber [0, 1].

Given a fiber bundle p : E — B with fiber F, the space B is called the

base space and the space E is called the total space. We will denote this data
by a triple (F, E, B).

Definition 2.2. A map (or “morphism”) of fiber bundles ® : (F1, By, B1) —

(Fy, Eq, Bs) is a pair of basepoint preserving continuous maps ¢ : F1 — Ea
and ¢ : By — By making the following diagram commute:

E1 L)EQ

a E

BlT)BQ
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Notice that such a map of fibrations determines a continuous map of the
ﬁbers, gf)o : Fl — FQ.

A map of fiber bundles ® : (Fy, E1, B1) — (Fs, Ea, Bs) is an isomorphism
if there is an inverse map of fibrations @1 : (Fy, Ey, By) — (F1, E1, By) so
that Po® ' =P Lo d =1.

Finally we say that a fibration (F, E, B) is trivial if it isomorphic to the
trivial fibration B x F — B.

Exercise. Verify that all of the above examples of fiber bundles are all
nontrivial except for the first one.

The notion of a locally trivial fibration is quite general and includes exam-
ples of many types. For example you may have already noticed that covering
spaces are examples of locally trivial fibrations. In fact one may simply define
a covering space to be a locally trivial fibration with discrete fiber. Two other
very important classes of examples of locally trivial fiber bundles are vector
bundles and principal bundles. We now describe these notions in some detail.

2.1.1 Vector Bundles

Definition 2.3. An n- dimensional vector bundle over a field k is a locally
trivial fibration p : E — B with fiber an n - dimensional k - vector space V
satisfying the additional requirement that the local trivializations

Vip N (U) = UxV

induce k - linear transformations on each fiber. That is, restricted to each
x € U, ¢ defines a k - linear transformation (and thus isomorphism,)

¢ipHa) —— {z} x V.

It is common to denote the data (V) E, B) defining an n - dimensional
vector bundle by a Greek letter, e.g (.

A “map” or “morphism” of vector bundles ® : { — £ is a map of fiber
bundles as defined above, with the added requirement that when restricted to
each fiber, ¢ is a k - linear transformation.

Examples

e Given an n - dimensional k vector space V, then B x V — B is the
corresponding trivial bundle over the base space B. Notice that since all n
- dimensional trivial bundles over B are isomorphic, we denote it (or more
precisely, its isomorphism class) by e,,.
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e Consider the “ Moebeus line bundle” p defined to the the one dimensional

real vector bundle (“line bundle”) over the circle given as follows. Let
E = [0,1] x R/ ~ where (0,t) ~ (1,—t). Let C' be the “middle” circle
C ={(s,0) € E}. Then p is the line bundle defined by the projection

p:E—C
(s,t) = (s,0).

Define the real line bundle v; over the projective space RP™ as follows.
Let x € S™. Let [x] € RP™ = 5™/ ~ be the class represented by z. Then
[x] determines (and is determined by) the line through the origin in R*+!
going through z. It is well defined since both representatives of [x] (z and
—x) determine the same line. Thus RP™ can be thought of as the space of
lines through the origin in R"*!. Let E = {([z],v) : [x] € RP",v € [z]}.
Then v, is the line bundle defined by the projection

p: E— RP"
([z],v) = [x].

Exercise. Verify that the RP! is a homeomorphic to a circle, and the
line bundle v; over RP! is isomorphic to the Moebeus line bundle .

By abuse of notation we let ; also denote the complex line bundle over
CP" defined analogously to the real line bundle «; over RP™ above.

Let Gri(R™) (respectively Gri(C™)) be the space whose points are k -
dimensional subvector spaces of R™ (respectively C™). These spaces are
called “Grassmannian” manifolds, and are topologized as follows. Let
Vi(R™) denote the space of injective linear transformations from R* to
R™. Let Vi (C™) denote the analogous space of injective linear transforma-
tions CF < C™. These spaces are called “Stiefel manifolds”, and can be
thought of as spaces of n x k matrices of rank k. These spaces are given
topologies as subspaces of the appropriate vector space of matrices. To
define Gri(R™) and Gri(C™), we put an equivalence relation on V;(R™)
and Vi (C") by saying that two transformations A and B are equivalent
if they have the same image in R™ (or C™). If viewed as matrices, then
A ~ B if and only if there is an element C € GL(k,R) (or GL(k,C)) so
that A = BC. Then the equivalence classes of these matrices are com-
pletely determined by their image in R™ (or C"), i.e the equivalence class
is determined completely by a k - dimensional subspace of R™ (or C").
Thus we define

Gri(R") = Vi(R")/ ~ and  Grg(C") = Vi(C")/ ~

with the corresponding quotient topologies.
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Consider the vector bundle ~; over Gri(R™) whose total space F is the
subspace of Grg(R™) x C™ defined by

E={Ww):WeGry(R")andw € W C R"}.
Then -4 is the vector bundle given by the natural projection

E— Grk(R”)
(W,w) = W

For reasons that will become more apparent later in these notes, the bun-
dles 7 are called the “universal” or “canonical” k - dimensional bundles
over the Grassmannians.

e Notice that the universal bundle 75 over the Grassmanians Gry(R™) and
Gri(C™) come equipped with embeddings (i.e injective vector bundle
maps) in the trivial bundles Gri(R"™) x R™ and Gri(C™) x C™ respec-
tively. We can define the orthogonal complement bundles %ﬁ to be the
n — k dimensional bundles whose total spaces are given by

Ef ={(W,v) € Grg(R") x R" : v L W}

and similarly over Gri(C™). Observe that the natural projection to the
Grassmannian defines n — k dimensional vector bundles (over R and C
respectively).

Exercises

1. Verify that ~y is a k -dimensional real vector bundle over Gry(R™).

2. Define the analogous bundle (which by abuse of notation we also call ;)
over Grp(C™). Verify that it is a k-dimensional complex vector bundle over
Grk ((Cn)

3. Verify that RP"~! = Gry(R") and that the line bundle 7; defined above is
the universal bundle. Do the analogous exercise with CP"~! and Gry(C").

An important notion associated to vector bundles (and in fact all fibra-
tions) is the notion of a (cross) section. We've already encountered this notion
when the fiber bundle is a covering space in our discussion of orientations in
Chapter 1.

Definition 2.4. Given a fiber bundle
p:E—B

a section s is a continuous map s : B — E such that pos = identity : B — B.
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Notice that every vector bundle has a section, namely the zero section

z:B—F

z — 0,

where 0, is the origin in the vector space p~!(x). However most geometrically
interesting sections have few zero’s. Indeed as we will see later, an appropriate
count of the number of zero’s of a section of an n - dimensional bundle over an
n - dimensional manifold is an important topological invariant of that bundle
(called the “Euler number”). In particular an interesting geometric question is
to determine when a vector bundle has a nowhere zero section, and if it does,
how many linearly independent sections it has. (Sections {s1,--,sm,} are
said to be linearly independant if the vectors {s;(z), -, s;n(x)} are linearly
independent for every x € B.) These questions are classical in the case where
the vector bundle is the tangent bundle, as we will see later in our discussion
of differentiable manifolds. A section of the tangent bundle is called a vector
field.The question of how many linearly independent vector fields exist on
the sphere S™ was answered by J.F. Adams [2] in the early 1960’s using
sophisticated techniques of homotopy theory.

Exercises (from [47])

1. Let z € S™, and [z] € RP™ be the corresponding element. Consider the
functions f; ; : RP™ — R defined by f; ;([z]) = z;z;. Show that these func-

tions define a diffeomorphism between RP™ and the submanifold of R(n+1)?
consisting of all symmetric (n + 1) x (n + 1) matrices A of trace 1 satisfying
AA=A.

2. Use exercise 1 to show that RP™ is compact.

3. Prove that an n -dimensional vector bundle ¢ has n - linearly indepen-
dent sections if and only if ¢ is trivial.

2.1.2 Principal Bundles

Principal bundles are basically parameterized families of topological groups,
and often Lie groups. In order to define the notion carefully we first review
some basic properties of group actions.
Recall that a right action of topological group G on a space X is a map
p: X xG—-X

(x,9) = xg

satisfying the basic properties
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l.z-1=zxforallz € X

2. z(g192) = (zg1)g2 for all x € X and g1, g2 € G.

Notice that given such an action, every element g acts as a homeomor-
phism, since action by g~! is its inverse. Thus the group action yu defines a
map

u: G — Homeo(X)

where Homeo(X) denotes the group of homeomorphisms of X. The two condi-
tions listed above are equivalent to the requirement that p: G — Homeo(X)
be a group homomorphism.

Let X be a space with a right G - action. Given z € X, let G = {xg :
g € G} C X. This is called the orbit of x under the G - action. The isotropy
subgroup of x, Iso(z), is defined by Iso(z) = {g € G : zg = x} Notice that
the map

G —2G

defined by sending g to zg defines a homeomorphism from the coset space to
the orbit
G/Iso(z) —— 2G C X.

A group action on a space X is said to be transitive if the space X is the
orbit of a single point, X = xG. Notice that if X = (G for some zy € X, then
X = zG for any x € X. Notice furthermore that the transitivity condition is
equivalent to saying that for any two points x1,x2 € X, there is an element
g € G such that x1 = zog. Finally notice that if X has a transitive G - action,
then the above discussion about isotropy subgroups implies that there exists
a subgroup H < G and a homeomorphism

G/H —=— X.

Of course if X is smooth, G is a Lie group, and the action is smooth, then the
above map would be a diffeomorphism.

A group action is said to be (fixed point) free if the isotropy groups of
every point x are trivial,

Iso(xz) = {1}

for all x € X. Said another way, the action is free if and only if the only time
there is an equation of the form zg = z is if g = 1 € G. That is, if for g € G,
the fixed point set Fiz(g) C X is the set

Fiz(g) ={x € X : zg = z},
then the action is free if and only if Fiz(g) =0 forall g #£1 € G.

We are now able to define principal bundles.

Definition 2.5. Let G be a topological group. A principal G bundle is a fiber
bundle p : E — B with fiber F' = G satisfying the following properties.
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1. The total space E has a free, fiberwise right G action. That is, it has a
free group action making the following diagram commute:

ExG —t— E

b

Bx{l1} = B
where € is the constant map.

2. The induced action on fibers

pip t(a) x G —p ()
is free and transitive.

3. There exist local trivializations

Yip L (U) —— UxG

that are equivariant. That is, the following diagrams commute:

p_l(U)XG%) UxGxG

#J{ llx mult.

p~HU) —%a U x G.

Notice that in a principal G - bundle, the group G acts freely on the total
space E. It is natural to ask if a free group action suffices to induce a principal
G - bundle. That is, suppose E is a space with a free, right G action, and define
B to be the orbit space

B=FE/G=E/~

where y; ~ yo if and only if there exists a g € G with y; = yog (i.e if and
only if their orbits are equal: y1G = y2G). Define p : E — B to be the
natural projection, E — E/G. Then the fibers are the orbits, p~*([y]) = yG.
So for p: E — B to be a principal bundle we must check the local triviality
condition. In general for this to hold we need the following extra condition.

Definition 2.6. A group action E x G — E has slices if projection onto the
orbit space
p:E—E/G

has local sections. That is, around every x € E/G there is a neighborhood U
and a continuous map s : U — E such that pos=1id:U — U.
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Proposition 2.1. If E has a free G action with slices, then the projection
map
p:E—E/G

is a principal G - bundle.

Proof. We need to verify the local triviality condition. Let © € E/G. Let
U be an open set around z admitting a section s : U — E. Define a local
trivialization

Y:UxG—p '(U)
by ¥(y,g) = s(y) - g. Clearly v is a local trivialization. O
Examples.
e The projection map p : S?"+! — CP" is a principal S* - bundle.

e Let Vi (R™) be the Stiefel manifold of rank k n x k matrices described
above. Then the projection map

p: Vi(R") = Gri(R™)

is a principal GL(k,R) - bundle. Similarly the projection map
p: Vi(C") = Grg(C™)

is a principal GL(k,C) - bundle.

e Let Vi(R™")? C R denote those n x k matrices whose k - columns are
orthonormal n - dimensional vectors. This is the Stiefel manifold of or-
thonormal k - frames in R™. Then the induced projection map

p: Vk(R")O — Gri(R™)

is a principal O(k) - bundle. Similarly, if V;(C")Y is the space of or-
thonormal k - frames in C™ (with respect to the standard Hermitian inner
product), then the projection map

p:Vi(C")Y = Gry(C™)
is a principal U(n) - bundle.
e There is a homeomorphism
p:UMm)/UM—1) —— §2n-1

and the projection map U(n) — S?"~! is a principal U(n — 1) - bundle.

To see this, notice that U(n) acts transitively on the unit sphere in C™ (i.e
S§2n=1). Moreover the isotropy subgroup of the point e; = (1,0,---,0) €
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S2n=1 are those elements A € U(n) which have first column equal to
er1 = (1,0,---,0). Such matrices also have first row = (1,0,---,0). That

is, A is of the form
1 0
=0 %)

where A’ is an element of U(n — 1). Thus the isotropy subgroup Iso(eq)
U(n — 1) and the result follows.

Notice that a similar argument gives a diffeomorphism SO(n)/SO(n—1)
Sn— 1 .

o~

1%

There is a homeomorphism

p:Un)/U(n—k) ——s V,(CMV.

The argument here is similar to the above, noticing that U(n) acts tran-
sitively on V3 (C™)V, and the isotopy subgroup of the n x k matrix

10 0 --- 0
01 0 -~ 0
00 1 - 0

=10 o 0 1
0 0 0 0
00 -~ 0 0

consist of matrices in U(n) of them form

1 0 O o0 O -~ 00
o1 o - 0

0 0 1 0 . :
0 0 o 1.0 O - 0 O

(0) (B)
where B is an (n — k) x (n — k) dimensional unitary matrix.
A similar argument shows that there are homeomorphisms
p:Un)/ (Uk)x Uln —k)) —— Gr(C")
and

p:0(n)/ (O(k) x O(n—k)) —— Gry(R")

Principal bundles define other fiber bundles in the presence of group ac-

tions. Namely, suppose p : E — B be a principal G - bundle and F is
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a space with a cellular right group action. Then the product space E x F
has the “diagonal” group action (e, f)g = (eg, fg). Consider the orbit space,
E xg F = (FE x F)/G. Then the induced projection map

p:ExgF — B

is a locally trivial fibration with fiber F'.
For example we have the following important class of fiber bundles.

Proposition 2.2. Let G be a compact topological group and K < H < G
closed subgroups. Then the projection map of coset spaces

p:G/K - G/H

is a fiber bundle with fiber H/K .

Proof. Observe that G/K = G x i H/K where H acts on H/K in the natural
way. Moreover the projection map p : G/K — G/H is the projection can be
viewed as the projection

G/K =G xy H/K — G/H

and so is the H/K - fiber bundle induced by the H - principal bundle G —
G/H via the action of H on the coset space H/K. O

Example

We know by the above examples, that U(2)/U(1) = S3, and that
U(2)/U(1) x U(1) = Gri(C?) = CP' = S2%. Therefore there is a principal
U(1) - fibration

p:UQ2)/UM) = UQR)/U1) xU(1),

or equivalently, a principal U(1) = S* fibration
p: S — S2

This fibration is the well known “Hopf fibration”, and is of central importance
in both geometry and algebraic topology. In particular, as we will see later,
the map from S® to S? gives an nontrivial element in the homotopy group
73(S5?), which from the naive point of view is quite surprising. It says, that,
in a sense that can be made precise, there is a “three dimensional hole” in
S? that cannot be filled. Many people (eg. Whitehead, see [64]) refer to this
discovery as the beginning of modern homotopy theory.

The fact that the Hopf fibration is a locally trivial fibration also leads to an
interesting geometric observation. First, it is not difficult to see directly (and
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we will prove this later) that one can take the upper and lower hemispheres of
52 to be a cover of S? over which the Hopf fibration is trivial. That is, there
are local trivializations,

Yy DY x ST —pT(D?)
and
Y. D* x St = p~H(D?)

where D_%_ and D? are the upper and lower hemispheres of S?, respectively.
Putting these two local trivializations together yields the following classical
result:

Theorem 2.3. The sphere S® is homeomorphic to the union of two solid tori
D? x S' whose intersection is their common torus boundary, S* x S*t.

As another example of fiber bundles induced by principal bundles, suppose
that
p:G— GL(n,R)

is a representation of a topological group G, and p : E — B is a principal G
bundle. Then let R"(p) denote the space R™ with the action of G given by the
representation p. Then the projection

ExgR"(p) = B

is a vector bundle.

Exercise.

Let p : Vi(R™) — Gri(R™) be the principal bundle described above. Let R"
have the standard GL(n,R) representation. Proved that the induced vector
bundle

P Vi(R") Xarnr R”

is isomorphic to the universal bundle v described in the last section.

In the last section we discussed sections of vector bundles and in particular
vector fields. For principal bundles, the existence of a section (or lack thereof)
completely determines the triviality of the bundle.

Theorem 2.4. A principal G - bundle p : E — B is trivial if and only if it
has a section.
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Proof. If p : E — B is isomorphic to the trivial bundle B x G — B, then
clearly it has a section. So we therefore only need to prove the converse.
Suppose s : B — FE is a section of the principal bundle p : F — B. Define
the map
Yv:BxG—=FE

by ¥ (b, g) = s(b)g where multiplication on the right by ¢ is given by the right
G - action of G on E. It is straightforward to check that 1 is an isomorphism
of principal G - bundles, and hence a trivialization of E. O

2.1.3 Clutching Functions and Structure Groups

Let p : E — B be a fiber bundle with fiber F. Cover the basespace
B by a collection of open sets {U,} equipped with local trivializations
VYo : Uy X F = p~1(U,)- Let us compare the local trivializations on the
intersection: U, N Ug:

Ua MUy x F —2 p (U NUp) 2 U, N U x F.

For every z € U, NUg, ¢3! 0 1g determines a homeomorphism of the fiber
F. That is, this composition determines a map ¢o 5 : Uy NUg — Homeo(F).
These maps are called the clutching functions of the fiber bundle. When the
bundle is a real n - dimensional vector bundle then the clutching functions
are of the form

Ga.p: U NUg — GL(TL,R).

Similarly, complex vector bundles have clutching functions that take values in
GL(n,C).
If p: E — Bis a G - principal - bundle, then the clutching functions take
values in G:
¢a,5 U, ﬁUg — G.

In general for a bundle p : E — B with fiber F, the group in which the
clutching values take values is called the structure group of the bundle. If
no group is specified, then the structure group is the homeomorphism group
Homeo(F).

The clutching functions and the associated structure group completely
determine the isomorphism type of the bundle. Namely, given an open covering
of a space B, and a compatible family of clutching functions ¢ 5 : UoNUg —
G, and a space F' upon which the group acts, we can form the space

E:UUaxF/N

where if x € U, NUg, then (z, f) € U, X F is identified with (z, f¢. g(x)) €
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Usg x F. I is the total space of a locally trivial fibration over B with fiber
F and structure group G. If the original data of clutching functions came
from locally trivializations of a bundle, then notice that the construction of
E above yields a description of the total space of the bundle. Thus we have
a description of the total space of a fiber bundle completely in terms of the
family of clutching functions.

Suppose ( is an n - dimensional vector bundle with projection map p :
E — B and local trivializations 1, : Uy X R® — p~1(U,). Then the clutching
functions take values in the general linear group

dap: UaNUg — GL(n, R).

So the total space E has the form E = |J,_, Uy x R"/ ~ as above. We can then
form the corresponding principal GL(n,R) bundle with total space

Eap =|JUa x GL(n,R)

with the same clutching functions. That is, for z € U, NUs, (z,9) € Uy X
GL(n,R) is identified with (z,g - ¢a,p(x)) € Ug x GL(n,R). The principal
bundle

p: FEqr — B

is called the associated principal bundle to the vector bundle (, or sometimes
is referred to as the associated frame bundle.

Observe also that this process is reversable. Namely if p : P — X is
a principal GL(n,R) - bundle with clutching functions 6,5 : Vo, NV —
GL(n,R), then there is an associated vector bundle p : Pgn — X where

Pgn :Uva x R™
«

where if z € V,, N V3, then (z,v) € V, x R™ is identified with (z,v -0, s(x)) €
V@ x R™.

This correspondence between vector bundles and principal bundles proves
the following result:

Theorem 2.5. Let VectR(X) and VectS(X) denote the set of isomorphism
classes of real and complex n - dimensional vector bundles ovr X respectively.
For a Lie group G let Pring(X) denote the set of isomorphism classes of
principal G - bundles. Then there are bijective correspondences

Vect®(X) —= Pringpn,r) (X)

VectS(X) —— Pringpn,c)(X).

This correspondence and theorem 1.6 allows for the following method of
determining whether a vector bundle is trivial:
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Corollary 2.6. A wvector bundle ( : p : E — B is trivial if and only if its
associated principal GL(n) - bundle p : Eqy, — B admits a section.

Clutching functions and structure groups are also useful in studying struc-
tures on principal bundles and their associated vector bundles.

Definition 2.7. Let p: P — B be a principal G - bundle, and let H < G be
a subgroup. P is said to have a reduction of its structure group to H if and
only if P is isomorphic to a bundle whose clutching functions take values in
H:

¢a7g:UaﬂUg—>H<G.

Let P — X be a principal G - bundle. Then P has a reduction of its
structure group to H < G if and only if there is a principal H - bundle
P — X and an isomorphism of G bundles,

PxyG —— P

l !

X = X

Definition 2.8. Let H < GL(n,R). Then an H - structure on ann - dimen-
sional vector bundle ¢ is a reduction of the structure group of its associated
GL(n,R) - principal bundle to H.

Examples.

e A {1} < GL(n,R) - structure on a vector bundle ( or its associated princi-
pal bundle) is a trivialization or framing of the bundle. A framed manifold
is a manifold with a framing of its tangent bundle.

e Given a 2n - dimensional real vector bundle {, an almost complex struc-
ture on ¢ is a GL(n,C) < GL(2n,R) structure on its associated principal
bundle. An almost complex structure on a manifold is an almost complex
structure on its tangent bundle.

We now study two examples of vector bundle structures in some detail:
Euclidean structures, and orientations.

Example 1: O(n) - structures and Euclidean structures on vector
bundles.
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Recall that a Euclidean vector space is a real vector space V together with a
positive definite quadratic function

w:V =R,

Specifically, the statement that p is quadratic means that it can written in
the form
p(v) = 3 aiw)ilv)
i

where each «; and §; : V' — R is linear. The statement that p is positive
definite means that
w(v) >0 forwv#0.

Positive definite quadratic functions arise from, and give rise to inner prod-
ucts (i.e symmetric bilinear pairings (v, w) — v - w) defined by

1
vew = o (u(v +w) = p(v) = p(w)).
Notice that if we write |v| = /v - v then |v|? = u(v). So in particular there is
a metric on V.

This notion generalizes to vector bundles in the following way.

Definition 2.9. A Fuclidean vector bundle is a real vector bundle { : p: B —
B together with a map
wE—R

which when restricted to each fiber is a positive definite quadratic function.
That is, p induces a Fuclidean structure on each fiber.

Exercise.

Show that an O(n) - structure on a vector bundle ¢ gives rise to a Euclidean
structure on ¢. Conversely, a Euclidean structure on ¢ gives rise to an O(n) -
structure.

Hint. Make the constructions directly in terms of the clutching functions.

Definition 2.10. A smooth Euclidean structure on the tangent bundle p :
TM — R s called a Riemannian structure on M.

Exercises.

1. Existence theorem for Euclidean metrics. Using a partition of unity, show
that any vector bundle over a paracompact space can be given a Euclidean
metric.
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2. Isometry theorem. Let p and p’ be two different Euclidean metrics on the
same vector bundle ¢ : p: E — B. Prove that there exists a homeomorphism
f: E — E which carries each fiber isomorphically onto itself, so that the
composition po f: E — R is equal to p/. (Hint. Use the fact that every
positive definite matrix A can be xpressd uniquely as the square of a positive
definite matrix v/A. The power series expansion

1 1
tH+X)=Vt(I+ —-X — —X? 4+ —...
(1 +X) = VHI + 5, X = 5 X2 =),
is valid providing that the characteristic roots of tI + X = A lie between 0
and 2t. This shows that the function A — v/A is smooth.)

Example 2: SL(n,R) - structures and orientations.

Recall that an orientation of a real m - dimensional vector space V
is an equivalence class of basis for V, where two bases {vi,---,v,} and
{wy, -+ ,wy} are equivalent (i.e determine the same orientation) if and only
if the change of basis matrix A = (a; ;), where w; = Zj a; jv; has positive
determinant, det(A) > 0. Let Or(V) be the set of orientations of V. Notice
that Or(V) is a two point set.

For a vector bundle ¢ : p: F — B, an orientation is a continuous choice of
orientations of each fiber. Said more precisely, we may define the “orientation
double cover” Or(¢) to be the two - fold covering space

Or(¢) = EgL Xarn,r) Or(R™)

where Fgp, is the associated principal bundle, and where GL(n,R) acts on
Or(R™) by matrix multiplication on a basis representing the orientation.

Definition 2.11. ( is orientable if the orientation double cover Or(¢) admits
a section. A choice of section is an orientation of (.

This definition is reasonable, in that a continuous section of Or(¢) is a
continuous choice of orientations of the fibers of (.

Recall that SL(n,R) < GL(n,R) and SO(n) < O(n) are the sub-
groups consisting of matrices with positive determinants. The following is
now straightforward.

Theorem 2.7. An n - dimensional vector bundle { has an orientation if and
only if it has a SL(n,R) - structure. Similarly a Euclidean vector bundle is
orientable if and only if it has a SO(n) - structure. Choices of these structures
are equivalent to choices of orientations.

Finally, a manifold is said to be orientable if its tangent bundle 7M is
orientable.



30 Bundles, Homotopy, and Manifolds

2.2 Pull Backs and Bundle Algebra

In this section we describe the notion of the pull back of a bundle along a
continuous map. We then use it to describe constructions on bundles such as
direct sums, tensor products, symmetric and exterior products, and homo-
morphisms.

2.2.1 Pull Backs

Let p: F — B be a fiber bundle with fiber F'. Let A C B be a subspace. The
restriction of E to A, written E|, is simply given by

ElA = p_l(A)~

The restriction of the projection p : E|, — A is clearly still a locally trivial
fibration with fiber F'.

This notion generalizes from inclusions of subsets A C B to general maps
f: X — B in the form of the pull back bundle over X, f*(E). This bundle is
defined by

f(E) ={(z,u) € X X E: f(x) = p(u)}.

Proposition 2.8. The map

py: fH(E) = X
(z,u) >z

is a locally trivial fibration with fiber F. Furthermore if . : A — B is an
inclusion of a subspace, then the pull-back (*(E) is equal to the restriction
Ej

A

Proof. Let {U,} be a collection of open sets in B and 1, : Uy x F — p~1(U,,)
local trivializations of the bundle p : E — B. Then {f~}(U,)} is an open
cover of X, and the maps

bal(f) [T Ua) x F = pp (F7H(UW)

defined by (x,y) = (z,%a(f(z),y)) are clearly local trivializations.
This proves the first statement in the proposition. The second statement
is obvious. O

We now use the pull back construction to define certain algebraic construc-
tions on bundles.



Fiber Bundles 31

Let p1 : E1 — By and ps : o — By be fiber bundles with fibers F; and
F5 respectively. Then the cartesian product

p1Xp22E1><E2*>Bl><BQ

is clearly a fiber bundle with fiber F} x F5. In the case when By = By = B,
we can consider the pull back (or restriction) of this cartesian product bundle
via the diagonal map

A:B—BxDB

x — (z,x).

Then the pull-back A*(E; x Ey) — B is a fiber bundle with fiber F; x Fy,
is defined to be the internal product, or Whitney sum of the fiber bundles F;
and Fs. It is written
E]_ D E2 = A*(El X Eg)

Notice that if Fy and Es are G; and G» principal bundles respectively,
then Fy; @ FEs is a principal G; X G2 - bundle. Similarly, if F; and Es are
n and m dimensional vector bundles respectively, then E; ® Fs is an n +
m - dimensional vector bundle. E1 @& F5 is called the Whitney sum of the
vector bundles. Notice that the clutching functions of F; & Es naturally lie
in GL(n,R) x GL(m,R) which is thought of as a subgroup of GL(n + m,R)
consisting of (n +m) x (n 4+ m) - dimensional matrices of the form

A 0
0 B
where A € GL(n,R) and B € GL(m,R).

We now describe other algebraic constructions on vector bundles. The first
is a generalization of the fact that a given a subspace of a vector space, the
ambient vector space splits as a direct sum of the subspace and the quotient
space.

Let n : E" — B be a k - dimensional vector bundle and ¢ : E¢ — B an n
- dimensional bundle. Let ¢+ : n < ( be a linear embedding of vector bundles.
So on each fiber ¢ is a linear embedding of a k - dimensional vector space into
an n - dimensional vector space. Define (/7 to be the vector bundle whose
fiber at = is ES/E1.

Exercise.

Verify that (/7 is an n — k - dimensional vector bundle over B.

Theorem 2.9. There is a splitting of vector bundles

C=nad/n.
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Proof. Give ¢ a Euclidean structure. Define n* C ¢ to be the subbundle whose
fiber at x is the orthogonal complement

E;iL:{veEgzv-w:OforallweEg}

Then clearly there is an isomorphism of bundles

nent =
Moreover the composition
mtC = ¢/
is also an isomorphism. The theorem follows. O

Corollary 2.10. Let ¢ be a Fuclidean n - dimensional vector bundle. Then
¢ has a O(k) x O(n — k) - structure if and only if ¢ admits a k - dimensional
subbundle n C C.

We now describe the dual of a vector bundle. So let ¢ : ES — B be an
n - dimensional bundle. Its dual, ¢* : E" — B is the bundle whose fiber at
x € B is the dual vector space ES” = Hom(E¢,R). If

{(150175 U N Ug — GL(R,R)}
are clutching functions for ¢, then
{#n5:UaNUs — GL(n,R)}

form the clutching functions for ¢*, where ¢, ;(z) is the adjoint (transpose)
of ¢a,p(x). The dual of a complex bundle is defined similarly.

Exercise.

Prove that ¢ and ¢* are isomorophic vector bundles. HInt. Give ¢ a Euclidean
structure.

Now let 17 : E" — B be a k - dimensional, and as above, ¢ : ES — B an
n - dimensional bundle. We define the tensor product bundle n ® ¢ to be the
bundle whose fiber at x € B is the tensor product of vector spaces, E @ ES.
The clutching fucntions can be thought of as compositions of the form

b0 5% 05,
1% Uo MU "% GL(k,R) x GL(n,R) —2— GL(kn,R)

where the tensor product of two linear transformations A : V3 — V5 and
B : W1 — W5 is the induced linear transformation AQB : ViQW; — Vo@Ws.
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With these two constructions we are now able to define the “homomor-
phism bundle”, Hom(n, (). This will be the bundle whose fiber at € B is
the k - m - dimensional vector space of linear transformations

Hom(E}, E5) = (EI)* ® ES.
So as bundles we can define

Hom(n,() =n"®¢.

Observation. A bundle homomorphsim 6 : 7 — ( assigns to every x € B
a linear transformation of the fibers, 6, : E” — ES. Thus a bundle homomor-
phism can be thought of as a section of the bundle Hom(n, (). That is, there
is a bijection between the space of sections, I'(Hom(n,()) and the space of
bundle homomorphisms, {6 : n — ¢}.






3

General Background on Differentiable
Manifolds

In geometry one most often studies manifolds that have differentiable struc-
tures. They are precisely the types of spaces on which one can do calculus and
study differential equations. We begin this chapter by defining these “differ-
entiable manifolds”.

Definition 3.1. An n-dimensional topological manifold M™ is a C"-
differentiable manifold if it admits a C”-differentiable atlas. This is an atlas
A={U,,Yy,) such that every composition of the form

Wy, oVl Wy (Us NUp) = Ua NUs = Wy, (Ua NUp)

is a C"-diffeomorphism of open sets in R™. We say that each pair of charts
(Ua, Yy, ) and (Ug, Yy,) have a “C"-overlap”.

We note that a C"-differentiable manifold M™ with atlas A admits a unique
maximal C"-atlas A containing A. Namely A consists of all charts which have
C"-overlap with every chart of A.

Notice that with this definition, it makes sense to say that a continuous
map between C7-differentiable manifolds, f: M™ — N™ is C"- differentiable
at © € M"™ if there are charts (U, ®) around z € M™ and (V,¥) around
f(z) € N with f(U) C V such that the map

Tofod ':0(U)— V()

is a differentiable map between open sets ®(U) C R™ and ¥(V) C R™. We
say that f is C"-differentiable if it is C"-differentiable at every point x € M™.

For the most part, in these notes we will be studying the topology of
“smooth”, meaning C'°°- manifolds.

In our definition, we assume that manifolds are always Hausdorff topo-
logical spaces. Recall that this means that any two points z, y € M can be
separated by disjoint open sets. That is, there are open sets Uy C M contain-
ing z and Uy C M containing y with U; N Us = (). Throughout these notes we
will also assume our manifolds are paracompact. Recall that a space X is
paracompact if every open cover U of X has a locally finite refinement. That
is there is another cover V), all of whose open sets are all contained in U, and

35
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so that V is locally finite. That is, each € M lies in only finitely many of the
open sets in V. Recall that a Hausdorff space is paracompact if and only if it
admits a partition of unity subordinate to any open cover U = {U;,i € A}.
Such a partition of unity is a collection of maps p; : X — [0, 1] so that

e The support supp (p;) C U;, and

> capilz) =1 forevery z € X.

3.1 History

Reference: Hirsch’s book [30].

Historically, the notion of a differentiable manifold grew from geometry
and function theory in the 19th century. Geometers studied curves and sur-
faces in R?, and were mainly interested in local structures, such as curvature,
introduced by Gauss in the early part of the 19th century. Function theorists
were interested in studying “level sets” of differentiable functions F' : R™ — R,
i.e the spaces F~1(c) C R" for ¢ € R. They observed that for “most” values of
c these level sets are “smooth” and nonsingular. This was part of the analytic
study of “Calculus of Variations”, which let to “Morse theory” in the 20th
century.

In the mid-19th century Riemann broke new ground with the study of
what are now called “Riemann surfaces”. These were historically the first
examples of “abstract manifolds”, which is to say not defined to be a subspace
of some Euclidean space. Riemann surfaces represent the global nature of
the analytic continuation process. Riemann also studied topological invariants
of these surfaces, such as the “connectivity” of a surface, which is defined
to be the maximal number of embedded closed curves on a surface whose
union does not disconnect the surface plus one. Riemann showed in the 1860’s
that for compact, orientable surfaces, this number classifies the surface up to
homeomorphism. In particular for a surface of genus g, Riemann’s connectivity
number is 2g + 1.

In the early 20th century, Poincaré studied 3-dimensional manifolds in
his famous treatise, “Analysis Situs”. In that work Poincaré introduced some
notions in Algebraic Topology such as the fundamental group. The famous
“Poincaré Conjecture” which was proved by Perelman nearly a hundred years
later in 2003, states that every simply connected compact 3-dimensional man-
ifold is homeomoprhic, and indeed diffeomorphic to the sphere S3.

Poincaré’s conjecture was a statement about the classification of mani-
folds. Such a classification has been a key problem in differential topology
for the past hundred years. Currently there is great interest and work on the
classification of symmetries (“diffeomorphisms”) of manifolds.
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Herman Weyl defined abstract differentiable manifolds in 1912. But it was
not until the work of H. Whitney (1936-1940) when basic geometric and topo-
logical properties of manifolds, such as existence of embeddings into Euclidean
space, were proved. At that time the modern notion of differentiable manifold
became firmly established as a fundamental object in mathematics.

|
3.2 Examples and Basic Notions

3.2.1 Examples

Consider the following standard examples of manifolds:

1. Consider the unit sphere S™ C R™*!. It has an atlas consisting of two
charts. Let € > 0 be small. Then define

Uy = {(3517"' 7In+1) D T4l > *6}
U2 = {('rlv"' 7$n+1) L Tp+l < 6}

There are natural projections of Uy and Us onto B1(0) with C'*°-overlaps,
thus defining a smooth structure on S™.

2. Let RP" = 8™/ ~ where « ~ —z. This is the (real) projective space. This
is a C'°°-n-dimensional manifold. To see a smooth atlas we use “projective
coordinates”. These are obtained by viewing RP™ as the quotient of the
nonzero elements of Euclidean space, R"*! by the group action of the
nonzero real numbers, R* given by scalar multiplication:

RP" = (R™"' — {0}) /R*.

We describe a point in RP™ as the equivalence class of a point in R**1—{0},
which we denote using square brackets: [zg, 21, ,2,] € RP". For 0 <
1 < n define

U, = {[.’IJ(),"' ,l‘n] € RP” : Z; 7& 0}

Notice that RP" = Uy U --- U U, and that the map

v, U, — R"
Lo Ti—1 Tit1 Tn
[‘TOW" 7xn]*>(7a"' F S R T 77)
T T T T

defines a homeomorphism of U; onto R™. Moreover its easily checked that
these homeomorphisms have C*-overlaps. Thus {(U;, ¥;),: i =0,--- ,n}
is a smooth (C* ) atlas for RP™.
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FIGURE 3.1
Charts for S™

3.2.2 The tangent bundle

An important concept in the study of differentiable manifolds is that of a
tangent bundle.

Definition 3.2. Let M™ be a differentiable (C') n-dimensional manifold with
an atlasUd = {U, : « € A}. A tangent vector to M at x € M is an equivalence
class of triples (z,a,v) € M x A x R™ under the equivalence relation

(z, @, 0) ~ (2,8, u)

if D(¢pd5")(¢a(x))(v) = u. The tangent space of M at z, denoted T, M is
defined to be the set of all tangent vectors at x.

Notice that the functions we are differentiating in this definition are defined
on open subspaces of Euclidean space. More specifically, they are defined on
open sets of the form ¢ (U, NUg) C R™ and take values in ¢5(U,NUg) C R™.

We leave it to the reader to verify that T,, M is an n-dimensional real vector
space. One can also verify that this definition does not depend on the choice
of atlas or charts. The tangent bundle is defined to be the union of all tangent
spaces

TM = U T, M.
zeM
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So far T'M is defined only set theoretically. We have yet to discuss its topology.
We do so as follows:

Definition 3.3. Let U = {(Uq, ¢o) : @ € A} be an atlas for a differentiable
n-dimensional manifold M™. Define the tangent bundle

TM = H Uy X R"/ ~
aEA

where (z,v) € U, x R" is identified with (z,u) € Ug x R" if z € U, N Up
and D(¢sd,1)(¢a(z))(v) = u. TM is given the quotient topology under this
identification.

We can give the tangent bundle has a more concrete definition in the
setting where M™ is a subset of R” for some L. (We will later prove that
every manifold can be appropriately viewed as a subset of Euclidean space of
sufficiently high dimension.)

Assume M™ C RE. Given z € M™ C RY, we say that a vector v € R¥ is
tangent to M™ at x € M if there exists an € > 0 and differentiable curve

v:(—€€) —» M" c RE

such that ‘ZTZ(O) =.

We define the tangent space T, M™ to be the set of all vectors tangent to
X. Clearly this is an n-dimensional real vector space. Moreover we can now
topologize the tangent bundle as a subspace of R x R:

T™M" = | J T.M" C R" x R*
xeEM
veT,M" — (z,v).

There is a natural continuous projection map

p:TM — M
veT,M— M. (3.1)

We leave it to the reader to check that these two definitions of tangent
bundle agree up to isomorphism. By isomorphism, we are referring to the
notion of isomorphism of vector bundles. Clearly p : TM — M is an n-
dimensional vector bundle as defined in section 1.1 of [13] using either of the
two definitions of T'M given above. It is also clear that there is a natural
isomorphism between them.

A differentiable section of the tangent bundle o : M™ — T'M™ is called
a vector field. At every point of the manifold, a section picks out a tangent
vector. The question of which manifolds admit a nowhere zero vector field, and
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if so, how many linearly independent vector fields are possible, has long been
a fundamental question in differential topology. (A collection of vector fields
are linearly independent if they pick out linearly independent tangent vectors
at every point.) A manifold is called parallelizable if its tangent bundle is
trivial. Notice that a parallelizable manifold of dimension n admits n linearly
independent vector fields.

Exercises

1. Show that a manifold M™ is parallelizable if and only if it admits n
linearly independent vector fields.

2. Show that the unit sphere S™ admits a nowhere zero vector field if n is
odd.

3. If S™ admits a nowhere zero vector field show that the identity map of
S™ is homotopic to the antipodal map. For n even show that the antipodal
map of S™ is homotopic to the reflection

7"((1717 e 7xn+1) = (_x17x27' o 7:En+1);

and therefore has degree —1. Combining these facts, show that S™ is not
parallelizable for n even, n > 2.

3.2.3 The implicit and inverse function theorems, embed-
dings and immersions

We assume the reader is familiar with the following basic theorems from the
analysis of differentiable maps on Euclidean space. We observe that they are
local theorems, and so can be used to study differentiable manifolds and maps
between them.

Theorem 3.1. (The Implicit Function Theorem - the surjective version) Let
U C R™ be an open subspace and f : U — R™ a C"-map, where r > 1. For
p € U, assume f(p) = 0. Suppose the derivative at p,

Df, :R™ - R"

is surjective. Then there is a local diffeomorphism ¢ of R™ at 0 such that
$(0) = p and
fo¢($1,"' y Tyt a'rm) = (-1:17"' )mn)-

That is, f o ¢ is the projection onto the first n-coordinates.

There is another version of the implicit function theorem when the deriva-
tive is injective.
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Theorem 3.2. (The Implicit Function Theorem - the injective version) Let
U CR™ be an open set and f: U — R™ a C"-map, where r > 1. Let ¢ € R"
be such that 0 € f~1(q). Suppose that

Dfy:R™ - R"

is injective. Then there is a local diffeomorphism ¢ of R™ such that 1¥(q) =0
and
’(/Jof(xh"' axm> = (x17"' ;mmaoaov"' 70) ERn'

That is ¢ o f is the inclusion of the first m-coordinate azes.

Finally, consider the following theorem, which is equivalent to the implicit
function theorems.

Theorem 3.3. (Inverse Function Theorem) Let U C R™ be an open set and
f:U—=R" be a C"-map wherer > 1. If p € U is such that Df, : R™ — R™ is
invertible, then f is a C"-local diffeomorphism at p. That is there is an open
set V.C U CR" such that f:V — f(V) is a diffeomorphism.

We end with the definition of immersion and embedding.

Definition 3.4. Suppose f : M™ — N™ is C", for r > 1, where M™ and
N" are C" manifolds of dimensions m and n, respectively. We say that f is
immersive at x € M if the linear map

Dfx T M — Tf(w)N

is injective. f is an immersion if f is immersive at every point x € M. We
use the symbol f: M™ & N™ to mean that f is an immersion.

Definition 3.5. Suppose f : M™ — N™ s C", for r > 1, where M™ and
N" are C" manifolds of dimensions m and n, respectively. We say that f is
submersive at € M if the linear map

Dfx T M — Tf(w)N

is surjective. f is an submersion if f is submersive at every point x € M.

Definition 3.6. A C"-map f: M — N is an embedding if it is an immer-
sion and f maps M homeomorphically onto its image. In this case we write
f:M— N.

Finally we have the following definition.

Definition 3.7. Suppose N is a C"-manifold, r > 1. A subspace A C N is
a C"-submanifold if and only if A is the image of a C"-embedding of some
manifold into N.

The following is an immediate corollary of Implicit Function Theorem (the
injective version).

Proposition 3.4. If f : M — N is an immersion, then it is a local embedding.
That is, around every x € M there is an open neighborhood U of x so that the
restriction f : U — N is an embedding.
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3.2.4 Manifolds with boundary

In many areas of mathematics one often confronts manifolds that have a
boundary. A closed disk in R™ is a typical example. In this section we de-
scribe how the concepts developed above for smooth manifolds, can be be
generalized to “smooth manifolds with boundary”.

Definition 3.8. The “upper half space” H™ C R™ is the subspace
H" = {(z1,--- ,zn) € R" such thatx, > 0}.

The boundary points of H" are those (x1,--- ,x,) with x, = 0.

An n-dimensional topological manifold with boundary is then one that has
charts homeomorphic to open sets in H" rather than R™. That is, we have the
following definition, which is completely analogous to Definition 1.1 above.

Definition 3.9. An n-dimensional topological manifold manifold with bound-
ary is a Hausdorff space M™ with the property that for every x € M, there is
an open neighborhood U containing x and a homeomorphism,

Yu:U SV CcH”

where V' is an open subspace of R™. The boundary of M™, written OM™ con-
sists of those points p € M™ for which there is an open neighborhood p € U
and a chart Yy : U =V c H™ where Yu(p) is a boundary point of H".
Observe that the condition of p € M™ being a boundary point is independent
of the particular chart used.

We leave it for the reader to check that if M™ is a topological n-manifold
with boundary, then the boundary OM™ is a topological (n — 1)-dimensional
manifold (without boundary).

We need to be careful about the definition of submanifolds in the setting
of manifolds with boundary. First, for k¥ < n, consider a standard inclusion
H* < R™ mapping (z1,--- ,xx) to (z1, - ,T%,0,---0). A subspace V C R"
is a C"-dimensional submanifold if each x € V belongs to the domain of a
chart ¢ : U — R™ of R™ such that V N U = ¢~ (HF).

A general definition of a submanifold (with boundary) can be taken to be
the following;:

Definition 3.10. Let M be a C"-manifold, with or without boundary. A subset
N C M is a C"-submanifold if each x € N there is an open set subset U of
M containing x, a C" embedding g : U — R™, such that

NNU =g~ ' (H"),

A particularly important type of embedding of one manifold into another
is when one restricts to the boundary of the submanifold, the image of the
embedding lies in the boundary of the ambient manifold. This is called a neat
embedding,
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”’L

FIGURE 3.2
A 2-dimensional manifold with boundary

Definition 3.11. An embedding e : N — M of C"-manifolds is neat if ON =
NNOM and N is covered by charts (¢, U) of M such that NNU = ¢~ (H*).
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FIGURE 3.3
Nj is neat, Ny and N3 are not.

3.2.5 Regular Values and transversality

We begin this section with the notion of regular points and values as well as
critical points and values.

Definition 3.12. Suppose f: M — N is a C" map between C" manifolds,
where 7 > 1. A point x € M is called a regular point if fis submersive at x.
If w € M is not a regular point it is called a critical point. f(u) € N is then
called a critical value. If y € N is not a critical value it is called a regular
value. In particular every point y € N that is not in the image of f is a regular
value. If y € N is a regular value, its inverse image f~1(y) C M is called a
regular level set.

The following is one of the most fundamental theorems in differential topol-
ogy:

Theorem 3.5. (The Regular Value Theorem) Suppose f : M™ — N* is a
C"-map between C™ manifolds of dimension n and k respectively. Here r > 1.
If y € M is a regular value, then the regular level set f~1() C M"™ is a C"-
submanifold of dimension n — k.

Proof. Since being a manifold is a local property, it suffices to prove this
theorem in the case when M™ C R" is an open set, and N = R". The theorem
now follows from the surjective version of the Implicit Function Theorem. [

The Regular Value Theorem for manifolds with boundary has the following
formulation.
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Theorem 3.6. Let M ba a C" manifold with boundary, and N a C™ manifold
(with or without boundary). Here we are assuming r > 1. Let f : M — N be
a C" map. If y € N —ON s a regular value for both f and f|,,,, then )
is a neat C" submanifold of M.

b
c}
—
$
(=5
-4 c’
M e

FIGURE 3.4

f is the height function from the torus to the real line. It has 4 critical values.
The level sets of the critical values are shown in red, and regular sets of regular
values, which are all one-dimensional submanifolds, are shown in blue.

We now want to discuss an important generalization of the concepts in-
volved in the Regular Value Theorem. This is the concept of transversality.
The following is probably the most conceptual setting for transversality.
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Let N™ be an n-dimensional manifold, and let A C N and B C N be
submanifolds of dimensional p and ¢ respectively.

B -S4 N

E

We say that A and B have a transverse intersection in N if for every
x € AN B, the tangent spaces of the submanifolds A and B at z, together
span the entire tangent space of the ambient manifold N. That is,

T,A+T,B=T,N (3.2)

When A and B have transverse intersection we write A th B. We will see
that such transversal intersections are, in an appropriate sense, generic. We
begin, though, with the following theorem.

Theorem 3.7. Let A and B be submanifolds of the n-dimensional manifold
N, where Dim A = p and Dim B = q. Suppose furthermore that A h B. The
AN B C N is a submanifold of dimension p+ q — n.

We will actually prove the following generalization of Theorem 3.7.

Let AP be a p-dimensional manifold and N™ an n-dimensional manifold
with a ¢-dimensional submanifold B¢ C N™. Let f : A — N be a smooth
map. We say that f is transverse to B, and write f i B if whenever b € B is
such that f~1(b) is nonempty, then for any x € f~*(b)

Df.(T,A) + T, B = T,N. (3.3)

Notice that if f : A — N is an embedding, then f h B if and only if the
submanifold given by the image of f has transverse intersection with B. Notice
furthermore that if B = y € N is a point, viewed as a zero dimensional
submanifold, then f M B if and only if yis a regular value of f. This is the
sense in which the notion of transversality is a generalization of the notion of
regular value.

The following is a strengthening of both transversality Theorem 3.7 and
of the Regular Value Theorem 3.5:

Theorem 3.8. Let f: AP — N™ and BY? C N™ be as above. Then if f h B,
then the inverse image f~*(B) C A is a submanifold of codimension n —
q, which is the same as the codimension of B in N. That is, f~1(B) has
dimension p + q — n.

Notice that this theorem is precisely the statement of the Regular Value
Theorem when B a point.
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Proof. 1t suffices to prove this theorem locally. By the Implicit Function The-
orem, we can locally replace B? C N™ by U x {0} C U x V, where U C R?
and V C R"77 are open sets. Notice that

fAP 5 UXxV

is transverse to U x {0} if and only if the composition
g:Ar Ly xy oy

has 0 € V C R"? as a regular value. Sincef~*(U x {0}) = ¢g~1(0), the
theorem follows from the Regular Value Theorem (Theorem 3.5). O

A generalization of this theorem to the setting of manifolds with boundary
is the following. The above proof applies to this situation with only minor
modifications.

Theorem 3.9. Suppose B¢ C N™ is a C" submanifold with boundary. Suppose
that either B is neat or B1 C N™ — ON™, or B1 CON"™. If f : AP — N™ is
a C" map between manifolds with boundary with both f and f|,,, transverse
to BY, the f~1(B%) is a C" submanifold and Of ~*(BY) = f~Y(0BY). The
dimension of f~1(B?) is p+q —n.

3.3 Bundles and Manifolds
3.3.1 The tangent bundle of Projective Space

We now use these constructions to identify the tangent bundle of projective
spaces, TRP™ and TCP". We study the real case first.

Recall the canonical line bundle, v, : E7 — RP”. If [x] € RP" is viewed as
a line in R™*!, then the fiber E[ll] is the one dimensional space of vectors in the

line [z]. Thus +; has a natural embedding into the trivial n 4+ 1 - dimensional
bundle € : RP" x R*"*1 — RP" via

E" = {([z],u) € RP" x R""! : u € [2]} < RP™ x R"1.

Let i be the n - dimensional orthogonal complement bundle of this embed-
ding.

Theorem 3.10. There is an isomorphism of the tangent bundle with the
homomorphism bundle
TRP" = Hom(vy1,7i)
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Proof. Let p : S™ — RP™ be the natural projection. For = € S™, recall that
the tangent space of S™ can be described as

T,S8" = {(x,v) € S" x R"™ . z. v = 0}.

Notice that (z,v) € T,S™ and (—x,—v) € T_,S™ have the same image in
T RP™ under the derivative Dp : T'S™ — TRP". Since p is a local diffeomor-
phism, Dp(z) : T,S™ — T};jRP™ is an isomorphism for every z € S™. Thus
T RP™ can be identified with the space of pairs

T RP" = {(x,v), (2, —v) 1 2,0 € R jz| =1, 2-v =0}

If # € S", let L, = [x] denote the line through 4z in R"*!. Then a pair
(7,v), (—z, —v) € Tj;RP" is uniquely determined by a linear transformation

¢:L,— L+
L(tx) = to.

L
Thus Tj,jRP™ is canonically isomorphic to H om(E)', E'), and so

TRP" = Hom(717 P)/f_)a

as claimed. O

The following description of the TRP™ & ¢; will be quite helpful to us in
future calculations of characteristic classes.

Theorem 3.11. The Whiney sum of the tangent bundle and a trivial line
bundle, TRP™ & €, is isomorphic to the Whitney sum of n 4+ 1 copies of the
canonical line bundle v,

TRP™ D e = @n+1'71'

Proof. Consider the line bundle Hom(7y1,v1) over RP™. This line bundle is
trivial since it has a canonical nowhere zero section

L(x):l:E[ll] _>E[ch]

We therefore have
TRP" @ ¢, = TRP™ ® Hom(y1,7)
=~ Hom(y1,7{) ® Hom(vy1,71)
=~ Hom(v1,7; ® 1)
~ Hom(v1, €nt1)
¥ Bnp1
= Dpr1M1

as claimed. O
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The following are complex analogues of the above theorems and are proved
in the same way.

Theorem 3.12.
TCP" 2¢ Home(y1,77)

and
TCP" @® e = EB»,H_l’}/T,

where Z¢ and Homgc denote isomorphisms and homomorphisms of complex
bundles, respectively.

Note. 7* is not isomorphic as complex vector bundles to ;. It is iso-
morphic to y; with the conjugate complex structure. We will discuss this
phenomenon more later.

3.3.2 K - theory

Let Vect*(X) = @n>0Vect™(X) where, as above, Vect™(X) denotes the set
of isomorphism classes of n - dimensional complex bundles over X. Vectk(X)
denotes the analogous set of real vector bundles. In both these cases Vect?(X)
denotes, by convention, the one point set, representing the unique zero dimen-
sional vector bundle.

Now the Whitney sum operation induces pairings

Vect™(X) x Vect™(X) —2— Vect"™(X)

which in turn give Vect*(X) the structure of an abelian monoid. Notice that
it is indeed abelian because given vector bundles 1 and ( we have an obvious
isomorphism

neCECD.

The “zero” in this monoid structure is the unique element of Vect?(X).

Given an abelian monoid, A, there is a construction due to Grothendieck
of its group completion K(A). Formally, K(A) is the smallest abelian group
equipped with a homomorphism of monoids, ¢ : A — K(A). It is smallest in
the sense if G is any abelian group and ¢ : A — G is any homomorphism of
monoids, then there is a unique extension of ¢ to a map of abelian groups
¢ : K(A) — G making the diagram commute:

A —— K(A)
5| |5
G = G

This formal property, called the universal property, characterizes K(A),
and can be taken to be the definition. However there is a much more explicit
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description. Basically the group completion K(A) is obtained by formally
adjoining inverses to the elements of A. That is, an element of K(A) can be
thought of as a formal difference oo — 3, where o, 8 € A. Strictly speaking we
have the following definition.

Definition 3.13. Let F/(A) be the free abelian group generated by the elements
of A, and let R(A) denote the subgroup of F(A) generated by elements of the
form a®b— (a+b) where a, b € A. Here “®” is the group operation in the
free abelian group and “+7 is the addition in the monoid structure of A. We
then define the Grothendieck group completion K(A) to be the quotient group

K(A) = F(A)/R(A).

Notice that an element of K(A) is of the form
0= Zniai — ijbj
i J

where the n;’s and m;’s are positive integers, and each a; and b; € A. That
is, by the relations in R(A), we may write

0=a—-0
where v = 7, n;a; € A, and 8 =3, m;b; € A.
Notice also that the composition ¢ : A C F(A) — F(A)/R(A) = K(A) is a

homomorphism of monoids, and clearly has the universal property described
above. We can now make the following definition.

Definition 3.14. Given a space X, its complex and real (or orthogonal) K
- theories are defined to be the Grothendieck group completions of the abelian
monoids of isomorphism classes of vector bundles:
K(X)=K(Vect* (X))
KO(X) = K(Vecty(X)
An element a = ( —n € K(X) is often referred to as a “virtual vector
bundle” over X.
Notice that the discusion of the tangent bundles of projective spaces above

(section 2.2) can be interpreted in K -theoretic language as follows:

Proposition 3.13. As elements of K(CP™), we have the equation
[TCP"] = (n+ 1)) = 1]

where [m] € K(X) refers to the class represented by the trivial bundle of
dimension m. Similarly, in the orthogonal K - theory KO(RP™) we have the
equation

[TRP"] = (n 4 1)[m] — [1].
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Notice that for a point, Vect*(pt) = Z*, the nonnegative integers, since
there is precisely one vector bundle over a point (i.e vector space) of each
dimension. Thus

K(pt) 2 KO(pt) 2 Z.

Notice furthermore that by taking tensor products there are pairings

Vect™(X) x Vect™(X) -2, Vect™(X).

The following is verified by a simple check of definitions.

Proposition 3.14. The tensor product pairing of vector bundles gives K(X)
and KO(X) the structure of commutative rings.

Now given a bundle ¢ over Y, and a map f : X — Y, we saw in the
previous section how to define the pull-back, f*(¢) over X. This defines a
homomorphism of abelian monoids

f*:Veet* (V) — Vect*(X).

After group completing we have the following:

Proposition 3.15. A continuous map f : X — Y induces ring homomor-
phisms,
i KY)— K(X)
and
f*KO(Y)— KO(X).

In particular, consider the inclusion of a basepoint xy < X. This induces
a map of rings, called the augmentation,

e: K(X) — K(z) 2 Z.

This map is a split surjection of rings, because the constant map ¢ : X —
xo induces a right inverse of ¢, ¢* : Z = K(x9) — K(X). Notice that the
augmentation can be viewed as the “dimension” map in that when restricted
to the monoid Vect*(X), then € : Vect™(X) — {m} C Z. That is, on an
element ( — n € K(X), (¢ —n) = dim(¢) — dim(n). We then define the
reduced K -theory as follows.

Definition 3.15. The reduced K - theory of X, denoted K(X) is defined to
be the kernel of the augmentation map

K(X) =ker{e: K(X)— Z}

and so consists of classes ¢ —n € K(X) such that dim(¢) = dim(n). The
reduced orthogonal K - theory, KO(X) is defined similarly.
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The following is an immediate consequence of the above observations:

Proposition 3.16. There are natural splittings of rings

KX)2KX)aZ
KO(X) =2 KO(X)®Z.

1%

Clearly then the reduced K - theory is the interesting part of K - theory.
Notice that a bundle ¢ € Vect”(X) determines the element [(] — [n] € K(X),
where [n] is the K - theory class of the trivial n - dimensional bundle.

The definitions of K - theory are somewhat abstract. The following discus-
sion makes it clear precisely what K - theory measures in the case of compact
spaces.

Definition 3.16. Let ¢ and n be vector bundles over a space X. { and n are
said to be stably isomorphic if for some m and n, there is an isomorphism

C@€n§77@6m

where, as above, €, denotes the trivial bundle of dimension k. We let SVect(X)
denote the set of stable isomorphism classes of vector bundles over X.

Notice that SVect(X) is also an abelian monoid under Whitney sum, and
that since any two trivial bundles are stably isomorphic, and that adding a
trivial bundle to a bundle does not change the stable isomorphic class, then
any trivial bundle represents the zero element of SVect(X).

Theorem 3.17. Let X be a compact space, then SVect(X) is an abelian
group and is isomorphic to the reduced K -theory,

SVect(X) = K(X).
Proof. A main component of the proof is the following result, which we will
prove in the next chapter when we study the classification of vector bundles.
Theorem 3.18. Fvery vector bundle over a compact space can be embedded
in a trivial bundle. That is, if ¢ is a bundle over a compact space X , then for

sufficiently large N > 0, there is bundle embedding

C‘—)EN.
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We use this result in the following way in order to prove the above theorem.
Let ¢ be a bundle over a compact space X. Then by this result we can find
an embedding ¢ < ey. Let (+ be the orthogonal complement bundle to this
embedding. So that

(B¢t =en.

Since ey represents the zero element in SVect(X), then as an equation in
SVect(X) this becomes

K]+ 1¢H=0.

Thus every element in SVect(X) is invertible in the monoid structure, and
hence SVect(X) is an abelian group.

To prove that SVect(X) is isomorphic to K(X), notice that the natural
surjection of Vect*(X) onto SVect(X) is a morphism of abelian monoids,
and since SVect(X) is an abelian group, this surjection extends linearly to a
surjective homomorphism of abelian groups,

p: K(X)— SVect(X).

Since [e,] = [n] € K(X) maps to zero in SVect(X) under p, this map factors
through a surjective homomorphism from reduced K - theory, which by abuse
of notation we also call p,

p: K(X)— SVect(X).

To prove that p is a injective (and hence an isomorphism), we will construct
a left inverse to p. This is done by considering the composition

Vect*(X) —— K(X) — K(X)

which is given by mapping an n - dimensional bundle ¢ to [¢] — [n]. This map
clearly sends two bundles which are stably isomorphic to the same class in
K(X), and hence factors through a homomorphism

j:SVect(X) = K(X).

By checking its values on bundles, it becomes clear that the composition
jop: K(X) — SVect(X) — K(X) is the identity map. This proves the
theorem. 0

We end this section with the following observation. As we said above, in
the next chapter we will study the classification of bundles. In the process
we will show that homotopic maps induce isomorphic pull - back bundles,
and therefore homotopy equivalences induce bijections, via pulling back, on
the sets of isomorphism classes of bundles. This tells us that K -theory is
a “homotopy invariant” of topological spaces and continuous maps between
them. More precisely, the results of the next chapter will imply the following
important properties of K - theory.
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Theorem 3.19. Let f: X =Y and g: X — Y be homotopic maps. then the
pull back homomorphisms are equal

fr=g K(Y) = K(X)

and
ff=¢": KOY)— KO(X).

This can be expressed in categorical language as follows: (Notice the simi-
larity of role K - theory plays in the following theorem to cohomology theory.)

Theorem 3.20. The assignments X — K(X) and X — KO*(X) are
contravariant functors from the category of topological spaces and homotopy
classes of continuous maps to the category of rings and ring homomorphisms.

3.3.3 Differential Forms

In the next two sections we describe certain differentiable constructions on
bundles over smooth manifolds that are basic in geometric analysis. We begin
by recalling some “multilinear algebra”.
Let V be a vector space over a field k. Let T(V) be the associated tensor
algebra
T(V) = @nZOV@)n

where V0 = k. The algebra structure is comes from the natural pairings
vergyem =, yehtm),
Recall that the exterior algebra
AV)=T(V)/A

where A C T'(V) is the two sided ideal generated by {a®@b+b®a: a, b € V}.

The algebra A(V') inherits the grading from the tensor algebra, A(V) =
@nzoAk(V), and the induced multiplication is called the “wedge product”,
u A v. Recall that if V is an n - dimensional vector space, A*(V) is an (}) -
dimensional vector space.

Assume now that V' is a real vector space. An element of the dual space,
(VE)* = Hom(V®™ R) is a multilinear form V x --- x V — R. An element
of the dual space (A*¥(V))* is an alternating form, i.e a multilinear function 6
so that

O(Vo(1)s " s Vo(k)) = sgn(o)0(v1, -+, vg)
where o € ¥ is any permutation.

Let A¥(V) = (A*(V))* be the space of alternating k - forms. Let U C R"
be an open set. Recall the following definition.
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Definition 3.17. A differential k - form on the open set U C R™ is a smooth
function
w:U — AFR™).

By convention, 0 -forms are just smooth functions, f : U — R. Notice that
given such a smooth function, its differential, df assigns to a point z € U C R™
a linear map on tangent spaces, df (z) : R" = T,R"™ — Ty;)R = R. That is,
df : U — (R™)*, and hence is a one form on U.

Let Q*(U) denote the space of k - forms on the open set U. Recall that
any k -form w € Q¥(U) can be written in the form

w(z) = Z fr(x)dzy (3.4)

where the sum is taken over all sequences of length k of integers from 1 to n,
I={(i1, - ,ir), fr : U — Ris a smooth function, and where

der =dx, A Ndxy,.
Here dx; denotes the differential of the function z; : U € R™ — R which is
the projection onto the i*" - coordinate.

Recall also that there is an exterior derivative,
d: QFU) = QL)

defined by
k af
d(fder) =df Ndxy == a—dxj/\d:zj
Ly

j=1

A simple calculation shows that d?(w) = d(dw) = 0, using the symmetry
of second order partial derivatives.

These constructions can be extended to arbitrary manifolds in the following
way. Given an n - dimensional smooth manifold M, let A*(T(M)) be the (})
- dimensional vector bundle whose fiber at * € M is the k - fold exterior
product, of the tangent space, A*(T,M).

Exercise.

Define clutching functions of A*¥(T(M)) in terms of clutching functions of the
tangent bundle, T (M)

Definition 3.18. A differential k-form on M is a section of the dual bundle,

AMT(M))* = ANT™ (M) = Hom(AM(T(M)), e1).
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That is, the space of k -forms is given by the space of sections,
OF(M) = T(A*(T*(M))).

So a k -form w € Q¥ (M) assigns to z € M an alternating & form on its tangent
space,
wx) : TyM x -+ x T, M — R.

and hence given a local chart with a local coordinate system, then locally w
can be written in the form (3.4).

Since differentiation is a local operation, we may extend the definition of
the exterior derivative of forms on open sets in R™ to all n - manifolds,

d: QF(M) — QFHL(M).

In particular, the zero forms are the space of functions, Q°(M) = C*°(M;R),
and for f € Q°(M), then df € Q' (M) = T(T(M)*) is the 1 -form defined by
the differential,

Now as above, d?(w) = 0 for any form w. Thus we have a cochain complex,
called the deRham complex,

QM) —2— at(m) —¢ okt —4 k(M) —%
4 L o) —2
(3.5)

Recall that a k - form w with dw = 0 is called a closed form. A k - form
w in the image of d, i.e w = dn for some n € Q*~1(M) is called an exact
form. The quotient vector space of closed forms modulo exact forms defined
the “deRham cohomology” group:

Definition 3.19.

HEY o (M) = {closed k - forms}/{ezact k - forms}.

The famous de Rham theorem asserts that these cohomology groups are
isomorphic to singular cohomology with R - coefficients. To see the relation-
ship, let C (M) be the space of k - dimensional singular chains on M, (i.e the
free abelian group generated by smooth singular simplices o : A¥ — M), and
let

C*(M;R) = Hom(Cr(M),R)

be the space of real valued singular cochains. Notice that a k -form w gives
rise to a k - dimensional singular cochain in that it acts on a singular simplex

o: AF = M by

Q’HI(M)
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This defines a homomorphism
v QF(M) — C*(M;R)

for each k.

Exercise. Prove that v is a map of cochain complexes. That is,

V(dw) = 67y(w)

where § : C¥(M;R) — C*¥*1(M;R) is the singular coboundary operator.
Hint. Use Stokes’ theorem.

We refer the reader to [5] for a proof of the deRham Theorem:

Theorem 3.21. The map of cochain complezes,
v:Q(M) = C*(M;R)

is a chain homotopy equivalence. Therefore it induces an isomorphism in co-
homology

H;eRham(M) = H*(M’R)

3.3.4 Lie Groups

Lie groups play a central role in bundle theory and in differential topology and
geometry. In this section we give a basic description of Lie groups, their actions
on manifolds (and other spaces), as well as their their principal bundles.

Definition 3.20. A Lie group is a topological group G which has the structure
of a differentiable manifold. Moreover the multiplication map

GxG—G
and the inverse map

G—G

g—g "

are required to be differentiable maps.

The following is an important basic property of the differential topology
of Lie groups.
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Theorem 3.22. Let G be a Lie group. Then G is parallelizable. That is, its
tangent bundle T'G is trivial.

Proof. Let 1 € G denote the identity element, and 771G the tangent space of
G at 1. If G is an n - dimensional manifold, 771G is an n- dimensional vector
space. We define a bundle isomorphism of the tangent bundle TG with the
trivial bundle G x T} (G), which, on the total space level is given by a map

¢ZGXT1G—)TG

defined as follows. Let ¢ € G. Then multiplication by ¢g on the right is a
diffeomorphism

xg:G— G
T —xg
Since xg is a diffeomorphism, its derivative is a linear isomorphism at every
point:
Dg(z) : T,G —— T,,G.
We can now define
o:GxTG—TG
by
¢(g,v) = Dg(1)(v) € T,G.

Clearly ¢ is a bundle isomorphism. O

If G is a Lie group and M is a smooth manifold with a right G - action. We
say that the action is smooth if the homomorphism p defined above factors
through a homomorphism

w:G — Dif feo(M)

where Dif feo(M) is the group of diffeomorphisms of M.

The following result is originally due to A. Gleason [22], and its proof can
be found in Steenrod’s book [58]. It is quite helpful in studying free group
actions.

Theorem 3.23. Let E be a smooth manifold, having a free, smooth G - action,
where G is a compact Lie group. Then the action has slices. In particular, the
projection map

p:E— E/G

defines a principal G - bundle.
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The following was one of the early theorems in fiber bundle theory, ap-
pearing originally in H. Samelson’s thesis. [51]

Corollary 3.24. Let G be a Lie group, and let H < G be a compact subgroup.
Then the projection onto the orbit space

p:G—G/H

is a principal H - bundle.

3.3.5 Connections and Curvature

In modern geometry, differential topology, and geometric analysis, one often
needs to study not only smooth functions on a manifold, but more generally,
spaces of smooth sections of a vector bundle T'(¢). (Notice that sections of
bundles are indeed a generalization of smooth functions in that the space of
sections of the n - dimensional trivial bundle over a manifold M, I'(e,) =
C*®(M;R™) = @,C°°(M;R).) Similarly, one needs to study differential forms
that take values in vector bundles. These are defined as follows.

Definition 3.21. Let { be a smooth bundle over a manifold M. A differential
k - form with values in ( is defined to be a smooth section of the bundle of
homomorphisms, Hom(A*(T(M)),¢) = AF(T(M)*) ® (.

We write the space of k -forms with values in ( as
Q8 (M; Q) = T(A*(T(M)” @ Q).

The zero forms are simply the space of sections, Q°(M; () = I'(¢). Notice that
if ¢ is the trivial bundle ¢ = ¢, then one gets standard forms,

OF(M;e,) = QF (M) @ R™ = @, Q8 (M).

Even though spaces of forms with values in a bundle are easy to define,
there is no canonical analogue of the exterior derivative. There do however
exist differential operators

D : QF(M;¢) — QMY (M;¢)

that satisfy familiar product formulas. These operators are called covariant
derivatives (or connections ) and are related to the notion of a connection on
a principal bundle, which we now define and study.

Let G be a compact Lie group. Recall that the tangent bundle TG has a
canonical trivialization

’lp G x TlG — TG
(9,v) = D(ly)(v)
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where for any g € G, ¢, : G — G is the map given by left multiplication by
g, and D({y) : ThG — T,,G is its derivative. ry and D(r,) will denote the
analogous maps corresponding to right multiplication.

The differential of right multiplication on G defines a right action of G on
the tangent bundle T'G. We claim that the trivialization v is equivariant with
respect to this action, if we take as the right action of G on 717G to be the
adjoint action:

TlG x G — T1G
(v,9) = D(ly-1)(v)D(rg).

Exercise. Verify this claim.

As is standard, we identify T7G with the Lie algebra g. This action is
referred to as the adjoint representation of the Lie group G on its Lie algebra
g. Now let

p:P—>M

be a smooth principal G -bundle over a manifold M. This adjoint representa-
tion induces a vector bundle ad(P),

ad(P): P x¢g— M. (3.6)

This bundle has the following relevance. Let p*(TM) : p*(TM) — P be
the pull - back over the total space P of the tangent bundle of M. We have a
surjective map of bundles

TP — p*(TM).

Define TrP to be the kernel bundle of this map. So the fiber of TP at
a point y € P is the kernel of the surjective linear transformation Dp(y) :
T,P — T, M. Notice that the right action of G on the total space of the
principal bundle P defines an action of G on the tangent bundle TP, which
restricts to an action of G on T P. Furthermore, by recognizing that the fibers
are equivariantly homeomorphic to the Lie group G, the following is a direct
consequence of the above considerations:

Proposition 3.25. TrP is naturally isomorphic to the pull - back of the
adjoint bundle,
TrpP = p*(ad(P)).

Thus we have an exact sequence of G - equivariant vector bundles over P:
0 — p*(ad(P)) » TP —22 p*(TM) — 0. (3.7)

Recall that short exact sequences of bundles split as Whitney sums. A
connection is a G - equivariant splitting of this sequence:
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Definition 3.22. A connection on the principal bundle P is a G - equiv-
ariant splitting

wa : TP — p*(ad(P))
of the above sequence of vector bundles. That is, w4 defines a G - equivariant

isomorphism
wa®Dp: TP — p*(ad(P)) ® p"(TM).

The following is an important description of the space of connections on

P, A(P).

Proposition 3.26. The space of connections on the principal bundle P,
A(P), is an affine space modeled on the infinite dimensional vector space of
one forms on M with values in the bundle ad(P), QY (M;ad(P)).

Proof. Consider two connections w4 and wg,
wa,wp : TP — p*(ad(P).

Since these are splittings of the exact sequence 3.7, they are both the identity
when restricted to p*(ad(P)) < TP. Thus their difference, wy — wp is zero
when restricted to p*(ad(P)). By the exact sequence it therefore factors as a
composition

wa —wp: TP = p*(TM) —*— p*(ad(P))

for some bundle homomorphism « : p*(T'M) — p*(ad(P)). That is, for every
y € P, o defines a linear transformation

ay 1 p*(TM), — p*(ad(P)),.
Hence for every y € P, « defines (and is defined by) a linear transformation

ay T,

M = ad(P)y(y).

Furthermore, the fact that both wa and wp are equivariant splittings says
that w4 —wp is equivariant, which translates to the fact that o, only depends
on the orbit of y under the G - action. That is,

ay = ayg: Tyo)yM — ad(P)p(y)

for every g € G. Thus «, only depends on p(y) € M. Hence for every x € M,
« defnes, and is defined by, a linear transformation

Ty M — ad(P)y.
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Thus o may be viewed as a section of the bundle of homormorphisms,
Hom(TM,ad(P)), and hence is a one form,

a € QY(M;ad(P)).

Thus any two connections on P differ by an element in Q'(M;ad(P)) in this
sense.

Now reversing the procedure, an element 3 € QY(M;ad(P)) defines an
equivariant homomorphism of bundles over P,

B:p*(T'M) — p*(ad(P)).
By adding the composition
TP 22 pr(rM) —2— p*(ad(P))
to any connection (equivariant splitting)
wa : TP — p*(ad(P))

one produces a new equivariant splitting of 7P, and hence a new connection.
The proposition follows. O

Remark. Even though the space of connections A(P) is affine, it is not, in
general a vector space. There is no “zero” in A(P) since there is no
pre-chosen, canonical connection. The one exception to this, of course, is
when P is the trivial G - bundle,

P=MxG— M.

In this case there is an obvious equvariant splitting of TP, which serves as
the “zero” in A(P). Moreover in this case the adjoint bundle ad(P) is also
trivial,

ad(P)=M x g — M.

Hence there is a canonical identification of the space of connections on the
trivial bundle with Q'(M;g) = Q1 (M) @ g.

Let p : P — M be a principal G - bundle and let ws € A(P) be a
connection.
The curvature F)4 of wy is a two form

Fy € Q*(M;ad(P))

which measures to what extent the splitting ws commutes with the braket
operation on vector fields. More precisely, let X and Y be vector fields on M.
The connection w, defines an equivariant splitting of 7'P and hence defines

a “horizontal” lifting of these vector fields, which we denote by X and Y
respectively.
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Definition 3.23. The curvature Fy € Q*(M;ad(P)) is defined by

Fa(X,Y) =walX,Y].
For those unfamiliar with the bracket operation on vector fields, we refer
you to [57]
Another important construction with connections is the associated covari-

ant derivative which is defined as follows.

Definition 3.24. The covariant derivative induced by the connection wa
Dy : Q°(M;ad(P)) — QY(M;ad(P))
is defined by
Dy(o)(X) = [X, 0].
where X is a vector field on M.
The notion of covariant derivative, and hence connection, extends to vector

bundles as well. Let ¢ : p : EC — M be a finite dimensional vector bundle
over M.

Definition 3.25. A connection on ¢ (or a covariant derivative) is a linear
transformation
Dy = QU(M;¢) — Q' (M;0)

that satisfies the Leibnitz rule
Da(f¢) =df ® ¢+ fDa(0) (3-8)
for any f € C°(M;R) and any ¢ € Q°(M;().
Now we can model the space of connections on a vector bundle, A(¢)
similarly to how we modeled the space of connections on a principal bundle

A(P). Namely, given any two connections Dy and Dp on ¢ and a function
f € C>(M;R), one can take the convex combination

[+ Da+(1~-f) Dp

and obtain a new connection. From this it is not difficult to see the following.
We leave the proof as an exercise to the reader.

Proposition 3.27. The space of connections on the vector bundle ¢, A(Q)
is an affine space modeled on the vector space of one forms QY (M; End(()),
where End(C) is the bundle of endomorphisms of (.
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Let X be a vector field on M and D4 a connection on the vector bundle
¢. The covariant derivative in the direction of X, which we denote by (D4)x
is an operator on the space of sections of (,

(Da)x : Q°(M;¢) — Q°(M;C)

defined by

(Da)x(0) = (Da(¢); X).
One can then define the curvature Fy € Q%(M; End(¢)) by defining its action
on a pair of vector fields X and Y to be

Fa(X,Y)=(Da)x(Da)y — (Da)y(Da)x — (Da)x,y)- (3.9)

To interpret this formula notice that a - priori Fa(X,Y) is a second order
differential operator on the space of sections of (. However a direct calculation
shows that for f € C°°(M;R) and o € Q°(M;(), then

Fa(X,Y)(fo) = fFa(X,Y)(0)

and hence F4(X,Y) is in fact a zero - order operator on Q°(M; (). But a zero
order operator on the space of sections of ( is a section of the endomorphism
bundle End(¢). Thus F,4 assigns to any pair of vector fields X and Y a section
of End(¢). Moreover it is straightforward to check that this assignment is ten-
sorial in X and Y (i.e Fa(fX,Y) = Fa(X, fY) = fF4(X,Y)). Thus F4 is an
element of Q?(M; End(¢)). The curvature measures the lack of commutativity
in second order partial covariant derivatives.

Given a connection on a bundle ¢ the linear mapping D4 : Q°(M; () —
QY (M;¢) extends to a deRham type sequence,
QO(M;¢) —2 QYM;Q) —2 QA(M;¢) — 2 -
where for o € QP(M; (), Da(o) is the p+ 1 -form defined by the formula

Da(0)(Xo,--+, Xp) = Z(* Y (Da)x,(o(Xo, -+ Xy X)) (3.10)

+Z Do ([Xi, X1, Xoy -, Xay- o, Xy, Xp).

1<j

We observe that unlike with the standard deRham exterior derivative
(which can be viewed as a connection on the trivial line bundle), it is not
generally true that D4 o D4 = 0. In fact we have the following, whose proof
is a direct calculation that we leave to the reader.
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Proposition 3.28.
DyoDa=Fy:0%M;¢) — Q*(M;0)

where in this context the curvature F'4 is interpreted as a assigning to a section
o € QO°(M;() the 2 - form Fa(o) which associates to vector fields X and Y
the section Fa(X,Y)(0) as defined in (3.9).

Thus the curvature of a connection F4 can also be viewed as measuring the
extent to which the covariant derivative D4 fails to form a cochain complex
on the space of differential forms with values in the bundle . However it is
always true that the covariant derivative of the curvature tensor is zero. This
is the well known Bianchi identity (see [57] for a complete discussion).

Theorem 3.29. Let A be a connection on a vector bundle . Then

DjsFy =0.

We end this section by observing that if P is a principal G - bundle with
a connection w4, then any representation of G on a finite dimensional vector
space V induces a connection on the corresponding vector bundle

PxqgV — M.

We refer the reader to [29] and [57] for thorough discussions of the various
ways of viewing connections. [3] has a nice, brief discussion of connections
on principal bundles, and [21] and [38] have similarly concise discussions of
connections on vector bundles.

3.3.6 The Levi - Civita Connection

Let M be a manifold equipped with a Riemannian structure. Recall that this is
a Euclidean structure on its tangent bundle. In this section we will show how
this structure induces a connection, or covariant derivative, on the tangent
bundle. This connection is called the Levi - Civita connection associated to
the Riemannian structure. Our treatment of this topic follows that of Milnor
and Stasheff [47]

Let D : Q°(M;¢) — QY(M;¢) be a connection (or covariant derivative)
on an n - dimensional vector bundle (. Its curvature is a two- form with values
in the endomorphism bundle

Fa € Q*(M; End(¢))

The endomorphism bundle can be described alternatively as follows. Let E¢ be
the principal GL(n,R) bundle associated to ¢. Then of course ( = E¢ @G (n,r)
R™. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.
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Proposition 3.30.
End(¢) = ad(¢) = E¢ Xr(n,r) Mn(R)
where GL(n,R) acts on M,(R) by conjugation,
A-B=ABA™".

Let w be a differential p - form on M with values in End((),
w € QP (M; End(C)) = QP(M;ad(C)) = QP (M; E¢ XgL(nr) Mn(R)).

Then on a coordinate chart U C M with local trivialization ¢ : (|, = U x C"
for ¢, (and hence the induced coordinate chart and local trivialization for
ad(()), w can be viewed as an n x n matrix of p -forms on M. We write

W = (wi’j).

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x € U, then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (w; j(x)) and (w] ;(x)) are two
matrix descriptions of w(x) defined by two different local trivializations of ¢,
then there exists an A € GL(n,C) with

Awi (@) AT = (wi ().

Now suppose the bundle ( is equipped with a Euclidean structure. As seen
earlier in this chapter this is equivalent to its associated principal GL(n,R) -
bundle £ having a reduction to the structure group O(n). We let Eo,) — M
denote this principal O(n) - bundle.

Now the Lie algebra o(n) of O(n) (i.e the tangent space T1(0O(n))) is a
subspace of the Lie algebra of GL(n,R), i.e

o(n) C M,(R).
The following is well known (see, for example[52])

Proposition 3.31. The Lie algebra o(n) C M, (R) is the subspace consisting
of skew symmetric n x n - matrices. That is, A € o(n) if and only if
Al =—-A

where At is the transpose.

So if ¢ has a FEuclidean structure, we can form the adjoint bundle

ad®(¢) = Eo(m) Xom) 0(n) C B¢ Xgrn.r) Mn(R) = ad(()

where, again O(n) acts on o(n) by conjugation.

Now suppose D4 is an orthogonal connection on ¢. That is, it is induced
by a connection on the principal O(n) - bundle E,) — M. The following is
fairly clear, and we leave its proof as an exercise.
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Corollary 3.32. If Dy is an orthogonal connection on a Fuclidean bundle
¢, then the curvature Fa lies in the space of o(n) valued two forms

Fa € Q*(M;ad®(()) € *(M;ad(¢)) = Q*(M; End(Q)).

o~

Furthermore, on a coordinate chart U C M with local trivialization ¢ : (), =
U x C" that preserves the Euclidean structure, we may write the form Fa as
a skew - symmetric matriz of two forms,

FA|U:(wi,j) i?jzla"'7n

where each w;; € O%(M) and wij = —wji. In fact the connection D4 itself
can be written as skew symmetric matriz of one forms

Da,, = (ai;)

where each a; ; € QY (M).

We now describe the notion of a “symmetric” connection on the cotangent
bundle of a manifold, and then show that if the manifold is equipped with
a Riemannian structure (i.e there is a Euclidean structure on the (co) - tan-
gent bundle), then there is a unique symmetric, orthogonal connection on the
cotangent bundle.

Definition 3.26. A connection Da on the cotangent bundle T*M is sym-
metric (or torsion free ) if the composition

T(T*) = QO(M;T*) —245 QYUM;T*) =T(T* @ T*) —2— T(A2T*)

is equal to the exterior derivative d.

In terms of local coordinates 1, - - - , x,, if we write

Da(day) =Y TFdv; @ du; (3.11)
¥

(the functions Ff’ ; are called the “Christoffel symbols”), then the requirement
that D4 is symmetric is that the image Z” I‘ﬁjdxi ® dx; be equal to the
exterior derivative d(dzy) = 0. This implies that the Christoffel symbols Ff’ j
must be symmetric in ¢ and j. The following is straightforward to verify.

Lemma 3.33. A connection D on T* is symmetric if and only if the co-
variant derivative of the differential of any smooth function

Da(df) eT(T*@T™)
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is a symmetric tensor. That is, if U1, , 1y, form a local basis of sections of
T*, and we write the corresponding local expression

Daldf) = aij v ® ¢

.9

then Q5 = Qj j-

We now show that the (co)-tangent bundle of a Riemannian metric has a
preferred connection.

Theorem 3.34. The cotangent bundle T*M of a Riemannian manifold has
a unique orthogonal, symmetric connection. (It is orthogonal with respect to
the Fuclidean structure defined by the Riemannian metric.)

Proof. Let U be an open neighborhood in M with a trivialization
Y:UXxR" :— T\Z

which preserves the Euclidean structure. 1 defines n orthonormal sections of
Tl*U, Y1, -+ ,¥p. The 1;’s constitute an orthonormal basis of one forms on M.
We will show that there is one and only one skew-symmetric matrix (o ;) of
one forms such that

dipp =Y o Ay

We can then define a connection D4 on Tl’; by requiring that

Da(y) =) an,; @1

It is then clear that D, is the unique symmetric connection which is compati-
ble with the metric. Since the local connections are unique, they glue together
to yield a unique global connection with this property.

In order to prove the existence and uniqueness of the skew symmetric
matrix of one forms (a; ;) we need the following combinatorial observation.

Any n x n xn array of real valued functions A; ; ; can be written uniquely
as the sum of an array B; ; which is symmetric in ¢, j, and an array C; j
which is skew symmetric in j, k. To see this, consider the formulas

1
i,g.k T 5 6\ 7 ik T g T 2yt j kst isk,J
Bjk 2(Az]k+A_]zk Ak)z] Ak]z+A]kz+Azk])
1
S(Aijk = Ajik+ Akig + Ak ji — Ajka — Aikj)

Cijk = 5

Uniqueness would follow since if an array D; ; were both symmetric in i, j
and skew symmetric in j, k, then one would have

Dk =Djik=—Djri=—Dkji=Drij=Dikj=—Dijr
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and hence all the entries are zero.
Now choose functions A; ; , such that

dpe = Aijrhi A

and set A; ;1 = B, jr + C; ;1 as above. It then follows that

dpp =Y Cijkthi A1)

by the symmetry of the B; ;’s. Then we define the one forms

ey =Y Cije i

They clearly form the unique skew symmetric matrix of one forms with di, =
>~ ag.j A;. This proves the lemma. O

This preferred connection on the (co)tangent bundle of a Riemannian met-
ric is called the Levi - Civita connection. Statements about the curvature of a
metric on a manifold are actually statements about the curvature form of the
Levi - Civita connection associated to the Riemannian metric. For example,
a “flat metric” on a manifold is a Riemannian structure whose correspond-
ing Levi-Civita connection has zero curvature form. As is fairly clear, these
connections form a central object of study in Riemannian geometry.






4

Classification of Bundles

In this chapter we prove Steenrod’s classification theorem of principal G -
bundles, and the corresponding classification theorem of vector bundles. This
theorem states that for every group G, there is a “classifying space” BG with a
well defined homotopy type so that the homotopy classes of maps from a space
X, [X, BG], is in bijective correspondence with the set of isomorphism classes
of principal G - bundles, Pring(X). We then describe various examples and
constructions of these classifying spaces, and use them to study structures on
principal bundles, vector bundles, and manifolds.

4.1 The homotopy invariance of fiber bundles

The goal of this section is to prove the following theorem, and to examine
certain applications such as the classification of principal bundles over spheres
in terms of the homotopy groups of Lie groups.

Theorem 4.1. Let p : E — B be a fiber bundle with fiber F, and let fy :
X — B and f1 : X — B be homotopic maps. Then the pull - back bundles are
isomorphic,

fo(E) = fi(E).

The main step in the proof of this theorem is the basic Covering Homotopy
Theorem for fiber bundles which we now state and prove.

Theorem 4.2. Covering Homotopy theorem. Let py : E — B and q :
Z —'Y be fiber bundles with the same fiber, F', where B is normal and locally
compact. Let hg be a bundle map

E I,z

71
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Let H : Bx 1 —Y be a homotopy of ho (i.e ho = H,,_,.) Then there exists
a covering of the homotopy H by a bundle map

ExI —" . 7

px1 | |s

BxI —— Y.
H

Proof. We prove the theorem here when the base space B is compact. The
natural extension is to when B has the homotopy type of a CW - complex.
The proof in full generality can be found in Steenrod’s book [58].

The idea of the proof is to decompose the homotopy H into homotopies
that take place in local neighborhoods where the bundle is trivial. The theorem
is obviously true for trivial bundles, and so the homotopy H can be covered
on each local neighborhood. One then must be careful to patch the coverings
together so as to obtain a global covering of the homotopy H.

Since the space X is compact, we may assume that the pull - back bundle
H*(Z) — B x I has locally trivial neighborhoods of the form {U, x I;},
where {U,} is a locally trivial covering of B (i.e there are local trivializations
bap:Usx F— p~1(Uy,)), and Iy, -+ , I, is a finite sequence of open intervals
covering I = [0,1], so that each I; meets only I;_; and I;y; nontrivially.
Choose numbers

O=to<ti <---<t, =1

so that t; € I; N Ij;,. We assume inductively that the covering homotopy
H(z,t) has been defined E x [0, ;] so as to satisfy the theorem over this part.

For each = € B, there is a pair of neighborhoods (W, W’) such that for
z €W, W c W and W C U, for some U,. Choose a finite number of such
pairs (W;,W/), (i = 1,---,s) covering B. Then the Urysohn lemma implies
there is a map u; : B — [t;, t;+1] such that u;(W;) = t;41 and uj(B—W/) = t;.
Define 7(x) = t; for € B, and

Ti(z) = maz(uy(x), - ,ui(x)), x€B, i=1,---,s.

Then
ty =7o(x) S Ti(x) < - <ts(@) =ty

Define B; to be the set of pairs (z,¢) such that t; < ¢t < 7;(x). Let E; be
the part of E x I lying over B;. Then we have a sequence of total spaces of
bundles

Eth:E()CEl c---CE;,=FEx [tjathrl]'

We suppose inductively that H has been defined on E;_; and we now define
its extension over E;.
By the definition of the 7’s, the set B; — B;_; is contained in W} X [t;, t;41];
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and by the definition of the W’s, W’; x [t;,t;+1] C U, x I; which maps via H
to a locally trivial neighborhood, say Vi, for ¢ : Z — Y. Say ¢ : Vi x F —
q (V) is a local trivialization. In particular we can define py : ¢71(Vi) — F
to be the inverse of ¢ followed by the projection onto F'. We now define

H(e,t) = ¢p(H(x,t), p(H(e, 7i-1()))

where (e,t) € E; — E;_1 and x = p(e) € B. )
It is now a straightforward verification that this extension of H is indeed
a bundle map on E;. This then completes the inductive step. O

We now prove theorem 4.1 using the covering homotopy theorem.

Proof. Let p : E — B, and fy; X — B and f; : X — B be as in the
statement of the theorem. Let H : X x I — B be a homotopy with Hy = fj
and Hy = f;. Now by the covering homotopy theorem there is a covering
homotopy H : fG(E) x I — E that covers H : X x I — B. By definition this
defines a map of bundles over X x I, that by abuse of notation we also call
H

9

By x I —2 s H*(EB)
X x1I T)Xx[.

This is clearly a bundle isomorphism since it induces the identity map on
both the base space and on the fibers. Restricting this isomorphism to X x {1},
and noting that since H; = f;, we get a bundle isomorphism

fo(E) f(E)

l l

X x {1} T>X><{1}.

IZJI:

This proves theorem 4.1 O
We now derive certain consequences of this theorem.

Corollary 4.3. Let p : E — B be a principal G - bundle over a connected
space B. Then for any space X the pull back construction gives a well defined
map from the set of homotopy classes of maps from X to B to the set of
isomorphism classes of principal G - bundles,

pE : [X, B] = Pring(X).
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Definition 4.1. A principal G - bundle p : EG — BG is called universal if
the pull back construction

pEG : [X, BG] = Pring(X)

is a bijection for every space X. In this case the base space of the universal
bundle BG is called a classifying space for G (or for principal G - bundles).

The main goal of this chapter is to show that universal bundles exist for
every group G, and that the classifying spaces are unique up to homotopy
type.

Applying theorem 4.1 to vector bundles gives the following, which was
claimed at the end of chapter 1.

Corollary 4.4. If fo : X — Y and f1 : X = Y are homotopic, they induce
the same homomorphism of abelian monoids,

fo =11 Vect*(Y) = Vect*(X)
Vectg(Y) = Vecty(X)

and hence of K theories

fo =11 K(Y) = K(X)
KO(Y) - KO(X)

Corollary 4.5. If f : X — Y is a homotopy equivalence, then it induces
isomorphisms

f*: Pring(Y) ——— Pring(X)
Vect*(Y) ——— Vect*(X)
K(Y) —= 5 K(X)

Corollary 4.6. Any fiber bundle over a contractible space is trivial.

Proof. If X is contractible, it is homotopy equivalent to a point. Apply the
above corollary. O

The following result is a classification theorem for bundles over spheres. It
begins to describe why understanding the homotopy type of Lie groups is so
important in Topology.
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Theorem 4.7. There is a bijective correspondence between principal bundles
and homotopy groups
Pring(S™) 2 m,-1(G)

where as a set m,_1G =[S, x2¢; G, {1}], which refers to (based) homotopy
classes of basepoint preserving maps from the sphere S™~1 with basepoint xo €
S to the group G with basepoint the identity 1 € G.

Proof. Let p: E — S™ be a G - bundle. Write S™ as the union of its upper
and lower hemispheres,
S’I’L - Di USn—l DE.

Since D} and D" are both contractible, the above corollary says that FE re-
stricted to each of these hemispheres is trivial. Morever if we fix a trivialization
of the fiber of E at the basepoint 2o € S*~! C S™, then we can extend this
trivialization to both the upper and lower hemispheres. We may therefore
write

E = (D} xG)Uy (D" x G)

where 6 is a clutching function defined on the equator, # : S"~! — G. That
is, E consists of the two trivial components, (D} x G) and (D" x G) where
if z € "7, then (z,9) € (D% x G) is identified with (z,0(x)g) € (D™ x G).
Notice that since our original trivializations extended a common trivialization
on the basepoint zy € S"~1, then the trivialization § : S"~! — G maps the
basepoint x( to the identity 1 € G. The assignment of a bundle its clutching
function, will define our correspondence

O : Pring(S™) = m—1G.

To see that this correspondence is well defined we need to check that if E;
is isomorphic to FEs, then the corresponding clutching functions 6; and 65
are homotopic. Let ¥ : Fy — E5 be an isomorphism. We may assume this
isomorphism respects the given trivializations of these fibers of these bundles
over the basepoint g € S"~! C S™. Then the isomorphism ¥ determines an
isomorphism

(D" x G) Up, (D™ x G) —— (D" x G) Up, (D™ x G).

IR

By restricting to the hemispheres, the isomorphism ¥ defines maps

‘I’+:D1—>G
and
v_:D" > @G

which both map the basepoint zo € S"~! to the identity 1 € G, and further-
more have the property that for z € S”~1,

W (2)0 (2) = ba(2)V_ (),
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or, U (2)01(x)¥_(z)"! = Os(z) € G. Now by considering the linear homo-
topy W (tz)b1(x)W_(tz)~! for t € [0,1], we see that f(x) is homotopic to
W, (0)01(z)¥_(0)~!, where the two zeros in this description refer to the ori-
gins of D and D" respectively, i.e the north and south poles of the sphere
S™. Now since W, and W_ are defined on connected spaces, their images lie
in a connected component of the group G. Since their image on the basepoint
xo € S"1 are both the identity, there exist paths a4 (t) and a_(¢) in S™ that
start when ¢ = 0 at U, (0) and ¥_(0) respectively, and both end at ¢ = 1
at the identity 1 € G. Then the homotopy a. ()01 (z)a—(¢t)~! is a homotopy
from the map W, (0)6;(x)¥_(0)~! to the map 6;(x). Since the first of these
maps is homotopic to 02(z), we have that 6; is homotopic to s, as claimed.
This implies that the map © : Pring(S™) — m,-1G is well defined.

The fact that © is surjective comes from the fact that every map S" ! — G
can be viewed as the clutching function of the bundle

E = (D" x G)Up (D" x G)

as seen in our discussion of clutching functions in chapter 1.

We now show that © is injective. That is, suppose E; and F5 have homo-
topic clutching functions, ; ~ 6, : S"~1 — G. We need to show that E; is
isomorphic to Es As above we write

Ey = (D" x G) Up, (D" x G)

and
Ey = (D x G) Ug, (D" x G).

Let H : S"! x [-1,1] — G be a homotopy so that H; = 0; and H; = 0s.
Identify the closure of an open neighborhood N of the equator Sn=1in Sn
with §"~! x [-1,1] Write Dy = D3 UN and D_ = D2 UN Then Dy and
D_ are topologically closed disks and hence contractible, with

DiND_=N=5""1x[-1,1].
Thus we may form the principal G - bundle

E=D, xGUygD_xG

where by abuse of notation, H refers to the composition

N=gn-lx[-1,1] — G

We leave it to the interested reader to verify that F is isomorphic to both
Fy and Es. This completes the proof of the theorem. O
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4.2 Universal bundles and classifying spaces

The goal of this section is to study universal principal G - bundles, the result-
ing classification theorem, and the corresponding classifying spaces. We will
discuss several examples including the universal bundle for any subgroup of
the general linear group. We postpone the proof of the existence of universal
bundles for all groups until the next section.

In order to identify universal bundles, we need to recall the following def-
inition from homotopy theory.

Definition 4.2. A space X is said to be aspherical if all of its homotopy
groups are trivial,
T (X) =0 foralln>0.

Equivalently, a space X is aspherical if every map from a sphere S™ — X can
be extended to a map of its bounding disk, D"*1 — X.

Note. A famous theorem of J.H.C. Whitehead states that if X has the
homotopy type of a CW - complex, then X being aspherical is equivalent to
X being contractible (see [65]).

The following is the main result of this section. It identifies when a principal
bundle is universal.

Theorem 4.8. Letp: E — B be a principal G - bundle, where the total space
E is aspherical. Then this bundle is universal in the sense that if X is any
space of the homotopy type of a C'W-complex, the induced pull-back map

Y [X, B] = Pring(X)
f—= 1 (E)

is a bijective correspondence.

For the purposes of these notes we will prove the theorem in the setting
where the action of G on the total space FE is cellular. That is, there is a CW
- decomposition of the space E which, in an appropriate sense, is respected
by the group action. There is not much loss in making these assumptions,
since the actions of compact Lie groups on manifolds, and algebraic actions
on projective varieties satisfy this property. For the proof of the theorem in
its full generality we refer the reader to Steenrod’s book [58], and for a full
reference on equivariant CW - complexes and how they approximate a wide
range of group actions, we refer the reader to [39]

In order to make the notion of cellular action precise, we need to define
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the notion of an equivariant CW - complex, or a G - CW - complex. The
idea is the following. Recall that a CW - complex is a space that is made up
out of disks of various dimensions whose interiors are disjoint. In particular
it can be built up skeleton by skeleton, and the (k + 1)** skeleton X (#+1) ig
constructed out of the k" skeleton X*) by attaching (k + 1) - dimensional
disks via “attaching maps”, S¥ — X %),

A “G - CW - complex” is one that has a group action so that the orbits
of the points on the interior of a cell are uniform in the sense that each point
in a cell DF has the same isotropy subgroup, say H, and the orbit of a cell
itself is of the form G'/H x D¥. This leads to the following definition.

Definition 4.3. A G - CW - complex is a space with G -action X which
is topologically the direct limit of G - invariant subspaces {X(k)} called the
equivariant skeleta,

XO c x() o o xt-1 c x®) . x

where for each k > 0 there is a countable collection of k dimensional disks,
subgroups of G, and maps of boundary spheres

{DF, H; <G, ¢;: 0D x G/H; = SI™' x G/H; - X*~V  je L}
so that

1. Each “attaching map” ¢; : S]]-“l xG/H; — X#=1) s G -equivariant, and

X® =X | | (D} x G/H).
¢jJEl;

This notation means that each “ disk orbit ” Df x G/Hj is attached to X (k=1)
via the map ¢; : S]’-“_l x G/H; — x (k—1)

We leave the following as an exercise to the reader.

Exercise. Prove that when X is a G - CW complex the orbit space X/G
has the an induced structure of a (non-equivariant) CW - complex.

Note. Observe that in a G -CW complex X with a free G action, all disk
orbits are of the form D* x G, since all isotropy subgroups are trivial.

We now prove the above theorem under the assumption that the principal
bundle p : E — B has the property that with respect to group action of G
on E, then E has the structure of a G - CW - complex. The basespace is
then given the induced C'W - structure. The spaces X in the statement of the
theorem are assumed to be of the homotopy type of CW - complexes.
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Proof. We first prove that the pull - back map

¥ : [X, B] = Pring(X)
is surjective. So let ¢ : P — X be a principal G - bundle, with P a G - CW -
complex. We prove there is a G - equivariant map h : P — E that maps each
orbit pG homeomorphically onto its image, h(y)G. We prove this by induction
on the equivariant skeleta of P. So assume inductively that the map h has
been constructed on the (k — 1) - skeleton,

hi—1: PFY - B
Since the action of G on P is free, all the k - dimensional disk orbits are of
the form D* x G. Let Df X G be a disk orbit in the G-CW - structure of the

k - skeleton P(®). Consider the disk Df x {1} C D;»“ x G. Then the map hj_;
extends to D¥ x {1} if and only if the composition

; By
SElx {1} c SF Tt x @ 2 pi-n ot g
is null homotopic. But since E' is aspherical, any such map is null homotopic
and extends to a map of the disk, 7 : D? x {1} — E. Now extend ~ equiv-
ariantly to a map hy ; : D}“ x G — E. By construction hy ; maps the orbit of

each point z € Df equivariantly to the orbit of v(z) in E. Since both orbits
are isomorphic to G (because the action of G on both P and E are free), this
map is a homeomorphism on orbits. Taking the collection of the extensions
hi,; together then gives an extension

hi : P® & B

with the required properties. This completes the inductive step. Thus we may
conclude we have a G - equivariant map h : P — FE that is a homeomorphism
on the orbits. Hence it induces a map on the orbit space f : P/G = X —
E/G = B making the following diagram commute

p_" . E

"l l”

X T) B
Since h induces a homeomorphism on each orbit, the maps h and f deter-
mine a homeomorphism of principal G - bundles which induces an equivariant

isomorphism on each fiber. This implies that A induces an isomorphism of
principal bundles to the pull - back

P (B

o

o ;

X —— X
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Thus the isomorphism class [P] € Pring(X) is given by f*(E). That is,
[P] = ¢(f), and hence

¥ [X, B] = Pring(X)

is surjective.

We now prove 1 is injective. To do this, assume fy: X — B and f; : X —
B are maps so that there is an isomorphism

O f(E) —— fi(E).

We need to prove that fy and f; are homotopic maps. Now by the cellular
approximation theorem (see [56]) we can find cellular maps homotopic to fj
and f; respectively. We therefore assume without loss of generality that fj
and f1 are cellular. This, together with the assumption that F is a G - CW
complex, gives the pull back bundles fi(F) and f;(E) the structure of G -CW
complexes.

Define a principal G - bundle £ — X x I by

€ = [fo(E) x[0,1/2] Ug f}(E) x [1/2,1]
where v € f§(E) x {1/2} is identified with ®(v) € fi(E) x {1/2}. £ also has
the structure of a G - CW - complex.
Now by the same kind of inductive argument that was used in the sur-
jectivity argument above, we can find an equivariant map H : £ — FE that

induces a homeomorphism on each orbit, and that extends the obvious maps
fG(E) x {0} = E and f{(E) x {1} — E. The induced map on orbit spaces

F:£/G=XxI—>E/G=B

is a homotopy between fy and f;. This proves the correspondence ¥ is injec-
tive, and completes the proof of the theorem. O

The following result establishes the homotopy uniqueness of universal bun-
dles.

Theorem 4.9. Let E; — By and Es — Bs be universal principal G - bundles.
Then there is a bundle map

ElL)EQ

l l

BlT>BQ

so that h is a homotopy equivalence.
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Proof. The fact that E5 — Bs is a universal bundle means, by 4.8 that there
is a “classifying map” h : By — Bs and an isomorphism h : E; — h*(E3).
Equivalently, h can be thought of as a bundle map h: E — E, lying over
h : By — Bs. Similarly, using the universal property of Fy — B, we get
a classifying map ¢g : By — Bj and an isomorphism g : Fs — ¢g*(E;), or
equivalently, a bundle map g : E5 — FE;. Notice that the composition

gof:By — By — B
is a map whose pull back,

(g0 f)(Er)

g (f*(E1))
9" (Es)
FE

1%

1

That is, (gof)*(E1) = id*(E;), and hence by 4.8 we have gof ~id: By — Bj.
Similarly, f o g ~id: Bo — Bs. Thus f and g are homotopy inverses of each
other. O

Because of this theorem, the basespace of a universal principal G - bundle
has a well defined homotopy type. We denote this homotopy type by BG, and
refer to it as the classifying space of the group G. We also use the notation
EG to denote the total space of a universal G - bundle.

We have the following immediate result about the homotopy groups of the
classifying space BG.

Corollary 4.10. For any group G, there is an isomorphism of homotopy
groups,
Tn-1G = 7, (BG).

Proof. By considering 4.7 and 4.8 we see that both of these homotopy groups
are in bijective correspondence with the set of principal bundles Pring(S™).
To realize this bijection by a group homomorphism, consider the “suspension”
of the group G, ¥G obtained by attaching two cones on G along the equator.
That is,

YG=Gx[-1,1]/ ~

where all points of the form (g,1), (h,—1), or (1,¢) are identified to a single
point.

Notice that this suspension construction can be applied to any space with
a basepoint, and in particular 3871 = ",

Consider the principal G bundle E over G defined to be trivial on both
cones with clutching function id : G x {0} ——— G on the equator. That is,
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if Cy =G x|[0,1]/ ~C XG and C_ = G x [-1,0] C XFE are the upper and
lower cones, respectively, then

E=(Cy xG) Uy (C- x Q)

where ((g,0),h) € C4 x G is identified with ((g,0)gh € C_ x G. Then by 4.8
there is a classifying map
f:3G - BG

such that f*(EG) = E.
Now for any space X, let QX be the loop space of X,

QX = {y:[-1,1] = X such thaty(—1) =~(1) = 29 € X}

where x¢ € X is a fixed basepoint. Then the map f : ¥G — BG determines
a map (its adjoint) B

f:G— QBG
defined by f(g)(t) = f(g,t). But now the loop space QX of any connected

space X has the property that m,_1(2X) = 7,(X) (see the exercise below).
We then have the induced group homomorphism

T 1(G) —L— 7, 1(QBG) —=— m,(BG)

which induces the bijective correspondence described above. O

Exercises. 1. Prove that for any connected space X, there is an
isomorphism
Tn—1(02X) & 7, (X).
2. Prove that the composition
Tu1(G) —L— 7, 1(QBG) —=— 7,(BG)
in the above proof yields the bijection associated with identifying both
Tn—1(G) and 7, (BG) with Pring(S™).

We recall the following definition from homotopy theory.

Definition 4.4. An Eilenberg - MacLane space of type (G,n) is a space X

such that
{G ifk=n

0 otherwise

(X)) =

We write K (G, n) for an Eilenberg - MacLane space of type (G,n). Recall
that for n > 2, the homotopy groups 7, (X) are abelian groups, so in this
K(G,n) only exists
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Corollary 4.11. Let 7w be a discrete group. Then the classifying space B is
an Eilenberg - MacLane space K(m,1).

Examples.

e R has a free, cellular action of the integers Z by
(t,n) > t+n teR, neZ
Since R is contractible, R/Z = S' = BZ = K(Z,1).

e The inclusion S™ C S™*! as the equator is clearly null homotopic since
the inclusion obviously extends to a map of the disk. Hence the direct
limit space

lim S™ = U, 8" =5
i

is aspherical. Now Zs acts freely on each S™ by the antipodal map, and
the inclusions S™ C S™*! are equivariant with respect to these actions.
Hence there is an induced free action of Zy on S°°. Thus the projection

map
5% — 8§ /7, = RP®

is a universal principal Zs = O(1) - bundle, and so

RP™ = BO(1) = BZy = K(Z,1)

e Similarly, the inclusion of the unit sphere in C™ into the unit sphere in
C"*! gives an the inclusion S?"~! C $?"*+! which is null homotopic. It is
also equivariant with respect to the free S = U(1) - action given by
(complex) scalar multiplication. Then the limit S = U,, 2"+ is
aspherical with a free S! action. We therefore have that the projection

S — 8§ /8t = CP*>
is a principal S* = U(1) bundle. Hence we have
CP> = BS' = BU(1).
Moreover since S1 is a K(Z, 1), then we have that

CP> = K(Z,2).

e The cyclic groups Z, are subgroups of U(1) and so they act freely on S
as well. Thus the projection maps
S — S /7,
is a universal principal Z,, bundle. The quotient space S*°/Z,, is denoted
L>°(n) and is referred to as the infinite Z,, - lens space.
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These examples allow us to give the following description of line bundles
and their relation to cohomology. We first recall a well known theorem in
homotopy theory. This theorem will be discussed further in chapter 4. We
refer the reader to [63] for details.

Theorem 4.12. Let G be an abelian group. Then there is a natural isomor-
phism
¢: HY(K(G,n);G) —— Hom(G, Q).

Let « € H"(K(G,n);G) be ¢~1(id). This is called the fundamental class.
Then if X has the homotopy type of a CW - complex, the mapping

(X, K(G,n)] = H"(X;G)
f=71
is a bijective correspondence.

With this we can now prove the following:

Theorem 4.13. There are bijective correspondences which allow us to classify
complex line bundles,

Vect' (X) = Pring)(X) 2 [X, BU(1)] = [X,CP™] = [X, K(Z,2)]  H*(X; Z)
where the last correspondence takes a map f: X — CP> to the class
a1 = f*(c) € H*(X),

where ¢ € H?(CP>) is the generator. In the composition of these correspon-
dences, the class c; € H?*(X) corresponding to a line bundle ( € Vect!(X)
is called the first Chern class of ¢ (or of the corresponding principal U(1) -
bundle).

Proof. These correspondences follow directly from the above considerations,
once we recall that Vect'(X) = Pringr,c)(X) = [X, BGL(1,C)], and that
CP* is a model for BGL(1,C) as well as BU(1). This is because, we can
express CP* in its homogeneous form as

CP™ = liy(C™" ~ {0})/GL(1,C),

and that liénn((C"‘H — {0}) is an aspherical space with a free action of
GL(1,C) = C*. 0

There is a similar theorem classifying real line bundles:
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Theorem 4.14. There are bijective correspondences
Vecty(X) = Prinoa)(X) = [X, BO(1)] = [X,RP™] = [X, K(Z3,1)] & H'(X;Z)
where the last correspondence takes a map f : X — RP*° to the class

wy = f*(w) € HY(X;Zy),

where w € H'(RP>;Zy) is the generator. In the composition of these cor-
respondences, the class w1 € HY(X;Zs) corresponding to a line bundle
¢ € Vect}(X) is called the first Stiefel - Whitney class of  (or of the corre-
sponding principal O(1) - bundle).

More Examples.

e Let V,,(CY) be the Stieflel - manifold studied in the last chapter. We claim
that the inclusion of vector spaces CV < C?V as the first N - coordinates
induces an inclusion V,,(CV) < V,,(C*V) which is null homotopic. To see
this, let + : C* — C2V be a fixed linear embedding, whose image lies in
the last N - coordinates in C2V. Then given any p € V,,(CN) C V,(C?V),
thent-t+4 (1 —1t)-p for ¢t € [0,1] defines a one parameter family of linear
embeddings of C" in C2V, and hence a contraction of the image of V,,(CV)
onto the element ¢. Hence the limiting space V,,(C>) is aspherical with a
free GL(n,C) - action. Therefore the projection

Vi (C®) = Vi (C®)/GL(n, C) = Gry(C®)

is a universal GL(n,C) - bundle. Hence the infinite Grassmannian is the
classifying space
Gr,(C*) = BGL(n,C)

and so we have a classification
Vect"(X) = Pringrm,c)(X) = [X, BGL(n,C)] = [X, Gr,(C™)].
e A simlar argument shows that the infinite unitary Stiefel manifold,
VU(C>) is aspherical with a free U(n) - action. Thus the projection
V(€)= Vo (C®)/U(n) = Gra(C™)

is a universal principal U(n) - bundle. Hence the infinite Grassmanian
Gr, (C*) is the classifying space for U(n) bundles as well,

Gr,(C*>) = BU(n).

The fact that this Grassmannian is both BGL(n,C) and BU(n) reflects
the fact that every n - dimensional complex vector bundle has a U(n) -
structure.
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e We have similar universal GL(n,R) and O(n) - bundles:
Vo (R*) = V,,(R*)/GL(n,R) = Gr,(R™)

and
VO(R*®) = V.O(R*®)/O(n) = Gr,(R™®).

Thus we have
Gr,(R*°) = BGL(n,R) = BO(n)
and so this infinite dimensional Grassmannian classifies real n - dimen-

sional vector bundles as well as principal O(n) - bundles.

Now suppose p : EG — EG/G = BG is a universal G - bundle. Suppose
further that H < G is a subgroup. Then H acts freely on EG as well, and
hence the projection

EG - EG/H

is a universal H - bundle. Hence EG/H = BH. Using the infinite dimensional
Stiefel manifolds described above, this observation gives us models for the
classifying spaces for any subgroup of a general linear group. So for example
if we have a subgroup (i.e a faithful representation) H C GL(n,C), then

BH =V, (C®)/H.

This observation also leads to the following useful fact.

Proposition 4.15. . Let p: EG — BG be a universal principal G - bundle,
and let H < G. Then there is a fiber bundle

BH — BG

with fiber the orbit space G/H.

Proof. This bundle is given by
G/H — EG x¢ G/H - EG/G = BG

together with the observation that EG x¢ G/H = EG/H = BH. O
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4.3 Classifying Gauge Groups

In this section we describe the classifying space of the group of automorphisms
of a principal G - bundle, or the gauge group of the bundle. We describe the
classifying space in two different ways: in terms of the space of connections
on the bundle, and in terms of the mapping space of the base manifold to
the classifying space BG. These constructions are important in Yang - Mills
theory, and we refer the reader to [3] and [17] for more details.

Let A be a connection on a principal bundle P — M where M is a closed
manifold equipped with a Riemannian metric. The Yang - Mills functional
applied to A, YM(A) is the square of the L? norm of the curvature,

/ ||FA||2 (vol).

We view Y M as a mapping Y M : A(P) — R. The relevance of the gauge
group in Yang - Mills theory is that this is the group of symmetries of A that
Y M preserves.

Definition 4.5. The gauge group G(P) of the principal bundle P is the group
of bundle automorphisms of P — M. That is, an element ¢ € G(P) is a
bundle isomorphism of P with itself lying over the identity:

p 2. p

I

Equivalently, G(P) is the group G(P) = Autg(P) of G - equivariant diffeo-
morphisms of the space P.

The gauge group G(P) can be thought of in several equivalent ways. The
following one is particularly useful.
Consider the conjugation action of the Lie group G on itself,

GxGE@—G
(9,h) — ghg™".
This left action defines a fiber bundle
Ad(P)=P xgG— P/G=M

with fiber G. We leave the following as an exercise for the reader.
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Proposition 4.16. The gauge group of a principal bundle P — M is nat-
urally isomorphic (as topological groups) the the group of sections of Ad(P),
C>(M; Ad(P)).

The gauge group G(P) acts on the space of connections A(P) by the pull
- back construction. More generally, if f : P — @ is any smooth map of
principal G - bundles and A is a connection on @, then there is a natural pull
back connection f*(A) on @, defined by pulling back the equivariant splitting
of 7Q) to an equivariant splitting of 7P in the obvious way. The pull - back
construction for automorphisms ¢ : P — P defines an action of G(P) on
A(P).

We leave the proof of the following is an exercise for the reader.

Proposition 4.17. Let P be the trivial bundle M x G — M. Then the gauge
group G(P) is given by the function space from M to G,

G(P) = C™(M;G).

Furthermore if ¢ : M — G is identified with an element of G(P), and A €
OY(M;g) is identified with an element of A(G), then the induced action of ¢
on G is given by

¢*(A) = ¢~ Ap + ¢~ do.

It is not difficult to see that in general the gauge group G(P) does not
act freely on the space of connections A(P). However there is an important
subgroup Go(P) < G(P) that does. This is the group of based gauge transfor-
mations. To define this group, let xg € M be a fixed basepoint, and let P,
be the fiber of P at zq.

Definition 4.6. The based gauge group Go(P) is a subgroup of the group of
bundle automorphisms G(P) which pointwise fix the fiber Py . That is,

Go(P)={¢ € G(P) : ifv € Py, thengp(v) = v}.

Theorem 4.18. The based gauge group Go(P) acts freely on the space of
connections A(P).

Proof. Suppose that A € A(P) is a fixed point of ¢ € Go(P). That is, ¢*(A) =
A. We need to show that ¢ = 1.

The equivariant splitting w4 given by a connection A defines a notion of
parallel transport in P along curves in M (see [29]) . It is not difficult to see
that the statement ¢*(A) = A implies that application of the automorphism
¢ commutes with parallel transport. Now let w € P, be a point in the fiber of
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an element z € M. Given curve vy in M between the basepoint zy and x one
sees that

P(w) = Ty ($(Ty -1 (w))
where T, is parallel transport along v. But since 7. -1(w) € P,, and ¢ €
gO(P)a

Hence ¢(w) = w, that is, ¢ = 1. O

Remark. Notice that this argument actually says that if A € A(P) is the
fixed point of any gauge transformation ¢ € G(P), then ¢ is determined by
its action on a single fiber.

Let B(P) and By(P) be the orbit spaces of connections on P up to guage
and based gauge equivalence respectively,

B(P) = A(P)/G(P) By(P) = A(P)/Go(P).

Now it is straightforward to check directly that the Yang - Mills functional
in invariant under gauge transformations. Thus it yields maps

IM:B(P)—=R and YM:By(P)—R.

It is therefore important to understand the homotopy types of these orbit
spaces. Because of the freeness of the action of Gy(P), the homotopy type of
the orbit space Go(P) is easier to understand.

We end this section with a discussion of its homotopy type. Since the space
of connections A(P) is affine, it is contractible. Moreover it is possible to show
that the free action of the based gauge group Go(P) has local slices (see [17]).
Thus we have By(P) = A(P)/Go(P) is the classifying space of the based gauge
group,

Bo(P) = BGo(P).

But the classifying spaces of the gauge groups are relatively easy to un-
derstand. (see [3].)

Theorem 4.19. Let G — EG — BG be a universal principal bundle for
the Lie group G (so that EG is aspherical). Let yo € BG be a fized basepoint.
Then there are homotopy equivalences

BG(P) ~ Map” (M, BG) and By(P) ~ BGy(P) ~ Map} (M, BG)

where Map(M, BG) is the space of all continuous maps from M to BG and
Mapy(M, BG) is the space of those maps that preserve the basepoints. The
superscript P denotes the path component of these mapping spaces consisting
of the homotopy class of maps that classify the principal G - bundle P.
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Proof. Consider the space of all G - equivariant maps from P to EG,
Map® (P, EG). The gauge group G(P) = Aut®(P) acts freely on the left of
this space by composition. It is easy to see that Map® (P, EG) is aspherical,
and its orbit space is given by the space of maps from the G - orbit space of
P (= M) to the G - orbit space of EG (= BG),

Map® (P, EG)/G(P) = Map® (M, BG).

This proves that Map(M, BG) = BG(P). Similarly Map§ (P, EG), the space
of G - equivariant maps that send the fiber P, to the fiber FG,,, is an
aspherical space with a free Go(P) action, whose orbit space is Map{ (M, BG).
Hence Mapl’ (M, BG) = BGy(P). O

4.4 Existence of universal bundles: the Milnor join con-
struction and the simplicial classifying space

In the last section we proved a “recognition principle” for universal principal
G bundles. Namely, if the total space of a principal G - bundle p : E — B
is aspherical, then it is universal. We also proved a homotopy uniqueness
theorem, stating among other things that the homotopy type of the base space
of a universal bundle, i.e the classifying space BG, is well defined. We also
described many examples of universal bundles, and particular have a model
for the classifying space BG, using Stiefel manifolds, for every subgroup of a
general linear group.

The goal of this section is to prove the general existence theorem. Namely,
for every group G, there is a universal principal G - bundle p : EG — BG.
We will give two constructions of the universal bundle and the corresponding
classifying space. One, due to Milnor [45] involves taking the “infinite join”
of a group with itself. The other is an example of a simplicial space, called
the simplicial bar construction. It is originally due to Eilenberg and MacLane
[18]. These constructions are essentially equivalent and both yield G - CW -
complexes. Since they are so useful in algebraic topology and combinatorics,
we will also take this opportunity to introduce the notion of a general simplicial
space and show how these classifying spaces are important examples.

4.4.1 The join construction

The “join” between two spaces X and Y, written X * Y is the space of all
lines connecting points in X to points in Y. The following is a more precise
definition:
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Definition 4.7. The join X xY is defined by
X*Y=XxIxY/~

where I = [0,1] is the unit interval and the equivalence relation is given by
(2,0,9y1) ~ (2,0,y2) for any two points y1, y2 € Y, and similarly (z1,1,y) ~
(z2,1,y) for any two points x1, x2 € X.

A point (z,t,y) € X *Y should be viewed as a point on the line connecting
the points z and y. Here are some examples.

Examples.

e Let y be a single point. Then X x y is the cone CX = X x I/X x {1} .

e Let Y = {y1,y2} be the space consisting of two distinct points. Then
X %Y is the suspension XX discussed earlier. Notice that the suspension
can be viewed as the union of two cones, with vertices y; and y9
respectively, attached along the equator.

e Exercise. Prove that the join of two spheres, is another sphere,
™ x §m 2 gntmtl
e Let {xg, - ,xx} be a collection of k + 1 - distinct points. Then the k -

fold join xg % x1 * - - - % x} is the convex hull of these points and hence is
by the k - dimensional simplex A* with vertices {zg,--- ,21}.

Observe that the space X sits naturally as a subspace of the join X %Y as
endpoints of line segments,

t: X - Xx*xY
x — (z,0,y).

Notice that this formula for the inclusion makes sense and does not depend
on the choice of y € Y. There is a similar embedding

7Y > XxY
y— (x,1,y).

Lemma 4.20. The inclusions 1 : X — X «Y and j:Y — X Y are null
homotopic.
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Proof. Pick a point yg € Y. By definition, the embedding ¢ : X — X %Y
factors as the composition

t: X > Xxyy CXxY
33_>(37»07y0)~

But as observed above, the join X *yq is the cone on X and hence contractible.
This means that ¢ is null homotopic, as claimed. The fact that j : Y — X %Y
is null homotopic is proved in the same way. O

Now let G be a group and consider the iterated join
GRD) — G G- x G

where there are k + 1 copies of the group element. This space has a free G
action given by the diagonal action

g-(g0,t1,91, -+ s te, gx) = (990, t1, 991, sk, 9GK)-

Exercise. 1. Prove that there is a natural G - equivariant map
Ak % Gk-‘,—l N G*(k—'rl)

which is a homeomorphism when restricted to AF x GF*1 where AF ¢ AF is
the interior. Here G acts on A* x G**1 trivially on the simplex AF and
diagonally on G*+1.

2. Use exercise 1 to prove that the iterated join G***1) has the structure of
a G - CW - complex.

Define J(G) to be the infinite join

J(G) = lim G**+D

k—o0

where the limit is taken over the embeddings ¢ : G**+1 — G*(+2) Since
these embedding maps are G -equivariant, we have an induced G - action on

J(G).
Theorem 4.21. The projection map
p:J(G) = J(G)/G

is a universal principal G - bundle.
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Proof. By the above exercise the space J(G) has the structure of a G - CW -
complex with a free G - action. Therefore by the results of the last section the
projection p : J(G) — J(G)/G is a principal G - bundle. To see that J(G)
is aspherical, notice that since S™ is compact, any map « : S™ — J(G) is
homotopic to one that factors through a finite join (that by abuse of notation
we still call a), a : 8" — G***tD — 7(G). But by the above lemma the
inclusion G*("*Y C 7(G) is null homotopic, and hence so is a. Thus J(G)
is aspherical. By the results of last section, this means that the projection
J(G) = J(G)/G is a universal G - bundle. O

4.4.2 Simplicial spaces and classifying spaces

We therefore now have a universal bundle for every topological group G. We
actually know a fair amount about the geometry of the total space EG = J(G)
which, by the above exercise can be described as the union of simplices, where
the k - simplices are parameterized by k + 1 -tuples of elements of G,

EG=J(G) =AY x G/ ~
k
and so the classifying space can be described by

Bsz(G)/G%UA’C x G¥/ ~
k

It turns out that in these constructions, the simplices are glued together along
faces, and these gluings are parameterized by the k& + 1 - product maps 0; :
GF*+2 — GF+1 given by multiplying the i*" and (i + 1)** coordinates.

Having this type of data (parameterizing spaces of simplices as well as
gluing maps) is an example of an object known as a “simplicial set” which is
an important combinatorial object in topology. We now describe this notion in
more detail and show how these universal G - bundles and classifying spaces
can be viewed in these terms.

Good references for this theory are [16], [?].

The idea of simplicial sets is to provide a combinatorial technique to study
cell complexes built out of simplices; i.e simplicial complexes. A simplicial
complex X is built out of a union of simplices, glued along faces. Thus if X,
denotes the indexing set for the n - dimensional simplices of X, then we can
write

X=[JA"xX,/~
n>0
where A" is the standard n - simplex in R";

n
An:{(tla 7tn) ERn: OStJ S 1’ andzti S 1}
i=1
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The gluing relation in this union can be encoded by set maps among the
X,,’s that would tell us for example how to identify an n — 1 simplex indexed
by an element of X,,_1 with a particular face of an n - simplex indexed by an
element of X,,. Thus in principal simplicial complexes can be studied purely
combinatorially in terms of the sets X, and set maps between them. The
notion of a simplicial set makes this idea precise.

Definition 4.8. A simplicial set X, is a collection of sets
X,, n=>0
together with set maps
0i: Xp — Xpn1 and s;: X, — Xy

for 0 <i,7 < n called face and degeneracy maps respectively. These maps
are required to satisfy the following compatibility conditions

8i8j = 8j,18i for i < J
8i8j = sjy18; fori <j
and
ijlai for i < j
61‘51': 1 fori:j,j—l—l
Sjai_1 for 7 > j +1
As mentioned above, the maps 0; and s; encode the combinatorial infor-
mation necessary for gluing the simplices together. To say precisely how this
works, consider the following maps between the standard simplices:
5t A" — A" and oj: AL AR

for 0 < 4,5 < n defined by the formulae

(tla"'ati7170atia"'?tn*1) fOI‘ZZl
0. (t g t,_ = _
1( 1 s bn 1) {(l_zg—ftqath'“ ,tn—l) fori=0

and

(t1, - ytic1,ti Ftiva, tiga, -+ ,tnyr) fori>1
(t2, - s tnt1) fori=0.

a'j(t17... 7tn+1) = {

§; includes A™~1 in A" as the it face, and o projects, in a linear fashion,
A" onto its j face.

We can now define the space associated to the simplicial set X, as follows.



Classification of Bundles 95

Definition 4.9. The geometric realization of a simplicial set X, is the space

X = J A" x X5/ ~

n>0

where if t € A" ! and z € X,,, then

(t,0i(w)) ~ (6i(t), x)

and if t € A"*! and z € X,, then

(t,55(x)) ~ (05(t), ).

In the topology of || X.||, each X,, is assumed to have the discrete topology,
so that A™ x X, is a discrete set of n - simplices.

Thus || X,|| has one n - simplex for every element of X,,, glued together in
a way determined by the face and degeneracy maps.

Example. Consider the simplicial set S, defined as follows. The set of n -
simplices is given by

S, =7Z/(n+ 1), generated by an element 7.
The face maps are given by

, fr<i<n
1 oifo<i<r—1.

The degeneracies are given by

() = {T’fﬁ preten
Tor1 f0<i<r—1

Notice that there is one zero simplex, two one simplices, one of them the
image of the degeneracy sp : Sg — S1, and the other nondegenerate (i.e not
in the image of a degeneracy map). Notice also that all simplices in dimensions
larger than one are in the image of a degeneracy map. Hence we have that the
geometric realization

[S.]| =A'/0~1=5"

Let X, be any simplicial set. There is a particularly nice and explicit way
for computing the homology of the geometric realization, H, (|| X.]|)-

Consider the following chain complex. Define C,, (X) to be the free abelian
group generated by the set of n - simplices X,,. Define the homomorphism

dn : Cn(X,) — Co1(X,)
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by the formula

where = € X,.

Proposition 4.22. The homology of the geometric realization H,(||X.||) is
the homology of the chain complex

dn71 do

Proof. Tt is straightforward to check that the geometric realization || X.|| is a
CW - complex and that this is the associated cellular chain complex. O

Besides being useful computationally, the following result establishes the
fact that all CW complexes can be studied simplicially.

Theorem 4.23. Every CW complex has the homotopy type of the geometric
realization of a simplicial set.

Proof. Let X be a CW complex. Define the singular simplicial set of X ,
S(X). as follows. The n simplices S(X),, is the set of singular n - simplices,

S(X)p ={c: A" — X}.
The face and degeneracy maps are defined by
di(c)=cod; : A" — A" — X

and
sj(c)=coo; : A" — A" — X,

Notice that the associated chain complex to S(X), as in 4.22 is the sin-
gular chain complex of the space X. Hence by 4.22 we have that

H.([S(X)]) = H.(X).
This isomorphism is actually realized by a map of spaces
E:|SX)] — X
defined by the natural evaluation maps
A" x S(X), — X

given by
(t,c) — c(t).
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It is straightforward to check that the map E does induce an isomorphism in
homology. In fact it induces an isomorphism in homotopy groups. We will not
prove this here; it is more technical and we refer the reader to [M] for details.
Note that it follows from the homological isomorphism by the Hurewicz the-
orem if we knew that X was simply connected. A map between spaces that
induces an isomorphism in homotopy groups is called a weak homotopy equiv-
alence. Thus any space is weakly homotopy equivalent to a CW - complex (i.e
the geometric realization of its singular simplicial set). But by the White-
head theorem, two CW complexes that are weakly homotopy equivalent are
homotopy equivalent. Hence X and ||S(X).|| are homotopy equivalent. O

We next observe that the notion of simplicial set can be generalized as
follows. We say that X, is a simplicial space if it is a simplicial set (i.e it
satisfies definition 4.8) where the sets X, are topological spaces and the face
and degeneracy maps

37; : Xn — Xn—l and Sj - Xn — Xn+1

are continuous maps. The definition of the geometric realization of a simplicial
space X, || X«||, is the same as in 4.9 with the proviso that the topology of
each A" x X,, is the product topology. Notice that since the “set of n -
simplices” X, is actually a space, it is not necessarily true that || X,|| is a
CW complex. However if in fact each X, is a CW complex and the face and
degeneracy maps are cellular, then || X,|| does have a natural CW structure
induced by the product CW - structures on A™ x X,.

Notice that this simplicial notion generalizes even further. For example
a simplicial group would be defined similarly, where each X,, would be a
group and the face and degeneracy maps are group homomorphisms. Simplicial
vector spaces, modules, etc. are defined similarly. The categorical nature of
these definitions should by now be coming clear. Indeed most generally one
can define a simplicial object in a category C using the above definition
where now the X,,’s are assumed to be objects in the category and the face and
degenarcies are assumed to be morphisms. If the category C is a subcategory
of the category of sets then geometric realizations can be defined as in 4.9 For
example the geometric realization of a simplicial (abelian) group turns out to
be a topological (abelian) group.(Try to verify this for yourself!)

We now use this simplicial theory to construct universal principal G -
bundles and classifying spaces.

Let G be a topological group and let £G, be the simplicial space defined
as follows. The space of n - simplices is given by the n + 1 - fold cartesian
product

G, =G
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The face maps 9; : G — G™ are given by the formula

ai(g(b”' 7gn) = (907"' 7§i,"' agn)

The degeneracy maps s; : G"!1 — G™*2 are given by the formula

Sj(QOa 7gn) = (g07"' y 95,95, ,gn)

Exercise. Show that the geometric realization ||EG.|| is aspherical. Hint.
Let ||EG.||™ be the n'" - skeleton,

€G] = | ) AP x grt.

p=0

Then show that the inclusion of one skeleton in the next

|G| = [|EG,|| ™Y is null - homotopic. One way of doing this is to
establish a homeomorphism between |G, |(™ and n - fold join G % - - - % G.
See [M] for details.

Notice that the group G acts freely on the right of ||EG.| by the rule

IEG.|I x G = | |J AP x GPT! | x G — ||EG.| (4.1)
p=>0

(t: (90,1 9p)) X g — (£ (9095~ 1 9p9)) -
Thus we can define EG = ||EG.||. The projection map
p: EG - EG/G = BG

is therefore a universal principal G - bundle.
This description gives the classfiying space BG an induced simplicial struc-
ture described as follows.

Let BG. be the simplicial space whose n - simplices are the cartesian
product
BG, = G". (4.2)
The face and degeneracy maps are given by

(92, ,9n) fori =0
0i(91, -+ ,9n) = (91, 1 9iGi+1, -+ gn) for1<i<n—1
(g1, ,gnﬂ) for ¢ = n.
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The degeneracy maps are given by

S‘(gl g )_ (1’917"'agn) for j =0
) s 9n) = .
’ (917“'9]'7179]'—‘1-17"';971) fOI‘jZl

The simplicial projection map
p: G, — BG,
defined on the level of n - simplicies by

p(gos  +gn) = (9097 ", 9195+ L Gn-19,")

is easily checked to commute with face and degeneracy maps and so induces
a map on the level of geometric realizations

p: EG = [IEG.|| — [BG.||

which induces a homemorphism

BG = EG/G —=— ||BG.]|.

Thus for any topological group this construction gives a simplicial space
model for its classifying space. This is referred to as the simplicial bar con-
struction. Notice that when G is discrete the bar construction is a CW
complex for the classifying space BG = K(G,1) and 4.22 gives a particu-
larly nice complex for computing its homology. (The homology of a K(G,1)
is referred to as the homology of the group G.)

The n - chains are the group ring

Cn(BG,) = Z|G"] = Z|G]®"
and the boundary homomorphisms
dy 1 ZIG)®" — Z[G)#"

are given by

n—1
do(a; ® - ®@ap) = (02®"'®an)+2(*1)i(a1®"'®aiai+1®"'®an)
i=1

(D) (@ @ @ ).

This complex is called the bar complex for computing the homology of
a group and was discovered by Eilenberg and MacLane in the mid 1950’s.

We end this chapter by observing that the bar construction of the classi-
fying space of a group did not use the full group structure. It only used the
existence of an associative multiplication with unit. That is, it did not use the
existence of inverse. So in particular one can study the classifying space BA
of a monoid A. This is an important construction in algebraic - K - theory.
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4.5 Some Applications

In a sense much of what we will study in the next chapter are applications of
the classification theorem for principal bundles. In this section we describe a
few immediate applications.

4.5.1 Line bundles over projective spaces

By the classification theorem we know that the set of isomorphism classes of
complex line bundles over the projective space CP" is given by

Vect' (CP") = Pringr,c)(CP") & Pring)(CP") = [CP", BU(1)] = [CP", CP>]
= [CP", K (Z,2)] = H*(CP",Z) = Z

Theorem 4.24. Under the above isomorphism,
Vect'(CP") 2 Z

the n - fold tensor product of the universal line bundle ’yi@” corresponds to the
integer n > 0.

Proof. The classification theorem says that every line bundle ¢ over CP" is
the pull back of the universal line bundle via a map f; : CP* — CP*>. That
is,
C= fim)-
The cohomology class corresponding to ¢, the first chern class ¢1((), is given
by
c1(Q) = fé(c) € H*(CP") = Z

where ¢ € H2(CP>) = Z is the generator. Clearly :*(c) € H?(CP") is the
generator, where ¢ : CP"* < CP> is natural inclusion. But t*(v1) = 71 €
Vect!(CP™). Thus 1 € Vect!(CP") 2 Z corresponds to the generator.

To see the effect of taking tensor products, consider the following “tensor
product map”

BU(1) x --- x BU(1) —2— BU(1)

defined to be the unique map (up to homotopy) that classifies the external
tensor product y; ®- - -®~; over BU(1) x---x BU(1). Using CP* = Gr,(C>)
as our model for BU(1), this tensor product map is given by taking k lines
£y, f in C* and considering the tensor product line

L@ 00, CC®®. . ®C® % oo
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where 1 : C* ® - - - ® C*® =2 C* is a fixed isomorphism. The induced map
7:CP* x --- x CP* — CP* = K(Z,2)

is determined up to homotopy by what its effect on H? is. Clearly the restric-
tion to each factor is the identity map and so

7(¢) = c14+ - 4 € HY(CP®x- .- xCP>®) = H*(CP®)®. - -@H?(CP>) = Z&- - -®Z

where ¢; denotes the generator of H? of the i*" factor in the product. Therefore
the composition

T

ty: CP® —2 4 CP® x ... x CP® —T— CP®

has the property that t;(c) = ke € H?*(CP*>). But also we have that on the
bundle level,
ti(n) = 2" € Vet (CP™).

The theorem now follows. O

We have a similar result for real line vector bundles over real projective
spaces.

Theorem 4.25. The only nontrivial real line bundle over RP™ is the canonical
line bundle 1.

Proof. We know that ~y; is nontrivial because its restriction to S* = RP! C
RP" is the Moebeus strip line bundle, which is nonorientable, and hence non-
trivial. On the other hand, by the classification theorem,

Vect: (RP") 2 [RP", BGL(1,R)] = [RP", RP™] = [RP", K(Zs,1)] = H'(RP", Zy) = Z,.

Hence there is only one nontrivial line bundle over RP™. O

4.5.2 Structures on bundles and homotopy liftings

The following theorem is a direct consequence of the classification theorem.
We leave its proof as an exercise.

Theorem 4.26. . Let p : E — B be a principal G - bundle classified by
a map f : B — BG. Let H < G be a subgroup. By the naturality of the
construction of classifying spaces, this inclusion induces a map (well defined
up to homotopy) « : BH — BG. Then the bundle p : E — B has an H -
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structure (i.e a reduction of its structure group to H) if and only if there is a
map y
f:B— BH

so that the composition

B — s BH —“ BG

is homotopic to f : B — BG. In particular if p : E — B is the principal H -
bundle classified by f, then there is an isomorphism of principal G bundles,

EXHG%’E

The map f : B — BH is called a “lifting” of the classifying map f: B —
BG. 1t is called a lifting because, as we saw at the end of the last section, the
map ¢ : BH — BG can be viewed as a fiber bundle, by taking our model for
BH to be BH = EG/H. Then ¢ is the projection for the fiber bundle

G/H - EG/H = BH —— EG/G = BG.

This bundle structure will allow us to analyze in detail what the obstructions
are to obtaining a lift f of a classifying map f: B — BG. We will study this
is chapter 4.

Examples.

e An orientation of a bundle classified by a map f : B — BO(k) is a lifting
f: B — BSO(k). Notice that the map ¢ : BSO(k) — BO(k) can be
viewed as a two - fold covering map

Zy = O(k)/SO(k) — BSO(k) —~ BO(k).

e An almost complex structure of a bundle classified by a map
f: B — BO(2n) is a lifting f : B — BU(n). Notice we have a bundle

O(2n)/U(n) — BU(n) — BO(2n).

The following example will be particularly useful in the next chapter when
we define characteristic classes and do calculations with them.

Theorem 4.27. A complex bundle vector bundle ( classified by a map f :
B — BU(n) has a nowhere zero section if and only if f has a lifting f:B—
BU(n—1). Similarly a real vector bundle n classified by a map f : B — BO(n)
has a nowhere zero section if and only if f has a lifting f : B — BO(n — 1).
Notice we have the following bundles:

S =U(n)/U(n —1) = BU(n — 1) — BU(n)

and

S"=1 = O(n)/O(n — 1) — BO(n — 1) — BO(n).
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This theorem says that BU(n — 1) forms a sphere bundle (S?"~!) over
BU(n), and similarly, BO(n — 1) forms a S"~! - bundle over BO(n). We
identify these sphere bundles as follows.

Corollary 4.28. The sphere bundles

S§?n=1  BU(n—1) — BU(n)
and

S"=1 — BO(n — 1) — BO(n)

are isomorphic to the unit sphere bundles of the universal vector bundles vy,
over BU(n) and BO(n) respectively.

Proof. We consider the complex case. The real case is proved in the same
way. Notice that the model for the sphere bundle in the above theorem is the
projection map

p:BU(n—1)=EU(n)/U(n—1) = EU(n)/U(n) = BU(n).

But 7, is the vector bundle EU(n) X,y C* — BU(n) which therefore has
unit sphere bundle

S(vm) = EU(n) Xy S**~' = BU(n) (4.3)

where S?"~! C C" is the unit sphere with the induced U(n) - action. But
S?n=1 >~ U(n)/U(n — 1) and this diffeomorphism is equivariant with respect
to this action. Thus the unit sphere bundle is given by

S(vn) = EU(n) xymy U(n)/U(n —1) = EU(n)/U(n —1) = BU(n —1)
as claimed. 0
We observe that by using the Grassmannian models for BU (n) and BO(n),
then their relation to the sphere bundles can be seen explicitly in the following

way. This time we work in the real case.
Consider the embedding

L Grp 1 (RY) < Gr, (RN x R) = Gr,, (RN 1)

defined by

(VCRY) = (VxRcCRY xR).
Clearly as N — oo this map becomes a model for the inclusion BO(n —1) <
BO(n). Now for V € Gr,,_1(RY) consider the vector (0,1) € V xR C RN xR.
This is a unit vector, and so is an element of the fiber of the unit sphere bundle
S(vn) over V' x R. Hence this association defines a map

j: Gra—1(RY) = S(m)
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which lifts ¢ : Gry,—1 (RY) — Gr,(RV*1). By taking a limit over N we get a
map j: BO(n —1) — S(v).

To define a homotopy inverse p : S(v,) = BO(n — 1), we again work on
the finite Grassmannian level.

Let (W, w) € S(v,), the unit sphere bundle over Gr,,(R¥). Thus W c RX
is an n -dimensional subspace and w € W is a unit vector. Let W,, C W denote
the orthogonal complement to the vector w in W. Thus W,, ¢ W C R¥ is an
n — 1 - dimensional subspace. This association defines a map

p:S(vm) — Grn,l(RK)

and by taking the limit over K, defines a map p : S(v,) — BO(n —1). We
leave it to the reader to verify that j : BO(n — 1) — S(v,) and p : S(vy,) —
BO(n — 1) are homotopy inverse to each other.

4.5.3 Embedded bundles and K -theory

The classification theorem for vector bundles says that for every n - dimen-
sional complex vector bundle ¢ over X, there is a classifying map fr : X —
BU(n) so that ¢ is isomorphic to pull back, f*(7,,) of the universal vector bun-
dle. A similar statement holds for real vector bundles. Using the Grassmannian
models for these classifying spaces, we obtain the following as a corollary.

Theorem 4.29. FEvery n - dimensional complex bundle  over a space X can
be embedded in a trivial infinite dimensional bundle, X x C*°. Similarly, every
n - dimensional real bundle n over X can be embedded in the trivial bundle
X x R,

Proof. Let f;: X — Gr,(C®) = BU(n) classify ¢. So ¢ = f*(7,). But recall
that
Yo = {(V,v) € Gr,,(C®) x C* such thatv € V.}

Hence 7, is naturally embedded in the trivial bundle Gr,, (C*>)xC>. Thus ¢ &
f*(vn) is naturally embedded in X x C*. The real case is proved similarly. O

Notice that because of the direct limit topology on Gr,(C®) =
hﬂGrn(CN), then if X is a compact space, any map f : X — Gr,(C*>)
has image that lies in Gr,,(C") for some finite N. But notice that over this
finite Grassmannian, v,, C Gr,(C") x CV. The following is then an immedi-
ate corollary. This result was used in chapter one in our discussion about K
-theory.

Corollary 4.30. If X is compact, then every n - dimensional complex bundle
zeta can be embedded in o trivial bundle X x CN for some N. The analogous
result also holds for real vector bundles.
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Let f: X — BU(n) classify the n - dimensional complex vector bundle (.
Then clearly the composition f : X — BU(n) — BU(n+1) classifies the n+1
dimensional vector bundle { & €1, where as before, €; is the one dimensional
trivial line bundle. This observation leads to the following.

Proposition 4.31. Let (1 and (3 be two n -dimensional vector bundles over
X classified by f1and fa : X — BU(n) respectively. Then if we add trivial
bundles, we get an isomorphism

G Der = Deg
if and only if the compositions,

are homotopic.

Now recall from the discussion of K - theory in chapter 1 that the set of
stable isomorphism classes of vector bundles SVect(X) is isomorphic to the
reduced K - theory, K (X), when X is compact. This proposition then implies
the following important result, which displays how in the case of compact
spaces, computing K -theory reduces to a specific homotopy theory calcula-

tion.

Definition 4.10. Let BU be the limit of the spaces

BU = lim BU (n).

Similarly,

BO = limy BO(n).

Theorem 4.32. For X compact there are isomorphisms (bijective correspon-
dences)

K(X) = 8Vect(X) = [X, BU]

and R
KO(X) = SVectr(X) = [X, BO].

4.5.4 Representations and flat connections

Recall the following classification theorem for covering spaces.
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Theorem 4.33. . Let X be a connected space. Then the set of isomorphism
classes of connected covering spaces, p : E — X 1is in bijective correspondence
with conjugacy classes of normal subgroups of m(X). This correspondence
sends a covering p : E — B to the image p.(m1(E)) C m1(X).

Let m = m(X) and let p : E — X be a connected covering space with
m1(E) = N < 7. Then the group of deck transformations of E is the quotient
group m/N, and so can be thought of as a principal 7/N - bundle. Viewed
this way it is classified by a map fr : X — B(w/N), which on the level of
fundamental groups,

fe:m=m(X)—> m(Br/N)=n/N
(4.4)

is just the projection on to the quotient space. In particular the universal
cover X — X is the unique simply connected covering space. It is classified
by a map

vx : X = Bm

which induces an isomorphism on the fundamental group.

Now let 6 : 1 — G be any group homomorphism. By the naturality of
classifying spaces this induces a map on classifying spaces,

BO : Br — BG.

This induces a principal G - bundle over X classified by the composition

BoO

X 2 Br BG.
The bundle this map classifies is given by
Xx.G=> X

where 7 acts on G via the homomorphism 6 : 7 — G.

This construction defines a map
p: Hom(m(X),G) — Pring(X).

Now if X is a smooth manifold then its universal cover p : X — X induces an
isomorphism on tangent spaces,

Dp(l’) : TIX — Tp(x)X

for every x € X. Thus, viewed as a principal 7 - bundle, it has a canonical
connection. Notice furthermore that this connection is flat, i.e its curvature is
zero. (Exercise. Check this claim!) Moreover notice that any bundle of the
form X x. G — X has an induced flat connection. In particular the image of
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p: Hom(m(X),G) — Pring(X) consists of principal bundles equipped with
flat connections.

Notice furthermore that by taking G = GL(n,C) the map p assigns to
an n - dimensional representation an n - dimensional vector bundle with flat
connection

p: Rep,(m1(X)) = Vect,(X).

By taking the sum over all n and passing to the Grothendieck group com-
pletion,we get a homomorphism of rings from the representation ring to K -
theory,

p: R(m(X)) = K(X).

An important question is what is the image of this map of rings. Again we
know the image is contained in the classes represented by bundles that have
flat connections. For X = B, for 7 a finite group, the following is a famous
theorem of Atiyah and Segal:
Let
€:R(r)—>7Z and e:K(Bm)—7Z

be the augmentation maps induced by sending a representation or a vector
bundle to its dimension. Let I C R(r) and I C K(Bm) denote the kernels
of these augmentations, i.e the “augmentation ideals”. Finally let R(7) and

K (Bm) denote the completions of these rings with respect to these ideals.
That is,

R(m) =lim R(m)/I" and K(Br)=lim K(Br)/I"

n n

where I™ is the product of the ideal I with itself n - times.

Theorem 4.34. (Atiyah and Segal) [4] For w a finite group, the induced map
on the completions of the rings with respect ot the augmentation ideals,

p: R(r) — K(Bm)

is an isomorphism.
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Characteristic Classes

In this chapter we define and calculate characteristic classes for principal
bundles and vector bundles. Characteristic classes are the basic cohomologi-
cal invariants of bundles and have a wide variety of applications throughout
topology and geometry. Characteristic classes were introduced originally by E.
Stiefel in Switzerland and H. Whitney in the United States in the mid 1930’s.
Stiefel, who was a student of H. Hopf intoduced in his thesis certain “charac-
teristic homology classes” determined by the tangent bundle of a manifold. At
about the same time Whitney studied general sphere bundles, and later in-
troduced the general notion of a characteristic cohomology class coming from
a vector bundle, and proved the product formula for their calculation.

In the early 1940’s, L. Pontrjagin, in Moscow, introduced new charac-
teristic classes by studying the Grassmannian manifolds, using work of C.
Ehresmann from Switzerland. In the mid 1940’s, after just arriving in Prince-
ton from China, S.S Chern defined characteristic classes for complex vector
bundles using differential forms and his calculations led a great clarification
of the theory.

Much of the modern view of characteristic classes has been greatly influ-
enced by the highly influential book of Milnor and Stasheff. This book was
originally circulated as lecture notes written in 1957 and finally published
in 1974. This book is one of the great textbooks in modern mathematics.
These notes follow, in large part, their treatment of the subject. The reader
is encouraged to consult their book for further details.

5.1 Preliminaries
Definition 5.1. Let G be a topological group (possibly with the discrete topol-

ogy). Then a characteristic class for principal G - bundles is an assignment to
each principal G - bundle p : P — B a cohomology class

c(P) € H*(B)

109
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satisfying the following naturality condition. If

Pl%PQ

n| |

Blf}BQ

is a map of principal G - bundles inducing an equivariant homeomorphism on
fibers, then
[ (e(P2)) = c(Pr) € H*(By).

Remarks. 1. In this definition cohomology could be taken with any co-
efficients, including, for example, DeRham cohomology which has coefficients
in the real numbers R. The particular cohomology theory used is referred to
as the “values” of the characteristic classes.

2. The same definition of characteristic classes applies to real or complex
vector bundles as well as principal bundles.

The following is an easy consequence of the definition.

Lemma 5.1. Let ¢ be a characteristic class for principal G - bundles so that
¢ takes values in H1(—), for ¢ > 1. Then if € is the trivial G bundle,

e=XxG—-X
then c(e) = 0.
Proof. The trivial bundle € is the pull - back of the constant map to the one

point space e : X — pt of the bundle v = G — pt. Thus ¢(¢) = e*(¢(v)). But
c(v) € Hl(pt) = 0 when ¢ > 0. O

The following observation is also immediate from the definition.

Lemma 5.2. Characteristic classes are invariant under isomorphism. More
specifically, Let ¢ be a characteristic class for principal G - bundles. Also let
p1: E1 — X and py : Es — X be isomorphic principal G - bundles. Then

o(Ey) = c(Bs) € H*(X).

Thus for a given space X, a characteristic class ¢ can be viewed as a map

¢: Pring(X) — H*(X).

3. The naturality property in the definition can be stated in more functorial
terms in the following way.
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Cohomology (with any coefficients) H*(—) is a contravariant functor from
the category hoT op of topological spaces and homotopy classes of maps, to the
category Ab of abelian groups. By the results of chapter 2, the set of principal
G - bundles Pring(—) can be viewed as a contravariant functor from the
category hoT op to the category of sets Sets.

Definition 5.2. (Alternative) A characteristic class is a natural transfor-
mation ¢ between the functors Pring(—) and H*(—):

¢: Pring(—) ~ H*(—)

Examples.

1. The first Chern class ¢(¢) is a characteristic class on principal U(1) -
bundles, or equivalently, complex line bundles. If { is a line bundle over
X, then ¢;(¢) € H*(X;Z). As we saw in the last chapter, ¢ is a
complete invariant of line bundles. That is to say, the map

c1: Pringy(X) = H*(X;Z)
is an isomorphism.

2. The first Stiefel - Whitney class wi(n) is a characteristic class of two fold
covering spaces (i.e a principal Zs = O(1) - bundles) or of real line
bundles. If 7 is a real line bundle over a space X, then
w1(n) € HY(X;Zsy). Moreover, as we saw in the last chapter, the first
Stiefel - Whitney class is a complete invariant of line bundles. That is,
the map

wy 1 Pringay(X) — H' (X Zs)

is an isomorphism.

We remark that the first Stiefel - Whitney class can be extended to be a
characteristic class of real n - dimensional vector bundles (or principal O(n)
- bundles) for any n. To see this, consider the subgroup SO(n) < O(n). As
we saw in the last chapter, a bundle has an SO(n) structure if and only if it
is orientable. Moreover the induced map of classifying spaces gives a 2 - fold
covering space or principal O(1) - bundle,

Zs = O(1) = O(n)/SO(n) — BSO(n) — BO(n).

This covering space defines, via its classifying map wy : BO(n) — BO(1) =
RP> an element w; € H'(BO(n); Zs) which is the first Stiefel - Whitney class
of this covering space.

Now let 1 be any n - dimensional real vector bundle over X, and let

fn: X = BO(n)

be its classifying map.
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Definition 5.3. The first Stiefel - Whitney class w1(n) € HY(X;Zs) is de-
fined to be

wi(n) = fr(wy) € H'(X;Zsy)
The first Chern class ¢1 of an n - dimensional complex vector bundle ¢ over

X is defined similarly, by pulling back the first Chern class of the principal
U(1) - bundle

U(1)2U(n)/SU(n) = BSU(n) — BU(n)
via the classifying map fc : X — BU(n).

The following is an immediate consequence of the above lemma and the
meaning of SO(n) and SU(n) - structures.

Theorem 5.3. Given a complex n - dimensional vector bundle ( over X,
then c1(¢) € H*(X) is zero if and only if ¢ has an SU(n) -structure.

Furthermore, given a real n - dimensional vector bundle n over X, then
wi(n) € HY(X; Zy) is zero if and only if the bundle n has an SO(n) - structure,
which is equivalent to n being orientable.

We now use the classification theorem for bundles to describe the set of
characteristic classes for principal G - bundles.

Let R be a commutative ring and let Charg(R) be the set of all character-
istic classes for principal G bundles that take values in H*(—; R). Notice that
the sum (in cohomology) and the cup product of characteristic classes is again
a characteristic class. This gives Charg the structure of a ring. (Notice that
the unit in this ring is the constant characteristic class ¢(¢) =1 € H°(X).

Theorem 5.4. There is an isomorphism of rings

p:Charg(R) —— H*(BG;R)

Proof. Let ¢ € Charg(R). Define
p(c) = c¢(EG) € H*(BG; R)

where EG — BG is the universal G - bundle over BG. By definition of the
ring structure of Charg(R), p is a ring homomorphism.

Now let v € HY(BG; R). Define the characteristic class ¢, as follows. Let
p: E — X be a principal G - bundle classified by a map fr : X — BG. Define

& (E) = fp(y) € HY(X; R)

where [} : H*(BG : R) — H*(X; R) is the cohomology ring homomorphism
induced by fg. This association defines a map

c¢: H*(BG;R) — Charg(R)

which immediately seen to be inverse to p. O
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5.2 Chern Classes and Stiefel - Whitney Classes

In this section we compute the rings of unitary characteristic classes
Charyny(Z) and Zs, - valued orthogonal characteristic classes Charoy)(Zs).
These are the characteristic classes of complex and real vector bundles and
as such have a great number of applications. By 5.4 computing these
rings of characteristic classes reduce to computing the cohomology rings
H*(BU(n);Z) and H*(BO(n); Z2). The following is the main theorem of this
section.

Theorem 5.5. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

ChWU(n)(Z) = H*(BU(n);Z) = Z[cy, ca,- -+, Ca

where ¢; € H*(BU(n);Z) is known as the ith - Chern class.
b. The ring of Zs - valued O(n) characteristic classes is a polynomial algebra
on n - generators,

Charo(ny(Z2) = H*(BO(n); Z2) = Zawi, wa, - -+, wy]
where w; € HY(BO(n); Z3) is known as the ith - Stiefel - Whitney class.
This theorem will be proven by induction on n. For n =1 BU(1) = CP>
and BO(1) = RP* and so the theorem describes the ring structure in the

cohomology of these projective spaces. To complete the inductive step we will
study the sphere bundles

S"~1 — BO(n — 1) — BO(n)

and
S§?n=! & BU(n —1) — BU(n)

described in the last chapter. In particular recall from 4.28 that in these
fibrations, BO(n —1) and BU(n — 1) are the unit sphere bundles S(v,,) of the
universal bundle ~,, over BO(n) and BU(n) respectively. Let D(~,) be the
unit disk bundles of the universal bundles. That is, in the complex case,

D(yn) = EU(n) Xy D** = BU(n)
and in the real case,
D(yn) = EO(n) X o) D™ — BO(n)

where D?>® ¢ C™ and D" C R” are the unit disks, and therefore have the
induced unitary and orthogonal group actions.
Here is one easy observation about these disk bundles.
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Proposition 5.6. The projection maps
p: D(yn) = EU(n) xy () D*™ — BU(n)

and

are homotopy equivalences.

Proof. Both of these bundles have zero sections Z : BU(n) — D(vy,) and
Z : BO(n) = D(v,)- In both the complex and real cases, we have po Z = 1.
To see that Z op ~ 1 consider the homotopy H : D(~,) x I — D(~,) defined
by H(v,t) = tv. O

We will use this result when studying the cohomology exact sequence of
the pair (D(v,), S(vn)):

s = HI7Y(S(yn)) —— HI(D (1), S(3)) = HI(D (7)) = HI(S(72))

—2 s HT™Y(D(y,),S(vm)) = H(D(7,)) — ---

(5.1)

Using the above proposition and 4.28 we can substitute H*(BU(n)) for
H*(D(vn)), and H*(BU(n — 1)) for H*(S(7,)) in this sequence to get the
following exact sequence

S HENBU(-1) ——  HY(D(3),S(v) = HYBU())  —— HI(BU(n—1))

—2 s H™Y(D(7,), S(yn)) — HIH(BU(n)) — - --

(5.2)

and we get a similar exact sequence in the real case

o HUNBO( — 1) Zs) ——  HID(y),8(1); Za) = HI(BO(n);Zs) ~  ——
HY(BO(n — 1); Zs) — 2 HY(D (), S(m); Z2) — HIFL(BO(n): Zg) — - - -

These exact sequences will be quite useful for inductively computing the
cohomology of these classifying spaces, but to do so we need a method for
computing H*(D(vn), S(vn)), or more generally, H*(D(¢), S(¢)), where ( is
any Euclidean vector bundle and D(¢) and S(¢) are the associated unit disk
bundles and sphere bundles respectively. The quotient space,
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T(¢) = D(¢)/S(¢) (5-4)

is called the Thom space of the bundle (. As the name suggests, this con-
struction was first studied by R. Thom [?], and has been quite useful in both
bundle theory and cobordism theory. Notice that on each fiber (say at z € X)
of the n - dimensional disk bundle (, the Thom space construction takes the
unit n - dimensional disk modulo its boundary n — 1 - dimensional sphere
which therefore yields an n - dimensional sphere, with marked basepoint, say
00, € S™(¢:) = D"(¢x)/S™ 1(¢s). The Thom space construction then identi-
fies all the basepoints oo, to a single point. Notice that for a bundle over a
point R® — pt, the Thom space T(R") = D"/S"~! = S" = R™ U co. More
generally, notice that when the basespace X is compact, then the Thom space
is simply the one point compactification of the total space of the vector bundle
¢

T(¢)=(¢r=(¢Uoo (5.5)

where we think of the extra point in this compactification as the common
point at infinity assigned to each fiber. In order to compute with the above
exact sequences, we will need to study the cohomology of Thom spaces. But
before we do we examine the topology of the Thom spaces of product bundles.
For this we introduce the “smash product” construction.

Let X and Y be spaces with basepoints g € X and yg € Y.

Definition 5.4. The wedge X VY is the “one point union”,
XVY=XxyUzgxY CX xY.
The smash product X AY is given by

XAY =X xY/X VY.

Observations. 1. The k be a field. Then the Kunneth formula gives
H*(X ANY: k)= H*(X; k) @ H*(Y; k).

2. Let V and W be vector spaces, and let V+ and W be their one point
compactifications. These are spheres of the same dimension as the respective
vector spaces. Then

VEAWT =V x W)*t.

So in particular,
S A ST = grtm,
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Proposition 5.7. Let ( be an n - dimensional vector bundle over a space
X, and let n be an m - dimensional bundle over X. Let ( X n be the product
n+m - dimensional vector bundle over X NY . Then the Thom space of { X7
is given by

T(C x n) = T(C) AT ().

Proof. Notice that the disk bundle is given by
D(¢ xn) = D(C) x D(n)
and its boundary sphere bundle is given by
S(¢xm) = 5(C) x D(n) UD(C) x S(n).

Thus

T(¢xmn) =D xn)/S( xn)=

2
B~
o
X
)
=
~
=
o
X
S
=
-
-
o
X
“n
s

We now proceed to study the cohomology of Thom spaces.

5.2.1 The Thom Isomorphism Theorem

We begin by describing a cohomological notion of orientability of an vector
bundle ¢ over a space X.

Consider the 2 - fold cover over X defined as follows. Let £ be the principal
GL(n,R) bundle associated to ¢. Also let Gen,, be the set of generators of
H"(S™) = Z. So Gen,, is a set with two elements. Moreover the general
linear group GL(n,R) acts on S™ = R™ U oo by the usual linear action on R"
extended to have a fixed point at oo € S™. By looking at the induced map on
cohomology, there is an action of GL(n,R) on Gen,,. We can then define the
double cover

G(¢) = E¢ Xgr(mpr) Gen, — E¢/GL(n,R) = X.

Lemma 5.8. The double covering G(C) is isomorphic to the orientation double
cover Or(().
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Proof. Recall from chapter 1 that the orientation double cover Or(() is given
by
OT’(C) = EC XGL(n,]R) OT’(R”)

where Or(R™) is the two point set consistingof orientations of the vector space
R™. A matrix A € GL(n,R) acts on this set trivially if and only if the deter-
minant detA is positive. It acts nontrivially (i.e permutes the two elements) if
and only if detA is negative. Now the same is true of the action of GL(n,R)
on Gen,. This is because A € GL(n,R) induces multiplication by the sign of
detA on H™(S™). (Verify this as an exercise!)

Since Or(R™) and Gen,, are both two point sets with the same action
of GL(n,R), the corresponding two fold covering spaces Or({) and G(¢) are
isomorphic. O

Corollary 5.9. An orientation of ann - dimensional vector bundle ¢ is equiv-
alent to a section of G(¢) and hence defines a continuous family of generators

u, € H*(5"((:)) = Z

for every x € X. Here S™((,) is the unit disk of the fiber (, modulo its
boundary sphere. S™((,) is called the sphere at x.

Now recall that given a pair of spaces A C Y, there is a relative cup
product in cohomology,

HY(Y)® H™(Y,A) —— HT(Y, A).

So in particular the relative cohomology H*((Y, A) is a (graded) module
over the (graded) ring H*(Y).

In the case of a vector bundle ¢ over a space X, we then have that
H*(D(¢),5(¢)) = H*(T(¢)) is a module over H*(D(¢)) = H*(X). So in
particular, given any cohomology class in the Thom space, « € H"(T(()) we
get an induced homomorphism

HI(X) —"— H"(T(Q)).

Our next goal is to prove the famous Thom Isomorphism Theorem which
can be stated as follows.

Theorem 5.10. Let ¢ be an oriented n - dimensional real vector bundle over
a connected space X. Let R be any commutative ring. The orientation gives
generators ug, € H"(S"((;); R) = R. Then there is a unique class (called the
Thom class) in the cohomology of the Thom space

ue H"(T(C); R)
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so that for every x € X, if
Ja : 8" (Ce) = D(€)/S5(¢) =T(¢)

is the natural inclusion of the sphere at x in the Thom space, then under the
induced homomorphism in cohomology,

Jp s H*(T(Q); R) = H"(S"(CG); R) = R

JE(u) = ug.
Furthermore The induced cup product map

vt HY(X;R) —— H*"(T((); R)

is an isomorphism for every q € Z. So in particular H"(T();R) = 0 for
r < n.

If € is not an orientable bundle over X, then the theorem remains true if
we take Zo coefficients, R = Z.

Proof. We prove the theorem for oriented bundles. We leave the nonorientable
case (when R = Zs) to the reader. We also restrict our attention to the case
R = 7Z, since the theorem for general coeflicients will follow immediately from
this case using the universal coefficient theorem.

Case 1: ( is the trivial bundle X x R".
In this case the Thom space T'(¢) is given by

T() =X xD"/X x S" 1,
The projection of X to a point, X — pt defines a map
7:T()=XxD"/X xS" ' - D"/s" " =g
Let u € H™*(T(¢)) be the image in cohomology of a generator,
Z = H™(S") —— H™(T(()).
The fact that taking the cup product with this class
H1(X) LN HI™(T(¢)) = HIT™(X x D", X x §"~1) = HI™™"(X x S™ X x pt)

is an isomorphism for every g € Z follows from the universal coefficient theo-
rem.

Case 2: X is the union of two open sets X = X; U X5, where we know
the Thom isomorphism theorem holds for the restrictions ¢; = ¢, fori = 1,2

and for CLQ = <|X1ﬁX2'
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We prove the theorem for X using the Mayer - Vietoris sequence for co-
homology. Let X; » = X; N Xo.

= HTHT(G2)) — HUT () — HYT(G)H T () — HU(T(Cr2) — -
Looking at this sequence when ¢ < n, we see that since
HY(T(C12)) = HY(T(C1)) = HY(T(¢2)) =0,

then by exactness we must have that H4(T'(¢)) = 0.

We now let ¢ = n, and we see that by assumption, H"(T((1)) =
H"™(T(¢2)) & H"(T(C1,2)) = Z, and that the Thom classes of each of the
restriction maps H"(T'(¢1)) = H"(T'(C12)) and H™(T(¢2)) — H™(T(C1,2))
correspond. Moreover H" 1(T(¢12)) = 0. Hence by the exact sequence,
H"™(T(¢)) = Z and there is a class u € H"(T(¢)) that maps to the direct
sum of the Thom classes in H"(T(¢1)) ® H™(T(¢2)).

Now for ¢ > n we compare the above Mayer - Vietoris sequence with the
one of base spaces,

— HT Y (X1 ) » HY(X) = HY(X;) ® HY(X2) — HY(X12) — -+

This sequence maps to the one for Thom spaces by taking the cup product
with the Thom classes. By assumption this map is an isomorphism on H*(Xj;),
i=1,2 and on H* (Xl)g). Thus by the Five Lemma it is an isomorphism on
H*(X). This proves the theorem in this case.

Case 3. X is covered by finitely many open sets X;, ¢ = 1,--- , k so that
the restrictions of the bundle to each X;, (; is trivial.

The proof in this case is an easy inductive argument (on the number of
open sets in the cover), where the inductive step is completed using cases 1
and 2.

Notice that this case includes the situation when the basespace X is com-
pact.

Case 4. General Case. We now know the theorem for compact spaces.
However it is not necessarily true that the cohomology of a general space (i.e
homotopy type of a C.W complex) is determined by the cohomology of its
compact subspaces. However it is true that the homology of a space X is
given by

H,(X)>2limH, (K
(X) ling (K)

where the limit is taken over the partially ordered set of compact subspaces
K C X. Thus we want to first work in homology and then try to transfer our
observations to cohomology.

To do this, recall that the construction of the cup product pairing actually
comes from a map on the level of cochains,

CUY)® C"(Y, A) —— C1+7(Y, A)
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and therefore has a dual map on the chain level
C.(Y,A) —2 C.(YV)® C.(Y; A).
and thus induces a map in homology
VY Hy(Y,A) = @p>oHp— (V) @ H (Y, A).

Hence given « € H"(Y, A) we have an induced map in homology (the “slant
product”)
/a : Hk(}/, A) — Hk,T(Y)

defined as follows. If 6 € H(Y, A) and

Y(0) = a; @b; € Ho(Y) ® Ho(Y, A)

then
Jo(0) = a(b;) - a;
J
where by convention, if the degree of a homology class b; is not equal to the
degree of «, then a(b;) = 0.
Notice that this slant product is dual to the cup product map

HY(Y) —2 HI"(Y, A).

Again, by considering the pair (D((), S(¢)), and identifying H,(D({)) =
H,.(X), we can apply the slant product operation to the Thom class, to define
a map

Ju: Hi(T(C)) = Hi—n(X).

which is dual to the Thom map ~ : HY(X) _Yu Ht(T(¢)). Now since v is
an isomorphism in all dimensions when restricted to compact sets, then by the
universal coefficient theorem, /u : Hy(T((|,)) — Hy—n(K) is an isomorphism
for all ¢ and for every compact subset K C X. By taking the limit over the
partially ordered set of compact subsets of X, we get that

Ju: Hy(T(C)) = Hyn(X)

is an isomorphism for all q. Applying the universal coefficient theorem again,
we can now conclude that

v HE(X) —"= HM™(T(Q))

is an isomorphism for all k. This completes the proof of the theorem. O

We now observe that the Thom class of a product of two bundles is the
appropriately defined product of the Thom classes.
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Lemma 5.11. Let { andn be ann and m dimensional oriented vector bundles
over X andY respectively. Then the Thom class u({ xn) is given by the tensor
product: u(¢ x n) € H" ™™ (T({ x 1)) is equal to

u(€) @u(n) € H*(T(C)) @ H™(T(n))
= H"T(T(C) AT (n))
= H""™(T(¢ x n)).

In this description, cohomology is meant to be taken with Zs - coefficients if
the bundles are not orientable.

Proof. u(¢) ® u(n) restricts on each fiber (z,y) € X x Y to

up ® uy € H'(S™(C2)) @ H™(S™ (1))
= {E(S™ () A S™ ()
= H" " (S™(C X ) (2,4)))

which is the generator determined by the product orientation of (, x n,. The
result follows by the uniqueness of the Thom class. O

We now use the Thom isomorphism theorem to define a characteristic class
for oriented vector bundles, called the Fuler class.

Definition 5.5. The Euler class of an oriented, n dimensional bundle (, over
a connected space X, is the n - dimensional cohomology class

x(¢) € H™(X)
defined to be the image of the Thom class uw(¢) € H™(T'(¢)) under the compo-
sition
H™(T(¢)) = H"(D(¢), 5(¢)) = H"(D(C)) = H"(X).

Again, if ¢ is not orientable, cohomology is taken with Zs - coefficients.

Exercise. Verify that the Euler class is a characteristic class according to
our definition.

The following is then a direct consequence of 5.11.

Corollary 5.12. Let ( and n be as in 5.11. Then the FEuler class of the
product is given by

x(¢xn) =x(¢) @x(n) € H*(X)@ H™(Y) < H""™(X x Y).
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We will also need the following observation.

Proposition 5.13. Let n be an odd dimensional oriented vector bundle over
a space X. Say dim (n) = 2n+ 1. Then its Euler class has order two:

2x(n) = 0 € H*""(X).

Proof. Consider the bundle map

v:n—mn
v — —U.

Since 7 is odd dimensional, this bundle map is an orientation reversing au-
tomorphism of n. This means that v*(u) = —u, where u € H?*"*1(T(n)) is
the Thom class. By the definition of the Euler class this in turn implies that
v*(x(n)) = —x(n). But since the Euler class is a characteristic class and v is
a bundle map, we must have v*(x(n)) = x(n). Thus x(n) = —x(n). O

5.2.2 The Gysin sequence

We now input the Thom isomorphism theorem into the cohomology exact
sequence of the pair D({), S(¢)) in order to obtain an important calculational
tool for computing the homology of vector bundles and sphere bundles.

Namely, let ¢ be an oriented n - dimensional oriented vector bundle over
a space X, and consider the exact sequence

= H7Y(S(C) —— HYD(C), S(C)) = HY(D(C)) — HI(S(C))
—2  HT(D(Q), S(C)) = HITH(D(Q)) = -+

By identifying H*(D(¢),S(¢)) = H*(T(¢)) and H*(D(¢)) = H*(X), this
exact sequence becomes

oo HIH(S(0)) —2— HU(T(C)) — HU(X) — H(S(C))
J H‘H‘l(T(C)) — Hq+1(X) IO

Finally, by inputting the Thom isomorphism, H?~"(X) %) HY(T(C))

we get the following exact sequence known as the Gysin sequence:

o HINSQ) e HIR) e B 5 HISE)
5 Hq7n+1(X) X Hq+1(X) .
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We now make the following observation about the homomorphism x :
H1(X) — H7™(X) in the Gysin sequence.

Proposition 5.14. The homomorphism x : HY(X) — HY""(X) is given by
taking the cup product with the Fuler class,

x: Hi(X) —2 Hetn(X).

Proof. The theorem is true for ¢ = 0, by definition. Now in gen-
eral, the map x was defined in terms of the Thom isomorphism
v: H"(X) _Yu H7"+"(T(C)), which, by definition is a homomorphism of
graded H*(X) - modules. This will then imply that

x:HY(X) = HI™(X)

is a homomorphism of graded H*(X) - modules. Thus

x(a) = x(1- )
=x(1)Ua since x is an H*(X) - module homomorphism
=x(QUa
as claimed. O

5.2.3 Proof of theorem 5.5

the goal of this section is to use the Gysin sequence to prove 5.5, which we
begin by restating:

Theorem 5.15. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

C’haTU(n) (Z) = H*(BU(’Il), Z) = Z[Cla Coy 7Cn]

where ¢; € H*(BU(n);Z) is known as the ith - Chern class.
b. The ring of Zs - valued O(n) characteristic classes is a polynomial algebra
on n - generators,

Charo(n)(Z2) = H*(BO(n); Z2) = Zawi, wa, - -+, wy]

where w; € H(BO(n); Zy) is known as the ith - Stiefel - Whitney class.
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Proof. We start by considering the Gysin sequence, applied to the universal
bundle v, over BU(n). We input the fact that the sphere bundle S(v,) is
given by BU(n — 1) see 5.2:

S HIYBUM-1) —s HeM(BUM)) XU meBUm) —Y HYBU(n - 1))

s gt (BU(n)) X0 g (BU(n)) -

(5
and we get a similar exact sequence in the real case
S HIYBOM — 1) 2y) —2s  HTM(BO();Zy) X0 HyBOM);Z,)  —S
HIBO(n —1)Zy)  —2 HI"Y(BOM)); Zo) —X02% HHHL(BO(n); Zs) — - --
(5.8)

We use these exact sequences to prove the above theorem by induction on
n. For n = 1 then sequence 5.7 reduces to the short exact sequences,

0— Hi-2(BU(1) 29 meBUI)) =0

for each ¢ > 2. We let ¢; € H?(BU(1)) = H?(CP*) be the Euler class x(71).
These isomorphisms imply that the ring structure of H*(BU(1)) is that of a
polynomial algebra on this single generator,

H*(BU(1)) = H*(CP®) = Z|cy]

which is the statement of the theorem in this case.
In the real case when n = 1 the Gysin sequence 5.8 reduces to the short
exact sequences,

0 — HY(BO(1): Zo) —20 Ha(BO(1); Z5) — 0

for each ¢ > 1. We let w; € H(BO(1);Zy) = H*(RP>; Z3) be the Euler class
X(71). These isomorphisms imply that the ring structure of H*(BO(1);Zs) is
that of a polynomial algebra on this single generator,

H*(BO(1); Z2) = H(RP>; Z3) = Za[w:]
which is the statement of the theorem in this case.

We now inductively assume the theorem is true for n — 1. That is,

H*(BU(n-1)) 2 Z[c1, - ycn—1] and H*(BO(n—1);Zs) = Zo|w1, -+, wp_1].
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We first consider the Gysin sequence 5.7, and observe that by exactness, for
g < 2(n — 1), the homomorphism

*: HY(BU(n)) —» HY(BU(n — 1))

is an isomorphism. That means there are unique classes, ¢1, - ,ch_1 €
H*(BU(n)) that map via ¢* to the classes of the same name in H*(BU (n —
1)). Furthermore, since ¢* is a ring homomorphism, every polynomial in
€1, ,Cn—1 in H*(BU(n — 1)) is in the image under ¢* of the correspond-
ing polynomial in the these classes in H*(BU(n)). Hence by our inductive
assumption,

o H*(BU(n)) — H*(BU(n— 1)) = Zler, -+, cn—1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.7
this implies that this long exact splits into short exact sequences,

0 — H2(BU(n)) XU H*(BU(n)) —— H*(BU(n—1)) 2 Zlcy, - cuy] — 0

Define ¢, € H?"(BU(n)) to be the Euler class x(v,). Then this sequence
becomes

O—)H*on(BU(n)) &) H*(BU(n)) L—*) Z[Cl,"‘Cn—l] —0

which implies that H*(BU(n)) = Zlc1, - - - , ¢]. This completes the inductive
step in this case.

In the real case now consider the Gysin sequence 5.8, and observe that by
exactness, for ¢ < n — 1, the homomorphism

V2 HY(BO(n); Zs) — HY(BO(n — 1); Zs)

is an isomorphism. That means there are unique classes, wi, -+ ,wy_2 €
H*(BO(n); Zs) that map via t* to the classes of the same name in H*(BO(n—

In dimension ¢ = n—1, the exactness of the Gysin sequence tells us that the
homomorphism ¢* H"~1(BO(n); Z2) — H"*(BO(n—1); Zs) is injective. Also
by exactness we see that ¢* is surjective if and only if x(v,) € H"(BO(n);Zs)
is nonzero. But to see this, by the universal property of +,, it suffices to prove
that there exists some n -dimensional bundle ¢ with Euler class x({) # 0.
Now by 5.12, the Euler class of the product

XYk X Yn-k) = X(V) @ X(Yn-r) € H*(BO(k) x BO(n — k); Zs)
= wy, @ Wy_p € H(BO(k); Zy) ® H" ¥(BO(n — k); Zs)

which, by the inductive assumption is nonzero for k& > 1. Thus x(v,) €
H™(BO(n);Zs) is nonzero, and we define it to be the n'? Stiefel - Whitney
class

wy, = X(n) € HY(BO(n); Zs).
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As observed above, the nontriviality of x (7, ) implies that t* H"~1(BO(n); Zs

H" Y(BO(n — 1);Z3) is an isomorphism, and hence there is a unique class
Wp—1 € H" Y(BO(n — 1); Z3) (as well as wy, - - w,_2) restricting to the in-
ductively defined classes of the same names in H*(BO(n — 1); Zs).

Furthermore, since (* is a ring homomorphism, every polynomial in
Wi,y Whp—1 in H*(BO(n — 1);Z2) is in the image under ¢* of the corre-
sponding polynomial in the these classes in H*(BO(n);Zs). Hence by our
inductive assumption,

v H*(BO(n); Zo) — H*(BO(n — 1);Zs) = Zowy, -+ ,wp—1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.8
this implies that this long exact splits into short exact sequences,

which implies that H*(BO(n);Zs) = Za[wy, - - ,wy,]. This completes the in-
ductive step and therefore the proof of the theorem. O

5.3 The product formula and the splitting principle
Perhaps the most important calculational tool for characteristic classes is the

Whitney sum formula, which we now state and prove.

Theorem 5.16. a. Let  and n be vector bundles over a space X. Then the
Stiefel - Whitney classes of the Whitney sum bundle { ® n are given by

S

wi(C B ) =Y wi(¢) Vwe—;(n) € HY(X;Zy).

=0

where by convention, wo = 1 € H(X;Zs).
b. If ¢ and n are complex vector bundles, then the Chern classes of the
Whitney sum bundle ( & n are given by

k
ck(C@n) :zcj Uck—j(n) € H*(X).
7=0

Again, by convention, co =1 € H(X).

) —

Z2[w17...

wn_l] —0
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Proof. We prove the formula in the real case. The complex case is done the
same way.

Let ¢ be an n - dimensional vector bundle over X, and let n be an m -
dimensional bundle. Let N = n 4+ m. Since we are computing wi (¢ © 1), we
may assume that k& < N, otherwise this characteristic class is zero.

We prove the Whitney sum formula by induction on N > k. We begin
with the case N = k. Since ¢ @7 is a k - dimensional bundle, the k" Stiefel -
Whitney class, wi (¢ @ 1) is equal to the Euler class x(¢ ® n). We then have

wr(C®n) =x(CDn)
=x(Q)Ux(n) by 5.12
= wn(¢) U wm(n).

This is the Whitney sum formula in this case as one sees by inputting the fact
that for a bundle p with j > dim (p), w;(p) = 0.

Now inductively assume that the Whitney sum formula holds for comput-
ing wy, for any sum of bundles whose sum of dimensions is < N — 1 > k. Let
¢ have dimension n and 7 have dimension m with n +m = N. To complete
the inductive step we need to compute wg (¢ ® 7).

Suppose ( is classified by a map f. : X — BO(n), and 7 is classified by a
map f, : X = BO(m). Then ¢ @7 is classified by the composition

feon: X L% BO(n) x BO(m) —“— BO(n +m)

where p is the map that classifies the product of the universal bundles ~,, X Vi,
over BO(n)x BO(m). Equivalently, u is the map on classifying spaces induced
by the inclusion of the subgroup O(n) x O(m) < O(n + m). Thus to prove
the theorem we must show that the map u: BO(n) x BO(m) — BO(n + m)
has the property that

k
pr(wp) =Y w; @wi—; € H(BO(n); Zy) ® H*(BO(m); Zs). (5.9)
=0

For a fixed j < k, let
pj : H*(BO(n) x BO(m); Zs) — HI(BO(n); Zs) ® H* "9 (BO(m); Zs)

be the projection onto the summand. So we need to show that p;(p*(wy)) =
w; @ wi—;. Now since n +m = N > k, then either j < nor k—j < m (or
both). We assume without loss of generality that j < n. Now by the proof of
5.5

V2 H'(BO(n); Zs) — H? (BO(j); Z2)

is an isomorophism. Moreover we have a commutative diagram:
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H¥(BO(N); Zs) AN H*(BO(n) x BO(m); Zs) LR HI(BO(n); Zs) ® H*=7(BO(m); Zs)

N oo

H¥(BO(j +m); Zs) T) H*(BO(j) x BO(m); Zs) T) HI(BO(j); Z3) @ H*=7(BO(m); Zs).

Since j < mn, j+m <n+m = N and *(wy) = w, € H*(BO(j + m); Zy).
This fact and the commutativity of this diagram give,
(" @1) opj o p*(wr) = pj o p” o™ (w)

= pj o " (w)

= w; ® wi—; by the inductive assumption.
Since ¢* ® 1 is an isomorphism in this dimension, and since *(w; ® wy—;) =
w;j @ wi—; we have that

pj o p(wy) = w; @ wi—j.

As remarked above, this suffices to complete the inductive step in the proof
of the theorem. O

We can restate the Whitney sum formula in the following convenient way.
For an n - dimensional bundle (, let

w(¢) =1+ wi(C) +wa2(C) + -+ +wn(C) € H(X;Zs)

This is called the total Stiefel - Whitney class. The total Chern class of a
complex bundle is defined similarly.

The Whitney sum formula can be interpreted as saying these total charac-
teristic classes have the “exponential property” that they take sums to prod-
ucts. That is, we have the following:

Corollary 5.17.
w(C & n) =w(C) Uw(n)
and

c(C®n) =c(C)uUc(n).

This implies that these characteristic classes are invariants of the stable
isomorphism types of bundles:

Corollary 5.18. If ( and n are stably equivalent real vector bundles over a
space X, then
w(C) = w(n) € H(X;Zy),

Similarly if they are complex bundles,

c(¢) = c(n) € H*(X).



Characteristic Classes 129
Proof. If ¢ and n are stably equivalent, then
Coe" =Ende
for some m and r. So
w((Se) =wn o).

But by 5.17
w(C® ™) = w(uw(e) = w(() - 1 =w(().

Similarly w(n@®e”) = w(n). The statement follows. The complex case is proved
in the same way. O

By our description of K - theory in chapter 2, we have that these charac-
teristic classes define invariants of K - theory.

Theorem 5.19. The Chern classes ¢; and the Stiefel - Whitney classes w;
define natural transformations

¢t K(X) — H*(X)
and '
w; . KO(X) — HZ(X;ZQ).
The total characteristic classes
c: K(X)— H*(X)
and -
w: KOX)— H*(X;Zs)

are exponential in the sense that
cla+p) =cla)e(B) and w(a+f)=w(a)w(B).

Here H*(X) is the direct product H*(X) = [I, H4(X).

As an immediate application of these product formulas, we can deduce a
“splitting principle” for characteristic classes. We now explain this principle.

Recall that an n - dimensional bundle ¢ over X splits as a sum of n line
bundles if and only if its associated principal bundle has an O(1) x --- x O(1)
- structure. That is, the classifying map f. : X — BO(n) lifts to the n -fold
product, BO(1)™. The analogous observation also holds for complex vector
bundles. If we have such a lifting, then in cohomology, f¥ : H*(BO(n); Zs) —
H*(X;Zs) factors through ®, H*(BO(1);Zs).

The “splitting principle” for characteristic classes says that this cohomo-
logical property always happens.



130 Bundles, Homotopy, and Manifolds
To state this more carefully, recall that H*(BO(1); Za) = Zo[w1]. Thus
H*(BO<1)7L, Zg) = Zg[l‘l, tee ,.’En]

where z; € H! is the generator of the cohomology of the 4t factor in this
product. Similarly,
H*(BU(l)n> = Z[yla T ’yn]

where y; € H? is the generator of the cohomology of the j* factor in this
product.

Notice that the symmetric group ¥, acts on these polynomial algebras
by permuting the generators. The subalgebra consisting of polynomials fixed
under this symmetric group action is called the algebra of symmetric polyno-
mials, Sym[z1,- -, zn] or Symlyr, -+, yn]-

Theorem 5.20. (Splitting Principle.) The maps
w:BU(1)" —- BU(n) and p:BO(1)" — BO(n)

induce injections in cohomology

p*: H*(BU(n)) —» H*(BU(1)") and u*: H*(BO(n);Zs) — H*(BO(1)"; Z2).

Furthermore the images of these monomorphisms are the symmetric polyno-
mials

H*(BU(n)) = Sym[y1, -+ ,yn] and H*(BO(n);Zs) = Symlz1, -+, 2]

Proof. By the Whitney sum formula,

prwy)) = Y w; ®---®w,, € H(BO(1):Z:) ®---© H*(BO(1); Zs).
Jitetin=i

But w;(71) = 0 unless ¢ = 0, 1. So

p(wj) = Z Ty @y € Lo[Ty, -, 2y
1<y < <i;<n
This is the j** - elementary symmetric polynomial, o;(x1,- -+ ,2y,). Thus the
image of Za[wy, -+ ,w,] = H*(BO(n); Z2) is the subalgebra of Zs[z1, - - , Ty
generated by the elementary symmetric polynomials, Zloy,:--,0,]. But
it is well known that the elementary symmetric polynomials generate
Sym[z1,- -, 2] (see [37]). The complex case is proved similarly. O

This result gives another way of producing characteristic classes which is
particularly useful in index theory.
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Let p(z) be a power series in one variable, which is assumed to have a
grading equal to one. Say
p(x) = Z a;x".
i

Consider the corresponding symmetric power series in n -variables,

p(x1, -+ wn) = plar) - p(an).

Let pj(z1,--- ,zy) be the homogeneous component of p(z1,- - - , x,,) of grading
j. So
pi(T1, 0, w0) = Z Qiy * " A, TY T
it tin=j

Since p; is symmetric, by the splitting principle we can think of
pj € H(BO(n);Zs)

and hence determines a characteristic class (i.e a polynomial in the Stiefel -
Whitney classes).

Similarly if we give x grading 2, we can think of p; € H?*/(BU(n)) and so
determines a polynomial in the Chern classes.

H(BO(n); Zy) or fi € H¥*(BU(n); Zs).

In particular, given a real valued smooth function y = f(x), its Tay-
)
lor series pf(xz) = >, ! k,(o)xk determines characteristic classes f; €

Exercise. Consider the examples f(x) = e®, and f(z) = tanh(x). Write the
low dimensional characteristic classes f; in H*(BU(n)) for i = 1,2,3, as
explicit polynomials in the Chern classes.

5.4 Applications

In this section all cohomology will be taken with Zs - coefficients, even if not
explicitly written.

5.4.1 Characteristic classes of manifolds

We have seen that the characteristic classes of trivial bundles are trivial. How-
ever the converse is not true, as we will now see, by examining the character-
istic classes of manifolds.

Definition 5.6. The characteristic classes of a manifold M, w;(M), ¢;(M),
are defined to be the characteristic classes of the tangent bundle, Tas.
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Theorem 5.21. w;(S™) =0 for all j,n > 0.

Proof. As we saw in chapter 1, the normal bundle of the standard embedding
S™ <3 R™*! is a trivial line bundle. Thus

TSn @ €1 =~ €En+1
and so Tgn+1 is stably trivial. The theorem follows. O
Of course we know 7g2 is nontrivial since it has no nowhere zero cross
sections. Thus the Stiefel- Whitney classes do not form a complete invariant

of the bundle. However they do constitute a very important class of invariants,
as we will see below.

Write a € H'(RP";Zsy) = Zy as the generator. Then the total Stiefel -
Whitney class of the canonical line bundle ~; is

w(n) =14a€ H(RP").

This allows us to compute the Stiefel - Whitney classes of RP™ (i.e of the
tangent bundle 7gpn ).

Theorem 5.22. w(RP") = (1 + a)"™' € H*(RP";Zs). So w;(RP") =
("th)a? € HI (RP™).

Note: Even though the polynomial (1 + a)"*! has highest degree term
a1 this class is zero in H*(RP™) since H" ! (RP") = 0.

Proof. As seen in chapter 1,
TRpr D €1 = Bpy1v1-
Thus
w(mrpn ) = w(TREr D €1)
w(Bn+171)

w(%)wrl

=(1+a)".

, by the Whitney sum formula

O

Observation. The same argument shows that the total Chern class of CP"”
is

¢(CP") = (1 + a)"*! (5.10)
where a € H?(CP"Z) is the generator.
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This calculation of the Stiefel - Whitney classes of RP™ allows us to rule out
the possibility that many of these projective spaces are parallelizable.

Corollary 5.23. IfRP" is parallelizable, then n is of the form n = 2F —1 for
some k.

Proof. We show that if n # 2¥ — 1 then there is some j > 0 such that
w; (RP™) # 0. But w; (RP"™) = ("j.l)aj, so we are reduced to verifying that if m
is not a power of 2, then thereisa j € {1,--- ,m—1} such that (T) = 1 mod2.
This follows immediately from the following combinatorial lemma, whose proof
we leave to the reader.

Lemma 5.24. Let j € {1,--- ,m — 1}. Write j and m in their binary repre-
sentations,

k
m = Z ai2i
=0
k
j=> b2
=0

where the a;’s and b;’s are either 0 or 1. Then

(5) =11 5) o

Note. Here we are adopting the usual conventions that (8) =1 and ((1)) = 0.

O

Since we know that Lie groups are parallelizable, this result says that RP™
can only have a Lie group structure if n is of the form 2* — 1. However a
famous theorem of Adams [1] says that the only RP™’s that are parallelizable
are RP!', RP3, and RP”.

Now as seen in chapter 2 an n - dimensional vector bundle (™ has k -
linearly independent cross sections if and only if

Cn o~ pn—k @ e

for some n — k dimensional bundle p. Moreover, having this structure is equiv-
alent to the classifying map

fC X = BO(TL)

having a lift (up to homotopy) to a map f, : X — BO(n — k).
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Now the Stiefel - Whitney classes give natural obstructions to the existence
of such a lift because the map ¢ : BO(n — k) — BO(n) induces the map of
rings

U Lofwa, o wn] = Zowr, - wp—g]
that maps w; to w; for j < n—£k, and w; to 0 for n > j > n—k. We therefore

have the following result.

Theorem 5.25. Let ¢ be an n -dimensional bundle over X. Suppose wy(Q)
is nonzero in H*(X;Zy). Then ¢ has no more than n— k linearly independent
cross sections. In particular, if w, () # 0, then ¢ does not have a nowhere
zero cross section.

This result has applications to the existence of linearly independent vector
fields on a manifold. The following is an example.

Theorem 5.26. If m is even, RP™ does not have a nowhere zero vector field.
Proof. By 5.22

m

1
wm(R]P)’m,) — (m + )anl
=(m+1)a™ € H™(RP™; Zs).

For m even this is nonzero. Hence w,, (RP™) # 0. O

5.4.2 Normal bundles and immersions

Theorem 5.25 has important applications to the existence of immersions of a
manifold M in Euclidean space, which we now discuss.

Let e : M™ 9 R"™* be an immersion. Recall that this means that the
derivative at each point,

De(x) : TyM"™ — Ty R = R™F

is injective. Recall also that the Inverse Function Theorem implies that an
immersion is a local embedding.

The immersion e defines a k - dimensional normal bundle v* whose fiber
at « € M is the orthogonal complement of the image of T, M™ in R"** under
De(z). In particular we have

k ~ ~
Trn OV = e e X €k

Thus we have the Whitney sum relation among the Stiefel - Whitney classes
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w(M™) - wr) = 1. (5.11)

So we can compute the Stiefel - Whitney clases of the normal bundle
formally as the power series

wvk) = 1/w(M) € H*(M;Zs).

This proves the following;:

Proposition 5.27. The Stiefel - Whitney classes of the normal bundle to an
immersion e : M™ 9 R™"* are independent of the immersion. They are called
the normal Stiefel - Whitney classes, and are written w;(M). These classes
are determined by the formula

w(M)-w(M)=1.

Example. w(RP") = 1/(1 + a)"*! € H*(RP"; Zy).

So for example, when n = 2%, k > 0, w(R]P’Qk) =1+a+a?". This is true since

by 5.24 (Qk:'l) = 1mod?2 if and only if r = 0,1,2*. Thus the total normal
Stiefel - Whitney class is given by

@RP)=1/1+a+a*)=1+a+a*+ - +a* L

Note. The reason this series is truncated a a2 ~! is because
I+at+a®)14a+a®+-+a> 1) =1€e H (RP"; Z,)
since HY(RP™) = 0 for ¢ > n.

Corollary 5.28. There is no immersion of RP?" in RN for N < 2k+1 9,

Proof. The above calculation shows that ’lI}2k_1(R]P2k) # 0. Thus it cannot
have a normal bundle of dimension less than 2¥ — 1. The result follows. O

In the 1940’s, Whitney proved the following seminal result in the theory
of embeddings and immersions [?]

Theorem 5.29. Let M™ be a closed n - dimensional manifold. Then there is
an embedding
e: M" — R
and an immersion
vi M™ s R
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Thus combining these results gives the following best immersion dimension
for RP2".

Corollary 5.30. RP?* has an immersion in R2" =1 but not in R2""' 2.

A natural question raised by Whitney’s theorem is to find the best possible
immersion dimension for other manifolds, or for some class of manifolds. In
general this is a very difficult problem. However by the following important
result of Smale and Hirsch [30], this is purely a bundle theoretic question, and
ultimately a homotopy theoretic question (via classifying maps).

Theorem 5.31. Let M™ be a closed n - manifold. Then M™ immerses in
R™ % if and only if there is a k - dimensional bundle v* over M™ with

Ty D A= €ntk-

Thus questions of immersions boil down to bundle theoretic questions. By
classifying space theory they can be viewed as homotopy theoretic questions.
More specifically, let v : M — BO represent the element in KO(X) given by

V] = —[rm] € KO(X).

Notice that if viewed with values in BO(N), for N large, v classifies the normal
bundle of an embedding of M™ in Rt and in particular

v (w;) = wi(M) € H'(M;Zs).

v: M — BO is called the “stable normal bundle” map of M. The following is
an interpretation of the above theorem of Smale and Hirsch using classifying
space theory.

Theorem 5.32. M™ admits an immersion in R** if and only if the stable
normal bundle map v : M — BO has a homotopy lifting to a map

v : M — BO(k).

In the late 1950’s, Wu, in China, computed a formula for how the Steenrod
square cohomology operations are affected by Poincare duality in a manifold.
W. Massey then used Wu’s formulas to prove the following [40]:

Write an integer n in its binary expansion

k

n:ZaiQi

=0
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where each a; is 0 or 1. Let

an)=>a;. (5.12)
So a(n) is the number of ones in the base 2 representation of n.

Theorem 5.33. Let M™ be a closed n - dimensional manifold. Then
’J)l(Mn) =0
fori>mn—a(n).

Thus Stiefel - Whitney classes give no obstruction to existence of immer-
sions of n - manifolds in R?*~*(™) The conjecture that every n - manifold does
indeed immerse in this dimension became known as the “Immersion Conjec-
ture”, and was proved in [?].

Theorem 5.34. Every closed manifold M™ immerses in R~

This theorem was proved homotopy theoretically. Namely it was shown
that the stable normal bundle map v : M™ — BO always has a lift (up to
homotopy) to a map M™ — BO(n—a«(n)). The theorem then follows from the
Hirsch - Smale theorem 5.31. The lifting to BO(n — a(n)) was constructed in
two steps. First, by work of Brown and Peterson [?] there is a “universal space
for normal bundles” BO/I,, and a map p : BO/I,, — BO with the property
that every stable normal bundle map from an n - manifold v : M™ — BO
lifts to a map 7 : M™ — BO/I,,. Then the main work in [?] was to develop an
obstruction theory to analyze the homotopy types of BO/I,, and BO(n—a(n))
to show that p : BO/I, — BO lifts to a map p : BO/I,, = BO(n — a(n)).
The composition

M" —— BO/I, —"— BO(n— a(n))
then classifies the normal bundle of an immersion M" g R2n—(n)

This result, and indeed Massey’s theorem 5.33 are best possible, as can
be seen by the following example.

Let e : RP? 95 R? "' ~1 be an immersion which is guaranteed by Whit-
ney’s theorem. Now write n in its binary expansion

where the 0 < j; < -+ < j, and 7 = «a(n). Consider the n - dimensional
manifold _ _
M" =RP?" x ... x RP?".
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Consider the product immersion

e: M" = RP?' x ... x RpY" S0, gaitiot Ly RTTI1 _ R2n—a(n),

Since M™ = RP?" x ... x RPWT, the Whitney sum formula will imply that
ﬁ}n—a(n) (M”) = Wayj, _1(RP2j1) R ® wQJ'r_l(Rszr)

which, by the proof of 5.28 is nonzero. Hence M™ does not have an immersion
in R2rn—a(n)-1

Other results along these lines includes a fair amount known about the
best immersion dimensions of projective spaces (see [?]). However the best
immersion dimensions of all manifolds with structure, say an orientation or
an almost complex structure, is unknown. Also the best embedding dimension
for all n - manifolds is unknown.

5.5 Pontrjagin Classes

In this section we define and study Pontrjagin classes. These are integral char-
acteristic classes for real vector bundles and are defined in terms of the Chern
classes of the complexification of the bundle. We will then show that polynomi-
als in Pontrjagin classes and the Euler class define all possible characteristic
classes for oriented, real vector bundles when the values of the character-
istic classes is cohomology with coefficients in an integral domain R which
contains 1/2. By the classification theorem,to deduce this we must compute
H*(BSO(n); R). For this calculation we follow the treatment given in Milnor
and Stasheff [47].

5.5.1 Orientations and Complex Conjugates

We begin with a reexamination of certain basic properties of complex vector
bundles.

Let V be an n - dimensional C - vector space with basis {v1, - ,v,}.
By multiplication of these basis vectors by the complex number i, we get a
collection of 2n - vectors {vy, vy, va, V2, -+ , Up,iv, } which forms a basis for
V as a real 2n - dimensional vector space. This basis then determines an
orientation of the underlying real vector space V.
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Exercise. Show that the orientation of V' that the basis
{v1,iv1,vg, v, -+ , Uy, iU, } determines is independent of the choice of the
original basis {vy,- -+ ,v,}

Thus every complex vector space V' has a canonical orientation. By choos-
ing this orientation for every fiber of a complex vector bundle ¢, we see that
every complex vector bundle has a canonical orientation. By the results of
section 2 this means that every n - dimensional complex vector bundle ¢ over
a space X has a canonical choice of Thom class u € H**(T(¢)) and hence
Euler class

X(Q) = ca(Q) € H*™(X).

Now given a complex bundle ¢ there exists a conjugate bundle ¢ which is
equal to ¢ as a real, 2n - dimensional bundle, but whose complex structure is
conjugate. More specifically, recall that a complex structure on a 2n - dimen-
sional real bundle ¢ determines and is determined by a linear transformation

Je: (= (¢

with the property that J<2 = JsoJs = —id. If ¢ has a complex structure then
J¢ is just scalar multiplication by the complex number i on each fiber. If we
replace J; by —J; we define a new complex structure on ¢ referred to as the
conjugate complex structure. We write ¢ to denote ¢ with this structure. That
is,

Je=—Jy.

Notice that the identity map -
id: ¢ —(

is anti-complex linear (or conjugate complex linear) in the sense that
id(Je - v) = —Jg - id(v).
We note that the conjugate bundle  is often not isomorphic to ¢ as com-

plex vector bundles. For example, consider the two dimensional sphere as
complex projective space

S$? = CP! = C U .

The tangent bundle 7cp:1 has the induced structure as a complex line bundle.

Proposition 5.35. The complex line bundles Tg2 and Tg2 are not isomorphic.
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Proof. Suppose ¢ : Tg2 — Tg2 is a isomorphism as complex vector bundles.
Then at every tangent space

by TpS? — T,,5?

is a an isomorphism that reverses the complex structure. Any such isomor-
phism is given by reflection through a line £, in the tangent plane 7}.52.
Therefore for every x we have picked a line £, C T,S?. This defines a (real)
one dimensional subbundle ¢ of 742, which, by the classification theorem is
given by an element of

[S%,BO(1)] = H'(S? Zy) = 0.

Thus ¢ is a trivial subbundle of 7g2. Hence we can find a nowhere vanishing
vector field on $2, which gives us a contradiction. O

Exercise. Let 9, be the conjugate of the universal bundle v,, over BU(n).
By the classification theorem, 7, is classified by a map

q: BU(n) — BU(n)

having the property that ¢*(v,) = J». Using the Grassmannian model of
BU(n), find an explicit description of a map ¢ : BU(n) — BU(n) with this

property.

The following describes the effect of conjugating a vector bundle on its
Chern classes.

Theorem 5.36. c;(¢) = (—1)*c(¢)

Proof. Suppose ( is an n - dimensional bundle. By the classification theorem
and the functorial property of Chern classes it suffices to prove this theorem
when ( is the universal bundle v, over BU(n). Now in our calculations of
the cohomology of these classifying spaces, we proved that the inclusion ¢ :
BU(k) — BU(n) induces an isomorphism in cohomology in dimension k,

V¥« H2*(BU(n)) ——— H2*(BU(k)).

Hence it suffices to prove this theorem for the universal k - dimensional bundle
v over BU (k).

Now ¢k () = x(7k) and similarly, ¢, (J%) = x(J%)- So it suffices to prove
that

X(v) = (=) x ().

But by the observations above, this is equivalent to showing that the canonical
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orientation of the underlying real 2k - dimensional bundle from the complex
structures of v, and 4, are the same if k is even, and opposite if k is odd.
To do this we only need to compare the orientations at a single point. Let
x € BU(k) be given by Ck C C* as the first k - coordinates. If {e1, - , ey}
forms the standard basis for C*, then the orientations of 4 (x) determined by
the complex structures of v, and 7 are respectively represented by the real
bases
{e1,ie1,- -+ ,ex,iex} and {er,—iey, -+ ,er, —iex}.

The change of basis matrix between these two basis has determinant (—1)*.
The theorem follows. O

Now suppose 7 is a real n - dimensional vector bundle over a space X, we
then let nc be its complexification

nc =n®rC.
nc has the obvious structure as an n - dimensional complex vector bundle.
Proposition 5.37. There is an isomorphism

¢:nc — fc.

Proof. Define

¢ :nec — e
nxC—-neC
VRz—=>VQRZ

for v € n and z € C. Clearly ¢ is an isomorphism of complex vector bundles.
O

Corollary 5.38. For a real n - dimensional bundle n, then for k odd,

2Ck (77((:) = 0

Proof. By 5.36 and 5.37

ce(ne) = (=1)*er(ne).

Hence for k odd ck(nc) has order 2. O
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5.5.2 Pontrjagin classes

We now use these results to define Pontrjagin classes for real vector bundles.

Definition 5.7. Let i be an n - dimensional real vector bundle over a space
X. Then define the i*" - Pontrjagin class

pi(n) € H*(X;Z)

by the formula 4
pi(n) = (=1)"cai(nc).

Remark. The signs used in this definition are done to make calculations in
the next section come out easily.

As we’ve done with Stiefel - Whitney and Chern classes, define the total
Pontrjagin class

p(n) =1+pi(n)+-- +pi(n) +--- € H (X, Z).

The following is the Whitney sum formula for Pontrjagin classes, and fol-
lows immediately for the Whitney sum formula for Chern classes and 5.38.

Theorem 5.39. For real bundles n and & over X, we have

2(p(n @ &) —pnp(§)) =0 € H*(X;Z).

In particular if R is a commutative integral domain containing 1/2, then
viewed as characteristic classes with values in H*(X; R), we have

p(n® &) =p(n)p(&) € H (X : R).

Remark. Most often Pontryagin classes are viewed as having values in
rational cohomology, and so the formula p(n @ &) = p(n)p(€) applies.

We now study the Pontrjagin classes of a complex vector bundle. Let ¢ be
a complex n - dimensional bundle over a space X, and let (¢ = ( ®g C be
the complexification of its underlying real 2n - dimensional bundle. So (¢ is a
complex 2n - dimensional bundle. We leave the proof of the following to the
reader.

Proposition 5.40. As complex 2n - dimensional bundles,

(c=(ad
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This result, together with 5.36 and the definition of Pontrjagin classes
imply the following.

Corollary 5.41. Let { be a complex n - dimensional bundle. Then its Pon-
tryagin classes are determined by its Chern classes according to the formula

l—prt+pr—-Etpp=1-ci+eca—Fcy)(l+erteat--+cp)
c H*(X,Z).

Example. We will compute the Pontrjagin classes of the tangent bundle of
projective space, 7cpn. Recall that the total Chern class is given by

c(mepn) = (1 + a)”+1

where a € H?(CP") = Z is the generator. Notice that this implies that for
the conjugate, Tcpn we have

C(ﬁcpn) = (1 — a)”“
Thus by the above formula we have
L=pitpa—-tpy = (1+a)"(1-a)"H
_ (1 _ a2)n+1'

We therefore have the formula
1
pi(CP™) = ("Z >a2k € HY%*(CP").

Now let 1 be an oriented real n- dimensional vector bundle. Then the
complexification nc = n ® C = n & in which is simply 1 & n as real vector
bundles.

Lemma 5.42. The above isomorphism

nc=non

of real vector bundles takes the canonical orientation of nc to (—1) 20 fimes

the orientation of n @ n induced from the given orientation of 7).

Proof. Pick a particular fiber, n,.. Let {v1,--- ,v,} be a C - basis for V. Then
the basis {vy, vy, -, vpiv, } determines the orientation for n, ® C. However
the basis {v,- -+ ,vp,dv1, - v, } gives the natural basis for (n @ in),. The

change of basis matrix has determinant (—1) e O
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Corollary 5.43. Ifn is an oriented 2k - dimensional real vector bundle, then

pe(n) = x(n)* € H*(X).

Proof.

—1)¥cop(n x C)
-1)*x(n®C)
—DF(=1)FCDx(n @ n)

pr(n) =

5.5.3 Oriented characteristic classes

We now use the results above to show that Pontrjagin classes and the Euler
class yield all possible characteristic classes for oriented vector bundles, if the
coefficient ring contains 1/2. More specifically we prove the following.

Theorem 5.44. Let R be an integral domain containing 1/2. Then
H*(BSO(2n+1); R) = Rp1,- -+ ,px]
H*(BSO(2n); R) = R[p1, -+ ,pa—1, X(72n)]

Remark. This theorem can be restated by saying that H(BSO(n); R) is
generated by {p1,---,p 21} and X, subject only to the relations

x =0 ifnisodd

X2 = Plny2)  if n is even.

Proof. In this proof all cohomology will be taken with R coefficients. We first
observe that since SO(1) is the trivial group, BSO(1) is contractible, and so
H*(BSO(1)) = 0. This will be the first step in an inductive proof. So we
assume the theorem has been proved for BSO(n — 1), and we now compute
H*(BSO(n)) using the Gysin sequence:

o H7YBSO(n — 1)) —2>— H™™(BSO(n)) —2-  HYBSO(n))  ——s

H(BSO(n — 1)) % HIPY(BSO(n)) —2X s HIH(BSO()) — -
(5.13)
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Case 1. n is even.

Since the first n/2 — 1 Pontrjagin classes are defined in H*(BSO(n)) as
well as in H*(BSO(n — 1)), the inductive assumption implies that ¢* :
H*(BSO(n)) — H*(BSO(n — 1)) is surjective. Thus the Gysin sequence
reduces to short exact sequences

0 — HY(BSO(n)) —2s HI"(BSO(n)) —"—s HI"(BSO(n— 1)) — 0.

The inductive step then follows.

Case 2. n is odd, say n = 2m + 1.

By 5.13 in this case the Euler class x has order two in integral cohomology.
Thus since R contains 1/2, in cohomology with R coefficients, the Euler class
is zero. Thus the Gysin sequence reduces to short exact sequences:

0 HI(BSO(2m +1)) —— H*(BSO(2m)) — HI 2" (BSO(2m +1)) = 0.

Thus the map ¢* makes H*(BSO(2m + 1)) a subalgebra of H*(BSO(2m)).
This subalgeabra contains the Pontrjagin classes and hence it contains the
graded algebra A* = Rp1,- - pm). By computing ranks we will now show
that this is the entire image of +*. This will complete the inductive step in this
case.

So inductively assume that the rank of A7~! is equal to the rank of
HI(BSO(2m + 1)). Now we know that every element of H/(BSO(2m)) can
be written uniquely as a sum a 4+ xb where a € A7 and b € A7=?™. Thus

HI(BSO(2m)) = AY @ AJ—2m
which implies that
rk(H?(BSO(2m)) = rk(A7) + rk(AT=2™),
But by the exactness of the above sequence,
rk(H(BSO(2m)) = rk(H?(BSO(2m + 1)) + rk(H’~?™(BSO(2m + 1))).

Comparing these two equations, and using our inductive assumption, we con-
clude that ‘ _
rk(H?(BSO(2m + 1)) = rk(A7).

Thus A7 = *(H’7(BSO(2m + 1))), which completes the inductive argument.
O
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5.6 Connections, Curvature, and Characteristic Classes

In this section we describe how Chern and Pontrjagin classes can be defined
using connections (i.e covariant derivatives) on vector bundles. What we will
describe is an introduction to the theory of Chern and Weil that describe the
cohomology of a classifying space of a compact Lie group in terms of invariant
polynomials on its Lie algebra. The treatment we will follow is from Milnor
and Stasheff [47].

Definition 5.8. Let M, (C) be the ring of n x n matrices over C. Then an
invariant polynomial on M, (C) is a function

P:M,(C)—C

which can be expressed as a complex polynomial in the entries of the matrix,
and satisfies,
P(ABA™') = P(B)

for every B € M,,(C) and A € GL(n,C).

Examples. The trace function (a; ;) — Z?Zl a;; and the determinant
function are examples of invariant polynomials on M, (C).

Now let D4 : Q°(M;¢) — QY(M;¢) be a connection (or covariant derivative)
on a complex n - dimensional vector bundle (. Its curvature is a a two- form
with values in the endomorphism bundle

Fa € Q*(M; End(¢))

The endomorphism bundle can be described alternatively as follows. Let E; be
the principal GL(n, C) bundle associated to ¢. Then of course ¢ = E¢ ®¢rn,c)
C™. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.

Proposition 5.45.
End(() = a’d(C) = EC XGL(n,(C) Mn((c)
where GL(n,C) acts on M, (bc) by conjugation,

A-B=ABA™ !
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Let w be a differential p - form on M with values in End((),
w € QP(M; End(¢)) = QP (M; ad(C)) = QP(M; E¢ Xgr(n,c) Ma(C)).

Then on a coordinate chart U C M with local trivialization ¢ : (|, = U x C"
for ¢, and hence the induced coordinate chart and local trivialization for ad((),
w can be viewed as an n X n matrix of p -forms on M. We write

w = (wij)-

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x € U, then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (w; j(x)) and (w; ;(x)) are two
matrix descriptions of w(z) defined by two different local trivializations of ¢,
then there exists an A € GL(n,C) with

Alwij(2) A7 = (wi ;(2)).

Now let P be an invariant polynomial on M, (C) of degree d. Then using
the wedge bracket we can apply P to a matrix of p forms, and produce a
differential form of top dimension pd on U C M: P(w; ;) € QP4(U). Now
since the polynomial P is invariant under conjugation the form P(w; ;) is
independent of the local trivialization of ¢|,,. These forms therefore fit together
to give a well defined global form

P(w) € Q*(M). (5.14)
If Pis homogeneous of degree d, then

P(w) € QPY(M) (5.15)

An important example is when w = F4 € Q?(M; End(()) is the curvature
form of a connection D4 on (. We have the following fundamental lemma,
that will allow us to define characteristic classes in terms of these forms and
invariant polynomials.

Lemma 5.46. For any connection D 4o and invariant polynomial (or invariant
power series) P, the differential form P(F4) is closed. That is,

dP(F4) = 0.

Proof. (following Milnor and Stasheff [47]) Let P be an invariant polynomial
or power series. We write P(A) = P(a;,;) where the a; ;’s are the entries of the
matrix. We can then consider the matrix of partial derivatives (0P/0(x; ;))
where the z; ;’s are indeterminates. Let Iy = (wi’j) be the curvature matrix



148 Bundles, Homotopy, and Manifolds

of two - forms on an open set U with a given trivialization. Then the exterior
derivative has the following local expression

dP(Fa) =Y (OP/0w; j)dw; ;. (5.16)
In matrix notation this can be written as
dP(Fa) = trace(P'(Fa)dF4)

Now as seen in chapter 1, on a trivial bundle, and hence on this local coordinate
patch, a connection D4 can be viewed as a matrix valued one form,

Da = (o)
and with respect to which the curvature F4 has the formula

Wi = daij = Y Wi AW -
k

In matrix notation we write
Fy=da—aAa.
Differentiating yields the following form of the Bianchi identity
dFy =aNF4—Fj4Aa. (5.17)

We need the following observation.

Claim. The transpose of the matrix of first derivatives of an invariant
polynomial (or power series) P'(A) commutes with A.

Proof. Let E;; be the matrix with entry 1 in the (j,)-th place and zeros in
all other coordinates. Now differentiate the equation

P((I+1tE;;)A) = P(A(I +tE;;))
with respect to t and then setting ¢ = 0 yields

> Ak (0P/0A; 1) =D (OP/0Ak;) Ak
k

k
Thus the matrix A commutes with the transpose of (9P/0Ai, j) as claimed.
O

We now complete the proof of the lemma. Substituting F4 for the matrix
of indeterminates in the above claim means we have

FA/\P/(FA)ZP/(FA)/\FA. (5.18)
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Now for notational convenience let X = P’(F4) A a. Then substituting the
Bianchi identity 5.17 into 5.16 and using 5.18 we obtain

dP(Fp) =trace (X NFy — Fy A X)
= Z(Xi’j ANwji —wji N Xi’j).

Since each X; ; commutes with the 2 - form w; ;, this sum is zero, which proves
the lemma. O

Thus for any connection D4 on the complex vector bundle ¢ over M, and
invariant polynomial P, the form P(Fj4) represents a deRham cohomology
class with complex coefficients. That is,

[P(Fp)) € H*(M : C).

Theorem 5.47. The cohomology class [P(F4)] € H*(X,C) is independent
of the connection D 4.

Proof. Let Dy, and D4, be two connections on ¢. Pull back the bundle ¢ over
M x R via the projection map M x R — M. Call this pull - back bundle ¢
over M x R. We get the induced pull back connections Dg4,, i = 0,1 as well.
We can then form the linear combination of connections

Dy =1tDa, + (1 —t)Da,.

Then P(F4) is a deRham cocycle on M xR. Now let ¢ = 0 or 1 and consider the
inclusions j; : M = M x{i} < M xR. The induced connection j*(D4) = Dy,
on (. But since there is an obvious homotopy between jo and j; and hence
the cohomology classes

o (P(Fa)) = P(Fa,)] = [j1(P(Fa)) = P(Fa,)].
This proves the theorem. O

Thus the invariant polynomial P determines a cohomology class given
any bundle ¢ over a smooth manifold. It is immediate that these classes are
preserved under pull - back, and are hence characteristic classes for U(n)
bundles, and hence are given by elements of

H*(BU(n);C) 2 Cley, -+ 4 ¢l
In order to see how an invariant polynomial corresponds to a polynomial in
the Chern classes we need the following bit of algebra.

Recall the elementary symmetric polynomials o1,---0, in n -variables,
discussed in section 3. If we view the n - variables as the eigenvalues of an
n X n matrix, we can write

det(I +tA) =1+ to(A) + -+ t"o(A). (5.19)
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Lemma 5.48. Any invariant polynomial on M, (C) can be expressed as a
polynomial of o1, ,0p.

Proof. Given A € M, (C), chose a B such that BAB~! is in Jordan canonical
form. Replacing B with diag(e,€?,--- ,e")B, we can make the off diagonal
entries arbitrarily close to zero. By continuity it follows that P(A) depends
only on the diagonal entries of BAB~!, i,e the eigenvalues of A. Since P(A)
is invariant, it must be a symmetric polynomial of these eigenvalues. Hence it
is a polynomial in the elementary symmetric polynomials. 0

So we now consider the elementary symmetric polynomials, viewed as in-
variant polynomials in M, (C). Hence by the above constructions they deter-
mine characteristic classes [0,.(Fa)] € H?"(M;C) where Fy4 is a connection
on a vector bundle ¢ over M.

Now we’ve seen the elementary symmetric functions before in the context
of characteristic classes. Namely we’ve seen that H*(BU (n)) can be viewed as
the subalgebra of symmetric polynomials in Z[xy, - - x,] = H*(BU(1) x - -+ X
BU(1)), with the Chern class C). corresponding to the elementary symmetric
polynomial o,. This was the phenomenon of the splitting principle.

We will now use a splitting principle argument to prove the following.

Theorem 5.49. Let ¢ be a complex n - dimensional vector bundle with con-
nection Da. Then the cohomology class [0,.(Fa)] € H?*"(X;C) is equal to
(278)" ¢, (C), forr=1,--- ,n.

Proof. We first prove this theorem for complex line bundles. That is, n = 1.
In this case 01 (Fa) = Fa which is a closed form in Q?(M;ad(¢)) = Q?(M;C)
because the adjoint action of GL(1,C) is trivial since it is an abelian group. In
particular F4 is closed in this case by 5.46. Thus F4 represents a cohomology
class in H%(M;C). Moreover as seen above, this cohomology class [Fa] is a
characteristic class for line bundles and hence is an element of H2(BU(1);C) =
C generated by the first Chern class ¢; € H2(BU(1)). So for this case we need

to prove the following generalization of the Gauss - Bonnet theorem.

Lemma 5.50. Let ( be a complex line bundle over a manifold M with con-
nection D 4. Then the curvature form Fa is a closed two - form representing
the cohomology class

[Fa] = 2mici(C) = 2mix(C)-

Before we prove this lemma we show how this lemma can in fact be in-
terpreted as a generalization of the classical Gauss - Bonnet theorem. So let
D4 be a unitary connection on (. (That is, D4 is induced by a connection
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on an associated principal U(1) - bundle.) If we view ¢ as a two dimensional,
oriented vector bundle which, to keep notation straight we refer to as (g, then
D, induces (and is induced by) a connection D4, on the real bundle (g.
Notice that since SO(2) = U(1) then orthogonal connections on oriented real
two dimensional bundes are equivalent to unitary connections on complex line
bundles.

Since SO(2) is abelian, the real adjoint bundle

ad(Cr) = E¢; Xso(2) Ma(R)
is trivial. Hence the curvature F4, is then a 2 x 2 matrix valued two - form.
Fa, € Q*(M; My(R)).

Moreover, since the Lie algebra of SO(2) consists of skew symmetric 2 x 2 real
matrices, then it is straightforward to check the following relation between
the original complex valued connection F4 € Q2?(M;C) and the real curvature
form Fa, € QY(M; M3(R)).

Claim. If F4, is written as the skew symmetric matrix of 2 — forms

Fa= (0, ) e@0nnm)

then
Fa =iw € Q*(M;C).

When the original connection Dy, is the Levi - Civita connection associated
to a Riemannian metric on the tangent bundle of a Riemann surface, the
curvature form

w e Q*(M,R)

is referred to as the “Gauss - Bonnet”” connection. If dA denotes the area
form with respect to the metric, then we can write

w=~rdA

then k is a scalar valued function called the “Gaussian curvature” of the
Riemann surface M. In this case, by the claim we have [F4]| = 2mix(7(M)),
and since

(X (T (M), [M]) = xar,

Where x s the Euler characteristic of M, we have

<[FA],[M]>=/MFA=i/Mw:i/MmdA.

Thus the above lemma applied to this case, which states that

([Fal, [M]) = 2mixnm
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is equivalent to the classical Gauss - Bonnet theorem which states that

/ kdA =2mxp = 2m(2 — 2g) (5.20)
M

where g is the genus of the Riemann surface M.

We now prove the above lemma.

Proof. As mentioned above, since [F4] is a characteristic class for line bundles,
and so it is some multiple of the first Chern class, say [Fa] = gc1(¢). By the
naturality, the coefficient ¢ is independent of the bundle. So to evaluate q it is
enough to compute it on a specific bundle. We choose the tangent bundle of the
unit sphere g2, equipped with the Levi - Civita connection D4 corresponding
to the usual round metric (or equivalently the metric coming from the complex
strucure S? = CP!). In this case the Gaussian curvature is constant at one,

k=1
Moreover since 7g2 @ €1 = 1 O 71, the Whitney sum formula yields
(c1(8%),[8%]) = 2{er(m). [$7]) = 2.

Thus we have

([Fal, [S%)) = a{ea(5%), [57])
= 2q.

Putting these facts together yields that

q = ([Fal],[5])

5‘2
:i/ rkdA
S2

= z/ dA =i surface area of S2
SZ
=1 -4m.

Hence ¢ = 271, as claimed. O

We now proceed with the proof of theorem 5.49 in the case when the
bundle is a sum of line bundles. By the splitting principal we will then be able
to conclude the theorem is true for all bundles.

Solet (=L, ®---® L, where Lq,--- , L, are complex line bundles over
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M. Let Dq,---, D, be connections on Ly, -+ , L, respectively. Now let D4 be
the connection on ¢ given by the sum of these connections

Da=D1®--- @ Dy.

Notice that with respect to any local trivialization, the curvature ma-
trix F4 is the diagonal n X nm matrix with diagonal entries, the curvatures
Fy,--- | F, of the connections Dy, - - - D,, respectively. Thus the invariant poly-
nomial applied to the curvature form o,.(F4) is given by the symmetric poly-
nomial in the diagonal entries,

UT(FA) ZO'T(Fla"' aFr)-

Now since the curvatures F; are closed 2 - forms on M, we have an equation
of cohomology classes

[JT(FA)] = Jr([Fl]v T 7[Fr])

By the above lemma we therefore have

lor(Fa)l = o, ([F3],- -+, [Fa))
=0, ((2mi)e1(Lr), -+, (2mi)er(Ly))
= (27i)"o,(c1(L), -+ ,c1(Ly,)) since o, is symmetric
= (2m)" ¢, (L1 ®--- @ Ly,) by the splitting principal 5.20
— @ri)en(€)
as claimed.

This proves the theorem when ( is a sum of line bundles. As observed
above, the splitting principal implies that the theorem then must be true for
all bundles. O

We end this section by describing two corollaries of this important theorem.

Corollary 5.51. For any real vector bundle n, the deRham cocycle oay(Fa)
represent the cohomology class (2m)*p(n) € H*(M;R), while [oar+1(Fa)]
is zero in HY¥*+2(M;R).

Proof. This just follows from the definition of the Pontrjagin classes in terms
of the even Chern classes of the complexification, and the fact that the odd
Chern classes of the complexification have order two and therefore represent
the zero class in H*(M;R). O

Recall that a flat connection is one whose curvature is zero. The following
is immediate form the above theorem.
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Corollary 5.52. If a real (or complex) vector bundle has a flat connection,
then all its Pontrjagin (or Chern) classes with rational coefficients are zero.

We recall that a bundle has a flat connection if and only if its structure
group can be reduced to a discrete group. Thus a complex vector bundle with
a discrete structure group has zero Chern classes with rational coeflicients.
This can be interpreted as saying that if . : G C GL(n,C) is the inclusion of
a discrete subgroup, then the map in cohomology,

Qlex, -+ »a) = H*(BU(n); Q) = H*(BGL,(C);Q) —— H*(BG;Q)

is zero.



6

Embeddings and Immersions in Euclidean
Space

|
6.1 The existence of embeddings: The Whitney Embed-
ding Theorem

The following result is often known as the “Easy Whitney Embedding Theo-
rem”. It tells us that we may view any manifold as a submanifold of Euclidean
space.

Theorem 6.1. Let M™ be a C" manifold of dimension n. Then there is a
C"-embedding e : M™ — R for L sufficiently large.

Proof. We prove this theorem in the case when M™ is closed. We refer the
reader to [30] for the general case. Since M™ is compact we can find a finite
atlas {¢;, U;}M | with the following properties:

1. Foralli=1,---,m, By(0) C ¢;(U;) C R", and
2. M =", Int ¢; *(B1(0)).

Here B,.(0) C R™ is the open ball around the origin of radius r.
Let A : R™ — [0,1] be a C* “bump function” such that

- 1 on Bl(O)
Ae) = {O on R"™— By(0)

Define A; : M™ — [0,1] by

N Aog; on U
10 on M™ —U,.

These are “local bump functions”. Notice that the sets S; = )\;1(1) cU;
i=1,---,m cover M".

Now define f; : M™ — R" by

oy Ji(@)gi(x) itz eU;
fz(x)_{o if zeM-—U

155
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Notice that f; is O". Define g;(x) = (fi(z), \i(z)) € R" x R = R"*! and
g= (g1, ,gm) : M" = R" " x ... x R = R+,

g is a C" map. We claim it is an embedding.

If x € 5;, g; is immersive at x, so therefore g is immersive at x. Since the
S;’s cover M™, g; is an immersion. We observe that g is one-to-one.

Suppose = # y and y € S;. If x also lies in S, then since

fig, = i,
then f;(x) # fi(y) since ¢; is injective. If = does not lie in S;, then
Ai(y) =1 # N\i(z).
So g(x) # g(y).

So g : M™ — R™™+1 is an injective immersion. Since M™ is compact, g
is an embedding. O
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FIGURE 6.1
A graph of A when n = 2.

Remark. Notice that this theorem implies that a compact n-manifold M™
can be embedding in any manifold N™ if the dimension of N™ is sufficiently
large. This is because N™ looks locally like Euclidean space, and so by the
above theorem N™ can be embedding in an open set inside M™.

6.1.1 Obstructions to the existence of embeddings and im-
mersions and the immersion conjecture

A stronger version of Theorem 6.1 was proved by H. Whitney in a seminal
paper published in 1944 [68].

Theorem 6.2. [68] A. (Whitney Embedding Theorem) Let M™ be a compact
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C" manifold of dimension n, with r > 1. Then there is a C"-embedding e :
M™ < R2". Furthermore there is a C"-immersion j : M™ 9 R?"~1,

An extension of Whitney’s theorem to the setting of manifolds with bound-
ary is the following;:

Theorem 6.3. Let M™ be a C"-n-dimensional compact manifold with bound-
ary, with r > 1. Then there is a neat C" embedding of M™ into H?".

It is natural to ask if Whitney’s theorem is the best possible. More spectf-
ically, one can ask the following question. From now on all manifolds we con-
sider are closed and C'°°, unless specifically stated otherwise.

Question 1. What is the smallest positive integer ¢(n) so that every
compact n-dimensional manifold can be embedded in R**?(")? Notice that
Whitney’s theorem says that ¢(n) < n.

Question 2. What is the smallest positive integer 1)(n) so that every com-
pact n-dimensional manifold can be immersed in R**%(™? Whitney’s theorem
says that ¥(n) <n — 1.

Question 1 poses a problem that as of this date is unsolved. There are many
results of the best possible embedding dimension for particular n-manifolds,
but general the answer to Question 1 is unknown. However in the case when
n is a power of 2 one can prove that Whitney’s result is best possible. That is,
if n = 2%, then ¢(2%) = 2. We give a sketch of a proof of this fact by proving
the following.

Proposition 6.4. The projective space RP?2" embeds in R by Whitney’s
theorem, but it does not embedd in R2" -1

Proof. We give a sketch of an argument that uses a theory of Haefliger devel-
oped in [28]. For X any space, consider the configuration space of k ordered,
distinct points in X:

F(X, k) ={(x1, -, o) € X" 2y £ if i#j}

Notice that the symmetric group Xy acts freely on F'(X, k) by permuting the
order of the elements.

Notice that if e : M™ < R” is an embedding of a manifold into Euclidean
space, there is an induced map of configuration spaces

F(e): F(M™,2)/%y — F(RF2)/%,.

We claim that F(R,2)/%, has the homotopy type of the projective space
RPE~1. To see this, notice that F(RF, 2) is diffeomorphic to R x (RF —
{0}) via the map that sends (z1,z2) to (z1 + =2, 1 — x2). This is a Xs-
equivariant diffeomorphism, where the action on R x (R — {0}) is given by
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(u,v) — (u, —v). But clearly with respect to this action RY x (RY — {0}) is
Yg-equivariantly homotopy equivalent to the sphere S*~! with the antipodal
Ys-action. Then claim then follows.

Now since any compact n- manifold M™ embeds in RY for L sufficiently
large, and since any two embeddings into sufficiently large dimensional Eu-
clidean space are isotopic (to be discussed below), then one always comes
equipped with a map, well defined up to homotopy,

w: F(M™,2)/Sy — F(R®,2)/S, ~ RP™.

Furthermore, by the above claim, if M™ embeds in R”, this map factors, up
to homotopy, through a map wy : F(M",2)/3; — RPL~1. By Whitney’s
theorem, one can always find such a wy for L = n. However in the case of
M"™ = RIP’Qk, Haefliger showed using obstruction theory that there is no map
war_1 ¢ F(RP,2)/%,) --> RP2* =2 that factors w : F(RP2",2)/5,) — RP™.
This means that RP2* cannot be embedded in R2""'~1. O

Notice that this proposition says that in the case n = 2 the answer to
Question 1 above is ¢(2¥) = 2¥. But as was mentioned above, in general Ques-
tion 1 is unresolved. However, as we have observed, Haefligger’s theory supplies
a homotopy theoretic obstruction to embedding manifolds in Euclidean space.
We remark that in recent years Haefligger’s theory has been generalized to a
theory of “Embedding Calculus”, as developed by T. Goodwillie, M. Weiss,
and others [24], [25], [66] [67]. This is a beautiful and effective theory for study-
ing spaces of embeddings of one manifold into an other, using sophisticated
homotopy theoretic techniques. We encourage the reader to learn more about
this theory.

The situation with immersions instead of embeddings is considerably eas-
ier, due to the following famous result of Hirsch and Smale [31]. This is an
early example of the h-principle (where “h” stands for homotopy) as defined
by Gromov [23] and developed further by Eliashberg and Mishachev [20]. We
now describe the Hirsch-Smale result.

Suppose f : M™ & P"** is an immersion between smooth (C*°) mani-
folds. Then one has the induced map of tangent bundles yielding the commu-
tative diagram

M 2L, ppntk

! |

M™ Pn+k
f

This is an example of a bundle monomorphism , meaning a map of vector
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bundles B
¢ 7 ¢

Lo

X —Y
vy

so that v, : ¢z — &y(z) is a linear monomorphism of vector spaces for each
2z € X. We denote the space of such bundle monomorphisms by Mono(¢,§).
Let Imm(M™, P"**) be the space of immersions, topologized in the space
of all maps given the compact-open topology. Then differentiation induces a
map

D : Imm(M™, P"**) — Mono(TM™, T P"%).

Theorem 6.5. (Hirsch and Smale [31]). Let M™ be a compact, smooth man-
ifold of dimension n, and P"* be a smooth manifold of dimension n+k, with
k > 1. Then the map

D : Imm(M"™, P""*) — Mono(TM™, TP™").
is a weak homotopy equivalence.

Notice that in particular, if Mono(TM™, TR™**) is nonempty, then there
exists an immersion M™ 9 R™*F for k > 1.

Notice furthermore that a bundle monomorphism ~ : TM" — TR"+F
determines a k-dimensional normal bundle,

W:uﬁ—)M”

where 771 (z) = {v € R"** such thatv L (T, M™)}. That is v is the orthog-
onal complement to TM™, inside TR"**. In otherwords,

TM"™ @ vk = M x R,

The following is is a direct consequence of the Hirsch-Smale theorem.

Corollary 6.6. A compact n-manifold M™ immerses in R*T* if and only if
there is a k-dimensional bundle v* — M™ such that

TM" & " =2 M" x R,
We now give an interpretation of these results in terms of classifying spaces.

We use [13] as a reference. This allows one to recast the question of immersing
manifolds into Euclidean space into a homotopy theoretic problem.
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As in chapter 2 of [13] let BO(k) denote the classifying space of k-
dimensional vector bundles, and let B) = limy_, o BO(k). Since every mani-
fold immerses, and indeed embeds in sufficiently high dimensional Euclidean
space means there is a map

v:M" — BO

representing this high dimensional (or “stable” ) normal bundle. This map
is well-defined up to homotopy for the following reason. Given any compact
space X with basepoint, the homotopy classes of basepoint preserving maps
[X, BO] represents the set of stable vector bundles SVect(S), which is iso-
morphic to the reduced K-theory, K O(X), and is therefore an abelian group.
(We refer the reader to chapter 1 of [13] for a discussion of this fact. In par-
ticular the addition in this abelian group corresponds to the Whitney sum of
vector bundles. In this abelian group structure, the stable normal bundle is
the inverse of the stable tangent bundle represented by the composite

™™ : M" — BO(n) — BO.
Thus the stable normal bundle map is well-defined, up to homotopy. We may

therefore restate Corollary 6.6 as follows.

Theorem 6.7. Let M™ be a compact n-manifold and v : M™ — BO represent
its stable normal bundle. Then M™ immerses in R"* if and only if there is
a map v* : M™ — BO(k) so that the composite

k
M™ “~ BO(k) — BO
is homotopic to the stable normal bundle map v : M™ — BO.

Using this theorem, the work of Brown and Peterson [8] [9] [10], and the
author [12], combined to give a resolution of Question 2 above. We now outline
how this was achieved.

In [40] Massey showed that for every closed n-manifold M™, the homo-
morphism induced by the stable normal bundle map

v*: H*(BO;Z/2) - H*(M™,Z/2)

factors through H*(BO(n — a(n)), where a(n) is the number of ones in the
dyadic (base 2) expansion of n. That is to say, there is a homomorphism
v*: H*(BO(2n — a(n); Z/2) — H*(M™;Z/2) so that the composition

H*(BO;Z/2) “5 H*(BO(n — a(n)); Z/2) 2 H*(M™;Z/2)

is equal to v*. Here ¢ : (BO(n — a(n)) — BO is the usual inclusion.
Now recall from [13] that H*(BO;Z/2) = Z/2[wi, - ,wk,---] and that
H*(BO(m);Z/2) =2 Z/2[w;,- - - ,wn] for every m. So Massey’s result can be
restated as the following.
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Theorem 6.8. (Massey [40]) Let M™ be a closed n-dimensional manifold,
and let vy : M™ — BO classify its stable normal bundle. Then

wi(va) =0

for alli >n — a(n).

For a closed n-manifold M™, let Ipyn C H*(BO;Z/2) 2 7./2[wy, - -+ ,w;, -]
be the kernel of the stable normal bundle homomorphism, v* :
H*(BO;Z/2) — H*(M™;Z/2). Let I,, be the intersection

In = ﬂ IMn.
Mm

Here the intersection is taken over all closed n-manifolds. I,, is an ideal in
Z/2[wr,- - ,w;, -], and by Massey’s result we know that w; € I,, for all ¢ >
n — a(n). In [8] [9] Brown and Peterson computed I,, explicitly, thus refining
Massey’s theorem. In [10] they went further and constructed a “universal
space” for normal bundles of n-manifolds, and proved the following theorem.

Theorem 6.9. (Brown and Peterson [10]). For every n there is a space

BO/I,, equipped with a map p, : BO/I, — BO satisfying the following prop-

erties.

1. In cohomology p} : H*(BO;Z/2) — H*BO/I,;7/2) is surjective, with
kernel I,. That s, p}, induces an isomorphism

H*(BO/I,:Z/2) = H*(BO; Z/2)/I,.

2. Ewvery closed n-manifold M™ admits a map Dy : M™ — BO/I,, such that
the composition

M"™ 2 BO/IL, £ BO

is homotopic to the stable normal bundle map vy : M™ — BO.

Notice that by combining the work of Massey and Brown-Peterson, we
have the following commutative diagram for every closed n-manifold M™:

H*(BO;Z/2) et H*(BO(n — a(n); Z/2)

* *
Vymn P

H*(M™Z2/2) «——  H*(BO;Z/2))/1,

N
Vmn

Brown and Peterson’s work [10] can be viewed as realizing a part of this
cohomology diagram as coming from a diagram of spaces:
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BO &t BO(n — a(n))

varn T

M" ——  BO/I,

Vpnrm

In [12] the topological realization of this cohomology diagram was made
complete when the author proved the following.

Theorem 6.10. ([12]) For every n there is a map py, : BO/I, — BO(n —

a(n)) such that the composition BO/I, Ln, BO(n — a(n)) 22y BO s
homotopic to p, : BO/I, — BO as in Theorem 6.9.

Now let M™ be an n-manifold, and let oy @ M™ — BO/I, be as in
Theorem 6.9. Combining Theorem 6.9 with Theorem 6.10 implies that the
composition

D M™ 22 BO/IL, 2% BO(n — a(n))

factors (up to homotopy) the stable normal bundle map vym : M™ — BO.
Then by Theorem 6.7 we can conclude the following theorem.

Theorem 6.11. ([12]) Every closed n-manifold M"™ admits an immersion
Jam : M™ s R0,

We end this section by describing why this is the best possible result. That
is, the answer to Question 2 above, which asks what is the smallest integer 1(n)
such that every closed n-manifold immerses in R**¥(") is ¢)(n) = n — a(n).

We will actually describe a closed manifold M™ whose normal Stiefel-
Whitney class, wy,_q(n)(Van) is nonzero. This would then supply an obstruc-
tion to immersing M" into R2"—a(m)—1,

The manifold M™ can be described as follows. Write n as a sum of distinct
powers of 2:

n=2" 4202 ... 420

Note that r, the number of distinct powers of 2 in this description, is equal to
a(n). We then define

M™ =RP*" x RP*? x --- x RP?".
We then need to prove the following.

Proposition 6.12. The normal Stiefel-Whitney class
Wp—a(n) (VM") € Hn—a(n) (Mn7 Z/Z)

1S NONZEro.
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Proof. We first consider the case when n is a power of 2. That is, n = 27. In
this case a(n) = 1 and M™ = RP?. Recall from [13] that the tangent bundle
of projective space satisfies the following isomorphism:

T(RP™) @ €1 = ®py1m

where v; — RP™ is the canonical line bundle, and €; is the trivial one-
dimensional bundle. This means that there is an isomorphism of total Stiefel-
Whitney classes of the tangent bundle:

w(RP™) = (1 + )™ € H*(RP™;Z/2).
Here a € H'(RP™;7Z/2) is the generator. Thus as a formal power series, we
can think of the total normal Stiefel class w(vgpm) as the inverse:
1 1

w(VRPm) = w(RPm) = (1 +a>m+1 €

12" ®e™;2/2).
k

In the case m = 27, then (1 + )t =1+a+a? + a2j_+1 mod 2. Moreover
since 0 = ¥t € H*(RP?;Z/2), we have that w(RP?') = 1+ a4 a* €
H*(RP?';Z/2). Therefore

1

o =ltatd b+ dt T e IRV Z)2).

W(Vgpai ) =
In particular this says that wa; 1 (Vgpsi ) = a?’ ~1 € H¥ "(RP?; Z/2), which
is nonzero. This proves the proposition in the case n = 27. We now turn to
the general case. _ ‘

Write n = 211 422 4 ... 4 2/ as above, and let M"™ = RP2" x ... x RP?"".
Then the total normal Stiefel-Whitney class is given by

w(vam) = @5 _yw(RP?) = @_; (1+a;+---a?’ 1) € @_ H*(RP*”; Z/2) = H*(M";Z/2).

Notice that the highest dimensional nonzero monomial in this expression is

i1 ir _
2l a2t

which lies in dimension >37_, (2% —1) =n —r =n — a(n). Thus

Wna(y (Vi) = a2 @ @a? T e B (T RP2Y; 2/2) = HP o0 (M™; 2/2),
j=1

and this class is clearly nonzero. O

To summarize, this proposition says that for M™ defined as the product
of projective spaces as above, then wy,_qm)(Vymn) € H*=)(M™7,)2) is
nonzero. Thus, even though M" admits an immersion into R?*~*(") there is
no immersion of M™ into R2"~*(")~1 In particular this says that the answer
to Question 2 above is ¥(n) = n — a(n).
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6.2 “Turning a sphere inside-out”.

In the last subsection we used the Smale-Hirsch theorem (Theorem 6.5) to dis-
cuss the existence or nonexistence of immersions of manifolds into Euclidean
spaces of varying dimensions. In this subsection we discuss the first applica-
tion of this theorem, which was to show that two immersions of S? into R3
are isotopic (sometimes referred to as “regularly homotopic”).

Specifically we will give Smale’s proof of his famous theorem saying that
the identity embedding ¢ : S? < R3 defined by «(z,y, 2) = (2, ¥, 2), is isotopic
as immersions to the reflection j : S? < R3 defined by (z,y,2) — (z,y, —2).
That is, there exists a one-parameter family of immersions connecting ¢ to
j. Such a one parameter family is called an “eversion” of the sphere. The
fact that such an eversion exists is perhaps counter-intuitive. It is sometimes
described as “turning the sphere inside out”, and indeed there are now movies
of such eversions. However Smale’s original proof was a nonconstructive one,
which relied on (an early version of) Theorem 6.5.

Notice that the statement that two immersions f,g: M 9 N are isotopic
(or “regularly homotopic”) is equivalent to the statement that f and g lie in
the same path component of Imm(M, N). To prove that the immersions ¢ and
j of S? into R? are isotopic, Smale proved the following:

Theorem 6.13. (Smale [5/]) The space Imm(S? R3) is path connected.

Proof. By Theorem 6.5 one has a weak homotopy equivalence
D : Imm(S% R?) = Mono(TS? TR?).

We can think about the space Mono(T'S?, TR?) in the following way. Con-
sider the fiber bundle

Mono(R% R?) — I(T'S? R?) & 52 (6.1)
where I(T'S?,R?) is defined to be the space

I(TS* R3) = {(x,7) : x € S% and®:T,S? — R3 is a linecar monomorphism.}

Then p(z,v)) = = € S2. So each fiber of p is equivalent to the Stiefel
manifold Va3 = Mono(R?,R3). Notice that Va3 has the homotopy type of
0(3)/0(1) = SO(3). This is true by the following reasoning. Using the Gram-
Schmidt process, one sees that Mono(R?,R?) is homotopy equivalent to the
space of inner-product preserving monomorphisms, Mono<~>(R?,R?). Now
this space has a transitive action of the orthogonal group O(3), and the
isotropy subgroup of the inclusion of R? in R3 given by (z,y) — (0,2,%)
is O(1) < O(3).
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Notice there is a natural homeomorphism
Mono(TS? TR?) = Tg= (I(T'S?,R?))

where T'g2(I(T'S?,R3)) is the space of (continuous) sections of the bundle
(6.1). To prove the theorem it then suffices to prove the following.

Lemma 6.14. The space of sections I'gz(I(T'S?,R?)) is path connected.

o~

Proof. For ease of notation let v represent the space I's2(I(T'S? R?))
Mono(TS?, TR3) ~ Imm(S?,R?). Let , and 8 € v be any two sections. We
will show that they live in the same path component of v. Write $? = R?Uoo,
and fix an identification of T, S? with R?. Without loss of generality we may
assume that

a(oc) = B(00) = (00,1) € I(TS? R?)

where ¢ : T, 5% = R? — R3 is the natural inclusion (u,v) — (0,u,v). This is
because the group SO(3) acts transitively on V5 3, and so one may rotate «
and f if necessary so that they satisfy this basepoint relation. Since SO(3) is
connected such rotations preserve the path components of o and .

So we may assume that « and g lie in 4, C v which we define to be the
space of sections satisfying this basepoint condition. Notice that 7, can be
viewed as a subspace of the space of all maps S? to I(T'S?,R?) that take oo
to (00,¢). This is the two-fold based loop space Q2I(T'S? R3). Indeed 7, is
exactly that subspace of Q2I(T'S? R3) which maps to the identity element
in 9252 under the map Q2p : Q2I(TS?,R?) — Q2S%. This map, being the
two-fold loop map of the fibration (6.1), defines a fibration

2
OV 5 — Q21(TS% R3) 22 0282, (6.2)

We make a couple of observations about this fibration. First recall that the
homotopy group ma(Va3) = m2(SO(3)) = 0. This is because SO(3) = RP? and
the universal cover of RP? is S3, whose second homotopy group vanishes. This
implies that Q*RP? = Q2S0(3) = Q?V, 3 is path connected. By considering
this fibration sequence one then deduces that there is a bijection between
the path components of Q21(7'S? R3) and Q252. In fact this bijection is an
isomorphism between abelian groups. This is because the path components of
two-fold loop spaces are abelian groups and Q2p is a map that preserves this
two-fold loop structure. Thus we may conclude that

mo(Q2I(T'S?, R?)) 22 mp(Q25?) = 71y(S?) = Z.

Furthermore, observe that the path components of a two-fold loop space are
all homotopy equivalent. This is seen as follows. Let 22Y be a two-fold loop
space. Let g and h represent elements of this space and QSY and Q2hY be the
path components of this space containing g and h respectively. “Multiplying
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by g~'h defines a map xg~'h : QEY — Q2Y which has homotopy inverse
xh=lg: QY — QEY.

We conclude that we can restrict two-fold loop fibration (6.2) to any path
component of 9252 to obtain a homotopy fibration sequence

Vo5 — OF, 1(TS? R®) 25 2, 52,

(By “homotopy fibration sequence” we mean that the fibers are homotopy
equivalent to Q2V5 3). Here Q2n 5?2 is the component of Q252 containing maps
of degree n. But notice that when n = 1, then by the definition of what a
section means, v, is the fiber of 22p over the identity map of S?, id € Q[Ql] 52,
We may then conclude that v, ~ Q2Vs 3, which as just observed, is path
connected. In particular our original sections o and £ in + live in the same
path component. O

O

Final Remark. In discussing eversions of spheres, we proved (ala Smale)
that all immersion of S? in R? are regularly homotopic (isotopic). Ultimately,
using Hirsch-Smale theory, this was because m2(V2,3) = 0. However, somewhat
surprisingly, there are infinitely many isotopy classes of immersions of S? into
R*. This is because mo(Va,4) = Z. We leave it to the reader to fill in the details
of this striking result.
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Homotopy Theory of Fibrations

In this chapter we study the basic algebraic topological properties of fiber bun-
dles, and their generalizations, “Serre fibrations”. We begin with a discussion
of homotopy groups and their basic properties. We then show that fibrations
yield long exact sequences in homotopy groups and use it to show that the
loop space of the classifying space of a group is homotopy equivalent to the
group. We then develop basic obstruction theory for liftings in fibrations, use
it to interpret characteristic classes as obstructions, and apply them in several
geometric contexts, including vector fields, Spin structures, and classification
of SU(2) - bundles over four dimensional manifolds. We also use obstruction
theory to prove the existence of Eilenberg - MacLane spaces, and to prove
their basic property of classifying cohomology. We then develop the theory
of spectral sequences and then discuss the famous Leray - Serre spectral se-
quence of a fibration. We use it in several applications, including a proof of
the theorem relating homotopy groups and homology groups, a calculation of
the homology of the loop space 25", and a calculation of the homology of the
Lie groups U(n) and O(n).

7.1 Homotopy Groups

We begin by adopting some conventions and notation. In this chapter, unless
otherwise specified, we will assume that all spaces are connected and come
equipped with a basepoint. When we write [X,Y] we mean homotopy classes
of basepoint preserving maps X — Y. Suppose zg € X and yg € Y are
the basepoints. Then a basepoint preserving homotopy between basepoint
preserving maps fpand f; : X — Y is a map

F:XxI—>Y

such that each F; : X x {t} — Y is a basepoint preserving map and Fy = fy
and I} = f1. If A C X and B C Y, are subspaces that contain the basepoints,
(zo € A, and yo € B), we write [X, A;Y, B] to mean homotopy classes of maps
f+ X =Y so that the restriction f|, maps A to B. Moreover homotopies are
assumed to preserve these subsets as well. That is, a homotopy defining this

169
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equivalence relation is a map F' : X x I — Y that restricts to a basepoint
preserving homotopy F' : A x I — B. We can now give a strict definition of
homotopy groups.

Definition 7.1. The n** homotopy group of a space X with basepoint xg € X
is defined to be the set

T (X) = m (X, 20) = [S", X].
Equivalently, this is the set
T (X) = [D", "7 X, ]

where S"~Y = D™ is the boundary sphere.

Exercise. Prove that these two definitions are in fact equivalent.

Remarks. 1. It will often helpful to us to use as our model of the disk D™
the n - cube I"™ = [0, 1]™. Notice that in this model the boundary 9I™
consists of n - tuples (¢1,--- ,t,) with ¢; € [0, 1] where at least one of the
coordinates is either 0 or 1.

2. Notice that for n = 1, this definition of the first homotopy group is the
usual definition of the fundamental group.

So far the homotopy “groups” have only been defined as sets. We now
examine the group structure. To do this, we will define our homotopy groups
via the cube I", which we give the basepoint (0,---,0). Let

f and g:(I",0I") — (X, o)
be two maps representing elements [f] and [¢g] € 7, (X, z¢). Define
fg: 1" —X

by
F@ty o, ty) for ¢1 € [0,1/2]

cg(ty,te, e ty) =
froltats ") {g(2t—17t2,---7tn) for ¢, € [1/2,1]

The map f-g: (I",0I") — (X, x) represents the product of the classes

[f gl =[f]" 9] € mn(X, 20).

Notice that in the case n = 1 this is precisely the definition of the product
structure on the fundamental group m (X, o). The same proof that this prod-
uct structure is well defined and gives the fundamental group the structure of
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an associative group extends to prove that all of the homotopy groups are in
fact groups under this product structure. We leave the details of checking this
to the reader. We refer the reader to any introductory textbook on algebraic
topology for the details.

As we know the fundamental group of a space can be quite complicated.
Indeed any group can be the fundamental group of a space. In particular
fundamental groups can be very much noncommutative. However we recall
the relation of the fundamental group to the first homology group, for which
we again refer the reader to any introductory textbook:

Theorem 7.1. Let X be a connected space. Then the abelianization of the
fundamental group is isomorphic to the first homology group,

m1(X)/[m1, m] =2 Hi(X)

where [m1,m1] is the commutator subgroup of w1(X).
We also have the following basic result about higher homotopy groups.

Proposition 7.2. For n > 2, the homotopy group m,(X) is abelian.

Proof. Let [f] and [g] be elements of 7, (X) represented by basepoint preserv-
ing maps f : (I",0I") — (X, 7o) and g : (I",0I") — (X, ), respectively.
We need to find a homotopy between the product maps f - g and g - f defined
above. The following schematic diagram suggests such a homotopy. We leave
it to the reader to make this into a well defined homotopy.

O

Now assume A C X is a subspace containing the basepoint zy € A.

Definition 7.2. Forn > 1 we define the relative homotopy group m, (X, A) =
(X, A, xo) to be homotopy classes of maps of pairs

(X, A) = [(D",0D",19); (X, A, xg)].

where to € OD"™ = 8" ! and zy € A are the basepoints.

Exercise. Show that for n > 1 the relative homotopy group m, (X, 4) is in
fact a group. Notice here that the zero element is represented by any
basepoint preserving map of pairsf : (D™, 0I™) — (X, A) that is homotopic
(through maps of pairs) to one whose image lies entirely in A C X.
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Again, let A € X be a subset containing the basepoint zy € A, and let
i : A — X Dbe the inclusion. This induces a homomorphism of homotopy
groups
is T (A, 20) = (X, o).

Also, by ignoring the subsets, a basepoint preserving map f : (D", 0D") —
(X, zp) defines a map of pairs f : (D™, dD™, tg) — (X, A, o) which defines a
homomorphism

Jx t (X, 20) = (X, A, 20).

Notice furthermore, that by construction, the composition
Jx 00s : Tp(A) = mp(X) = mp (X, A)

is zero. Finally, if given a map of pairs g : (D™, S" "1, tq) — (X, A, z0), then we
can restrict ¢ to the boundary sphere S”~! to produce a basepoint preserving
map

('99 : (Snil,tg) — (A,.’Eo).

This defines a homomorphism
Os : (X, A, 20) = mn_1(A, x0).
Notice here that the composition
0x 0 ju t Tp(X) = m (X, A) = mp_1(A)

is also zero, since the application of this composition to any representing map
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f (D™, S"1) — (X, z0) yields the constant map S"~! — zg € A. We now
have the following fundamental property of homotopy groups. Compare with
the analogous theorem in homology.

Theorem 7.3. Let A C X be a subspace containing the basepoint xo € A.
Then we have a long exact sequence in homotopy groups

P () —E s (X)) s (XL A) —Z s m(A) = o m(A) — s (X))

Proof. We've already observed that j, o, and 9, 0j, are zero. Similarly, i, 00,
is zero because an element in the image of 0, is represented by a basepoint
preserving map S™" ! — A that extends to a map D™ — X. Thus the image
under 4, namely the composition S"~! — A <+ X has an extension to D"
and is therefore null homotopic. We therefore have

image(0y) C kernel (i)
image(is) C kernel(j.)
image(j.) C kernel(0y).

To finish the proof we need to show that all of these inclusions are actually
equalities. Consider the kernel of (i.). An element [f] € 7,(A) is in ker(i.)
if and only if the basepoint preserving composition f : S™ — A C X is null
homotopic. Such a null - homotopy gives an extension of this map to the
disk F : D"*! — X. The induced map of pairs F : (D"*! S") — (X, A)
represents an element in 7,41 (X, A) whose image under 9, is [f]. This proves
that image(0x) = kernel(i). The other equalities are proved similarly, and
we leave their verification to the reader. O

Remark. Even though this theorem is analogous to the existence of exact
sequences for pairs in homology, notice that its proof is much easier.

Notice that mo(X) is the set of path components of X. So a space is (path) -
connected if and only if mo(X) = 0 (i.e the set with one element). We generalize
this notion as follows.

Definition 7.3. A4 space X is said to be m - connected if 7y(X) = 0 for
0<g<m.

We now do our first calculation.

Proposition 7.4. Ann - sphere is n — 1 connected.
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Proof. We need to show that any map S* — S™, where k < n is null homo-
topic. Now since spheres can be given the structure of simplicial complexes,
the simplicial approximation theorem says that any map f : S¥ — S™ is homo-
topic to a simplicial map (after suitable subdivisions). So we assume without
loss of generality that f is simplicial. But since k < n, the image of of f lies
in the k - skeleton of the n - dimensional simplicial complex S™. In particular
this means that f : S¥ — S™ is not surjective. Let yo € S™ be a point that is
not in the image of f. Then f has image in S™ — yo which is homeomorphic
to the open disk D™, and is therefore contractible. This implies that f is null
homotopic. O

7.2 Fibrations

Recall that in chapter 2 we proved that locally trivial fiber bundles satisfy
the Covering Homotopy Theorem 4.2. A generalization of the notion of a
fiber bundle, due to Serre, is simply a map that satisfies this type of lifting

property.

Definition 7.4. A Serre fibration is a surjective, continuous map p: E — B
that satisfies the Homotopy Lifting Property for CW - complexes. That is, if
X is any CW - complex and F' : X x [ — B is any continuous homotopy so
that Fp : X x {0} — B factors through a map fy : X — F, then there exists
a lifting F': X x I — F that extends fo on X x {0}, and makes the following
diagram commute:

XxI -4 E

:l l”

A Hurewicz fibration is a surjective, continuous map p : £ — B that satisfies
the homotopy lifting property for all spaces.

Remarks. 1. Obviously every Hurewicz fibration is a Serre fibration. The
converse is false. In these notes, unless otherwise stated, we will deal with
Serre fibrations, which we will simply refer to as fibrations.

2. The Covering Homotopy Theorem implies that a fiber bundle is a
fibration in this sense.

The following is an important example of a fibration.
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Proposition 7.5. Let X be any connected space with basepoint xo € X. Let
PX denote the space of based paths in X. That is,

PX ={a:I—X:a0)=umx}

The path space PX is topologized using the compact - open function space
topology. Define
p: PX - X

by p(a) = a(1). Then PX is a contractible space, and the map p: PX — X
is a fibration, whose fiber at xo, p~1(wo) is the loop space QX .

Proof. The fact that PX is contractible is straightforward. For a null homo-
topy of the identity map one can take the map H : PX x I — PX, defined
by H(a,s)(t) = a((1l — s)t).

To prove that p: PX — X is a fibration, we need to show it satisfies the
Homotopy Lifting Property. Solet F': Y xI — X and fy : X — PX be maps
making the following diagram commute:

Y x {0} —L PXx

n| |7

Y x1I T> X

Then we can define a homotopy lifting, F' : Y x I — PX by defining for
(y,s) € Y x I, the path

F(y,s): 1 — X
= _ JhwEE) for ¢ € [0, 5]
Fly,9)#) = {F(y,Zt —2+43s) forte [52,1]

One needs to check that this definition makes F(y, s)(t) a well defined conti-
nous map and satisfies the boundary conditions

F(y,0)(t) = fo(y,t)

F(l/? S)(O) = Ty
F(y,s)(1) = F(y, )
These verifications are all straightforward. O

The following is just the observation that one can pull back the Homotopy
Lifting Property.



176 Bundles, Homotopy, and Manifolds

Proposition 7.6. Let p: E — B be a fibration, and f : X — B a continuous
map. Then the pull back, py : f*(E) — X is a fibration, where

f(E)={(z,e) € X x Esuch that f(z) = p(e)}
and py(x,e) = z.

The following shows that in the setting of homotopy theory, every map
can be viewed as a fibration in this sense.

Theorem 7.7. FEvery continuous map f : X — Y is homotopic to a fibration
in the sense that there exists a fibration

f: XY

and a homotopy equivalence

h:X —— X

making the following diagram commute:

X % X
fl lf
Y = Y.

Proof. Define X to be the space
X ={(z,a) € X x YT such that a(0) = z.}

where here Y/ denotes the space of continuous maps « : [0,1] = Y given the
compact open topology. The map f : X — Y is defined by f(z,a) = a(1).
The fact that f : X — Y is a fibration is proved in the same manner as
theorem 7.5, and so we leave it to the reader.

Define the map h: X — X by h(z) = (z,¢,) € X, where €,(t) = z is the
constant path at z € X. Clearly foh = f so the diagram in the statement of
the theorem commutes. Now define g : X — X by g(z,a) = z. Clearly go h
is the identity map on X. To see that h o g is homotopic to the identity on
X, consider the homotopy F : X x I — X, defined by F((z,a),s) = (z,as),
where o, : I — X is the path as(t) = a(st). So in particular ag = €, and
a1 = a. Thus F' is a homotopy between hog and the identity map on X. Thus
h is a homotopy equivalence, which completes the proof of the theorem. [

The homotopy fiber of a map f: X — Y, FY, is defined to be the fiber of
the fibration f: X — Y defined in the proof of this theorem. That is,
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Definition 7.5. The homotopy fiber F¢ of a basepoint preserving map f :
X =Y is defined to be

Fr={(z,a) € X x Y such thata(0) = f(x) anda(l) = yo.}
where yo € Y 1is the basepoint.

So for example, the homotopy fiber of the inclusion of the basepoint yg —
Y is the loop space QY. The homotopy fiber of the identity map id : Y — Y
is the path space PY. The homotopy fibers are important invariants of the
map f: X =Y.

The following is the basic homotopy theoretic property of fibrations.

Theorem 7.8. Let p: E — B be a fibration over a connected space B with
fiber F. So we are assuming the basepoint of E, is contained in F, eg € F,
and that p(eg) = bg is the basepoint in B. Let i : F < E be the inclusion of
the fiber. Then there is a long exact sequence of homotopy groups:

O r(F) — s 1 (B) —2s 1 (B) —2 s 11 (F) —

s m(F) —2— m(E) —2— m(B).

Proof. Notice that the projection map p : E — B induces a map of pairs
p: (E,F)— (B,by).

By the exact sequence for the homotopy groups of the pair (E, F'), 7.3 it is
sufficient to prove that the induced map in homotopy groups

Dy T (E, F) — m,(B, bo)

is an isomorphism for all n > 1. We first show that p, is surjective. So let
f(I™,0I™) — (B, bg) represent an element of m,(B). We can think of a map
from a cube as a homotopy of maps of cubes of one lower dimension. Therefore
by induction on n, the homotopy lifting property says that that f : I — B
has a basepoint preserving lifting f : I™ — E. Since po f = f, and since
the restriction of f to the boundary 0I"™ is constant at by, then the image of
the restriction of f to the boundary 9I"™ has image in the fiber F. That is, f
induces a map of pairs
f:(m™0I") — (E,F)

which in turn represents an element [f]| € 7, (F, F) whose image under p, is
[f] € mn (B, by). This proves that p, is surjective.

We now prove that p. : 7, (E,F) — m,(B,by) is injective. So let f :
(D",0D™) — (E,F) be a map of pairs that represents an element in the
kernel of p.. That means po f : (D",dD™) — (B, bp) is null homotopic. Let
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F : (D",0D™) x I — (B,by) be a null homotopy between Fy = f and the
constant map € : D™ — by. By the Homotopy Lifting Property there exists a
basepoint preserving lifting

F:D"x1—FE

having the properties that po F' = F and F : D" x {0} — E is equal to
f:(D",0D") — (E, F). Since po F = F maps dD" x I to the basepoint by,
we must have that F maps D" x I to p~!(bg) = F. Thus F determines a
homotopy of pairs,

F:(D",0D") x I — (E,F)

with Fy = f. Now consider Fy : (D", 0D") x {1} = E. Now po F} = F} = ¢ :
D" — by. Thus the image of F} lies in p~1(bg) = F. Thus F gives a homotopy
of the map of pairs f : (D™, 0D™) — (E, F) to a map of pairs whose image
lies entirely in F'. Such a map represents the zero element of m,,(E, F'). This
completes the proof that p, is injective, and hence is an isomorphism. As
observed earlier, this is what was needed to prove the theorem. O

We now use this theorem to make several important calculations of homo-
topy groups. In particular, we prove the following seminal result of Hopf.

Theorem 7.9.

FQ(SQ) = 7T3(53) = 7.
76(S%) 2 1 (S?) for all k > 3. In particular,
73(S?) 22 7Z, generated by the Hopf map 1 : S® — S2.

Proof. Consider the Hopf fibration 1 : S3 — $? = CP! with fiber S*. Recall
that S! is an Eilenberg - MacLane space K(Z, 1) since it is the classifying

space of bz. Thus
Z forq=1
mq(S 1) =
0 for all other gq.

(Remark. The fact that the classifying space Br of a discrete group 7 is an
Eilenberg - MacLane space K(m,1) can now be given a simpler proof, using
the exact sequence in homotopy groups of the universal bundle Ex — B.)

Using this fact in the exact sequence in homotopy groups for the Hopf
fibration n : S — S2, together with the fact that m,(S3) = 0 for ¢ < 2,
one is led to the facts that m2(S?) = 71(S') = Z, and that 7, : m(93) —
7, (S?) is an isomorphism for k£ > 3. To examine the case k = 3, consider the
homomorphism (called the Hurewicz homomorphism)

h: 7T3(SS) — H3(53) =7
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defined by sending a class represented by a self map f : S% — S2, to the image
of the fundamental class in homology, f.([S?]) € H3(S?%) = Z. Clearly this is
a homomorphism (check this!). Moreover it is surjective since the image of the
identity map is the fundamental class, and thus generates, H3(S?%), H([id]) =
[S3] € H3(S3). Thus 73(S?) contains an integral summand generated by the
identity. In particular, since 7, : m3(S3) — m3(S?) is an isomorphism, this
implies that 3(S?) contains an integral summand generated by the Hopf map
[n] € m3(S?). The fact that these integral summands generate the entire groups
73(S?) = 73(S5?) will follow once we know that the Hurewicz homomorphism
is an isomorphism in this case. Later in this chapter we will prove the more
general “Hurewicz theorem” that says that for any k& > 1, and any (k —
1) - connected space X, the Hurewicz homomorphism is an isomorphism in
dimension k: h : m(X) & Hp(X). O

Remark. As we remarked earlier in these notes. these were the first
nontrivial elements found in the higher homotopy groups of spheres,

Ttk (S™), and Hopf’s proof of their nontriviality is commonly viewed as the
beginning of modern Homotopy Theory [64]

We end this section with an application to the “homotopy stability” of the
orthogonal and unitary groups, as well as their classifying spaces.

Theorem 7.10. The inclusion maps

t:0(n) = O0Mm+1) and
Umn)—=Umn+1)

induce isomorphisms in homotopy groups through dimensions n—2 and 2n—1
respectively. Also, the induced maps on classifying spaces,

Bi: BO(n) - BO(n+1) and
BU(n) - BU(n+1)
induce isomorphisms in homotopy groups through dimensions n — 1 and 2n

respectively.

Proof. The first two statements follow from the existence of fiber bundles
O(n) = O0(n+1)— 85"

and
Un) = U(n+1) — S
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the connectivity of spheres 7.4, and by applying the exact sequence in ho-
motopy groups to these fiber bundles. The second statement follows from the
same considerations, after recalling from 4.28 the sphere bundles

S™ — BO(n) — BO(n + 1)

and
S+l BU(n) — BU(n +1).

7.3 Obstruction Theory

In this section we discuss the obstructions to obtaining a lifting to the total
space of a fibration of a map to the basespace. As an application we prove the
important “Whitehead theorem” in homotopy theory, and we prove general
results about the existence of cross sections of principal O(n) or U(n) - bun-
dles. We do not develop a formal theory here - we just develop what we will
need for our applications to fibrations. For a full development of obstruction
theory we refer the reader to [63].

Let X be a CW - complex. Recall that its cellular k - chains, Cy(X) is the
free abelian group generated by the k - dimensional cells in X. The co-chains
with coefficients in a group G are defined by

C*(X,G) = Hom(Cr(X),G).

Theorem 7.11. Let p : E — B be a fibration with fiber F. Let f : X — B
be a continuous map, where X is a CW - complex. Suppose there is a lifting
of the (k — 1) - skeleton fr_1 : X*¥=Y) — E. That is, the following diagram
commutes:

x (k—1) Fro1 E

ml lp
X —f> B.
Then the obstruction to the existence of a lifting to the k -skeleton, fi, : X*) —

E that extends fi_1, is a cochain v € C*(X;7,_1(F)). That is, v = 0 if and
only if such a lifting fi exists.
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Proof. We will first consider the special case where X*) is obtained from
X*=1 by adjoining a single k -dimensional cell. So assume

x® = x*=Dy, Dk

where a : 9DF = S*—1 5 X*=1 ig the attaching map. We therefore have
the following commutative diagram:

Sk-1 o ; X(k—l) fia E

n| o] E

D*¥ — X*=1y, D¥ T> B

Notice that fk—l has an extension to X ¥~ u, DF = X(*) that lifts f,if
and only if the composition pk — x (k1) y, Dk f_, plifts to E in such
a way that it extends fr_1 o a.

Now view the composition pk - x(k-1) |y pFk f_, pasaamap from
the cone on S*~! to B, or in other words, as a null homotopyF : S¥*~'xI — B
from Fy = po fu_ioa : S¥1 — X*=1 4 E — B to the constant map
Fy = ¢: 8%-1 5 by € B. By the Homotopy Lifting Property, F lifts to a
homotopy

F:S*Dx1 5 E

with Fy = fr_1 0. Thus the extension fj exists on X *~1) U, D if and only
if this lifting F' can be chosen to be a null homotopy of fr_1 o o. But we know
Fy : ¥~ x {1} — E lifts F, which is the constant map € : S*~1 — by € B.
Thus the image of F} lies in the fiber F', and therefore determines an element
v € mr_1(F). The homotopy Fj can be chosen to be a null homotopy if and
only if F} : S¥~! — F is null homotopic. (Because combining F with a null
homotopy of F\, i.e an extension of Fy to a map D¥ — F, is still a lifting of
F, since the extension lives in a fiber over a point.) But this is only true if the
homotopy class v =0 € mp_1(F).

This proves the theorem in the case when X(*) = X (=1, D* In the gen-
eral case, suppose that X (¥) is obtained from X *~1) by attaching a collection
of k - dimensional disks, indexed on a set, say J. That is,

k k—1 k
X = x( >UuajD.
jedJ

The above procedure assigns to every j € J an “obstruction” ~; € mp_1(F).
An extension fj, exists if and only if all these obstructions are zero. This
assignment from the indexing set of the k - cells to the homotopy group can
be extended linear to give a homomorphism « from the free abelian group
generated by the k - cells to the homotopy group m_1(F'), which is zero if
and only if the extension f; exists. Such a homomorphism v is a cochain,
v € CF(X;m,_1(F)). This completes the proof of the theorem. O
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We now discuss several applications of this obstruction theory.

Corollary 7.12. Any fibration p : E — B over a CW - complex with an
aspherical fiber F' admits a cross section.

Proof. Since mq(F') = 0 for all ¢, by the theorem, there are no obstructions to
constructing a cross section inductively on the skeleta of B. O

Proposition 7.13. Let X be an n - dimensional CW - complex, and let
be an m - dimensional vector bundle over X, with m >n. Then ( has m —n
linearly independent cross sections. If £ is a d - dimensional complex bundle
over X, then & admits d — [n/2] linearly independent cross sections, where
[n/2] is the integral part of n/2.

Proof. Let ¢ be classified by a map f,, : X — BO(m). To prove the theorem
we need to prove that f,, lifts (up to homotopy) to a map f,X — BO(n).
We would then have that

(= fr*n(’}/m) = f:(Vn) D €em—n

where 7, is the universal k - dimensional vector bundle over BO(k), and ¢;
represents the j - dimensional trivial bundle. These isomorphisms would then
produce the m —n linearly independent cross sections of (. over X. Now recall
there is a fibration

O(m)/O(n) — BO(n) — BO(m).

That is, the fiber of p : BO(n) — BO(m) is the quotient space O(m)/O(n).
Now by a simple induction argument using 7.10 shows that the fiber
O(m)/O(n) is n — 1 connected. That is, pi,(O(m)/O(n)) =0 for ¢ <n — 1.
By 7.11 all obstructions vanish for lifting the n - skeleton of X to the total
space BO(n). Since we are assuming X is n - dimensional, this completes the
proof. The complex case is proved similarly. O

Corollary 7.14. Let X be a compact, n - dimensional CW complex. Then
every element of the reduced real K - theory, KO(X) can be represented by
a n - dimensional vector bundle. Every element of the complex K - theory,

K(X) can be represented by an [n/2] - dimensional complex vector bundle.
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Proof. By 4.32 we know

KO(X)=[X,BO] and
K(X) 2 [X,BU].

Il

But by the above proposition, any element « € [X, BO] lifts to an element
ay, € [X, BO(n)] which in turn classifies an n - dimensional real vector bundle
representing the KO - class a.

Similarly, any element 5 € [X, BU] lifts to an element «,, € [X, BU([n/2])]
which in turn classifies an [n/2] - dimensional complex vector bundle repre-
senting the K - class 3. O

We now use this obstruction theory to prove the well known “Whitehead
Theorem”, one of the most important foundational theorems in homotopy
theory.

Theorem 7.15. Suppose X and Y are CW - complexes and f : X =Y a
continuous map that induces an isomorphism in homotopy groups,

foimp(X) —— m(Y) forallk >0

Then f: X —Y is a homotopy equivalence.

Proof. By 7.7 we can replace f : X — Y by a homotopy equivalent fibration
f X Y.

That is, there is a homotopy equivalence h : X — X so that foh=f.
Since f induces an isomorphism in homotopy groups, so does f. By the exact
sequence in homotopy groups for this fibration, this means that the fiber of
the fibration f : X — Y, i.e the homotopy fiber of f, is aspherical. thus by
7.11 there are no obstructions to finding a lifting g : ¥ — X of the identity
map of Y. Thus g is a section of the fibration, so that fog=1id:Y — Y. Now
let h~!: X — X denote a homotopy inverse to the homotopy equivalence h.
Then if we define
g=hto§:Y - X

we then have fog:Y — Y is given by
fog=fohlog
:fohoh_log
~fog
=id:Y =Y.

Thus f o g is homotopic to the identity of Y. To show that g o f is homotopic
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to the identity of X, we need to construct a homotopy X x I — X that lifts
a homotopy X x I — Y from fogo f to f. This homotopy is constructed
inductively on the skeleta of X, and like in the argument proving 7.11, one
finds that there are no obstructions in doing so because the homotopy fiber
of f is aspherical. We leave the details of this obstruction theory argument to
the reader. Thus f and g are homotopy inverse to each other, which proves
the theorem. O

The following is an immediate corollary.

Corollary 7.16. An aspherical CW - complex is contractible.

Proof. If X is an aspherical CW - complex, then the constant map to a point,
€ : X — pt induces an isomorphism on homotopy groups, and is therefore, by
the above theorem, a homotopy equivalence. O

The Whitehead theorem will now allow us to prove the following impor-
tant relationship between the homotopy type of a topological group and its
classifying space.

Theorem 7.17. Let G be a topological group with the homotopy type of a CW
complez., and BG its classiftying space. Then there is a homotopy equivalence
between G and the loop space,

G ~ QBdG.

Proof. Tt was shown in chapter 2 that there is a model for a universal G -
bundle, p : EG — BG with EG a G - equivariant CW - complex. In particular,
EG is aspherical, and hence by the Whitehead theorem, it is contractible. Let

H:EGxI— EG

be a contraction. That is, Hy : EG x {0} — EG is the constant map at the
basepoint eg € EG, , and Hy : EG x {1} — EG is the identity. Composing
with the projection map,

d=poH:EGxI— BG

is a homotopy between the constant map to the basepoint & : EG x {0} —
by € BG and the projection map ®; = p : EG x {1} — BG. Consider the
adjoint of @,

®: EG — P(BG) = {a: I — BG such that a(0) = by.}
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defined by ®(e)(t) = ®(e,t) € BG. Then by definition, the following diagram
commutes: -
EG —2— (BG)

dl s

BG = BG
where g(a) = a(1), for @« € P(BG). Thus ® is a map of fibrations that induces
a map on fibers

¢: G — QBG.

Comparing the exact sequences in homotopy groups of these two fibrations,
we see that ¢ induces an isomorphism in homotopy groups. A result of Milnor
[?] that we will not prove says that if X is a CW complex, then the loop space
QX has the homotopy type of a CW - complex. Then the Whitehead theorem
implies that ¢ : G — QBG is a homotopy equivalence. O

7.4 Eilenberg - MacLane Spaces

In this section we prove a classification theorem for cohomology. Recall that
in chapter 2 we proved that there are spaces BG that classify principal G
- bundles over a space X, in the sense that homotopy classes of basepoint
preserving maps, [X, BG] are in bijective correspondence with isomorphism
classes of principal G - bundles. Similarly BO(n) and BU(n) classify real and
complex n - dimensional vector vector bundles in this same sense, and BO
and BU classify K -theory. In this section we show that there are classifying
spaces K (G, n) that classify n - dimensional cohomology with coefficients in G
in this same sense. These are Eilenberg - MacLane spaces. We have discussed
these spaces earlier in these notes, but in this section we prove their existence
and their classification properties.

7.4.1 Obstruction theory and the existence of Eilenberg -
MacLane spaces

In chapter 2 we proved that for any topological group G there is a space BG
classifying G bundles. For G discrete, we saw that BG = K (G, 1), an Eilenberg
- MacLane space whose fundamental group is GG, and whose higher homotopy
groups are all zero. In this section we generalize this existence theorem as
follows.
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Theorem 7.18. Let G be any abelian group and n an integer with n > 2.
Then there exists a space K(G,n) with
G, if k=n,

0, otherwise.

(K (G,n)) = {

This theorem will basically be proven using obstruction theory. For this we
will assume the following famous theorem of Hurewicz, which we will prove
later in this chapter. We first recall the Hurewicz homomorphism from homo-
topy to homology.

Let f : (D", S"1) — (X, A) represent an element [f] € 7,(X, A). Let
on € H,(D",S" 1) = Z be a preferred, fixed generator. Define h([f]) =
filon) € Hy(X, A). The following is straightforward, and we leave its verifi-
cation to the reader.

Lemma 7.19. The above construction gives a well defined homomorphism
he : mo(X, A) = Hp (X, A)

called the “Hurewicz homomorphism?”.
The following is the “Hurewicz theorem”.

Theorem 7.20. Let X be simply connected, and let A C X be a simply
connected subspace. Suppose that the pair (X, A) is (n — 1) - connected, for
n > 2. That is,

(X, A)=0 if k<n-—1.

Then the Hurewicz homomorphism h, : 7,(X, A) — H, (X, A) is an isomor-
phism.

We now prove the following basic building block type result concerning
how the homotopy groups change as we build a CW - complex cell by cell.

Theorem 7.21. Let X be a simply connected, CW - complex and let
f:8" =X
be a map. Let X' be the mapping cone of f. That is,
X'=Xu; D"t

which denotes the union of X with a disk D"1 glued along the boundary
sphere S¥ = OD**! wia f. That is we identify t € S* with f(t) € X. Let

i X = X'

be the inclusion. Then
e s (X)) = (X))

is surjective, with kernel equal to the cyclic subgroup generated by [f] € m(X).
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Proof. Let g : S7 — X' represent an element in m,(X’) with ¢ < k. By
the cellular approximation theorem, g is homotopic to a cellular map, and
therefore one whose image lies in the q - skeleton of X’. But for ¢ < k, the ¢
- skeleton of X’ is the q - skeleton of X. This implies that

e g (X) = mg(X')

is surjective for ¢ < k. Now assume q < k—1, then if g : S7 — X C X' is null
homotopic, any null homotopy, i.e extension to the disk G : DIt — X’ can
be assumed to be cellular, and hence has image in X. This implies that for
q<k—1,ts:me(X) = my(X’) is an isomorphism. By the exact sequence in
homotopy groups of the pair (X’, X), this implies that the pair (X', X) is k -
connected. By the Hurewicz theorem that says that

7Tk:+1(X/7X) =~ Hk+1(XI7X) — Hk;Jrl(X Uf Dk+1,X)

which, by analyzing the cellular chain complex for computing H,(X') is Z if
and only if f : S¥ — X is zero in homology, and zero otherwise. In particular,
the generator v € mgy1(X’, X) is represented by the map of pairs given by
the inclusion

v (DFFL SK) 5 (X Uy DML X))

and hence in the long exact sequence in homotopy groups of the pair (X', X),

o et (X X) =2 (X)) s m(X)

we have 0.(y) = [f] € mx(X). Thus ¢, : mx(X) = 7 (X’) is surjective with
kernel generated by [f]. This proves the theorem. O

We will now use this basic homotopy theory result to establish the existence
of Eilenberg - MacLane spaces.

Proof. of 7.18 Fix the group G and the integer n > 2. Let {7, : a« € A} be a
set of generators of G, where A denotes the indexing set for these generators.
Let {03 : 8 € B} be a corresponding set of relations. In other words G is
isomorphic to the free abelian group F4 generated by .4, modulo the subgroup
Rp generated by {03 : 8 € B}.

Consider the wedge of spheres \/ , S™ indexed on the set A. Then by the
Hurewicz theorem,

m(\/ S") = Ha(\/ S") = Fa.
A A

Now the group Rp is a subgroup of a free abelian group, and hence is itself
free abelian. Let \/5 S™ be a wedge of spheres whose nt" - homotopy group
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(which by the Hurewicz theorem is isomorphic to its homology, which is free
abelian) is Rp. Moreover there is a natural map

ji\/s" =\ s
B A

which, on the level of the homotopy group m, is the inclusion Rz C F 4. Let
X,+1 be the mapping cone of j:

Xn+1 — \/ qn Uj UDn-H
A B

where the disk D"t corresponding to a generator in R is attached via the
map S™ — \/,S™ giving the corresponding element in 7,(\/ 4, S") = Fa4.
Then by using 7.21 one cell at a time, we see that X, 11 is an n — 1 -
connected space and 7, (X,,) is generated by F4 modulo the subgroup Rg. In
other words,

7Tn(Xn+1) = G

Now inductively assume we have constructed an space X, with

0 ifg<mn,
Tg(Xntr) = G ifg=n and
0 ifn<qg<n+k-1

Notice that we have begun the inductive argument with £ = 1, by the con-
struction of the space X,, 41 above. So again, assume we have constructed
X+, and we need to show how to construct X, 1,41 with these properties.
Once we have done this, by induction we let & — oo, and clearly X, will be
a model for K(G,n).

Now suppose m = 4k (Xn4) is has a generating set {7, : u € C}, where C
is the indexing set. Let F¢ be the free abelian group generated by the elements
in this generating set. Let \/,,.. S1" denote a wedge of spheres indexed by
this indexing set. Then, like above, by applying the Hurewicz theorem we see
that

Tk (\/ SpF) = Hy o\ S"HF) = Fe.
u€eC C
Let

f:\/5”+k4>3;+k
C

be a map which, when restricted to the sphere S"** represents the generator
Yu € T = Ttk (Xntr). We define X, 1,41 to be the mapping cone of f:

Xngrhs1 = Xpyp Uy U DR
uel
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Then by 7.21 we have that mq(X,+x) — 7g(Xn+k+1) is an isomorphism for
g <n+k, and
Ttk (Xntk) = Ttk (Xntkt+1)

is surjective, with kernel the subgroup generated by {v, : u € C}. But since
this subgroup generates m = 7,4, (Xn k) we see that this homomorphism is
zero. Since it is surjective, that implies w4, (X,1x+1) = 0. Hence X, ;11 has
the required properties on its homotopy groups, and so we have completed our
inductive argument. O

7.4.2 The Hopf - Whitney theorem and the classification
theorem for Eilenberg - MacLane spaces

We now know that the Eilenberg - MacLane spaces K (G, n) exist for every n
and every abelian group GG, and when n = 1 for every group G. Furthermore,
by their construction in the proof of 7.18 they can be chosen to be CW
- complexes. In this section we prove their main property, i.e they classify
cohomology.

In order to state the classification theorem properly, we need to recall the
universal coefficient theorem, which says the following.

Theorem 7.22. (Universal Coefficient Theorem) Let G be an abelian group.
Then there is a split short exact sequence

0— Ext(H,—1(X);G) - H*(X;G) - Hom(H"(X),G) — 0.

Corollary 7.23. IfY is (n — 1) - connected, and m = 7, (Y), then
H™"(Y;7) = Hom(mw, ).

Proof. Since Y is (n—1) connected, H,_1(Y) = 0, so the universal coefficient
theorem says that H™(Y;7) & Hom(H,(Y), ). But the Hurewicz theorem
says that the Hurewicz homomorphism h, : 7 = 7,(Y) — H,(Y) is an
isomorphism. The corollary follows by combining these two isomorphisms. [

For an (n —1) - connected space Y as above, let « € H*(Y; ) be the class
corresponding to the identity map id € Hom(m, 7) under the isomorphism in
this corollary. This is called the fundamental class. Given any other space X,
we therefore have a set map

¢: X, Y] - H"(X,n)

defined by ¢([f]) = f*(v) € H"(X; 7). The classification theorem for Eilenberg
- MacLane spaces is the following.
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Theorem 7.24. For n > 2 and Gm any abelian group, let K(mw,n) denote
an Eilenberg - MacLane space with m,(K(m,n)) = m, and all other homotopy
groups zero. Let 1 € H"(K(m,n);m) be the fundamental class. Then for any
CW - complex X, the map

¢« [X, K(m,n)] — H"(X;7)
[f1= ()

s a bijective correspondence.

We have the following immediate corollary, giving a uniqueness theorem
regarding Eilenberg - MacLane spaces.

Corollary 7.25. Let K(mw,n); and K(m,n)s be CW - complezes that are both
FEilenberg - MacLane spaces with the same homotopy groups. Then there is a
natural homotopy equivalence between K(mw,n); and K(mw,n)s.

Proof. Let f : K(m,n); — K(m,n)2 be a map whose homotopy class is the
inverse image of the fundamental class under the bijection

¢ [K(m,n)1, K(m,n)s] —— H"(K(m,n)1;7) = Hom(x, ).

This means that f : K(w,n); — K(m,n)2 induces the identity map in
Hom(m,7), and in particular induces an isomorphism on m,. Since all other
homotopy groups are zero in both of these complexes, f induces an isomor-
phism in homotopy groups in all dimensions. Therefore by the Whitehead
theorem 7.15, f is a homotopy equivalence. O

We begin our proof of this classification theorem by proving a special
case, known as the Hopf - Whitney theorem. This predates knowledge of the
existence of Eilenberg - MacLane spaces.

Theorem 7.26. (Hopf-Whitney theorem) Let Y be any (n — 1) - connected
space with m = 7, (Y). Let X be any n - dimensional CW complex. Then the
map

¢:[X,)Y] = H"(X;n)
[f] = £ ()

is a bijective correspondence.
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Remark. This theorem is most often used in the context of manifolds, where
it implies that if M™ is any closed, orientable manifold the correspondence

[M™,S8"] - H"(M™Z) 2 Z
is a bijection.

Exercise. Show that this correspondence can alternatively be described as
assigning to a smooth map f : M™ — S™ its degree, deg(f) € Z.

Proof. (Hopf - Whitney theorem) We first set some notation. Let Y be (n—1)
- connected, and have basepoint 3y € Y. Let X(™) denote the m - skeleton
of the n - dimensional complex X. Let Cj(X) = Hy(X®, X*#=1) be the
cellular % - chains in X. Alternatively, C;(X) can be thought of as the free
abelian group on the k - dimensional cells in the CW - decomposition of X.
Let Z¥(X) and B*(X) denote the subgroups of cocycles and coboundaries
respectively. Let Ji be the indexing set for the set of k - cells in this CW -
structure. So that there are attaching maps

ay : \/ Sf — x®)
JEJk

so that the (k + 1) - skeleton X (#+1) i3 the mapping cone

x k1) — x(F) i U D+l
«@ 7 N
JEJk

We prove this theorem in several steps, each translating between cellular
cochain complexes or cohomology on the one hand, and homotopy classes of
maps on the other hand. The following is the first step.

Step 1. There is a bijective correspondence between the following set of
homotopy classes of maps of pairs, and the cochain complex with values in 7:

¢ (X", XD) (Y, y0)] = C™(X; ).

Proof. A map of pairs f : (X, X(»=1) — (Y,y) is the same thing as a
basepoint preserving map from the quotient,

. n n—1) __ mn
frXM/x0m =\ §r 5.
JE€In

So the homotopy class of f defines and is defined by an assignment to every
j € Jy, an element [f;] € m,(Y) = 7. But by extending linearly, this is the
same as a homomorphism from the free abelian group generated by J,, i.e
the chain group C,(X), to m. That is, this is the same thing as a cochain
[f] € C™(X;m). O
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Step 2. The map ¢ : [X,Y] — H"(X;n) is surjective.

Proof. . Notice that since X is an n - dimensional CW - complex, all n - dimen-
sional cochains are cocycles, C"(X;7) = Z™(X;x). So in particular there is a
surjective homomorphism p : C"(X;7) = Z™"(X;7) — Z™(X;m)/B"(X;7) =
H"™(X;7). A check of the definitions of the maps defined so far yields that the
following diagram commutes:

(XM, X(=0), (Y, 99)] —2— C™(X;m)

| |
(X, Y] — H"(X;m)
where p is the obvious restriction map. By the commutativity of this diagram,
since p is surjective and ¢ : [(X(™), X(»=1) (Y, y)] — C™(X; ) is bijective,
then we must have that ¢ : [X,Y] — H"(X;7) is surjective, as claimed. [

In order to show that ¢ is injective, we will need to examine the coboundary
map
§:C"HX;m) = C™(X;m)

from a homotopy point of view. To do this, recall that the boundary map
on the chain level, 9 : Ci(X) — Cy_1(X) is given by the connecting ho-
momorphism H,,(X®) X1y - m,_(X*=D X #=2)) from the long exact
sequence in homology of the triple, (X X (*=1) x(k=2)) This boundary
map can be realized homotopically as follows. Let ¢(X (kfl)) be the cone on
the subcomplex X *—1),

e(XFDy = XD o 1/(X*D % {1} U {ao} x 1),

which is obviously a contractible space. Consider the mapping cone of the
inclusion X #~1) — X *) x (%) Uc(X(k’l). By projecting the cone to a point,
there is a projection map

i XFUe(X D)y 5 xHB) x k-1 — \/ Sj’?
JEJk

which is a homotopy equivalence. (Note. The fact that this map induces an
isomorphism in homology is straight forward by computing the homology ex-
act sequence of the pair (X*) U ¢(X* 1), X)) The fact that this map is a
homotopy equivalence is a basic point set topological property of CW - com-
plexes coming from the so - called “Homotopy Extension Property”. However
it can be proved directly, by hand, in this case. We leave its verification to the
reader.) Let
g s XF) \/ S]l-c

J€JK
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be the composition

X®) ey X (B) (X (k=1)) _ Pk X k) x(k=1) —\/ sjk.

JEJk
Then the composition of uy with the attaching map

Q41 ° \/ SJI?HX(]“)

J€Jk41

(whose mapping cone defines the (k+ 1) - skeleton X (¥*1)) is a map between
wedges of k - spheres,

: kRl xe(k) Uk K
dk+1 : \/jEJk+1 Sj X \/jeJk Sj .

The following is immediate from the definitions.
Step 3. The induced map in homology,
(digr)e s He( \/ SF) = Hi(\/ SF)

JE€EJIk+1 J€Jk

Ck+1(X) — Ok(X)
is the boundary homomorphism in the chain complex Og4+1 : Cri1(X) —
Cr(X).

Now consider the map
(X, X =1 (Y, y0)] % C"(X;m) = Z"(X;7) —2— H"(X;7).

We then have the following corollary.

Step 4. A map f: X" /x (=1 —\/ 57 — Y has the property that

jen
poo([f]) =0 H"(X;m)

if and only if there is a map

focr: ) SpoY

JE€EJ(n—1)
so that f is homotopic to the composition

fn—1

dn
Viesr, 5 — 2 Vjesr, . §f — %

Proof. Since ¢ : [(X™, X(»=D) (Y,y0)] — C™(X;7) = Z"(X;7) is a bijec-
tion, po@([f]) = 0 if and only if #([f]) is in the image of the coboundary map.
The result then follows from step 3. O
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Step 5. The composition

u

n n nodn .
X0 == Ve, SF == Vies,, 5]

is null homotopic.

Proof. The map u,, was defined by the composition

n n n— Pn n
XM ey Xy (X (1) —= Vjes, S5
But notice that if we take the quotient X U ¢(X=1)/X(™) we get the

suspension
XM yexn-ty/xm =nxr-b,

Furthermore, the map between the wedges of the spheres, d,, : \/ jedn S —
\ j€dn SJ” is directly seen to be the composition

— - n n— n n— Eup—1 n

d,, : \/jeJn Sy ~ X () (X1 _Pror. o x( JUe(Xt=hy/x() = px-1) Tl \/J,EJW1 Sy
Thus the composition d,, o u, : X — \/jeJn i — \/jec,"i1 S1 factors as
the composition

n n n—1 proj. n n—1 n) __ n—1 Yun—1 n
XM o XMy (Xl == XM ye(xmt)/ X = nxMm-h s\ Sn
But the composite of the first two terms in this composition,

XM ey X ye(X 1) _Proi- x(n) (X1 x ™)

is clearly null homotopic, and hence so is d,, o u,. O

We now complete the proof of the theorem by doing the following step.
Step. 6. The correspondence ¢ : [X,Y] — H™(X;n) is injective.

Proof. Let f, g: X — Y be maps with ¢([f]) = ¢([g]) € H"(X;7). Since Y -
is (n— 1) - connected, given any map h : X — Y, the restriction to its (n — 1)
- skeleton is null homotopic. (Exercise. Check this!) Null homotopies define
maps

fLg: XUe(X) 5y

given by f and g respectively on X, and by their respective null homotopies on
the cones, ¢(X (V). Using the homotopy equivalence p,, : X Ue(X D) ~

X )/ x(n=1) — Ve, Sjs we then have maps

fog: XM/ xn=1 4y

which, when composed with the projection X = X — X(")/X(”_l) are
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homotopic to f and g respectively. Now by the commutativity of the diagram
in step 2, since ¢([f]) = @([g]), then o ¢([f]) = o 6([g)). Or equivalently,

o d([f] —[g) =0
where we are using the fact that
[(X x ™ X(n 1) \/ =®jes, (V)
JE€JIn
is a group, and maps to C™(X;7) is a group isomorphism.

Let ¢ : X(" /X~ — ¥ represent [f] — [g] € [V, S" Y]. Then po
¢() = 0. Then by step 4, there is a map ,—1 : \/ " — Y so that
Pn_1 o d, is homotopic to . Thus the composition

Jj€In-1

X 2ok xyx-n Yy

is homotopic to the composition

X — xm) )/ xn-1 :\/j€] S7 SN VJGJ S7 L> Y.

But by step 5, this compostion is null homotopic. Now since i represents

[f] — [g], a null homotopy of the composition

X B, x/xn-l) Yy

defines a homotopy between the compositions

X Uy x/xe Ly oand x P x/xeh T,y
The first of these maps is homotopic to f : X — Y, and the second is homo-
topic to g : X — Y. Hence f ~ g, which proves that ¢ is injective. O

We now know that the correspondence ¢ : [X,Y] — H"(X; ) is surjective
(step 2) and injective (step 6). This completes the proof of this theorem. [

We now proceed with the proof of the main classification theorem for
cohomology, using Eilenberg - MacLane spaces ( 7.24).

Proof. The Hopf Whitney theorem proves this theorem when X is an n -
dimensional CW - complex. We split the proof for general CW - complexes
into two cases.

Case 1. X is n + 1 - dimensional.

Consider the following commutative diagram

X, K(m,n)] —%— H"(X;m)

ﬂl lp (7.1)

X, K (m,m)] —2—s H™(X ;)
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where the vertical maps p denote the obvious restriction maps, and ¢, de-
notes the restriction of the correspondence ¢ to the n - skeleton, which is an
isomorphism by the Hopf - Whitney theorem.

Now by considering the exact sequence for cohomology of the pair
(X, X)) = (X4 X)) one sees that the restriction map p : H™(X, ) —
H™(X(™ 1) is injective. Using this together with the fact that ¢,, is an iso-
morphism and the commutativity of this diagram, one sees that to show
that ¢ : [X, K(m,n)] — H™(X;n) is surjective, it suffices to show that for
v € HY(X,n) with p(y) = ¢n([fn]), where f, : X — K(7,n), then f, can
be extended to a map f: X — K(m,n).

Using the same notation as was used in the proof of the Hopf - Whitney
theorem, since X = X+ we can write

X =xm Ua s U pr+D)
JE€In+1
where a1 : \/jEJn+1 S — X () is the attaching map. Thus the obstruction

to finding an extension f : X — K(m,n) of the map f, : X — K(m,n), is
the compostion

n QAn n fn
Viesn 8 55 X0 L K(rn)

Now since \/ j€dmin S7 is n - dimensional, the Hopf - Whitney theorem says
that this map is determined by its image under ¢,

O([faoannl) € H'(\/ Sfsim).

JE€JIn41
But this class is a;, (¢([fn])), which by assumption is o}, (p(v)). But the
composition

H"(X;m) -, H™(X™ ) AN H™(\/ Siim)

Jj€Int1
are two successive terms in the long exact sequence in cohomology of the
pair (XD X)) and is therefore zero. Thus the obstruction to finding
the extension f : X — K(mw,n) is zero. As observed above this proves that
¢: [X,K(m,n)] - H"(X; ) is surjective.

We now show that ¢ is injective. So suppose ¢([f]) = ¢([g]) for f, g: X —
K (m,n). To prove that ¢ is injective we need to show that this implies that f
is homotopic to ¢. Let f,, and g,, be the restrictions of f and g to X(™). That
is,

fn = p([f]) c X K(m,n) and g, = p([g]) c XM K(m,n)

Now by the commutativity of diagram 7.1 and the fact that ¢,, is an isomor-
phism, we have that f, and g, are homotopic maps. Let

F,: XM x T K(m,n)
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be a homotopy between them. That is, Fy = f,, : X x {0} — K(m,n) and
Fi =g, : X" x {1} = K (=, n). This homotopy defines a map on the (n + 1)
-subcomplex of X x I defined to be

F:(Xx{0HUX x{1HUuX®™ x T - K(m,n)

where F' is defined to be f and g on X x {0} and X x {1} respectively, and F
on X x I. But since X is (n41) - dimensional, X x I is (n+2) - dimensional,
and this subcomplex is its (n + 1) - skeleton. So X x I is the union of this
complex with (n + 2) - dimensional disks, attached via maps from a wedge
of (n + 1) - dimensional spheres. Hence the obstruction to extending F' to a
map F : X x I — K(m,n) is a cochain in C""2(X x I;m,1(K(m,n)). But
this group is zero since w41 (K (m,n)) = 0. Thus there is no obstruction to
extending F to a map F : X x I — K (m,n), which is a homotopy between f
and g. As observed before this proves that ¢ is injective. This completes the
proof of the theorem in this case.

General Case. Since, by case 1, we know the theorem for (n + 1) -
dimensional CW - complexes, we assume that the dimension of X is > n 4 2.
Now consider the following commutative diagram:

X, K(r,n)]  —%—  H"(X;m)

el &

(XD, K (7r,m)] 20 fo(X 4D )

where, as earlier, the maps p denote the obvious restriction maps, and ¢,+1
denotes the restriction of ¢ to the (n + 1) skeleton, which we know is an
isomorphism, by the result of case 1.

Now in this case the exact sequence for the cohomology of the pair
(X, X("*D) yields that the restriction map p : H*(X;7) — H*(X"+D 1)
is an isomorphism. Therefore by the commutativity of this diagram, to prove
that ¢ : [X, K(w,n)] = H"(X;7) is an isomorphism, it suffices to show that
the restriction map

p: X, K(m,n)] — [XOFY K(r,n)

is a bijection. This is done by induction on the skeleta X() of X, with
K > n+ 1. To complete the inductive step, one needs to analyze the ob-
structions to extending maps X5) — K(m,n) to XK+ or homotopies
XE) x I — K(m,n) to XE+D x I like what was done in the proof of case
1. However in these cases the obstructions will always lie is spaces of cochains
with coefficients in my(K (7, n)) with ¢ = Kor K + 1, and so ¢ > n+ 1. But
then 7y (K (m,n)) = 0 and so these obstructions will always vanish. We leave
the details of carrying out this argument to the reader. O
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7.5 Spectral Sequences

One of the great achievements of Algebraic Topology was the development of
spectral sequences. They were originally invented by Leray in the late 1940’s
and since that time have become fundamental calculational tools in many
areas of Geometry, Topology, and Algebra. One of the earliest and most im-
portant applications of spectral sequences was the work of Serre [53] for the
calculation of the homology of a fibration. We divide our discussion of spectral
sequences in these notes into three parts. In the first section we develop the
notion of a spectral sequence of a filtration. In the next section we discuss the
Leray - Serre spectral sequence for a fibration. In the final two sections we
discuss applications: we prove the Hurewicz theorem, calculate the cohomol-
ogy of the Lie groups U(n), and O(n), and of the loop spaces Q5™, and we
discuss Spin and Spinc - structures on manifolds.

7.5.1 The spectral sequence of a filtration

A spectral sequence is the algebraic machinery for studying sequences of long
exact sequences that are interelated in a particular way. We begin by illus-
trating this with the example of a filtered complex.

Let C, be a chain complex, and let A, C C, be a subcomplex. The short
exact sequence of chain complexes

0 — Ay —>Ci. — Ci/A, — 0

leads to a long exact sequence in homology:

— o — Hyy1(Ch, A) — Hy(Ay) — Hy(Cy) — Hy(Cy, Ay) — Hyo1(Ay) — -+

This is useful in computing the homology of the big chain complex, H.(C\)
in terms of the homology of the subcomplex H,(A.) and the homology of the
quotient complex H,(Cy, A.). A spectral sequence is the machinery used to
study the more general situation when one has a filtration of a chain complex
C, by subcomplexes

0=Fp(C.) = Fi(Ch) = -+ = Fi(Ch) = Fiya(Ch) = - = Cu = Fi(Cl).
k

Let D¥ be the subquotient complex D¥ = F}(C.)/F)._1(C,) and so for
each k there is a long exact sequence in homology

— Hy1(DY) — Hy(Fi1(Cx)) — Hg(Fi(Cx)) — Hg(Dy) — -+

By putting these long exact sequences together, in principle one should
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be able to use information about @ H,(D¥) in order to obtain information
about

H.(C.) = lim H. (Fy(C.)).
k

A spectral sequence is the bookkeeping device that allows one to do this.
To be more specific, consider the following diagram.

0 0
Hq(Fl(C*)) qul(Fl(C*)) — qul(Di)

Hy(Fi1(CL)) —— Hy(DEY) —2—  Hy 1(Fyo(Cl)) —2— Hy 1(DE2))

Hy(Fo(C.)) —2— H,(DY —%— Hy1(Fi(C)) —2— H,_1(DFY)

(7.2)
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The columns represent the homology filtration of H.(C.) and the three
maps 0, j, and i combine to give long exact seqences at every level.

Let o € Hy(C,). We say that o has algebraic filtration k, if « is in the
image of a class ay, € H,(Fi(C4)) but is not in the image of H,(Fj_1(C\)).
In such a case we say that the image j(ay) € H,(D¥) is a representative of
«. Notice that this representative is not unique. In particular we can add any
class in the image of

di=jod: Hq-&-l(Df-H) — Hq(Df)

to j(ax) and we would still have a representative of a € H,(C,) under the
above definition.

Conversely, let us consider when an arbitrary class 8 € H,(D¥) repre-
sents a class in Hy(C.). By the exact sequence this occurs if and only if
the image 9(8) = 0, for this is the obstruction to S being in the image of
§: Hy(Fr(C.)) — Hy(D¥) and if j() = 8 then j represents the image

io-0i(B) € Hy(Cy).

Now 9(8) = 0 if and only if it lifts all the way up the second vertical tower in
diagram 7.2 The first obstruction to this lifting, (i.e the obstruction to lifting
9(B) to Hy—1(Fr—2(Cy)) is that the composition

dy=jod:Hy/(D") — H, DF 1)

maps (3 to zero. That is elements of H,(C,) are represented by elements in
the subquotient
ker(dy)/Im(dy)

of Hy(D¥). We use the following notation to express this. We define
quﬂ,s = T+S(DI)

and define
dy=jod:E® — E]75,

r is said to be the algebraic filtration of elements in E{** and r + s is the
total degree of elements in E]*°. Since d o j = 0, we have that

dl (¢] d1 = O
and we let
Ey* = Ker(dy : BY® — B %) [Im(dy - BT — E}°)

be the resulting homology group. We can then say that the class o € Hy(Cy)
has as its representative, the class oy € Eg’qfk.
Now let us go back and consider further obstructions to an arbitrary class

8 € Eg’qfk representing a class in H,(C,). Represent 8 as a cycle in Ej:
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B € Ker(dy =jod € Hy(DF)). Again, /3 represents a class in H,(C,) if and
only if 9(8) = 0. Now since j o 9(8) = 0, 9(8) € Hy—1(Fr—1(C)) lifts to a
class, say 3 € H,_1F,_2(C.). Remember that the goal was to lift d(3) all the
way up the vertical tower (so that it is zero). The obstruction to lifting it the
next stage, i.e to H,_1(F—_3(C.)) is that j(8) € H,_1(D¥~?) is zero. Now
the fact that a dy cycle 8 has the property that 0(5) lifts to Hy—1Fr—2(C4))
allows to define a map

. pka—k k—2,q—k+1
dg. Eb — E&

and more generally,
dy : By® — By 25t

by composing this lifting with
j: Hyyr1(Frog(Ch)) — Hypra (DL72).

That is, dy = joi~!od. It is straightforward to check that dy : Ey* —»
E; 2 is well defined, and that elements of H,(C,) are actually represented
by elements in the subquotient homology groups of E5":

Ey* = Ker(dy : By* — By~ > /Im(dy : By — E])

Inductively, assume the subquotient homology groups E}’* have been de-
fined for j < p — 1 and differentials

R AL r—j,s+5—1
dj: E;" — E;
defined on representative classes in H, (D7) to be the composition
dj=jo(i¥ t=io---0i)"tod
so that E7} is the homology Ker(d;)/Im(d;). We then define
Ep® = Ker(dy—y : Ey°y — By~ 0P05072) I (d),_y « EpFP=17P42 By,

Thus Ef7* is a subquotient of Hy(DF), represented by elements 3 so that

d(B) lifts to H,(Fy_,(C.)). That is, there is an element 3 € H,(Fy_,(C\)) so
that

i"~1(B) = 0(B) € Hy—1(Fi-1(C4)).
The obstruction to j lifting to H,_1(Fx_p_1(C4)) is j(8) € H,(DE™P). This
procedure yields a well defined map

. s r—p,s+p—1
dy: E)° — B

given by j o (i?~1)71 0 @ on representative classes in H,(D¥). This completes
the inductive step. Notice that if we let
BT = lim BT

—p
p
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then E%47* is a subquotient of H,(D¥) consisting of precisely those classes
represented by elements 3 € H,(D¥) so that 9(3) lifts all the way up the
vertical tower i.e 9(f3) is in the image of ¢ for all p. This is equivalent to the
condition that 9(8) = 0 which as observed above is precisely the condition
necessary for 5 to represent a class in H,(C,). These observations can be made
more precise as follows.

Theorem 7.27. Let I™* = I'mage(H,4s(F-(Cy)) — Hy14(Cy)). Then EL?
is isomorphic to the quotient group

ETS o Ir,s/lr—l,s—&-l.
0o

Thus the EX* determines H.(C.) up to extensions. In particular, if all ho-
mology groups are taken with field coefficients we have

H(C)= @ B

rs=q

In this case we say that {E;®,d,} is a spectral sequence starting at E}*® =
H,;4(D%), and converging to H,s(C\).

Often times a filtration of this type occurs when one has a topological
space X filtered by subspaces,

x=Xo—=>X] = = Xp = Xy == XL

An important example is the filtration of a CW - complex X by its skeleta,
X, = X®*) . We get a spectral sequence as above by applying the homology of
the chain complexes to this topological filtration. This spectral sequence con-
verges to H,(X) with By term E]® = H,44(X,, X,_1). From the construction
of this spectral sequence one notices that chain complexes are irrelevant in this
case; indeed all one needs is the fact that each inclusion X;_1 < X} induces
a long exact sequence in homology.

Exercise. Show that in the case of the filtration of a CW - complex X by
its skeleta, that the F; -term of the corresponding spectral sequence is the
cellular chain complex, and the Es - term is the homology of X,

T8 HT(X)7 if s =0
By = )
0 otherwise

Furthermore, show that this spectral sequence “collapses” at the Es level, in
the sense that
Ep® = Ey® forallp>2

and hence
7,8 __ T,8
ElC =Ey".
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Now if h.(—) is any generalized homology theory (that is, a functor that
obeys all the Eilenberg - Steenrod axioms but dimension) then the inclusions
of a filtration as above Xj;_1 < X} induce long exact sequences in h.(—),
and one gets, by a procedure completely analogous to the above, a spectral
sequence converging to h.(X) with E; term

E?S = hT‘+S(XT’7 Xr—1)~

Again, for the skeletal filtration of a CW complex, this spectral sequence is
called the Atiyah - Hirzebruch spectral sequence for the generalized homology
D

Exercise. Show that the Fs -term of the Atiyah - Hirzebruch spectal
sequence for the generalized homology theory h, is

Ey" = hpis(S7) @ Hp (X).

Particularly important examples of such generalized homology theories
include stable homotopy ( = framed bordism ), other bordism theories, and
K - homology theory. Similar spectral sequences also exist for cohomology
theories. The reader is referred to [41] for a good general reference on spectral
sequences with many examples of those most relevant in Algebraic Topology.

7.5.2 The Leray - Serre spectral sequence for a fibration

The most important example of a spectral sequence from the point of view
of these notes is the Leray - Serre spectral sequence of a fibration. Given a
fibration FF — E — B, the goal is to understand how the homology of the
three spaces (fiber, total space, base space) are related. In the case of a trivial
fibration, ¥ = Bx F — B, the answer to this question is given by the Kunneth
formula, which says, that when taken with field coefficients,

H,.(B x F;k) = H,(B; k) @ Hy(F : k),

where k is the field.

When p : E — B is a nontrivial fibration, one needs a spectral sequence to
study the homology. The idea is to construct a filtration on a chain complex
C.(E) for computing the homology of the total space F, in terms of the
skeletal filtration of a CW - decomposition of the base space B.

Assume for the moment that p : E — B is a fiber bundle with fiber F'. For
the purposes of our discussion we will assume that the base space B is simply
connected. Let BX*) be the k - skeleton of B, and define

E(k)=p 1 (BW) C E.
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We then have a filtration of the total space E by subspaces
x < B(0) = E(1) < - E(k) = E(k+1) < ---— E.

To analyze the F; - term of the associated homology spectral spectral sequence
we need to compute the Ey - term, Ey° = H,; (E(r), E(r —1)). To do this,
write the skeleta of B in the form

B =BCYu | Dj.
Jj€Jy

Now since each cell D,. is contractible, the restriction of the fibration F to the
cells is trivial, and so

E(r)-E(r-1)= | J D" xF.
JjEJ,

Moreover the attaching maps are via the maps

a,: \/ ;7' x F— E(r—1)
JEJIr

induced by the cellular attaching maps oy : \/JEJk SF=1 5 B*=1)_ Using the

Mayer - Vietoris sequence, one then computes that

E}* = Hyyo(B(r), E(r— 1)) = Hyyo(|J D" x F, | 9771
JEJIr j€Ir
=H,.(\/ S"x F,F)
jeJr
=H,(\/ S")® H(F)
JjEJI

= C,(B; Hs(F)).

These calculations indicate the following result, due to Serre in his thesis
[53]. We refer the reader to that paper for details. It is one of the great pieces
of mathematics literature in the last 50 years.

Theorem 7.28. Letp: E — B be a fibration with fiber F'. Assume that F is
connected and B is simply connected. Then there are chain complexes Cy(E)
and Cy(B) computing the homology of E and B respectively, and a filtation of
C.(E) leading to a spectral sequence converging to H.(E) with the following
properties:

1. E7* = C.(B) ® Hy(F)

2. Ey° = H.(B; Hy(F))
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3. The differential d; has bidegree (—j,7 —1) :

LTS r—Jjs+j—1
dj - E;" — E; .

4. The inclusion of the fiber into the total space induces a homomorphism
isx: Hy(F) = Hy(F)
which can be computed as follows:
iv: Hy(F)=EY" — E%" c H,(E)

where Egn — E%™ s the projection map which exists because all the dif-
ferentials d; are zero on E;)"

5. The projection map induces a homomorphism
P+ Ho(E) = Hu(B)
which can be computed as follows:
H,(E) —» E™° c E}° = H,(B)

where E° includes into E;“O as the subspace consisting of those classes
on which all differentials are zero. This is well defined because no class in
E]n’o can be a boundary for any j.

Remark. The theorem holds when the base space is not simply con-
nected also. However in that case the F5 -term is homology with “twisted
coeflicients”. This has important applications in many situations, however we
will not consider this issue in these notes. Again, we refer the reader to Serre’s
thesis [53] for details.

We will finish this chapter by describing several applications of this im-
portant spectal sequence. The first, due to Serre himself [53], is the use of
this spectral sequence to prove that even though fibrations do not, in general,
admit long exact sequences in homology, they do admit exact sequences in
homology through a range of dimensions depending on the connectivity of the
base space and fiber.

Theorem 7.29. Let p: E — B be a fibration with connected fiber F', where
B is simply connected and H;(B) = 0 for 0 < i < n, and H;(F) = 0 for
i < i< m. Then there is an exact sequence

Hnerfl(F) # Hn+mfl(E) L Hn+m71(B) — Hn+m72(F) -

— Hi(E)—0
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Proof. The E5 -term of the Serre spectral sequence is given by
Ey® = H,(B; Hy(F))

which, by hypothesis is zero for 0 < r <nor 0 < j < m. Let ¢ < n+ m.
Then this implies that the composition series for H,(E), given by the filtration
defining the spectral sequence, reduces to the short exact sequence

0— EX? — Hy(E) — EL° — 0.
Now in general, for these “edge terms”, we have

EL = kernel{d, : E?° — E)9"'} and

E%8 = coker{d, : EX® — EJ*'}.

But when ¢ < n +m, we have E¢* = EJ® = H,(B) and EQ9! = B! =
H,_1(F') because there can be no other differentials in this range. Thus if we
define

T:Hy(B) = Hy_1(F)

to be dy : EP° — EY97!, for ¢ < n 4 m, we then have that p. : Hy(E) —
H,(B) maps surjectively onto the kernel of 7, and if ¢ < n+m — 1, then the
kernel of p, is the cokernel of 7 : Hyy1(B) — Hy(F'). This establishes the
existence of the long exact sequence in homology in this range. O

Remark. The homomorphism 7 : H,(B) — Hy_1(F) for ¢ < n+m in
the proof of this theorem is called the “transgression” homomorphism.

7.5.3 Applications I: The Hurewicz theorem

As promised earlier in this chapter, we now use the Serre spectral sequence
to prove the Hurewicz theorem. The general theorem is a theorem comparing
relative homotopy groups with relative homology groups. We begin by proving
the theorem comparing homotopy groups and homology of a single space.

Theorem 7.30. Let X be an n — 1 - connected space, n > 2. That is, we
assume mg(X) = 0 for ¢ < n —1. Then Hy(X) =0 for ¢ < n—1 and the
previously defined “Hurewicz homomorphism”

h:m(X) = Hy(X)

is an isomorphism.
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Proof. We assume the reader is familiar with the analogue of the theorem
when n = 1, which says that for X connected, the first homology group
H,(X) is given by the abelianization of the fundamental group

h: 7T1(X)/[7T1,7T1] = Hl(X)

where [m,m] C m1(X) is the commutator subgroup. We use this preliminary
result to begin an induction argument to prove this theorem. Namely we
assume that the theorem is true for n — 1 replacing n in the statement of the
theorem. We now complete the inductive step. By our inductive hypotheses,
Hi(X)=0fori <n-—2and m,_1(X) & H,_1(X). But we are assuming
that 7,_1(X) = 0. Thus we need only show that h : 7,(X) — H,(X) is an
isomorphism.

Consider the path fibration p : PX — X with fiber the loop space QX.
Now 7;(Q2X) = m41(X), and so m;(2X) = 0 for ¢« < n — 2. So our inductive
assumption applied to the loop space says that

h: Wn_l(QX) — Hn_l(QX)

is an isomorphism. But 7,1 (22X ) = 7, (X). Also, by the Serre exact sequence
applied to this fibration, using the facts that

1. the total space PX is contractible, and

2. the fiber QX is n—2 - connected and the base space X is (n—1) - connected

we then conclude that the transgression,
7:Hy(X) = H,—1(2X)

is an isomorphism. Hence the Hurewicz map h : 7,1 (QX) — H,_1(QX) is
the same as the Hurewicz map h : m,(X) — H,(X), which is therefore an
isomorphism. O

We are now ready to prove the more general relative version of this theorem
7.20

Theorem 7.31. Let X be simply connected, and let A C X be a simply
connected subspace. Suppose that the pair (X, A) is (n — 1) - connected, for
n > 2. That is,

(X, A) =0 if k<n-—1.

Then the Hurewicz homomorphism h, : 7,(X, A) — H, (X, A) is an isomor-
phism.
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Proof. . Replace the inclusion
1:A— X.

by a homotopy equivalent fibration 7 : A — X as in 7.7. Let F, be the fiber.
Then m;(F,) = m+1(X,A), by comparing the long exact sequences of the
pair (X, A) to the long exact sequence in homotopy groups for the fibration
A — X. So by the Hurewicz theorem 7.30 we know that m;(F) = H;(F) =0
for i <n—2 and

h: anl(F) — anl(F)

is an isomorphism. But as mentioned, m,_1(F) 2 7,(X, A) and by compar-
ing the homology long exact sequence of the pair (X, A) to the Serre exact
sequence for the fibration F — A — B, one has that H, 1(F)=2 H,(X,A).
The theorem follows. O

As a corollary, we obtain the following strengthening of the Whitehead
theorem 7.15 which is quite useful in calculations.

Corollary 7.32. Suppose X and Y are simply connected CW - complezes
and f: X =Y a continuous map that induces an isomorphism in homology
groups,

foi Ho(X) —— Hy(Y) for allk >0

Then f: X —Y is a homotopy equivalence.

Proof. Replace f: X — Y by the inclusion into the mapping cylinder
f: X =Y

where Y =Y U ¢ X x I which is homotopy equivalent to Y, and f includes X
into Y as X x {1}.

Since X and Y are simply connected, we have that mo(X) = Hy(X) and
m(Y) = Ho(Y). Thus f. : ma(X) — 72(Y) is an isomorphism. Again, since X
and Y are simply connected, this implies that =, (Y,X)=0for g =1,2. Thus
we can apply the relative Hurewicz theorem. However since f. : Hp(X) =
Hy(Y) for all k> 0, we have that Hy,(Y,X) = 0 for all £ > 0. But then the
Hurewicz theorem implies that 7 (Y, X) = 0 for all k, which in turn implies
that fi : m(X) — 7, (Y) is an isomorphism for all k. The theorem follows
from the Whitehead theorem 7.15. O
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7.5.4 Applications II: H,.(QS™) and H*(U(n))

In this section we will use the Serre spectral sequence to compute the homology
of the loop space 2S™ and the cohomology ring of the Lie groups, H*(U(n)).

Theorem 7.33.

Z if q is a multiple of n — 1, i.e g = k(n — 1)
0 otherwise

H,y(QS™) = {

Proof. QS™ is the fiber of the path fibration p : PS™ — S™. Since the total
space of this fibration is contractible, the Serre spectral sequence converges to
0 in positive dimensions. That is,

ED =0

for all 7, s, except that E%? = Z. Now since the base space, S™ has nonzero
homology only in dimensions 0 and n (when it is Z), then

Ey® = H,(S™; Hs(2S™))

is zero unless 7 = 0 or n. In particular, since d, : Ep* — Eg’q*”q’l, we must
have that for ¢ < n, d, = 0. Thus E5® = EI* and the only possible nonzero
differential d,, occurs in dimensions

. n,s 0,s+n—1
dn: E° = E, .

It is helpful to picture this spectral sequence as in the following diagram,
where a dot in the (r,s) - entry denotes a copy of the integers in E»* =
H,.(S™; Hs(25™)).

Notice that if the generator o, o € E™° is in the kernel of d,,, then it
would represent a nonzero class in E:fl. But d,, 11 and all higher differentials

0 : : : 0
on B, must be zero, for dimensional reasons. That is, E,; = E°. But we

saw that E? = 0. Thus we must conclude that d,,(c,.) # 0. For the same
reasoning, (i.e the fact that E;lfl = 0) we must have that d,, (ko) # 0 for

all integers k. This means that the image of
dy : E}Y — Epm!

is Z C B9t = H,,_1(25™). On the other hand, we claim that d,, : E"° —
E2"=1 must be surjective. For if a € E9"~1 is not in the image of d,,, then
it represents a nonzero class in ngl_ ' = E%" 1. But as mentioned earlier
E%"=1 = 0. So d, is surjective as well. In fact we have proven that

dp: 7 =H,(8") = EM* — EO"~1 = 9" = H,_,(QS™)
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3(n-1)
2(n-1)

n-1

is an isomorphism. Hence H,,_1(Q2S5™) = Z, as claimed. Now notice this cal-
culation implies a calculation of E5"" ™', namely,

EP™t = H,(S™; Hp_1(Q8™) = bz.
Repeating the above argument shows that E3" ' = E,n,n — 1 and that
R
must be an isomorphism. This yields that
Z=Ey*" Y = Hy, 1) (QS™).

Repeating this argument shows that for every ¢, Z = E;’Q("_l) = gl

and that
dp : BT 5 B0, (g4 1) (n — 1) 2 Hgy1yn-1)(QS™)

is an isomorphism. And so Hy(,—1)(25™) = Z for all k.

We can also conclude that in dimensions j not a multiple of n — 1, then
H;(Q2S™) must be zero. This is true by the following argument. Assume the
contrary, so that there is a smallest j > 0 not a multiple of n — 1 with
H;(Qs™) = Eg’j # 0. But for dimensional reasons, this group cannot be in the
image of any differential, because the only Fj'® that can be nonzero with r > 0

is when r» = n. So the only possibility for a class a € Eg’j to represent a class
which is in the image of a differential is d,, : E"* — E%$T"=1.S0 j = s+n—1.
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But since j is the smallest positive integer not of the form a multiple of n — 1
with H;(QS™) nonzero, then for s < j, El® = H, (S™, Hs(QS™)) = Hs(Q2S™)

n
can only be nonzero if s is a multiple of (n—1), and therefore so is s+n—1 = j.

This contradiction implies that if j is not a multiple of n—1, then H;((QS™))
is zero. This completes our calculation of H, (£2.5™). O

We now use the cohomology version of the Serre spectral sequence to
compute the cohomology of the unitary groups. We first give the cohomological
analogue of 7.28. Again, the reader should consult [53] for details.

Theorem 7.34. Letp: E— B be a fibration with fiber F'. Assume that F is
connected and B is simply connected. Then there is a cohomology spectral se-
quence converging to H*(E), with Ey® = H"(B; H*(F')), having the following
properties.

1. The differential d; has bidegree (j,—j +1) :

. .8 r+j,5—j+1
d;: E}* - E| .

2. For each j, E]** s a bigraded ring. The ring multiplication maps

Ef’q ®E;7] N Ef“’ﬁ].

3. The differential d; : E}° — E;H’S*jﬂ. is an antiderivation in the sense
that it satisfies the product rule:

dj(ab) = dy(a) - b+ (—1)"a - dy (b)
where a € E;“)

4. The product in the ring E;1 is induced by the product in the ring E;, and
the product in Eoo is induced by the cup product in H*(E).

We apply this to the following calculation.

Theorem 7.35. There is an isomorphism of graded rings,
H*(U(n)) = Aoy, 05, ,020-1],

the graded exterior algebra on one generator oop_1 in every odd dimension
2k —1 for1 <k <n.
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Proof. We prove this by induction on n. For n = 1, U(1) = S! and we know
the assertion is correct. Now assume that H*(U(n — 1)) = Aloy, - 0an—3).
Consider the Serre cohomology spectral sequence for the fibration

Umn-1)cUm) = Un)/Um—1)= 81
Then the Fs - term is given by
Ey* = H*(S*™ L H*(U(n—1)) = H*(S* ) @ H*(U(n — 1))

and this isomorphism is an isomorphism of graded rings. But by our inductive
assumption we have that

H*(S*™ Y@ H*(U(n —1)) 2 Alog,_1] @ Aoy, -+ - 093]

A[ULUs,"' 70-2n71]-

Il

Thus
E3* = Aoy,03,- -+ ,09,-1]

as graded algebras. Now since all the nonzero classes in E;* have odd total
degree (where the total degree of a class a € F5® is r+s), and all differentials
increase the total degree by one, we must have that all differentials in this
spectral sequence are zero. Thus

* %k * %k
Eoé :EQ gA[Ul,O'g,"' 702n—1]~

We then conclude that H*(U(n)) == Alo1,03,-+ ,02,—1] which completes
the inductive step in our proof. O

7.5.5 Applications III: Spin and Spinc structures

In this section we describe the notions of Spin and Spinc structures on vec-
tor bundles. We then use the Serre spectral sequence to identify characteristic
class conditions for the existence of these structures. These structures are par-
ticularly important in geometry, geometric analysis, and geometric topology.

Recall from chapter 2 that an n - dimensional vector bundle { over a space
X is orientable if and only if it has a SO(n) - structure, which exists if and only
if the classifying map f: : X — BO(n) has a homotopy lifting to BSO(n). In
chapter 3 we proved the following property as well.

Proposition 7.36. The n - dimensional bundle  is orientable if and only if
its first Stiefel - Whitney class is zero,

wi(¢) =0 € H'(X; Zy).
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A Spin structure on ( is a refinement of an orientation. To define it we
need to further study the topology of SO(n).

The group O(n) has two path components, i.e mo(O(n)) = Zz and SO(n)
is the path component of the identity map. In particular SO(n) is connected,
so mo(SO(n)) = 0. We have the following information about 7 (SO(n)).

Proposition 7.37. 71(SO(2)) = Z. For n > 3, we have
m1(SO(n)) = Zs.

Proof. SO(2) is topologically a circle, so the first part of the theorem follows.
SO(3) is topologically the projective space
SO(3) = RP?
which has a double cover Zy; — S% — RP3. Since S® is simply connected, this
is the universal cover of RP? and hence Zy = m (RP?) = 71 (SO(3)).
Now for n > 3, consider the fiber bundle SO(n) — SO(n+ 1) — SO(n +
1)/SO(n) = S™. By the long exact sequence in homotopy groups for this

fibration we see that m1(SO(n)) — m1(SO(n + 1)) is an isomorphism for
n > 3. The result follows by induction on n. O

Since 71 (SO(n)) = Zs, the universal cover of SO(n) is a double covering.
The group Spin(n) is defined to be this universal double cover:

Zy — Spin(n) — SO(n).

Exercise. Show that Spin(n) is a group and that the projection map
p: Spin(n) — SO(n) is a group homomorphism with kernel Zs.

Now the group Spin(n) has a natural Zy action, since it is the double cover
of SO(n). Define the group Spinc(n) using this Zs - action in the following
way.

Definition 7.6. The group Spinc(n) is defined to be
Spinc(n) = Spin(n) xz, U(1).
where Zo acts on U(1) by z — —z for z € U(1) C C.

Notice that there is a principal U(1) - bundle,
U(1) — Spinc(n) = Spin(n) xz, U(1) — Spin(n)/Zs = SO(n).

Spinc - structures have been recently shown to be quite important in the
Seiberg - Witten theory approach to the study of smooth structures on four
dimensional manifolds [36].

The main theorem of this section is the following:
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Theorem 7.38. Let ( be an oriented n - dimensional vector bundle over a
CW - complex X. Let wo(¢) € H*(X;Zs) be the second Stiefel - Whitney
class of . Then

1. ¢ has a Spin(n) structure if and only if wo(¢) = 0.

2. ¢ has a Spinc(n) - structure if and only if we(¢) € H*(X;Z2) comes
from an integral cohomology class. That is, if and only if there is a class
c € H?(X;7Z) which maps to wy(¢) under the projection map

H*(X;7) — H*(X;Zy).

Proof. The question of the existence of a Spin or Spinc structure is equivalent
to the existence of a homotopy lifting of the classifying map f. : X — BSO(n)
to BSpin(n) or BSpinc(n). To examine the obstructions to obtaining such
liftings we first make some observations about the homotopy type of BSO(n).

We know that BSO(n) — BO(n) is a double covering (the orientation
double cover of the universal bundle). Furthermore w1 (BO(n) = mo(O(n)) =
Zs, so this is the universal cover of BO(n). In particular this says that BSO(n)
is simply connected and

is an isomorphism for i > 2.
Recall that for n odd, say n = 2m + 1, then there is an isomorphism of
groups
SO(2m+1) x Zs 2 O0(2m + 1).

Exercise. Prove this!

This establishes a homotopy equivalence
BSO(2m+1) x BZy =2 BO(2m + 1).

The following is then immediate from our knowledge of H*(BO(2m+1);Z,) =
ZQ [wl, s ,UJ2m+1] and H* (BZQ; ZQ) = ZQ [wl]

Lemma 7.39.
H*(BSO(2m -+ 1), ZQ) = ZQ[’LUQ, R ,w2m+1]
where w; € HY(BSO((2m + 1);Zy) is the ith Stiefel - Whitney class of the

universal oriented (2m—+1) - dimensional bundle classified by the natural map
BSO(2m+1) - BO(2m +1).
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Corollary 7.40. For n >3, H>(BSO(n); Zs) = Zy, with nonzero class ws.

Proof. This follows from the lemma and the fact that for n > 3 the inclusion
BSO(n) — BSO(n + 1) induces an isomorphism in H?, which can be seen
by looking at the Serre exact sequence for the fibration S™ — BSO(n) —
BSO(n+1). O

This allows us to prove the following.

Lemma 7.41. The classifying space BSpin(n) is homotopy equivalent to the
homotopy fiber F,, of the map

wa : BSO(’R) — K(ZQ,2)
classifying the second Stiefel - Whitney class wy € H?(BSO(n); Zs).

Proof. The group Spin(n) is the universal cover of SO(n), and hence is simply
connected. This means that BSpin(n) is 2 - connected. By the Hurewicz
theorem this implies that H?(BSpin(n);Zs) = 0. Thus the composition

BSpin(n) —X— BSO(n) —2— K(Z,,2)

is null homotopic. Convert the map ws to a homotopy equivalent fibration,
Wy : BSO(n) — K(Z3,2). The map p defines a map (up to homotopy) 7 :
BSpin(n) — BSO(n), and the composition pows is still null homotopic. A null
homotopy ® : BSpin(n) x I — K(Zs3,2) between pows and the constant map
at the basepoint, lifts, due to the homotopy lifting property, to a homotopy
® : BSpin(n) x I — BSO(n) between p and a map § whose image lies entirely
in the fiber over the basepont, Fi,,,

D : BSpin(n) = Fy,.

We claim that p induces an isomorphism in homotopy groups. To see this, ob-
serve that the homomorphism p, : m4(BSpin(n)) — m,(BSO(n)) is equal to
the homomorphism mq_1(Spin(n)) — m4—1(SO(n)) which is an isomorphism
for ¢ > 3 because Spin(n) — SO(n) is the universal cover. But similarly
7q(Fu,) — mg(BSO(n)) is also an isomorphism for ¢ > 3 by the exact se-
quence in homotopy groups of the fibration F,, — BSO(n) w2 K(Z2,2),
since ws induces an isomorphism on my. BSpin(n) and F, are also both 2 -
connected. Thus they have the same homotopy groups, and we have a com-
mutative square for ¢ > 3,

mq(BSpin(n)) B LN Tg(Fusy)

p|= B

7q(BSO(n)) — 7qe(BSO(n)).
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Thus p : BSpin(n) — F,, induces an isomorphism in homotopy groups, and
by the Whitehead theorem is a homotopy equivalence. O

Notice that we are now able to complete the proof of the first part of the
theorem. If ¢ is any oriented, n - dimensional bundle with Spin(n) structure,
its classifying mapfe : X — BSO(n) lifts to a map f( : X — BSpin(n),
and hence by this lemma, w(¢) = ff(w2) = ff o p*(w2) = 0. Conversely, if
wz(¢) = 0, then the classifying map f. : X — BSO(n) has the property that
fz‘(wg) = (. This implies that the composition

x 2 BSO(n) —*2 K(Z,,2)

is null homotopic. A null homotopy lifts to give a homotopy between f; and a
map whose image lies in the homotopy fiber F,,,, which, by the above lemma
is homotopy equivalent to BSpin(n). Thus f; : X — BSO(n) has a homotopy
lift fC : X — BSpin(n), which implies that ¢ has a Spin(n) - structure.

We now turn our attentiona to Spinc - structures.

Consider the projection map
p: Spinc(n) = Spin(n) Xz, U(1) = U(1)/Z2 = U(1).

p is a group homomorpism with kernel Spin(n). p therefore induces a map on
classifying spaces, which we call c,

¢ : BSpinc(n) — BU(1) = K(Z,2)

which has homotopy fiber BSpin(n). But clearly we have the following com-
mutative diagram

BSpin(n) —S— B(Spin(n) xy., U(1)) ——— BSpinc(n)

- ! 5

BSpin(n) —— B(Spin(n)/Zs) — BSO(n)
Therefore we have the following diagram between homotopy fibrations
BSpin(n) —— BSpinc(n) —— K(Z,2)
-| | b
BSpin(n) —— BSO(n) —2— K(Zy,2)
where p : K(Z,2) — K(Z2,2) is induced by the projection Z — Zs. As

we’ve done before we can assume that p : K(Z,2) — K(Z2,2) and wq :
BSO(n) — K(Zs,2) have been modified to be fibrations. Then this means
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that BSpinc(n) is homotopy equivalent to the pull - back along ws of the
fibration p : K(Z,2) — K(Z2,2):

BSpinc(n) ~ wi(K(Z,2)).

But this implies that the map f¢ : X — BSO(n) homotopy lifts to BSpinc(n)
if and only if there is a map u : X — K(Z,2) such that pou: X — K(Z2,2)
is homotopic to wy o fr : X — K(Z2,2). Interpreting these as cohomology
classes, this says that fe lifts to BSpinc(n) (i.e ¢ has a Sping(n) - structure)
if and only if there is a class u € H?(X;Z) so that the Zs reduction of u, p(u)
is equal to wa(¢) € H?(X;Zs). This is the statement of the theorem. O






8

Tubular Neighborhoods, more on
Transversality, and Intersection Theory

8.1 The tubular neighborhood theorem
We begin this chapter by proving another important, and basic result in dif-

ferential topology: the “Tubular Neighborhood Theorem”.

Theorem 8.1. Suppose M™ is an n-dimensional smooth manifold, and sup-
pose the N¥ € M™ is a k-dimensional submanifold. Then there exists an open
neighborhood 1 of N* in M™ that satisfies the following properties:

1. There is a neighborhood deformation retract
p:n— NF.
That is, p is a smooth map with the property that pot = idxr and top :
n — n is homotopic to id,. Here v : NF¥ < M™ is the inclusion.
2. Let m : v — NF be the normal bundle of N* in M™. Then there is a

diffeomorphism ® : n — v making the following diagram commute:

P
n — Vv

| |~

Nk —— NF¥

Remark. The open set 7 in this theorem is referred to as a “tubular neigh-
borhood” because, as the theorem states, it is diffeomorphic to the total space
of a vector bundle, v which locally looks like a “tube”, N¥ x R*~*.

Observe that the statement of this theorem can be made in another way,
which is often quite useful.

Theorem 8.2. (Tubular neighborhood theorem, equivalent formulation.) Sup-
pose e : N¥ — M™ is an embedding of smooth manifolds with normal bun-
dle v. Assume that N* is closed. Consider the inclusion of the zero section,

219
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¢ : N¥ < v. Then the embedding e extends to an embedding é : v — M™
which is a diffeomorphism onto an open subset of M*. By é “extending” e we
mean that the composition

NF &0 & M
is equal to the embedding e : N* — M™.

We leave it to the reader to check that this formulation is indeed equivalent
to Theorem 8.1. We begin the proof of Theorem 8.1 by first proving it in the
case where the ambient manifold is Euclidean spaces.

Theorem 8.3. Let e : N¥ < R™ be an embedding of a closed manifold N*.
Then N* has a “tubular neighborhood”.

Proof. Observe that it suffices to show that there is an open neighborhood V'
of the zero section N*¥ < v that supports an embedding into R™ that extends
e : N*¥ — R”. This is because, by the vector bundle structure of nu there is
clearly an embedding of v into any neighborhood of the zero section that fixes
the zero section.

Let m be the codimension, m = n — k. Consider the map to the Grass-
mannian,

g:NF = Gr,,(R")
defined by g(x) = v, C R™. That is, g(x) is the normal space to x in R™. More
precisely,

1
vy = (Dye(TyN*¥)) ™.
Notice that the normal bundle v — N* is the pullback, v = g*(7,,), where
Ym — Grm, (R™) is the canonical bundle. Specifically,

7 (vm) = {(z,v) € NEXR" :ve Vg }.

Define a map ¢ : v — R" by ¢(x,v) = x + v € R™. As above, identify v
with ¢* (v, ). Then notice that the tangent space to v at (z,0) is given by

T(I,O)U =T, M ®v,.
Furthermore, if one considers the derivative of ¢ at (x,0),
D(:z:,O)(b : T(x,O)V — Tan

one has that it is the identity on on both T, M and on v,. Therefore D¢ has
rank n at all points on the zero section. It follows that ¢ is an immersion of
a neighborhood U of the zero section in v. Since the restriction of ¢ to the
zero section itself is the given by the identity of N¥ C R”, it implies that the
restriction of ¢ to a perhaps smaller neighborhood V' of the zero section in v

is an embedding.
O
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We now proceed with the proof of Theorem 8.1.

Proof. By Whitney’s embedding theorem 6.1 we can assume that M"™ C RN
for some sufficiently large N. Let W C RY be a tubular neighborhood of M™,
and r : W — M™ a retraction. Give M"™ a metric induced by the Euclidean
metric on R”. Notice we have an inclusion of vector bundles over N*,
ves TM" — TRY =N*xRN.
‘Nk ‘Nk
For x € N*, let U, = {(z,v) € vy : &+ v € W}. Then the set U = (J,c yr Us
can be viewed as a subset of N¥ x RY and can then be given the subspace

topology. Notice that by definition, U C v and is an open subspace, because
it is the inverse image of W under the map

v— RN

(z,v) = x +v.

The map
¢o:U— M"
¢z, v) =r(z+0)
is then easily checked to be a tubular neighborhood of e : N¥ < M™. O

The tubular neighborhood theorem is extremely important in differential
topology, and is used quite often. For example, it is crucial in knot theory,
where one studies embeddings of S! in R? C S2. Let K be such a knot. That
is, it is the image of such an embedding. Let n(K) be a tubular neighborhood
of K in S3. Then the fundamental group of the complement, S3 — n(K) is
an extremely important invariant of the isotopy class of the knot, and is the
main tool in studying knot theory for a century. This group is most often
not abelian, but has abelianization = Z. This is seen using the fact that the
abelianiization of 71 (S% — K) is equal to the first homology, H;((S® — K), and
then using Alexander duality.

8.2 The genericity of transversality

In the last chapter we discussed the notions of regular values and transver-
sality. In this section we will return to these notions and prove that they are
generic in a sense that we will make precise. We will be following the discus-
sion of these results given in Bredon’s book [7] which is a very good reference
for these concepts.

Recall that if ¢ : M™ — N™ is smooth, then p € M is a critical point of ¢
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A

FIGURE 8.1
The trefoil knot

if the derivative D,¢ has rank strictly smaller than n. If p is critical, ¢(p) € N
is a critical value. If z € N is not a critical value, it is called a regular value.
So in particular, x € N is regular

o if m > n and D,¢ is surjective for all p € M with ¢(p) =z, or
e m < n and z is not in the image of ¢.

The following theorem is well known in Analysis and Topology, and its
proof is given in many texts, including the appendix of Bredon’s book [7], as
well as in Hirsch’s book [30].

Theorem 8.4. (Sard’s theorem) If ¢ : M™ — R™ is C°°, then the set of
critical values has measure zero in R™.

Before we state an important corollary to this theorem, which we will rely
on heavily, we recall some terms from measure theory.

Definition 8.1. A nowhere dense subspace of a topological space is one
whose set theoretic closure has empty interior. A subspace E C X is first
category if F is the countable union of subpaces that are nowhere dense. A
residual subspace iis the complement of a first category subspace. That is,
it’s complement is the countable union of nowhere dense subspaces. A residual
subspace is sometimes called “everywhere dense”.

Corollary 8.5. (A. B Brown’s theorem) If ¢ : M™ — N™ is a C* map, then
the set of reqular values of ¢ is residual in N™.

Proof. If C is the set of critical points of ¢, and K C M™ is compact, then
¢(C N K) is a compact subspace of N™, and its interior is empty by Sard’s
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theorem. Therefore ¢(C N K) is nowhere dense. Since M™ is covered by a
countable union of such compace subspaces, ¢(C) is first category and thus
it’s complement is residual. O

We note that if m = 1, then Sard’s theorem says that there aren’t any
smooth, space-filling curves, unlike in the continuous setting.

We now apply Sard’s theorem to the setting of transversality theory. We
first show that zero sections of vector bundles can be perturbed to be trans-
verse to any map.

Theorem 8.6. Let £ — Y be a smooth vector bundle over a smooth, compact
manifold. Let X be a smooth manifold and f : X — & a smooth map. Then
there is a smooth cross section s :' Y — £ as close to the zero section as

desired, so that f hs(Y).

Proof. Since Y is compact, we know that there exists a smooth vector bundle
1n — Y such that & @ n is trivial. That is, there is an isomorphism of vector
bundles over Y,

U:&dn =Y xR™

Let p: £ 8 — R™ be the projection of ¥ onto the R" factor. We then
have a commutative diagram

freen —I can

<] I
X —>f ¢
Here 7 is the projection, and f and 7’ are the obvious maps induced by f and
m, respectively.
Let z € R™ be a regular value of the composition

rreondeon R

By Sard’s theorem z can be chosen to be arbitrarily close to the origin. So the
composition of the derivatives

DpoDf :T,f*(¢®n) — R"

is surjective for any v € f*(£@®n) such that po f(v) = z. Using the trivialization
U:£0n v x R™., we may conclude that the image of Df must span the
complement of that tangent space to Y x {z} at (py f(v), 2), where py is the
projection of the trivialization ¥ onto the Y factor. This means that f is
transverse to the section s’ : Y — £ @ n given, in terms of the trivialization
U, by s'(y) = (y,2). Define the section s : Y — ¢ by s(y) = m(s'(y). Notice
that the following diagram commutes:
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freon —Lo con v

| (C
X — &€ - Y

We claim that f is transverse to s(Y"). To see this, let z € X, y € Y be such
that f(z) = s(y). Then

By the definition of the pullback bundle, (z,s'(y)) € f*(£ ® 1) has
f(z,5'(y)) = §'(y). Since f M s'(Y), the images of D, ¢ () f and Dys’ span
Tf(w,s’(y)):s’(y)(€ @ 7). Since 7 is a submersion, we may conclude that the
images of D, f and Dys span T (z)—s,)€- That is, f th s(Y'). Notice that the
section s may be taken to be arbitrarily close to the zero section by choosing
z € R™ sufficiently close to the 0 € R™. Again, the reason one can do this is
Sard’s theorem. O

Corollary 8.7. Let f: M — W be a smooth map between smooth manifolds.
Assume that M is compact. Let N be another compact, smooth manifold and
suppose go : N — W is a smooth embedding. Then there is an arbitrarily
small isotopy of go to a smooth embedding g1 : N — W with the property that

fhgi(N).

Proof. Let v — N be the normal bundle of the embedding gy : N — W.
By the tubular neighborhood theorem (8.2) go extends to an embedding
g : v < W which is a diffeomorphism onto an open subspace (the tubu-
lar neighborhood). Notice that if we define M’ = f~1(g(v)), then M’ C M is
an open submanifold. We now apply the Theorem 8.6 to the restriction of f,
fly M — v O

We will actually need another version of this corollary that says that
transversal intersections are generic with respect to perturbations of the map
f. But first we need the following:

Lemma 8.8. Let N be a compact smooth submanifold of a smooth manifold
W. Let T be a tubular neighborhood of N. It is equipped with a retraction
p: T = NgIfs: N — T is any section (i.e po s = id) then there is a
diffeomorphism h : T — T that preserves fibers, extends continuously to the
identity on the boundary 0T, and takes s to the zero section. Moreover the
diffeomorphism h can be taken to be homotopic to the identity of T.
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Proof. By the tubular neighborhood theorem, it suffices to work in the vector
bundle setting. Let p : v — N be the normal bundle of N in W. Let s : N — v
be any section, and let z : N — v be the zero section. Define

H:v—v
H(v) = v — s(p(v)).

Notice that H is a map of fiber bundles in that it preserves fibers (i.e poH (v) =
p(v)). But notice also that H is not a map of vector bundles since it is not
linear on each fiber. Rather, H is affine on each fiber. In any case, H is clearly
a diffeomorphism.

Notice that H o s(x) = z(z). Moreover H is homotopic to the identity
through diffeomorphisms. To see this, define for ¢t € [0, 1] Hy(v) = v—ts(p(v)).
Notice that Hy is the identity, and H; = H. O

Corollary 8.9. Let M be a closed, smooth manifold and fo : M — W a
smooth map between smooth manifolds. Let N C W be a smooth, closed sub-
manifold and let T be any tubular neighborhood of N. Then there is a smooth
map f1: M — W with the following properties.

1. fih N,
2. f1 = fo outside of f~1(T),

3. f1 is homotopic to fo on all of M via a homotopy that is constant outside

of fo N (T).

Proof. By Theorem 8.6 we know there exists a section s of a tubular neighbor-
hood of N such that fy th s(IV). Composing fy with the homotopy h described
in the above lemma defines f;. This f; may not be smooth at the boundary
of the tubular neighborhood, but it can be smoothly approximated without
changing it near the intersection with NV, where f; is already smooth. O

Remarks. 1. This corollary says that one can perturb any map fy with as
small of a perturbation as one would like, to make it transverse to V.

2. There exist strengthenings of this result saying that the set {f : M —
W such that f h N} is “generic” (i.e a countable intersection of open, dense
subsets) in the space of all smooth maps C°° (M, W). Hirsch’s book [30] gives
a good exposition of this. For our purposes we only need that the space of
transverse maps is dense in the space of all smooth maps, which is what the
above results show.
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8.3 Applications to intersection theory

One immediate application of transversality theory says that one can pull low
dimensional submanifolds of a large dimensional manifolds apart, so that the
do not interesect. More precisely, we have the following.

Proposition 8.10. Let PP and Q? be closed submanifolds of M™ where p+q <
n. Then one can perturb either PP or Q9 by an arbitrarily small amount so
that they do not intersect.

More precisely, suppose M™ C RN . Let e : PP < M™ be an embedding
whose image is the submanifold in question. Then for any choice of € > 0,
there exists another embedding € : PP — M™, isotopic to e, so that for any
x € PP |le(z) — é(z)|| < € and E(PP)N QI =0.

Proof. This follows from Corollary 8.7 and the fact that from Theorem 3.7 we
see that the only transversal intersections of p-dimensional and g-dimensional
submanifolds of an n-dimensional manifold when p + ¢ < n, is the empty
intersection. O

Here is another easy consequence of transversality theory. It is a statement
about the homotopy groups of complements of submanifolds of Euclidean
space.

Proposition 8.11. Suppose M™ is a smooth, closed manifold, equipped with
an embedding e : M™ — R™. Then any smooth map of a sphere to the com-

plement,
f . Sk SR — MM

can be extended to a map of the closed disk, f : DR S R — M™ if k<
n—m—1.

Proof. f:S* — R™ is null homotopic, since R is contractible. So there exists
an extension fo : DF1 — R™. Perturb fo if necessary, to a map fl : DFHL
R™ that is homotopic to fg relative to its boundary, and such that fl h M™.
But since (k4 1) +m < n, this means that f;(D*+1) N M™ = §. In particular
this means that the original map f :~Sk — R™ — M™ is null homotopic, and
can therefore be extended to a map f : D¥1 — R" — M™, O

Another important application of transversality to intersection theory is
when the sum of the dimensions of the submanifolds equals the dimension of
the ambient manifold. So let PP and Q? be closed submanifolds of M"™, where
n = p+q. Then basic transversality theory says that one can perturb either PP
or Q7 so that they intersect transversally. (At this point the reader should be
able to make this statement precise.) In this setting the intersection PP N Q4
is a manifold of dimension p + ¢ —n = 0. By compactness PP N Q9 is a finite
number of points. When P?, 7, and M™ are all oriented, PP N Q7 will inherit
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an orientation, and so each of the points making it up will have an orientation.
This will just be a sign (1) and so one can count these points according to
sign to obtain the “intersection” number. We now make this more precise.

Consider the following commutative diagram of embeddings:

pr S M
UT Tu
Pr Qe T> Q1

When PP, Q9, and M™ are all oriented, the normal bundle of Q¢ — M™ has
an induced orientation. Furthermore it restricts to give the (oriented) normal

bundle of PPN Q? < PP. Since PP N Q7 is a finite set of points, {x1, -, 2},
its normal bundle in PP, being diffeomorphic to its tubular neighborhood,
is just a finite collection of disjoint disks, D; C PP, ¢ = 1,--- ,k each of

which is oriented. In particular each tangent space T,,D; is oriented. But
notice that T, D; = T,, PP, which has an orientation coming from the original
orientation of PP. If these two orientations agree we say that sgn(x;) = +1. If
these orientations disagree we say that sgn(z;) = —1. We can now make the
following definition.

Definition 8.2. Define the intersection number

k
[PPNQY = Z sgn(z;) € Z
i=1

It is important to know that the intersection number is well defined. Of
course we had to choose orientations and that can affect the ultimate sign of
the intersection number. But it is important to also know that the intersection
number does not depend on the particular perturbation (small isotopy) used
in order to achieve transversal intersections. Once we know that we will be
able to conclude the following:

Proposition 8.12. Let PP and Q9 be closed submanifolds of M™, where n =
p+q. Suppose these manifolds are all oriented. Then if the intersection number
[PP N QY] # 0, the neither PP nor Q7 can be isotoped so that the resulting
embeddings are disjoint. That is, PP and Q? cannot be “pulled off of each
other” in M™.

To show that the intersection number is well defined, and to generalize it
to study more complicated intersections, we will employ the use of Poincaré
duality to develop the intersection theory homologically.






9

Poincaré Duality, Intersection theory, and
Linking numbers

Our goal in this chapter is to use Poincaré duality to do intersection theory
rigorously. A particular goal will be to prove that the intersection number of
two submanifolds, the sum of whose dimensions equals the dimension of the
ambient manifold, is well defined (see Definition 8.2). Along the way we relate
intersection theory with such constructions as the “shriek” or “umkehr” map,
the Pontrjagin-Thom “collapse map”, and the Thom isomorphism.

9.1 Poincaré Duality, the “shriek map”, and the Thom
isomorphism

Let M™ and N" be closed, oriented manifolds of dimensions m and n re-
spectively. Their orientations determine (and are determined by) choices of
fundamental classes [M™] € H,,,(M™;Z) and [N"] € H,(N";Z) that deter-
mine Poincaré duality isomorphisms

A[M™] : HY(M;Z) = Hy,_o(M;Z) and N[N"]: HY(N;Z) = H,_,(N;Z)
(9.1)
We refer to their inverse isomorphisms as

Dy : Ho(M;Z) = H™ " (M;Z) and Dy : H.(N;Z) = H" (N Z).
(9.2)

Given a map f : M™ — N", we of course have the induced homomor-
phisms in both homology and cohomology, which would exist even if M and N
were replaced by any topological spaces. However, given that they are closed,
oriented manifolds, the existence of Poincaré duality allows one to define a
“shriek” or “umkehr” map.

Definition 9.1. Define the homomorphism f': H1(M™;7) — H"~™+4(N"; 7)
to be the unique map making the following diagram commute:

229
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HI(M™Z) —L— gr—m+a(Nn,7)

m[Mm]lg glm[z\r"]
H,_q(M;Z) T) Hp—q(N;Z)

Now suppose that M™ is a closed, oriented m-dimnesional manifold and
N™ is a compact, oriented, n-dimensional manifold with boundary. Then a
map f: M — N defines a shriek map with values in relative cohomology,

o HI(M™,Z) — H "™ (N ON; 7). (9.3)

This is defined by using the relative version of Poincaré duality (”Poincaré -
Lefschetz duality”). We leave the details to the reader.

This relative version of the shriek map is important in many settings, but
particularly so when one has an oriented vector bundle over a closed, oriented
manifold

p:&— M™.

Assume the fiber dimension of this vector bundle is k. Give £ a Euclidean
structure, and as before, let D(§) and S(£) denote the associated unit disk
bundle and sphere bundle respectively. Notice that the orientation on £ as
well as the orientation on the base manifold M™ gives D(§) the structure of
a compact m + k-dimensional oriented manifold, whose boundary is 9D(&) =

S5(8)-
Now let ¢ : M™ — D(&) be the the zero section. Then as discussed above,
this defines a shriek map

¢': HYM™Z) — HT™(D(),0D(£); Z) = HT™ (D(€), S(€); Z)
= HT™M(T(¢); 2)

where T'(€) is the Thom space of the bundle &.
The following result relates this shriek map, which is defined via Poincaré
duality, with the Thom isomorphism.

Proposition 9.1. Given an oriented, k-dimensional vector bundle over a
closed, oriented manifold, p : £ — M™ the shriek map of the zero section

¢ HY(M™; Z) — HOM(D(),0D(6); Z) = HH(T(€); 2)
is equal to the Thom isomorphism
Uu : HY(M™;,Z) = HIF(T(€); Z).

Here v € H*(T(€);Z) is the Thom class.
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Proof. The shriek map ¢' is defined to be the composition,

¢ Hi v zy DMy gL (i Z) S B o(DIE): Z)

22O, gkta(p(g), aD(€)).

Here, as above, Dp) is the inverse to the Poincaré duality isomorphism
given by capping with the fundamental class. Since N[M] and Dp) are
both isomorphisms, and because (., is an isomorphism since the zero sec-
tion ¢ is a homotopy equivalence, we may conclude that the composition ¢'
is an isomorphism. Of course we know that cupping with the Thom class
Uu: HI(M™;Z) =N Hk(T(€);Z). is also an isomorphism. So we need only
show that they are the same isomorphism.

Notice that when ¢ = 0, HY{(M™;Z) = Z and so the two isomorphisms
¢! and Uu must agree in this dimension, at least up to sign. We leave it to
the reader to check that the signs in fact agree given the compatibility of the
orientation of D(£) with the orientation of the bundle p : £ — M™ and the
orientation of M.

In general dimensions, let 5 € H?(M). Since the zero section ¢ is a homo-
topy equivalence we may write § = (*(«) for a unique class o € H4(D();Z).

¢'(8) = Dpe)(6-(B N [M])
= Dp(e)(G(¢" () N [M])
= Dp(e)(an«[M]) by the naturality of the cap product.
(9.4)

Now the Thom isomorphism in homology is given by capping with

the Thom class Nu : H,(D(€),S(¢)) = H,_,(M). In particular [M] €
H,(M;Z) = 7 is equal to u N [D(£),0D()] where [D(£),0D(&)] €
Hpt(D(£),0D(€); Z is the (relative) fundamental class. Thus

¢'(8) = D(e)(a N ¢[M]) = Dpey(an 2. (un [D(€),dD(€)])
= Dpe)((¢*(a) Uu) N [D(€),0D(E)])
= ("(a)Uu since Dpe is inverse to
capping with the fundamental class
=pfUu.

O

As a result of this proposition we will be able to prove a result relating the
shriek map to so-called “Thom collapse map”, which is crucial in intersection
theory.

The Thom collapse map can be described as follows. Let e : N™ < M™ be



232 Bundles, Homotopy, and Manifolds

a smooth embedding of closed, oriented, smooth manifolds. Let v be tubular
neighborhood of e(N™) in M™. Notice that the quotient space, M/M — v is
the one point compactification v U oo, which is in turn homeomorphic to the
Thom space T(v).

Definition 9.2. The “Thom collapse map” 7 : M™ — T(v) is the projection

T:M™ = M/M—v=T(v).

Theorem 9.2. As above let e : N™ — M™ be a smooth embedding of closed,
oriented, smooth manifolds. Let v be tubular neighborhood of e(N™) in M™.
Let k = m —n be the codimension of the embedding. Then the composition in
cohomology

HI(N) —2 HH(T(v)) ———s HI*(M)

IR

is equal to the shriek map €' : HI(N) — HIT*(M). Here u € H*(T(v)) is the
Thom class.

Proof. As earlier, let D(v) and S(v) denote the unit disk bundle and sphere
bundle, respectively. D(v) is an oriented m = n+ k-dimensional manifold with
boundary 0D(v) = S(v). Let [D(v), S(v)] € Hnn(D(v),S(v)) = Hp(T(v)) be
the fundamental class.

Observe first that 7.[M] = [D(v), S(v)] € H,,(D(v), S(v)). This is because
the diagrams

Hn(M)  —=—  Hn(D(v),S(v))

l

H,,(M,M — ) — H,,(D(v),D(v) —x)

1R

commute for every z € D(v) C M. Now the fundamental class [M] € H,,,(M)

is the unique class that maps to the generator of H,,(M,M — z) = Z de-

termined by the orientation. Therefore 7. ([M]) € Hp,(D(v), S(v)) is a class

that maps to the generator of H,(D(v), D(v) — z)) = Z determined by the

orientation. But this property characterizes [D(v), S(v)] € H,,(D(v), S(v)).
Secondly, observe that the following diagram commutes:

H*(D(v)/S(v)) +—— H*(D(v),S(v))
n[D(u)/S(v)]l zln[D(w,smn
Hpy o (D(0)/S(v) +—— Hpo(D(v))

~] e

Hoo(M)  ——  Hy (M),
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Here [D(v)/S(v)] is the image of the (relative) fundamental class [D(v), S(v)]
under the isomorphism H,,(D(v), S(nu)) = H,,(D(v)/S(v)). &: D(v) < M
is the extension of the embedding e to its tubular neighborhood.

By the naturality of the cap product this diagram expands to the following
commutative diagram.

H*(D(v),S(v)) —— H*(D(v),S(v)) Hp o (D(v))

T*l m[D(u)/so»)]l 7 i

ﬂ[D(:)»S(V)]

H*(M) Ho o(DW)/SW)  ——  Hyp u(M)
H* (M) — Hypp (M)

By the above proposition we can now add to the exterior of this diagram:

H**(N) NN S H ()

st | I«

=¢'
H'(D(v), S(v)) “L5) g (D))

T*l lé*
H*(M) —= Hpp oM

n{M]

Thus 7% o Uu = Djy 0 é, o (. o N[IN]. (Recall that the duality isomorphism
Dy = (N[M])~1.) But éo ¢ = e, so we have that

|

™ oUu= Dyproe,oN[N]=¢', by definition.
O

The following corollary gives a clear relation between the Thom collapse
map and Poincaré duality. In particular it says that the Thom class of a normal
bundle of an embedded submanifold is dual to the fundamental class of the
submanifold.

Corollary 9.3. Let M be a closed, oriented manifold, with oriented, closed

submanifold e : N — M of codimension k. Let v be a tubular neighborhood of

N, which we identify with the normal bundle. Let 7: M — M/M —v =2 T(v)

be the Thom collapse map, and let u € H*(T(v) be the Thom class. Then
7*(u) = D(N).

Said another way, 7 (u) N [M] = [N].
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Proof. By Theorem 9.2, 7*(u) = €'(1). But recall that e' : HO(N) — H*(M)
is defined to be the unique homomorphism that makes the following diagram
commute:

HON) —— H*M)

m[N]Jg

€x

Thus 7*(u) N [M] = €'(1) N [M] = e.([N]).

IR

n[M]

O

9.2 The intersection product

One can define the “intersection product” in the homology of a closed, oriented
manifold both geometrically, using transversality theory, and algebraically, us-
ing Poincaré duality and the cup product. Our goal in this section is to show
that these constructions define the same homological product. The intersec-
tion number, defined earlier (Definition 8.2), will be shown to be a special
example of this product, and the consequence of these results will show that
this number does not depend on the various geometric choices one makes in
defining it.

Definition 9.3. Let M™ be a closed, oriented m-dimensional manifold. The
intersection product is the pairing

HP(M) X Hn(M) - Hp-i-n—m(M)
axf—a-f

is defined to be the unique homomorphism making the following diagram

commute: )
H:D(M) X Hn(M) — Hp+nfm(M)

n[M]xn[M]Tg zTn[M]
Hm—p(M) X Hm—n(M) - H2m—p—n(M).
That is, the intersection product is Poincaré dual to the cup product.

The following is the main result of this section.

Again, let M™ be a closed, oriented m-dimensional manifold. Suppose it
has two oriented, closed submanifolds PP of dimension p and N™ of dimen-
sion n that intersect transversally. (Otherwise perturb one of them so that the
interesection becomes transverse.) By abuse of notation we let [P] € H, (M)
and [N"™] € H, (M) be the homology classes given by the images of the fun-
damental classes of these submanfolds under the homomorphisms induced by
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their embeddings. We say that these submanifolds represent these homology
classes.

Theorem 9.4. Under these assumptions the homology class represented by
the intersection
[P n N] € Hernfm(M)

represents the intersection product of the classes represented by the submani-
folds PP and N™:
[PP]-[N"] =[PNN].

This theorem actually has a generalization, whose proof requires only small
adjustments to the proof of Theorem . We leave the details to the reader.

Theorem 9.5. Let M™, PP, and N™ be closed, oriented manifolds. Let f :
PP — M™ be a smooth map and g : N™ < M™ a smooth embedding. Assume
that f th g(N™). That is for everyx € P andy € N with f(x) = g(y) =2z € M,
then D f,(T,P) & Dg,(T,N) = T,M. Consider the submanifold f~(g(N)) C
P. Then this is a closed, oriented submanifold of dimension p+n—m and the
image of its fundamental class in homology f.[f~1(9(N))] € Hpin—m(M) is
Poincaré dual to the cup product Dy (f«[P]) U Das(g«([N]) € H>™=P="(M).

Before we prove Theorem 9.4 we make a couple remarks:

Remarks.

e Let’s generalize our notion of “representing” a homology class in closed
oriented manifold by a submanifold, to a homology class a € Hy (M) being
represented by a manifold if there exists a closed, oriented manifold Q¢ and
amap ¢ : Q — M with ¢.([Q]) = a. Then we will see in Chapter 12 below,
that not every integral homology class is represented by such a manifold.
However, as we will see below, a consequence of Thom’s calculation of
the unoriented cobordism ring is that in homology with Z/2-coefficients,
indeed every homology class is represented by a manifold. In the presence
of such representations, (in integral or Z/2 homology), this theorem says
that the Poincaré dual of the cup product is represented by (transver-
sal) intersections of manifolds. This gives a rather remarkable geometric
interpretation of the cup product.

e Historically, there is reason to believe that the development of cohomology
and the cup product was motivated by goal of representing intersections
of submanifolds. S. Lefshetz, who did seminal work in the development
of intersection theory in both algebraic geometry and algebraic topology,
was instrumental in developing the cup product in singular cohomology.

Proof of Theorem 9.4.
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Proof. Consider the following commutative diagram, where the maps are all
embeddings:

NeTN>M

UTePﬂN,N UTEP

PAN —S 5 P

€PNN,P

By examining this diagram one sees that when one restricts the normal bundle
of N in M to PN N, one gets the normal bundle of PN N in P:

(VeN ) |pan = Vepan,p-

Equivalently, the intersection of a tubular neighborhood of ey with P is a
tubular neighborhood of epny p. We represent these tubular neighborhoods
by n’s. We therefore have a commutative diagram involving Thom collapse
maps:

M =2 MM =) 2 T(vy)

EPT TT(GP)

P — P/(P - 77Pr‘1N7P) = T(VepmN,P)'

TPNN,P

Here T'(v) denotes the Thom space of the corresponding normal bundle, and
T(ep) denotes the map of Thom spaces induced by the embedding ep.
In particular this means that on the level of Thom classes,

T(ep)"(un) = upan.p € H" (T (Vepn.p))-

Now by Corollary 9.3
Than,p(Upanp) N[P] =[P N N] € Hppnm(P).
So therefore
Tpan,p(T(ep)" (un)) N[P] = [P N] € Hpynm(P),

and by the commutativity of the above diagram, this means

(7 (un)) N [P) = [P A N] € Hyppnm(P).
So we may conclude that

(ep)«(ep(T(un)) N [P]) = (ep)«[P N N| € Hypnm(M).
By the definition of the intersection product, this says that
[P]-[N] =[P N N] € Hypnm(M).
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An immediate consequence of this theorem is that the (homological) in-
tersection pairing gives an obstruction to separating two submanifolds. By
“separating”, we mean that there is an isotopy of one or both of the em-
beddings of the two submanifolds, so that the resulting submanifolds do not
intersect. That is, we have the following immediate corollary.

Corollary 9.6. Let M™ be a closed, oriented m-dimensional manifold. Sup-
pose it has two oriented, closed submanifolds PP of dimension p and N™ of
dimension n, such that the intersection product, [P]-[N] € Hpyn_m(M) is
nonzero. Then P and N cannot be separated in M.

9.2.1 Intersection theory via Differential Forms

We end this section by pointing out how to compute the intersection number
of two submanifolds of complementary dimension using differential forms.

Let M™ be a closed oriented manifold, with submanifolds Q¢ of dimen-
sion ¢ and PP of dimension p where p + ¢ = m. Let ng and np be tubular
neighborhoods of these submanifolds. These can be viewed as open manifolds
of dimension n. The (DeRham) cohomology with compact supports, H7,,(n¢q)
is equal to the cohomology of the one-point compactification, which is homeo-
morphic to the Thom space of the normal bundle. Therefore there is a Thom
class ug € HY,(ng), and similarly up € HZ,(np). The Thom collapse map
gives classes vg € HP(M) and vp € HI(M). By abuse of notation we let vg
and vp denote differential forms onM of dimension ¢ and p respectively that
represent these cohomology classes.

These “Thom forms” can be viewed a differential forms on M whose sup-
port lies in the relevant tubular neighborhood which yield the orientation
forms of the corresponding normal bundles.

The following is a reinterpretation of Theorem 9.2 in this setting, using
the DeRham theorem. We leave the job of filling in the details of its proof as
an exercise to the reader,

Theorem 9.7. In the setting described above,

@-1PI= [ vonve
= (ug Uup; [M])

:/V@:i/yp.
P Q
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9.3 Degrees, Euler numbers, and Linking numbers

In this section we will discuss interesting applications of the results about
intersection theory developed in the last section.

9.3.1 The Degree of a map

Let f : N — M™ be a smooth map between closed, oriented, connected
smooth manifolds of the same dimension (= n). The degree of f is an oriented
(signed) count of the number of elements in the preimage of a generic point.
More specifically we make the following definition:

Definition 9.4. The degree of f, written Deg(f) is defined to be the inter-
section number of f : N™ — M™ and a regular value x € M™, viewed as a
zero-dimensional submanifold. That is, Deg(f) = f«[N"] - [z] € Z.

Notice that the intersection number, as defined in Definition 8.2, in this
setting is given by

sgn(x;) € Z, where the sum is taken over all points in f~!(z) € N

SN - [a] =

™M=

1
f~Y=x)] € Hy(N™) =Z by Theorem 9.5.

<.
Il

Now by Theorem 9.5,

F7H@)] = fuIN] - [2] = f*(Dula]) O[N]

Since the fundamental class [M] € H, (M) = Z is a generator, we may inter-
pret this as the following corollary to Theorem 9.5

Corollary 9.8. Write f.[N]| = d[M] € H,(M). Then d = Deg(f).

This corollary allows for easier calcuations of degree, and also shows that
the notion of degree does not depend on the choice of regular value x € M.
Moreover it allows the extension of the notion of degree to any continuous
(not necessarily smooth) map.
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9.3.2 The Euler class and self intersections

Recall from Definition 5.5 that if £ — N is an oriented vector bundle of fiber
dimension k, the Euler class

X(€) € H*(N)

is defined to be the image of the Thom class under the composition

HMNT()) = HH(D(€), S(€)) — HE(D(€)) <= H*(N)

where ¢ : N — D(&) C £ is the zero section.

In the setting when N is a n-dimensional, closed, oriented manifold, we
can relate the Euler class to the self intersection of the zero section.

First, we explain what we mean by “self intersection”. If e : N™ — M™ is
an embedding of N into a compact, connected, oriented manifold M™ (with or
without boundary), then we can perturb (i.e find an isotopy) of the embedding
e to an embedding € : N™ < M™ so that e(N) M é(N). By Theorem 9.2, the
resulting intersection, e(N)Né(N) represents the class [N]-[N] € Hap_p (M).
This class is called the “self intersection class”. In particular, if m = 2n, this is
a zero dimensional homology class, and therefore an integer, which represents
a (signed) count of the number of points in the intersection e(N) N é(N) .

In the setting of a k-dimensional, oriented, smooth vector bundle p : £ —
N™ we may view the disk bundle D(£) as an (n + k)-dimensional, oriented,
compact manifold with boundary, and the zero section ¢ : N < D(§) as an
embedding. We then have the following result.

Theorem 9.9. The self intersection class of the zero section

[C(N)]-[C(N)] € Hn—i(D(C)) = Hyp—i(N)

is Poincaré dual to the Fuler class. That is,

In particular, when k = n, the evaluation of the FEuler class on the fundamental
class {x(€); [N]) is equal to the self intersection number of the zero section.

Before we prove this theorem we observe the following corollary.

Corollary 9.10. If a smooth vector bundle p : £ — N™ over a closed, oriented
manifold has a nowhere zero section, then the Euler class x(§) is zero.

Proof. Notice that any section o : N — ¢ is a homotopy equivalence, and is
homotopic, as a map of spaces, to the zero section (. Such a homotopy can be
taken to be (z,t) — (1 — t)o(x). Therefore the homology classes represented
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by these sections, [o(N)] and [((n)] are equal. If o(x) is never zero, then
a(N)N{(N) = 0. Therefore by Theorem 9.2

By Theorem 9.9, the Euler class x(&) = 0. O
We now prove Theorem 9.9.

Proof. By Proposition 9.1 the following diagram commutes:

HI(N) ——— HI*(D(€),S(€))

IR

m[N]l% %lﬂ[D(ﬁLS(f)]

HY(D(€),5()) x H(D(§),5()) —— H*(D(€),5(¢)) «—=— H"(N)
AID(E),S(©)]x NID(E),S(€)] l% f:{mw@),sm ﬂmm
Hy(D() x Hu(D()  ——  Hnp(D(E)) e Huy(N)

Notice that the left hand square defines the intersection product in
H,.(D(£)). Now by Theorem 9.9, the product of the Thom classes u X u in the
upper left corner of this diagram, maps to (. ([N]) x («([N]) in the lower left
corner. But this class in turn maps to the intersection product ¢, ([N])- . ([N])
in the lower middle of the diagram (H,,—(D(£))).

Furthermore, by definition, the Euler class x(¢) € HF(N) in the upper
right corner of the diagram, maps to uUu € H**(D(), S(€)), and so

(X(§) Uu) N [D(E), S(§)] = C(IN]) - G([N]) € Hp—x(D(§))-
By the commutativity of the right hand square we conclude that
G(xX(§) NNT) = G(IN]) - G([N]) € Hn i (D(€))-
This is the statement of the theorem. O
We now turn our attention to the case when the bundle we are considering

is the tangent bundle, p : TN — N. A section of the tangent bundle is a vector
field on N. Applying Corollary 9.10 to this situation gives us the following:
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Proposition 9.11. If a smooth, closed, orientable manifold N has a nowhere
zero vector field, then the Euler class of its tangent bundle, x(TN), which we
denote by x(N), is zero.

We end this subsection with a well known result which relates the Euler
class of a manifold (i.e of its tangent bundle), with its Euler characteristic.

Theorem 9.12. Let N be a closed, oriented, n-dimensional smooth manifold.
Then the evaluation of its Fuler class on the fundamental class is the Fuler
characteristic of the manifold:

n

(X(N),[N]) = > (=1)'rank Hi(N).

=0

Proof. The proof of this theorem involves a few steps. First, consider the
diagonal embedding,
A:N — N XxN.

We first observe that the normal bundle v(A) of this embedding is the tangent
bundle TN. We leave the verification of this fact to the reader. In order not
to confuse notation we now adopt the “exponential” notation for the Thom
space of a bundle. That is if £ — X is a vector bundle, we now use the notation
X¢ to denote its Thom space.

Let 7: Nx N — N”(A) = NTN be the Thom collapse map. We now com-
pute this Thom collapse map in cohomology. To do this, notice that Poincaré
duality defines a nonsingular pairing

(,): H*(N;k) x H*(N;k) = k
(o, B) = (« U B)([N])

Let {a;} be a basis for H*(N; k). Since this pairing is nondegenerate, there
is a corresponding dual basis {¢;}. That is, (o U a;)([N]) = §; 5, the Kro-
necker delta. In particular notice that if a; € H9(N; k), then of € H"9(N; k).
Lemma 9.13. Letu € H"(NTN; k) be the Thom class of the Tangent bundle.
Then

() =Y (-DI*la} x a; € H*(N x N3 k),

where |a;| denotes the degree of ;.

Proof. We take the following computation from Bredon [7], proof of Theorem
12.4.
By the Kunneth theorem we can write

7(u) = Zcm a; X aj
4,J
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for some coefficients c; ;. Notice that we need only add over those terms where
laf| + |aj| = n. Since |af| = n — |a;], we assume || = |ay]. For the following
calculation take basis elements a; and a; of degree p. We compute ((a; x o )U
7*(w))([N x N]) in two different ways.
(i x a3) UT™(w))([N x N]) = (@i x aj) (1 N[N x NJ)
= (i x o] )( «([N]), by Corollary 9.3
= A%(a; x af)([N])
= (@i Uaj )([N )
= (=1 (af U ) ([N])
= (*1)’7("7’7)51;3'

On the other hand

(i x aj) UT"(u)) ([N x N])
azxa Zc,sa x as))([N x NJ)

=(=D" ”Ci,j((ai Uaj) x (aj Ua;)([N] x [N])
since one gets zero for o, a; # ., o, all of degree p
= (=) PP (e U o) (IN]) (e U ) ([N]))

= (_I)P(n*p)*pcid.

So we conclude that ¢; j = (=1)Pd; ;. O

To complete the proof of Theorem 9.12, we make the following observation
about the relation of the Thom collapse map and the Euler class. Let e : N —
M be a codimension k& embedding of oriented manifolds, with normal bundle
Ve, and let 7 : M — N"= is the Thom collapse map. The following comes from
a quick check of definitions, which we leave for the reader.

Lemma 9.14. If u € H¥(NV¢) be the Thom class. Then the Euler class of
the normal bundle v, can be described by

X(ve) = "7 (u) € Hk(N)

Applying this lemma to the diagonal embedding A : N — N x N, we have
that A*(7*(u)) = x(IN). Applying Lemma 9.3.2 with rational coefficients we
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have that
X(N)(IN]) = A™ (7" (w))([N]) = Z(—l)'ail(af Ua;)([NV])

=Y (=D0ail{a}, o)

i

=3 (1)l

%

= Euler characteristic of N

O

Notice that as an application of this theorem and of Proposition 9.11 we
get the following classical result:

Proposition 9.15. If a closed, oriented manifold N has nonzero Euler char-
acteristic, then every vector field on N must contain a zero.

In particular every vector field on an even dimensional sphere must contain
a zero. This famous result, when applied to S? is often referred to as the “Hairy
billiard ball” theorem.

9.3.3 Linking Numbers

We now discuss one more application of intersection theory. This is the clas-
sical notion of linking numbers.

In the general setting, suppose we have embeddings of closed, oriented
manifolds in Euclidean space,

Mm K s Rn+m+l
C

o]
N™.

We will assume that these manifolds intersect transversally, which in these
dimensions means that they have disjoint images. Consider the composition

Uy :M™ x N™ — RV _ Lo} — gntm
Ki(z) — K»(y)

(@,9) — (Ka(2) = Ko (W) — e o =

Giving S™*™ the orientation coming from viewing it as the boundary of
the ball D"+ inside R"™™*! we can make the following definition.
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Definition 9.5. Define the linking number, Lk(K1, K3) to be the degree
LE(Ky, K3) = Deg(Upr.N)-

This is an algebraic-topological definition based on the homological prop-
erties of the map W, . However this notion has important geometric signifi-
cance as well, as we will see in considering the classical case when we have the
link of two disjointly embedded circles in S3. We have the following diagram
of embeddings:

Sl Ky RS
C
UTKQ
Sl
For p € S2, let

I(p) = {(q1,¢2) € K1 X K3 : g2 — g1 = A\p, where A\ > 0}.

Notice that for p € S2, I(p) = \I/]_&K2 (p).

Observation. Assume that p = (0,0, 1) is a regular value of U, f,. (If it is
not, compose ¥, r, with a rotation of S? so that this condition is satisfied.)
Project K1 U K onto R? = (x1,72)— plane in R3, keeping track of the over
and under-crossings:

We claim that there is one element of I(p) for every place that K5 crosses
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over Kj. To see this, observe that if (¢1,q2) € K1 x K3 is in I(p), then the
projections of ¢; and ¢ on R? agree. This means that the first two coordinates
of ¢1 and of ¢ agree. Now since g2 — g2 = Ap = (0,0, A) with A > 0, we must
have that the third coordinate (the “z-coordinate”) of g is larger than the
third coordinate of zy. That is, K5 crosses over K at this point.

By Definition 9.5 of the linking number as the degree of ¥, g,, we can
calculate this invariant either homologically, or, as seen after the discussion
of the definition of degree (Definition 9.4) as the signed count of the points in
the preimage of a regular value of Vg, g,. That is, it is a signed count of the
points of 1(0,01). If (¢1,¢2) € 1(0,0, 1), then the sign sgn(q, gz2) is determined
by comparing the orientations of the curves, and the standard orientation of
the plane. In the above example of the Hopf link, 7(0,0, 1) consists of a single
point, and the local orientations of the curves K; an K> at this point looks
like the following. Therefore the linking number of the Hopf link is

Lk(Ky, Ky) = —1.
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We now turn our attention to the following, more complicated link:

Notice that there are two places where Ky crosses over K, and thus
1(0,0,1) has consists of two points.
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K |
e/
—
X K.

Ky

The crossing on the left has sgn = —1 and the crossing on the right has
sgn = +1. This means that the linking number,

Lk(Ky, K2) =0,

even though evidently the two embedded circles cannot be unlinked. This
shows that while the linking number is a useful, computable invariant, it is
not a complete invariant of a link of two embedded circles in R3.
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Classical Morse Theory

In this chapter we discuss the traditional, “classical” approach to Morse the-
ory. An approach based on moduli spaces of flows will be discussed in the
next chapter. The best reference to this classical approach is Milnor’s well
known book [43]. We encourage the reader to study that book, not only for
the details of the foundations of the subject, but also for applications that are
still quite relevant more than 50 years after its publication.

11.1 The Hessian and the index of a critical point

Let M be a manifold, and f : M — R a C? function. As explained earlier, a
point p € M is called a critical point of f if df, = 0.
Let (U,¢ : U — R™) be a coordinate chart around p, so that ¢(p) = 0.

Write ¢ as (z1,...,2,). Write tangent vectors v and w in T, M as (v1,...,v,)
and (w1, . .., wy,), respectively (specifically, d¢,(v) = (v1,...,v,) and similarly
for w).

Definition 11.1. Using the coordinate chart (U, ), The Hessian of f at p,
is defined by the formula

n a2f
HeSSp(f)(’U, ’U)) = Z szw]
L]

ij=1

Since f is C2, this is notion of Hessian is defined and symmetric in v and
w. It is also bilinear in v and w.

Proposition 11.1. When p is a critical point for f: M — R, the Hessian
at p is independent of the coordinate chart.

Proof. Suppose we had a different coordinate chart around p, (V,¢ : V —
R™), with ¥(p) = 0. Write ¥ as (y1,...,%n). Then Q = o1 : R® — R" is

a diffeomorphism, and dQ(e;) = 2?21 g—;”?ej (where eq, ..., e, is the standard
J

251
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basis in R"™), then the Hessian defined for this new coordinate chart is

Hess, (f)(v,w) = i: 3?% (a(f)) VW

ij*l 9y;

B oxy O Ty O
- Z 8yz aﬁfk; ( 8$m (f)) Ulw.'/

B Z oz, 0 [Oxm, 0 n Z Oxy, Ox,y, 02
- 0y axk 0y; (%Em Fviw; 0y; 0y; 0xp0xm

0y axk 0y; ) Oxm L0Tm,

(fviw;

x Lm ’
_ Z Oz 0 (8 >a(f)'Ui'lUj + Z %ai(f)dQ(v)de(w)m

Now note that the first term is zero when p is a critical point, so as a bilinear
form on T, M, the Hessian is well-defined. O

Remark. If p is not a critical point of f, then the Hessian at p is not well-
defined, in that using the above notation, it would depend on the coordinate
chart. There are ways to extend the Hessian to all of M: by patching together
coordinate charts and using partitions of unity; by choosing a metric on M,
then using the Levi-Civita connection corresponding to this metric to take
the covariant derivative of df at p, and so on. But these approaches all require
extra data. In this book we will only be concerned with the Hessian at critical
points.

11.2 Morse Functions

Definition 11.2. Ifp € M is a critical point for a C? function f : M — R,
then we call p nondegenerate if Hess,(f) is nondegenerate as a bilinear form.
If all critical points of M are nondegenerate, we say that f is Morse.

Remark. Recall that a bilinear form B(v,w) : VXV — R is nondegenerate if
for every non-zero v € V, there exists a w so that B(v, w) # 0. Equivalently, if
V is finite dimensional, we can choose any basis for V' and write B as a matrix
M using this basis, as B(v,w) = v Mw . Then B is nondegenerate if and
only if det(M) # 0. Also, since B is symmetric, we can choose a basis in which
the matrix M is diagonal, and then the criterion that B is non-degenerate is
equivalent to the statement that M has no zero eigenvalues. These facts can
be found in any linear algebra text.

We will show in Section 11.5 that every manifold M admits a Morse func-
tion, and in fact the set of Morse functions is dense in the set of smooth
functions.
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FIGURE 11.1
f is the "height function” given by projecting the torus onto the vertical line.
This is probably the archetypical example of a Morse function.

An important property of Morse functions on closed, Riemannian mani-
folds, is that they lead to a C'W complex description of the manifold, with
with a cell of dimension \ for each critical point of index A of f. In this section,
we prove this statement up to homotopy. That is, we construct a homotopy
equivalence of the manifold to a CW complex of the kind just described. We
follow the approach of Milnor [43] in this chapter.

Throughout this chapter, we will assume M is a closed manifold and f :
M — R is a smooth Morse function. We will also consider the following
manifolds (with boundary):

M = 7N (~o0,a] = {w € M| f(z) < a}.

where a is any real number. If a is less than the minimum value of f, then
M® is the empty set. If a is larger than the maximum value of f, then M?°
is M. The values of a in between will provide, up to homotopy, the necessary
cell decomposition.

There are a number of technical details, but the intuition is simple: Let M
be a surface embedded in R3, and f be the vertical coordinate z. We initially
let a be less than the minimum value of f so that M® = (), and gradually
increase a (see Figure 11.2). This is analogous to gradually filling the surface
with water, so that M“ is the part of the surface that is under water. Now if
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N/

FIGURE 11.2
M for different values of a

a increases from a; to as without passing through critical values, then M
and M® are diffeomorphic.

But if, by increasing from a; to as, we pass through one critical point, then
at that point the water may do something more interesting. Up to homotopy,
this turns out to be an attaching of a cell of dimension A, where X is the index
of the critical point (see Figure 11.4).

So as we pass critical points one by one, the manifold is created by suc-
cessively attaching cells (up to homotopy type). This demonstrates that the
manifold is homotopy equivalent to a CW complex of the type described
above.

In this chapter we prove the details of the above intuition. First we prove
that nothing happens to the homotopy type (and even to the diffeomorphism
type) if there is no critical point between two levels, using the results of gra-
dient flow lines from chapter 11.1. Then we show that if there is one critical
point between the two levels, the homotopy type changes by adding a cell. We
prove this via the Morse Lemma (Theorem 11.4), which studies the behavior
of f near a critical point. We conclude by producing the homotopy equiva-
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FIGURE 11.3
M* and M®2 are diffeomorphic if there are no critical values between a; and
as.

lence between the manifold and the CW complex, and giving some interesting
applications to topology.

Exercise:
Let M be a manifold and let f : M — R be a Morse function. Prove that
f~1({a}), the boundary of M, is a manifold if a is a regular value of f.
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FIGURE 114
When there is one critical value between a; and as, M** is homotopy equiv-
alent to M with a cell attached.

11.3 The Regular Interval Theorem

We first show that if we increase M® from M® to M2, and there are no
critical values between a; and as, then M and M*? are diffeomorphic.
The main point is the following theorem:

Theorem 11.2 (Regular interval theorem). Let f : M — [a,b] be a smooth
map on a compact Riemannian manifold with boundary. Suppose that f has
no critical points and that f(OM) = {a,b}. Then there is a diffeomorphism

F: fYa) x[a,b] — M

making the following diagram commute:
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FHa) x a,b] —F— M

o |1

[av b] B [av b]

In particular all the level surfaces are diffeomorphic.

Proof. Since f has no critical points we may consider the vector field

Va(f)

X(z) = ——=.
) V()]

defined in Lemma 12.3. Let 7,.(t) be a curve through x satisfying

Lonet) = X(ne(1)

and f(1n(t)) = 1.

Let I be a maximal interval on which 7, is defined. We wish to show that
I = [a,b]. First, since M is compact, f(n.(I)) = I is bounded.

Let d = sup(/). Then by the compactness of M, there is a point x € M
that is a limit point of n,(d — 1/n). Since 7, (t) = X (n4(t)) is bounded, this
limit point is unique, and lim;_,4- 7, (t) = x. We can extend 7, to d by making
N (d) = x.

Now limy_, g, (t) = limy_q X (1:(t)) = X (n2(d)), and let v be this limit.
We will now show that n/,(d) = v. In particular, we will show that for every
€ > 0, there exists a § > 0 so that for all h with 0 < h < 4,

nw(d) — nm(d — h)
h

—v| <€

Note that a coordinate chart is chosen near 7,(d) to allow the subtraction
here.
So let € > 0 be given. By the definition of v, there exists a ¢; so that for
all w with 0 < h < 41,
ne(d —h) —v| <e
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By the fundamental theorem of calculus,

d

n(d=0)=n) = [ aa
d
nld =) =)+ o= [ () v
d
ol =) = ne(d) + 0t < [ ol —olat
S/d edt
d—h
< eh
nz(d_h})L_nm(d)_i_v <e
ned=h) —m(d) | _
—h =

Therefore 7,(d) = v, and since v = X (1,(d)), the flow equation is satisfied by
7, at d.

By maximality of I, d € I. Similarly with ¢ = inf(I), we see that ¢ € I.
Therefore I is closed.

If n,(s) € OM, then by the existence of solutions of ODEs, there is an
interval (s — €, s + €) around s on which 7, satisfies the differential equation
1., (t) = X(ny(t)). Therefore n,(c) and 7, (d) are in M. Thus ¢ = f(n,(c))
and d = f(n,(d)) may be either a or b. Since the derivative of f on, is one,
we see that ¢ = a and d = b. Therefore I = [a, b].

Since * € M was arbitrary, and a < f(z) < b, we see that f(M) = [a,b].
Furthermore, if x ¢ M, then by the existence of solutions to ODEs, as above,
we have 7,, defined in a small neighborhood of ¢ = f(z), so that a < f(z) <.
Therefore f~1(a) and f~1(b) are unions of boundary components.

Define a map
F:fYa)xa,b] — M

by the formula
F(x,t) = n.(t).

The differentiability of F' follows from the same argument as in Theorem 12.2
to prove the differentiability of T', but with 7, instead of -,.
Define
G:M — fa) x [a, ]

as
G(z) = (n:(a), f(2)).
The differentiability of G follows in the same way as the differentiability of
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F. We claim that F' and G are inverses. To prove this, note that the integral
curves through x and n,(¢) are the same, that f(n.(¢)) = t and by uniqueness
of solutions to ODEs, we have F(G(z)) = « and G(F(z,t)) = (x,t). This
proves that F' is a diffeomorphism. O

Corollary 11.3. Let M be a compact manifold, and f : M — R a smooth
Morse function. Let a < b and suppose that f~'[a,b] C M contains no critical
points. Then M® is diffeomorphic to M°. Furthermore, M® is a deformation
retract of MP.

Proof. First we prove that M is a deformation retract of M°. By the regular
interval theorem (Theorem 11.2), there is a natural diffeomorphism F' from
f~Y([a,b]) to f~1(a) x [a,b]. Since f~!(a) x {a} is a deformation retract of
f~1(a) x [a,b], we see that f~!(a) is a deformation retract of f~1([a,b]). We
can now paste this deformation retraction with the identity on M, to obtain
the deformation retracton from M, to M,.

To prove that M® is diffeomorphic to M® we apply the same principle,
but we need to be more careful to preserve smoothness during the patching
process.

Since the set of critical points of f is a closed subset of the compact set M
(and hence is compact), the set of critical values of f is compact. Therefore
there are real numbers ¢ and d with ¢ < d < a so that there are no critical
values in [c, b].

By Theorem 11.2 there is a natural diffeomorphism F from f~1([c,b]) to
f71(c) x [c,b], that maps f~!([c,a]) diffeomorphically onto f~!(c) x [c,a].
There is also a diffeomorphism H : f~1(c) x [¢,b] — f~1(c) x [c,a], and we
can insist that it be the identity on f~1(c) x [¢, d] (finding this function is an
easy exercise in one-variable analysis, and in case you are interested, is listed
as an exercise below). Thus

F=loHoF: f7l([e,b]) — f~([c.a])

is a diffeomorphism that is the identity on f~!([c,d]), and thus we can patch
it together with the identity on M, to create a diffeomorphism from M, to
M,. O

This corollary says that the topology of the submanifolds M® does not
change with a € R so long as a does not pass through a critical value.

Exercise Fill in the detail of the proof of Corollary 11.3 that finds a dif-
feomorphism H : f~1(c) x [¢,b] — f~1(c) x [c,a] that is the identity on
f7He) x [e.d].
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11.4 Passing through a critical value

We now examine what happens to the topology of these submanifolds when
one does pass through a critical value. For this, we will need to understand
the function f in the neighborhood of a critical point. This is what the Morse
lemma provides us:

Theorem 11.4 (Morse Lemma). Let p be a nondegenerate critical point of
index A of a smooth function f : M — R, where M is an n-dimensional man-
ifold. Then there is a local coordinate system (x1,...,2,) in a neighborhood
U of p with x;(p) = 0 with respect to which

A n
flan,..zn)=fp) =Y a?+ > a3
i=1 J=A+1

The proof given here is essentially that in Milnor’s famous book on Morse
theory [43].

Proof. Since this is a local theorem we might as well assume that f : R* — R
with a critical point at the origin, p = 0. We may also assume without loss of
generality that f(0) = 0. Given any coordinate system for R” we can therefore
write

n
f(xla---,-fn) = Z.Z‘jgj(l‘l,...,xn)
j=1

for (z1,...,2,) in a neighborhood of the origin. In this expression we have
1
of
(x1,...,2n) = ——(txy,...,tx,)dt.
gj( 1 n) 0 &cj ( 1 n)

Now since 0 is a critical point of f, each g;(0) = 0, and hence we may
write it in the form

n
gj(Il,. .. ,Z‘n) = inhi,j(xlr .. ,a:n).
=0

Let ¢; ; = (hs,; + h;,;)/2. Hence we can combine these equations and write
n
f(l’l, PN ,SUn) = Z xixj¢i7j(x1, e ,xn)
ij=1

where (¢; ;) is a symmetric matrix of functions. By doing a straightforward
calculation one sees furthermore that the matrix

(¢4,5(0)) = <; agiQéij (O)>
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and hence by the nondegeneracy assumption is nonsingular. From linear alge-
bra we know that symmetric matrices can be diagonalized. The Morse lemma
will be proved by going through the diagonalization process with the repre-
sentation of f as > z;x;¢; ;.

Assume inductively that there is a neighborhood Uy of the origin and
coordinates {uy,...,u,} with respect to which

f = :I:(ul)Q +... £ (uk)Q + Z uiujwivj(ul, N ,un)
i,j>k+1

where (1; ;) is a symmetric, n—kxn—k matrix of functions. By a linear change
in the last n—k coordinates if necessary, we may assume that 1541,5+1(0) # 0.
Let

o(ur, ..., up) = \/|¢k+1,k+1(u1,-~-,un)|

in perhaps a smaller neighborhood V' C Uy of the origin. Now define new
coordinates
vi=wu; fori#k+1

and

Vg1 (U1, - Up) = 0 (Ugy .oy Up)

uk+1+ Z Wi wz,k-‘rl( 1, 5 n)

"kt ka1 (U, un)

The v;’s give a coordinate system in a sufficiently small neighborhood Uy of
the origin. Furthermore a direct calculation verifies that with respect to this
coordinate system

k+1 n
f = Z:‘i(’l}z)Z + Z vivjei’j(vl,...,vn)
i=1 i,j=k+2

where (6; ;) is a symmetric matrix of functions. This completes the inductive
step. The only remaining point in the theorem is to observe that the number
of negative signs occuring in the expression for f as a sum and difference of
squares is equal to the number of negative eigenvalues (counted with multiplic-
ity) of Hesso(f) which does not depend on the particular coordinate system
used. O

Remark. The Morse Lemma describes the behavior of the function
f near a critical point, but it does not describe the behavior of
the gradient flow lines. The reason for this is that the gradient
depends on the Riemannian metric, and if we use the coordinate
system given by the Morse Lemma, we do not know how this metric
behaves.

Corollary 11.5. If M is a manifold and f : M — R is Morse, then the set
of critical points of f is a discrete subset of M.
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Proof. Suppose there were a sequence of critical points z,, converging to some
point a € M. Since df is a continuous one-form on M, we know that a is a
critical point of f. Then apply the Morse Lemma above to a, which gives a
formula for f in a neighborhood of a. But there are no critical points in this
neighborhood as can be seen directly by calculating df in these coordinates.
This is a contradiction. O

Exercise.

Prove the converse of Exercise 11.2; that is, if M is a compact manifold
and f: M — R is a Morse function, and if a is not a regular value of f, then
f~1({a}) is not a manifold.

Definition 11.3. Let f : M — [a,b] be a Morse function on a compact
manifold. We say that f is admissible if OM = f~(a)U f~1(b), where a and
b are regular values. This implies that each of f~'(a) and f~1(b) are unions
of connected components of OM .

Theorem 11.6. Let f : M — R be an admissible Morse function on a
compact manifold. Suppose f has a unique critical point z of index \. Say
f(z) = c. Then there exists a X - dimensional cell D in the interior of M
with D* N f~Y(c) = D?, and there is a deformation retraction of M onto
f~Yc)u D,

Proof, following [30], with a few errors corrected. By replacing f by f(x) —c¢
we can assume that f(z) = 0. Notice that by the regular interval theorem
Theorem 11.2 it is sufficient to prove the theorem for the restriction of f to
the inverse image of any closed subinterval of [a, b] around ¢ = 0.

Let (¢,U) be an chart around z with respect to which the Morse lemma is
satisfied. Write R” = R x R"™2. ¢ maps U diffeomorphically onto an open
set V C R x R*4 and

foo Hzy) = —z|* +|y*.

Notice that ¢(z) = (0,0). Put g(z,y) = —|z|* + |y|*.

We will use gradient flows, which depend on the metric on M. We choose
a metric for M by pulling back the flat metric on R” by ¢, and extending the
metric arbitrarily to the rest of M. In this way, ¢ will be a local isometry, and

D¢(u)(vu(f)) = Vv(g)v

for any u € U such that ¢(u) =v € V.
Let 0 < § < 1 be such that V contains A = BA(8) x B"~(§) where

Bi(é)z{mERﬂZm?S&

j=1

is the closed coordinate ball around the origin of radius 4.
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Let € > 0 be small enough that v/4e < §, and let
A =B"(Ve)x {0} CV

and we define
DA = ¢~ (M) c M.

A deformation of f~1[—¢, €] to f~1(¢) U D is made by patching together
two deformations. First consider the set

Ar = B (ve) x B (Vae).

Consider the following figure for the case A =1, n = 2.

\ %‘1(8)
3;1(—8)\ /Q__l(—«?)

\.*____/\
k
v B h 4
AN AN

e AN
/ A “1(e)

Note that inside A1, f(z,y) = —|z|? +|y|*> > —e+|y|*> > —e. Furthermore,
since x € B* (\/¢€), we have that (z,0) € ¢

In A; N g~ 'le, €] a deformation is obtained by moving (x,%) at constant
speed along the interval joining (z,y) to the point (z,0) € g~'(—¢) U BA, by
(x, (1 —t)y). This deformation then induces a deformation of ¢=1(A;).

Outside the set
Ay = BM(V2€) x B2 (V3¢)

the deformation moves each point along the vector field —V(g) so that it
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reaches g7!(—¢) in unit time. (The speed of each point is chosen to equal
the length of its path under the deformation.) See the following figure for a
pictorial description of this deformation.

This deformation is transported to U —¢~1(As) by ¢, and is then extended
over M — ¢~ 1(Az) by following the gradient flow lines of f.

Now if such a flow enters V', we now show it may not enter A: Suppose we
have a flow that enters V' from the outside at time ¢. Then since the closure of
Ay isin V| there is a time arbitrarily close to ¢ where the point is (x,y) which
is not in Ap. Then at this time either |z|> > 2¢ or |y|? > 3e. But if |y|> > 3¢
then because forg~!([—¢,¢€]), we have ¢ > —|z|? + |y|?> > —|z|? + 3€ so that
|z|? > 2¢. Therefore, either way, |z|> > 2¢. But for o non-zero, |z| increases
along flow lines. Therefore (z,y) will not be in Ay for any later time until it
leaves V' (and by repeating the argument for future visits to V, it never enters
Ao).

In f~1([~¢,¢]) — ¢~ 1(A2), then, the downward gradient flow is defined,
and since we assume there are no other critical points than z, the methods of
the proof of Theorem 11.2 show that the flows defined there flow downward
to f~1(—e).

On f~1([—€,¢]) — #71(A2), then, we can define the deformation to flow
along the gradient flow with constant speed, with speed equal to the length of
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the flow line from the point to its destination on f~1(—¢). In this way, after
unit time, everything in f~1([—¢,¢€]) — ¢~ 1(A2) is deformed into f=1(—e).

To extend the deformation to points of Ay — A it suffices to find a vector
field on A which agrees with X in A; and with —V(g) in A — As. Such a vector
field is

Y(z,y) = 2(u(z, y)z, —y)

where the map p : R* x R"™* — [0, 1] vanishes in A; and equals 1 outside
As. The fact that each integral curve of Y which starts at a point of

(A2 = A1) Ny~ [—e.q

must reach g~ (—¢) because |z| is nondecreasing along integral curves.

The global deformation of f~'[—e, €] into f~*(—e) U D* is obtained by
moving each point of A at constant speed along the flow line of Y until it
reaches g~!(—¢) U B® in unit time and transporting this motion to M via ¢;
while each point of M — ¢~1(A) moves at constant speed along the flow line
of V(f) until it reaches f~1(—¢) in unit time. Points on f~'(—¢) U D? stay
fixed. O

11.5 Homotopy equivalence to a C'W complex and the
Morse inequalities

Theorem 11.7. Let M be a closed manifold, and f : M — R a Morse
function on M. Then M has the homotopy type of a CW complex, with one
cell of dimension A for each critical point of index A.

Proof. Without loss of generality, the critical points of f all have different
values under f (if f(p) = f(¢) and p and ¢ are critical points, then let By C Bs
be balls around ¢ small enough that in By — B;, we have |V f| bounded away
from zero by some ¢, and add a small bump function to f supported in By
and constant in B; whose gradient is bounded above by ¢, and which does not
raise the value of f(q) high enough to reach another critical value of f).
Now let ag < --- < ap be a sequence of real numbers so that ag is less
than the minimum value of f, aj, is greater than the maximum value of f, and
between a; and a;11 there is exactly one critical point. By Theorem 11.6 we
have a homotopy equivalence h; between M%+1 and M® U DX (where the
union is an attaching map as in a CW complex). By composing the h;’s, we
obtain a homotopy equivalence from M = M to a union of disks attached
by CW attaching maps.
O
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Corollary 11.8. Given f : M — R as above there is a chain complex
referred to as the Morse-Smale complex

Oy 2 o — . 2 (11.1)

whose homology is H.(M;Z), where Cy is the free abelian group generated by
the critical points of f of index A.

Proof. This is the cellular chain complex coming from the CW complex in
Theorem 11.7. O

We can now prove some of the results promised in the introduction, that
relate the topology of M to the numbers of critical points of f:

Corollary 11.9 (Morse’s Theorem). Let f: M — R be a C*° function so
that all of its critical points are nondegenerate. Then the Euler characteristic
X(M) can be computed by the following formula:

X(M) = (=1)'ei(f)
where ¢;(f) is the number of critical points of f having indez i.

Proof. The Euler characteristic x (M) can be computed as the alternating sum
of the ranks of the chain groups of any CW decomposition of M. O

Corollary 11.10 (Weak Morse Inequalities). Let ¢, be the number of critical
points of index p and let B, be the rank of the homology group H,(M). Then

Bp < cp.

Proof. The chain group C}, ® R generated by the ¢, cells of dimension p is a
vector space of dimension c,. The group of cycles is of dimension at most c,.
After quotienting by the boundaries, we see that H,(M;R) is a vector space
of dimension at most c,,. O

Corollary 11.11 (Strong Morse Inequalities). Let M, f, ¢;(f), and b;(M)
be as above. Then for all natural numbers i,

A A

S0 Fe(f) = 3 (1) b(a).

k=0 k=0

Proof. The proof is similar except we take a closer look at the boundaries.
Tensoring the chains with R, so that we write V; = Ci ® R, we get the
following chain complex of vector spaces:

3 a
=V, =V — .
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We write Vi, as Im/(0g+1) ® Hi(M;R) ® (Vi / ker(dx)) and note that Im(9x+1)
is of the same dimension as Vj11/ker(9k41). Thus if we define dji to be the
dimension of Vj,/ ker(d), we have

cx = dg+1 + b + dy;

and applying the alternating sum above we get

g

Z(_l)ifkci(f) =dit1+ Z(_l)ifkbz‘(M)
k=0

k=0

(where here we need that dy = 0). This proves the strong Morse inequalities.
O

To see that the strong Morse inequalities prove the weak Morse inequali-
ties, write down the strong Morse inequality for ¢ and for ¢ + 1, and subtract
the two inequalities. To see that the strong Morse inequalities imply Morse’s
theorem, apply the strong Morse inequality for ¢ and for i + 1 for ¢ larger
than the dimension of the manifold M, noting that ¢; = 0 and b; = 0 for all
j > dim(M).

It is instructive to work out the following;:

Exercise

Show that the strong Morse inequalities is “strictly stronger” than the
weak Morse inequalities together with Morse’s theorem. What I mean is: given
the n+ 1-tuple of natural numbers (b, . .., b,), we can find another n+ 1-tuple
of natural numbers (co, ..., c,) so that these numbers satisfy the weak Morse
inequality and the Morse theorem but not the strong Morse inequalties.

A typical application of these result is to use homology calculations to
deduce critical point data. For example we have the following.

Application
Every Morse function on the complex projective space

f:CP* —R
has at least one critical point in every even dimension < 2n.

The following is a historically important application of Morse theory, due
to Reeb, that follows from the techniques we have mentioned so far.

Application
Let M™ be a closed manifold admitting a Morse function

f:M—R

with only two critical points. Then M is homeomorphic to the sphere S™.

Remark This theorem does not imply that M is diffeomorphic to S™. In
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[46] Milnor found an example of a manifold that is homeomorphic, but not
diffeomorphic to S7. Indeed he proved that there are 28 distinct differentiable
structures on S7! Milnor actually used this fact to prove that the manifolds
he constructed were homeomorphic to S7.

Proof of Theorem 11.5. Let S and N be the critical points. By the compact-
ness of M we may assume that S is a minimum and N is a maximum. (Think
of them as the eventual south and north poles of the sphere.) Let f(S) = ¢o
and f(N) = t;. By the Morse lemma there are coordinates (z1,...,2,) in a
neighborhood Uy of N with respect to which f has the form

—xi 44 —al + .

Therefore there is a b < t; so that if we let Dy = f~1[b,¢;] then there is a
diffeomorphism

D, = D"
with 0Dy = f~1(b) = S"~!. Repeating this process with the minimum point
P we obtain a point a > ty and a diffeomorphism of the space D_ = f~1[t;,a],
D_=DpD"

with 9D_ = f~1(a) = S"~!. By Theorem 11.2 we have that
fHa,b) = f~(a) x [a,b] = S™! x [a,b].
Hence we have a decomposition of the manifold

M = f to, t1] = fto,a] U fa, b] U b, ]
~p"uUS™! x [a,b]UD"

where the attaching maps are along homeomorphisms of S"~!. We leave it as
an exercise to now construct a homeomorphism from this manifold to S™.

O

Exercise
Finish the proof of Theorem 11.5 by showing that the resulting space

D" U S™ ! x [a,b] U D"

is homeomorphic to S™. Hint: Start by embedding one D" into S™, then embed
S7=1 x [a,b] into S™ to match the first embedding, then to put the last D"
in, you must think of D™ as the cone on S™~!. This last part is why the proof
does not prove that this is diffeomorphic to S™.

In general, there are many applications of this work to the problem of
classifying manifolds of dimensions 5 and higher, leading to the h-cobordism
theorem and the s-cobordism theorem, and surgery theory. There are many
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books that describe these developments of the 1960s and 1970s, the old classics
being Milnor’s book on the h-cobordism theorem, [44], Wall’s book on surgery
theory [61], and Browder’s book [6].

We now show that the set of Morse functions is open and dense in the set
of smooth functions. In particular, every manifold M admits a Morse function
f: M — R. In the proof, we will use the transversality theorem, done in
Chapter 8.

Theorem 11.12. Let M be a compact n-manifold. Let r > 2. The set of C”
Morse functions from M to R is dense in C"(M,R).

Proof. Let ( C T*M be the zero section of T* M. We first show that f is Morse
if and only if df : M — T*M is transverse to ¢, that is, df € tr" (M, T*M; ().

In a coordinate chart with coordinates (x1,...,z,), df is
of . .
d, = dz'.
if (p) = E oz,

Fix a point p € M. The linearization of df at p is a linear map L,
TyM — T(pap(py) (T"M) = T,M @ T; M. In coordinates,

Lonese) = 3 0 of of

iv~ + Vi
ascj 8:zzz ox; »

Note that when df (p) = 0, the image of L, is a subspace of Ty M. At such a
point the image of L, is equal to T;; M precisely when the Hessian of f at p
is non-degenerate.

On the other hand, df is transverse to ( if and only if whenever p € M
with df (p) € ¢, then Im(L;) + Tapp)¢ = Tip,0) (T * M) = T, M © T,y M. Now
Typp)¢ = TpM, and Im(L,) C TyM. So df is transverse to ¢ at p with
df (p ) e Cif and only if the Hessian of f at p is non-degenerate.

Therefore, the set of Morse functions is simply tr"(M,T*M;(). By the
Transversality theorem ( Corollary 8.9), this set is dense in the set of
C"(M, T*M). O
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Spaces of Gradient Flows

12.1 The gradient flow equation

Let M be a manifold, g a Riemannian metric on M, and f : M — R be a
Morse function. As explained in the introductory chapter, a (gradient) flow
line is a curve

~v:(a,b) — M

that satisfies the differential equation

D (=0 (12.1)
dt

If we imagine a particle that travels along v, with ¢ describing time, the particle
travels in the path of steepest descent, with velocity given by the gradient. If
we imagine f to be “height”, the particle could be a “sticky” ball that travels
down along the surface but has too much friction with the surface to build up
very much speed.’

Note also that the gradient flow equation depends on the Riemannian
metric g, since V. (f) depends on the metric in the following way: g(v, V(f)) =
df (v). The typical gradient seen in undergraduate calculus classes occurs on
R™ with the standard flat metric.

Exercise Verify that if f : R® — R is a differentiable function on R"™, and
if we use the flat metric on R”, then
of of

v(f):%€1+"'+@€"'

Exercise Let f be as in the previous exercise, but suppose the metric is given
by an arbitrary symmetric matrix g (that is, g(e;, e;) = ¢s5). Find the formula
for V(f) in terms of f and g.

Remark Now note that the property of p € M being a critical point of f does
not depend on the metric. As a bilinear form, the Hessian does not depend on
the metric either, and therefore so is the property of p being a non-degenerate
critical point, and the index of the critical point.

IThese equations do not correspond exactly to such a physical system, but it is a good
visual aid.

271
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Example If a is a critical point of f, then the constant curve v(t) = a satisfies
the flow equations, so y is a flow line. Note that by the uniqueness of solutions
of ODEs, if any flow line contains a critical point, it must be the constant one.

Example Let M = R? with the flat metric, and let f(x,y) = 2% + y?. Then
we can solve the gradient flow equations:

T =—2x

and therefore the gradient flow lines are (x,y) = (ae™2!, be=2) for some fixed
a and b. For any such line, y/x is a constant, so each lies in a line. In fact, it
is the open radial ray from the origin. See figure 12.1.

FIGURE 12.1
Flow lines for f(x,y) = 22 + y?

Example Let M = R? with the flat metric, and let f(z,y) = 2? — y2. Then it
turns out that the gradient flow lines are (z,y) = (ae?’, be=2!) for some fixed
a and b. For any such line, zy is a constant, so the gradient flow lines are
hyperbolas of the form xy = c. See figure 12.1.

Example Let M = S? C R3? with the standard round metric, and let
f(z,y,2z) = z (the so-called “height function” defined by the embedding of
S? into R3). Then there are two critical points: one minimum at (0,0, —1),
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FIGURE 12.2

Flow lines for f(x,y) = 2

—y?

and one maximum at (0,0,1). The flow lines are “lines of longitude”. See
figure 12.1.
Example Let T2 be the torus in R3, embedded as follows:

(0,¢) — (bcos(¢), (a + bsin(¢)) cos(d), (a + bsin(¢)) sin(0)

where 0 < b < a. The picture looks like a donut standing on its edge, as in fig-
ure 12.4. Again, take for f the “height function” z. Then there are four critical
points: (0, ) = (£7/2,+m/2), as you can check. The index for (7/2,7/2) is 2,
the index for (7/2, —7/2) and (—7/2,7/2) is 1, and the index for (—m/2, —7/2)
is 0.

There are two natural choices for a metric on 72: either the metric induced
from the embedding from R?, or the flat metric defined by ds? = df? + d¢?.
Although pictorially it may help to ponder the resulting gradient flow lines
from the metric induced by R? (these are the actual flows of steepest descent
on a physical donut), it is easier to calculate the flow lines when the flat metric
is used. The flow lines can be described explicitly, or else you can verify that
there are flows with § = £7/2 for which 6 is constant, and flows with ¢ = +7/2
for which ¢ is constant. These flows give rise to two flows from the index 2
critical point to one of the index 1 critical points, two flows from one index 1
critical point to the other, and two flows from the lower index 1 critical point
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Sey2)=2
)

(0P

CD,O,—l\

FIGURE 12.3
Flow lines for the height function on 52
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FIGURE 12.4
Flow lines for the height function on the torus

to the index 0 critical point. The other flows are in a one-parameter family of
flows which go from the index 2 critical point to the index 0 critical point.

Exercise Work out the details of the above examples. Find the closed form
solutions to the gradient flow equations and find which critical points they
connect to.

Lemma 12.1. The function f : M — R is nonincreasing along flow lines.

f is strictly decreasing along any flow line which does mot contain a critical
point.

Proof. Let v : (a,b) — M be a flow line. Consider the composition f o~ :
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(a,b) — R. Its derivative is given by

47610 = (Vo0 (1), 200

= (Vo (f), =V (f)
=~ V.ol <0

The only way this can be zero is if v(¢) is on a critical point of f. In
particular, if v(¢) does not contain in its image a critical point of f, then
f(y(¢)) is strictly decreasing.

O

Remark In the above proof, we showed

& 160 =~ [V (N

We can also show

4160 = (Vo0 (1), 209
RGN0
dat 7 dt
_ )
__‘dt =0

and this would also prove that f((¢)) is nonincreasing.

Remark Now if v(t) does contain a critical point p, then by example 12.1 the
flow must be a constant flow, and f(y(¢)) is constant on this flow.

Thus there are two kinds of flow lines: constant flows that stay at a critical
point, and flows that descend for all ¢, and do not contain a critical point.

Theorem 12.2. Suppose that M is a closed manifold. Then given any x € M
there is a unique flow line defined on entire real line

Yo : R— M
that satisfies the initial condition

v(0) = z.
Furthermore the limits

Jm ye(f) and - lim ,(t)
converge to critical points of f. These are referred to as the starting and ending
points of the flow ;.
The flow map
T -MxR—M

defined by T(x,t) = v, (t) is smooth.
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Proof. Let x € M. By the existence and uniqueness of solutions to ordinary
differential equations, there is an € > 0 and a unique path

Yo i (—€,6) — M
satisfying the flow equation

dya(t)

e + V. (f)=0
for all |t| < ¢, and the initial condition 7,(0) = z. By the compactness of M
we can choose a uniform e for all z € M. Notice therefore that for |t| < € we

can define a self map of M,
Yt - M — M

by the formula ~;(x) = ~.(t). Notice that v9 = id, the identity map. By
uniqueness it is clear that
Yt+s =Vt O Vs

providing that |t|, |s|, |t + s| < e. Among other things this implies that each
v is a diffeomorphism of M because ’yt_l =y_s.

Now suppose that [t| > e. Write ¢t = k(e/2) +r where k € Z and |r| < €/2.
If £ > 0 we define

Ve =50V 0. V5 O

where the map ~¢ is repeated k times. If & < 0 then replace v by Ve Thus
for every t € R we have a map v, : M — M satisfying v o vs = Y445, and
hence each -, is a diffeomorphism.

The curves

Yo R— M

defined by ~.(t) = y(z) clearly satisfy the flow equations and the initial
condition 7,(0) = x. This means that the gradient flow equations can be
solved for all ¢ € R, and in particular, we will from now on require that
gradient flow lines be defined as functions v : R — M instead of being
defined only on an open interval.

Now let v be a flow line. Consider the composition fo~y : R — R. By the
Fundamental Theorem of Calculus, if a < b, then

b
(fov)(b)*(fov)(a):/ 4 (fortya

Since M is compact f o has bounded image, so the left side is bounded. By

Lemma 12.1, %(f o) < 0. Therefore

d
Jim % (fon)(t) =0,
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By the proof of Lemma 12.1 we know that

0= tm 2 f(3(0) = lm_— |V ()]

t—+oo dt t—4oo

Let U be any union of small disjoint open balls around the critical points. By
the compactness of M, M — U is compact, so |V, (f)|* has a minimum value
on M —U. Since M — U has no critical points, this minimum value is strictly
positive. But since the above limit is zero, we know that for sufficiently large
[t|, v(t) € U. Since the balls are disjoint and ~y(¢) is continuous, there is a
critical point p so that for any open ball around p, v(¢) is in that ball for
sufficiently large ¢. Therefore lim;_, o, v(t) exists and is equal to p; similarly,
lim;—, oo y(t) exists and is equal to a critical point.

The differentiability of the flow map T'(x,t) = ~,(¢) with respect to t fol-
lows because v,(t) satisfies the differential equation. The differentiability of
T with respect to x follows from Peano’s theorem (the differentiable depen-
dence of solutions to ODEs with respect to initial conditions). This is proved
in Hartman’s book on ODEs [26] in chapter V, Theorem 3.1. O

Let ~(t) be a non-constant gradient flow line from p to ¢. Then by
Lemma 12.1, we know that h(t) = f(y(¢)) is strictly decreasing, and in par-
ticular, is a diffeomorphism from R to the open interval (f(q), f(p)). We can
therefore consider the smooth curve n(t) = v(h~1(t)) from (f(q), f(p)) to M.
Then it is easy to check that f(n(t)) = t. So v and 1 have the same image,
but the parameter in 7 represents height (that is, the value of f).

Exercise Prove that f(n(t)) =t as claimed above.

We can also extend 1 to a continuous map from the closed interval
[£(a), f(p)] to M by defining 1(f(q)) = g and n(f(p)) = p.
Exercise Prove that the extension of 1 to the closed interval [f(q), f(p)] is
continuous.

Definition 12.1. If~(t) is a non-constant gradient flow line for f, and h(t) =
f((2)), then

n(t) =y(h7'(t) : [f(@), f(p)] — R
is the height-reparameterization of -, and such a curve is a height-
parameterized gradient flow of f.

Remark This reparameterization of v is a direction-reversing one, since h
is strictly decreasing. This is to be expected since f(y(t)) is decreasing but
f(n(t) =t is increasing.

We now differentiate 7.

Exercise Prove

d Vo (f)
() = — 2
dt Vo (F)*

Therefore, n(t) is the solution to another differential equation which may
be described as follows:
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Lemma 12.3. Away from the critical points of f, we may consider the vector

field
Va
X(x) = %
Vo (f)l
Then we define curves ¢ : (s1,82) — M that satisfy

d
(1) = X ()

Then ( is a height-reparameterized flow line.

Proof. We insist that (s, s2) be maximal. We then can show that 4 f({(t)) =
1 as usual (do this now if you wish). Pick a number s € (sy,s2), and con-
sider the gradient flow line 7(¢) so that v(0) = ((s). We do the height-
reparameterization to v to get a height-reparameterized curve n. Now 7 satis-
fies the same differential equation as ¢, and n(f(¢(s))) = ¢(s), so we translate
the domain as follows: 1o (t) = n(t+ f(¢(s)) — s) satisfies the same differential
equation as ¢ and n9(s) = ((s) so by the uniqueness of solutions to ODEs,
no = G.

Therefore solutions to %-((t) = X (((t)) are precisely those that are height-
parameterized flows. O

Therefore X (z) and V(f(z)) have the same integral curves, although with
different parameterizations.

12.2 Stable and unstable manifolds

As before, for any point x € M, let v,(t) be the flow line through z, i.e. it
satisfies the differential equation

d

BV Vi

d t’Y +(f)

with the initial condition v(0) = 2. We know by Theorem 12.2 that ~,(t)
tends to critical points of f as ¢ — +o00. So for any critical point a of f we
define the stable manifold W*(a) and the unstable manifold W*(a) as follows:

Definition 12.2. Let M be a manifold, and f a smooth function on M. Let
a be a critical point for f. We define the two subsets of M :

Wa) ={zreM: lim 7(t)=a}
W4 a)={xeM: t_l}r_noovx(t) =a}.

and call W#(a) the stable manifold of a and W*(a) the unstable manifold of
a.
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In other words, W*(a) is the set of points on M that flow down to a,
and W*(a) is the set of points on M flow out from a. The use of the term
“manifold” is justified by the stable manifold theorem:

Theorem 12.4 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, and f : M — R a Morse function. Let a be a critical point of f of index
A. Then W¥(a) and W*(a) are smooth submanifolds diffeomorphic to the open
disks D and D™, respectively.

This will be proved in Section 12.2 below for a large class of metrics (though
it is in general true for all metrics).

Proposition 12.5. If M is a compact manifold with Riemannian metric g,
and f: M — R is a Morse function, then

M =JW*(a)

is a partition of M into disjoint sets, where the union is taken over all critical
points a of f.

Proof. The fact that the union of the W*(a) is M comes from the fact that
every point of M lies on a flow line 7, and we can always find lim;_, o, y(¢).

The fact that the W*"(a) and W*(b) are disjoint when a # b is due to the
fact that - is unique. O

Exercise Find the unstable manifolds for each critical point in Example ?7.
Exercise Find the unstable manifolds for each critical point in Example ?7.

From these exercises you can see that this decomposition of M makes M
look like a C'W complex, with one cell of dimension A for each critical point
of index A. The torus example is problematic because an edge gets attached
to the middle of another edge, but consider the following fix:

Consider the torus in R? as before, but with a slight perturbation. That
is, tilt the torus by pulling it down so it is not quite vertical. Then consider
the height function f(z,y,z) = z. The following is a picture of the resulting
flow lines.

The point is that with this example, we have a decomposition of M into
cells, with a cell of dimension A for each critical point of index \. These are
essentially the cells D* in Theorem 11.6.

The disks appearing in this result and those appearing in Theorem 11.6
are related in the following way. Suppose that [tg,t1] C R has the property
that f~!([to,t1]) € M has precisely one critical point a of index A with
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FIGURE 12.5
Flow lines for the height function on the “tilted torus”
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f(a) = ¢ € (to,t1). Then by Theorem 11.6 there is a disk D* ¢ M* and a
homotopy equivalence
M™ ~ M U D

Now note that W%(a) N f~1([to,t1]) is, under a Euclidean metric defined
by the Morse coordinate chart, equal to the D* mentioned in the proof of
Theorem 11.6.

This strengthening of Theorem 11.7 makes it intuitively clear why the
Morse equality (Theorem 11.9) and the Weak Morse inequalities (Corol-
lary 11.10) hold. In addition, the Strong Morse inequalities (Corollary 11.11)
also follow quickly.

There are several problems: first, we need to prove the Stable manifold
theorem. Next, we need to prove that this decomposition into open cells is
actually a CW complex. Now, a CW complex is described as a collection of
closed disks, where the boundaries of these closed disks are identified with
points that lie in other disks, via functions called attaching maps. So we need
to turn the open disks W*(a) into closed disks, and describe how they are
attached.

As we saw in the first torus exercise above, it does not actually always
work. There is a condition (called the Morse—Smale condition) under which
this program works. We will describe this condition later. Under this condition,
we will also see how to view M as a CW complex.

At this stage, we should view this as roughly a CW complex decomposi-
tion, but with open disks instead of closed disks. These disks and other related
spaces will play a major role in the next several chapters.

We will then study the attaching maps for the CW complex decomposition
in some detail, using framed cobordism. This allows us to find more topological
information about M than is given in the Morse inequalities. For instance, it
allows us to compute the homology of M explicitly.

In Chapter 11, we proved the Morse Lemma (Theorem 11.4), which says
that locally, around any nondegenerate critical point, we can choose a coordi-
nate chart so that

A n
Fenw) = fo) = Y a2+ Y o2 (12.2)
i=1 J=A+1

In other words, we have a local explicit formula for f around a critical point,
no matter what f is, as long as the critical point is non-degenerate.

What does the gradient vector field look like around such a critical point?

Based on the above equation (12.2), you might expect the gradient to be
this:
V(f)=(—2x1,...,—2xA, 2011, ...,22,) (12.3)

But because the metric is not described, it is possible (even likely) that the
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gradient vector field is not this at all. Recall that the gradient is obtained
by g(v,V(f)) = df(v) (see the discussion at the beginning of chapter 11.1,
especially Exercises 12.1 and 12.1).

Since we are dealing with gradient vector fields, and their corresponding
flow lines, it would make sense for us to want to choose coordinates to stan-
dardize the gradient vector field so that equation (12.3) is true, rather than
equation (12.2). This is especially the case, since if equation (12.3) is true,
then the gradient flow equation

L) = V()

would take the form (if we write v(¢) = (z1(¢t),..., 2, (2))):

i‘l = 2331

.’)'SA = 21‘/\
Ta41 = —2xp41

Tn = —2Tyn

which is easily solved since each equation only deals with one variable.

If the metric is anything else, we might still hope to diagonalize this
system of differential equations, choosing coordinates (z1,...,z,) so that
Y(t) = =V (f) looks like

.’i)‘i = C;Z; (12.4)

for some non-zero real constants cy, ..., c,. Then the ¢; would be negatives of
the eigenvalues of the Hessian of f at the critical point, and the corresponding
eigenvectors would be the standard basis vectors 9/0x; in this coordinate
chart.

Unfortunately, it is in general impossible to choose coordinates so that
(12.4) holds, as the following exercises show:

Exercise Solve the system of differential equations (12.4).

Exercise Solve the system of differential equations

i=2z (12.5)
=y (12.6)
i=z+axy (12.7)
(12.8)

and show that there is no change of coordinates that transform it into the
form (12.4).
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Exercise Let f(z,y, 2) = 22 — 4%+ 22. Find a metric g(z,y, 2) on a neighbor-
hood of (0,0,0) € R? so that the gradient flow equations near the origin are
as in equation (12.8). Hence prove that it is in general impossible to choose
coordinates so that the gradient flow equations look like equation (12.4) in a
neighborhood of the critical point. Note that the metric must be symmetric
and positive definite in the neighborhood.

Note that in this exercise, what goes wrong is a kind of “resonance” phe-
nomenon that occurs in ordinary differential equations when two eigenvalues
are the same. By analogy, we would expect this kind of problem to be rare,
and we might hope that for most situations, we can choose coordinates to put
the gradient flow equations in the standard form of equation (12.4), but to
address this will take us rather far afield (see [26]).

Instead, we choose to follow Hutchings [35] to modify the metric to the
standard metric so that equation (12.2) gives rise to the gradient in equation
(12.3), which in turn gives rise to the gradient flow equations in equation
(12.4).

This motivates the following definition, due to Hutchings [35]:

Definition 12.3. Let M be a manifold and f be a Morse function. A metric
is said to be nice if there exist coordinate neighborhoods around each critical
point of f so that for each such neighborhood there are non-zero real numbers
C1,-..,Cn SO that the gradient flow equations are

Ti = CiTy,
as in (12.4).

Proposition 12.6. Let M be a compact manifold and f a Morse function.
There exists a nice metric on (M, f). In fact, these are dense in the L? space
of metrics.

Proof. Let gg be any smooth metric on M. Consider the set of critical points
of f. Apply the Morse lemma (Lemma 11.4), to find nonoverlapping coordi-
nate neighborhoods of each critical point of f in M, each with coordinates

T1,...,T, so that the Morse function in each neighborhood is
A n
i=1 J=A+1

For each critical point a of f, let U, be the coordinate neighborhood given
by the Morse lemma, let B; be a coordinate ball around a that is completely
inside U,, and let Bs be another coordinate ball around a of smaller radius
than Bj. (By coordinate ball I mean the set whose coordinates (x1,...,x,)
satisfy 2% + -+ + 22 < r for some 7.)

Let ¢ : U, — R be a smooth function so that ¢ is 1 on By and 0 outside
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B;. Let gg be the standard Euclidean metric with respect to thezq,...,z,
coordinates. Define g to be

9= go(2)(1 = 6(x)) + gu(z)d(x)-

Since the set of symmetric positive definite bilinear forms is a convex set, this
convex linear combination of the two metrics will be a metric on U,. Extend
g by setting it equal to go on the rest of M. Then g is a metric for which a is
nice.

Now proceed inductively through the other critical points of M. This cre-
ates a metric g so that there is a coordinate neighborhood metric ball B around
each critical point where both f and the metric are in a standard form. Then
the gradient flow equation p

y
=V, (f)
looks like equation (12.4).

By taking Bs smaller and smaller, we see that the difference between g
and go is supported on an arbitrarily small set, and by the boundedness of
the metric on M, we know that this difference is arbitrarily small in L2, O

We now prove the Stable manifold theorem for nice metrics:

Theorem 12.7 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, with nice metric g, and f : M — R a Morse function. Let a be a critical
point of f of index A. Then W"(a) and W#(a) are smooth submanifolds dif-
feomorphic to the open disks D and D™, respectively.

Remark This theorem is still true if the metric g is not nice, but to prove this
would take too long and we don’t need it in this generality. Curious readers
can see [26] for the proof.

Proof of the Stable Manifold Theorem. If g is a nice metric, then there is a
coordinate neighborhood B around each critical point where the gradient flow
equations are
dvi
dt
where 7;(t) is the i-th coordinate of . Note that the ¢; are the negatives
of eigenvalues of the Hessian, corresponding to the directions given by the
standard basis in the coordinate chart. Reorder the coordinates so that the
first A eigenvalues are the negative ones (so that the first A values of ¢; are
positive).
Then explicitly,

= ¢;vi(t)

yi(0)eleilt, i < A
(1) = 12.9
7(®) {'yi(O)e_Ci't, i> A (12.9)

inside B.
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We prove the theorem for W*(a). The proof for W*(a) is exactly analogous,
and besides, it follows from the W#(a) case, applied to the function —f. We
will first prove that W#(a) is smooth in a small neighborhood of a.

Let Wy be the subset of B consisting of those points where x1 = x5 = - =
2 = 0. Then from the explicit solution (12.9), we see that Wy C W*(a).

Now Wy is an open disk of dimension n — A centered on a, and hence is a
manifold, and is furthermore a submanifold of M.

Recall from Theorem 12.2 that the flow map defined as

T:-MxR—M

T(z,t) = 7a(t)

is smooth. Apply this flow backward in time by some time ¢: define W; =
T (W, —t). This will be diffeomorphic to Wy and a subset of W*(a). As ¢ goes
to infinity, we span a larger and larger subset of W*(a).

Let © € W*(a), and + the corresponding gradient flow line with (0) = x.
Since lim;_, o ¥(t) = a, we know that for some ¢y > 0, v(¢) € B for all t > t,.
I will now show that (o) € Wo.

Suppose y(tg) &€ Wy. The translated flow n(t) = v(t+1t¢) is a gradient flow
line, with the property that n(0) ¢ Wy, and n(t) € B for all ¢ > 0. Then for
some coordinate ¢ > A, 7;(0) # 0. By the explicit solution (12.9), n;(¢) will
grow indefinitely, so that eventually n (and hence ) leaves the coordinate ball
B. This is a contradiction. Therefore, v(tg) € Wp.

Since every element of W#(a), when flowed forward, eventually is in Wy,
we know that U W, = W9(a).

Let ¢ : [0,1) — R be a smooth monotonic function with ¥(0) = 0 and
lim; 1 ¢ () = +oo. Using |z| as /22 4+ --- + 22, and r( as the radius of the
coordinate ball B, we see that T'(x, ¥ (|z|/r¢)) maps Wy diffeomorphically onto
W#(a). Recall that Wy is a submanifold of M which is a disk of dimension
n — A. Therefore, W*(a) is a submanifold of M and diffeomorphic to D"~*.

O

Exercise Prove the Stable Manifold Theorem (Theorem 12.7) for the unsta-
ble manifold W*(a), without applying the theorem to stable manifolds of — f.
Instead, carefully go through the proof for W#(a) and write out the corre-
sponding proof that would work for W*(a).

Proposition 12.8. The tangent space of W*(a) at a is the positive eigenspace
of the Hessian of f at a. Similarly, the tangent space of W*(a) at a is the
negative eigenspace of the Hessian of f at a.

Proof. Again, we are assuming the metric is nice, but this is unnecessary.
Now W?#(a) is a smooth submanifold of M, so its tangent space at a is
well-defined. Define Wy as in the previous proof, as

{(@1,...,2zn) |21 =" =2r =0}
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The tangent space to Wy is therefore the span of 9/0x; for i = A + 1 to n.
This is the positive eigenspace of the Hessian.

On the other hand W, C W#(a), and since they are of the same dimension,
Wy is an open neighborhood of a in W#*(a). Therefore W, and W#(a) have
the same tangent space at a.

The proof for W*(a) can be done similarly, or if you wish, you may use
the result for W*(a) on —f. O

Let a be a critical point of f. Let us consider the function f restricted to
W*(a). Since W*(a) is defined to be the set of points which in some sense
lie “below” a on gradient flow lines, we expect a to be a maximum of f on
W*(a), and level sets to be spheres around a.

Theorem 12.9. Let (M, g) be a Riemannian manifold and f : M — R a
Morse function. Let a be a critical point of f. Let h : W*(a) — R be the
restriction of [ to W¥(a). Then a is the unique critical point of h, and it is
the absolute mazimum. If € > 0 is small enough, and f(a) — e < ¢ < f(a),
then h=(c) is diffeomorphic to a A — 1 dimensional sphere in W*(a) around
a.

Similarly, let j: W*(a) — R be the restriction of f to W*(a). Then a is
the unique critical point of j, and it is the absolute minimum. If € > 0 is small
enough, and f(a) < ¢ < f(a) + ¢, then j=1(c) is diffeomorphic to an — X — 1
dimensional sphere in W#(a) around a.

Proof. We will prove this for W*(a), and the result for W#(a) is the same
using — f instead of f.

Let z € W*¥(a), and z # a. Let ¥(t) be the unique gradient flow line with
~(0) = z. Since © € W"(a), we have that lim;_, . y(t) = a.

According to Lemma 12.1, f(y(t)) is strictly decreasing. By the continuity
of f, limy,_o f(y(t)) = f(a). So f(a) > f(z). Therefore, a is the absolute
maximum of h.

Now, v(t) € W*(a) for all t, so v'(0) € T,W"(a). Since f(v(t)) is strictly
decreasing, 7/(0) # 0 (if it were, % f(v(t)) = V(f) - +/(0) would be zero). By
the gradient flow equation /(t) = —V,)(f), the =V, (f) # 0. Therefore, x
is not a critical point of h. Since & was arbitrary, except for not equalling a,
there are no critical points of h except for a.

Now we consider the Hessian of h at a. Find a coordinate chart of M
around a so that W"(a) is given by the equations zy41 = -+ = z, = 0. By
the invariance of the Hessian under coordinate change (Proposition 11.1), the
Hessian of f can be computed in such a coordinate chart. Since T, W (a) is
the negative eigenspace of the Hessian of f (Proposition 12.8) we conclude

that the matrix
0% f
8171'812]' ij
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is negative definite. Since W*(a) is given by setting xx+1,...,2, to be con-
stant (in fact, zero), we see that for 4,7 < A, this matrix is the same as
axiaxj ij

Therefore the Hessian of h at a is negative definite. In particular, a is a non-
degenerate critical point of h, and h is Morse.

We now consider the preimages h~!(c).

For this, we use the Morse Lemma (Theorem 11.4) applied to h on the
manifold W*(a). The Morse Lemma states that there exist a coordinate neigh-

borhood U around a with coordinates z1,...,2z) on W*(a) so that
h(xl,...,l',\) :f(a)—x? — ... —ZL'?\.

Let € > 0 be given so that the ball
B={(x1,...,z\)|zl +---+ 123 < ¢}

is contained in U. Within this ball it is clear that the preimages h~!(c) (when
f(a)—e < ¢ < f(a)) are coordinate spheres around a. We will now verify that
there are no other parts to h=!(c) which are outside B.

Suppose © € W¥(a), and z ¢ B. As earlier in the proof, let v(¢) be the
gradient flow with «(0) = z. As before, lim;,_ o v(t) = a. But B is an open
set around U. Therefore, for some t < 0, y(¢) € B. Since x = v(0) is not in B,
the generalized Jordan curve theorem says that there exists some T' < 0 for
which v(T) is on the boundary of B. Since f(vy(t)) is strictly decreasing,

f(@) = f(1(0)) < F(4(T)) = f(a) — e

So f(z) < f(a) — €. Therefore, if f(a) — € < ¢ < f(a), then h=!(c) is a susbet
of B, and is therefore the coordinate spheres we found earlier. O

12.3 The Morse—Smale condition

Consider Exercise ?7. One of the edges did not attach to vertices, but to the
midpoint of another edge. In Exercise 77, a perturbation of this situation, this
problem is fixed, and both edges end at the bottom vertex. This indicates that
it is not enough that f be Morse for the unstable manifold picture to work
well. We need a further transversality condition, which we define now.

Definition 12.4. Suppose f: M — R is a Morse function that satisfies the
extra condition that for any two critical points a and b the unstable and stable
manifolds W*(a) and W?(b) intersect transversally. This is the Morse-Smale
condition, and if f satisfies this condition, we call f a Morse—Smale function.
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Smale [55] showed that Morse-Smale functions exist. More specifically,
given a metric g and function f : M — R, there exists another metric ¢’
and another function f/ : M — R so that f’ is Morse-Smale with respect
to ¢g’. His proof also demonstrates that f and f’ and g and ¢’ can be made
arbitrarily close to each other. Hence the set of configurations of functions and
metrics so that the functions are Morse-Smale with respect to that metric is
dense.

Actually, more is true: if f is Morse, then for an open, dense set of metrics
g, [ is Morse—Smale. This can be proved using the same techniques that are
used in the proofs in Smale’s paper. We will sketch out a proof at the end of
this chapter that the set of such metrics is dense. In the meantime we will
first study some properties of Morse-Smale functions.

Exercise Show that the example in Exercise 7?7 is Morse-Smale, and the
example in Exercise 12.1 is not.

Exercise Suppose f is Morse (not necessarily Morse-Smale) and suppose b
is a critical point of f. Do W*(b) and W*(b) always intersect transversally?

The main purpose of the Morse—Smale condition is that it allows us to see
how stable and unstable manifolds of different critical points intersect. For
every pair of critical points a and b, let

W (a,b) = W(a) N W*(b).

W (a,b) is the space of all points in M that lie on flow lines starting from a
and ending at b.

Proposition 12.10. Let (M, g) be a Riemannian manifold of dimension n,
let f: M — R be Morse-Smale, and a and b be two critical points of f.
Then W (a,b) is a smooth manifold of dimension index(a) — index(b).

Proof. If f is Morse-Smale, then W*(a) and W*(b) intersect transversally.
Therefore the intersection W*(a)NW#(b) = W (a, b) is a manifold of dimension
dim(W*(a)) + dim(W*(b)) — n = index(a) + (n — index(b)) — n = index(a) —
index(b). O

Corollary 12.11. Let f : M — R be a Morse-Smale function, and let a and
b be two distinct critical points of f. If index(a) < index(b), then W (a,b) = (.

Proof. If index(a) < index(b), then the previous proposition shows that
W (a,b) is a manifold of negative dimension, so it must be empty.

If index(a) = index(b), then similarly W (a,b) must be a manifold of di-
mension 0, but since the gradient flow acts freely on elements of W(a,b), the
dimension of W (a,b) must be at least one. Therefore it must be empty. O
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Definition 12.5. We refer to the number
index(a) — index(b)

as the relative index of a and b.

Exercise Find W (a,b) for each pair of critical points a and b for Exercise ?7.
Exercise Suppose a and b are critical points of f and a # b. Are a and b in
W (a,b)? If there are other critical points of f, is it possible that these are in
W (a,b)? Now consider the case a = b. What is W (a, b)?

The fundamental object of study will not usually be W (a, b), but a particu-
lar “horizontal” slice. If we view the gradient flow as an action of R on W(a, b),
then we can study the orbit space (called the Moduli space) W (a,b)/R. For
good intuition and for practical considerations it is useful to instead pick out
a representative of each R orbit in W (a,b). One way to do this is to select a
real number ¢ between a and b and pick out the representative in f~!(¢). This
is the approach used in our first definition of the moduli space (there will be
other equivalent definitions soon).

Definition 12.6. Pick a value t € R between f(a) and f(b), and let W (a,b)"
to be the set W(a,b) N f=1(¢).

Proposition 12.12. Ifa and b are distinct critical points of f, then W (a,b)
is a smooth submanifold of M.

Proof. First, we see that fly () @ W(a,b) — R is transverse to the point
{t} C R. This is because for any point = € W (a,b) so that f(z) =t, V,(f) is
not zero, and so neither is df, (V4 (f)) = ||[Vo(f)||>. Therefore flw (40 tr{t}.
Therefore, we may apply Theorem ?7, and get that (f|W(a,b))_1 {t}) =
W (a,b)t is a submanifold of W (a,b) of codimension one. O

Proposition 12.13. Let a and b be distinct critical points of f. The function
¢ : Wia,b)! x R — W(a,b)

defined by
o(p,s) =Ts(p)

is a diffeomorphism.

Proof. We begin by proving ¢ is onto. Let € W (a,b). Let 7 be the flow line
that has 7(0) = z. Since limy o f(1(t)) = £(b) and limy_, . f(1(t)) = f(a),
by continuity we have that for some s, f(y(—s)) = ¢. Then y(—s) = p and
Ts(p) = x.

Now to show ¢ is one-to-one, suppose x = ¢(p1,s1) = &(p2,s2). Then
T 5, (z) = p1 and T_g,(x) = p2, meaning that the unique flow line v with
~v(0) = x also has v(s1) = p1 and 7y(s2) = pa. Since f(p1) =t = f(p2), and
% (v(s)) < 0, it must be that s; = so and therefore p; = ps.
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Therefore ¢! is defined as a set map. To show that ¢! is continuous, it is
necessary to show that if U is an open neighborhood of (p,s) € W (a,b)! x R,
then there exists an open neighborhood of ¢(p, s) in W (a,b) that is a subset
of ¢(U). It suffices to show this for open neighborhoods U of the form B, (€) x
(s —€,5 + ¢€). Since T_; is a diffeomorphism of M that maps neighborhoods
of ¢(p, s) to neighborhoods of ¢(p,0), it suffices to prove this for s = 0.

So what we need to show is if € > 0 is sufficiently small, and p € W (a, b)?,
then there exists a ¢ so that whenever d(p,y) < 0, then writing y = ¢(q,r)
gives us |r| < e and d(p,q) < €.

Since p is not a critical point, there is a §; so that B,(2d1) does not contain
critical points. In this ball, m = inf |V f|? is strictly greater than zero and
sup |V f] is finite. If sup [V f| > 1, then let M = sup |V f|, but otherwise let
M = 1. By continuity of f there is a d2 so that |f(p) — f(Bp(d2))| < me/2M.
Choose § to be smaller than min(dy, d2, €/2).

Now in the proof of Lemma 12.1, we saw that

& o) =~ 9 ().
Integrating and using the fundamental theorem of calculus, we get
[f(y(=r)) = F(4(0))] = || inf [V f]?
which leaves us with
[rjm = |r[inf [V f|* < |£(p) — f(y)| < me/2M

so that |r| < ¢/2M <.
Now,

da.) < [ ol

=/|V(f>|dt
< Mr < e/2.

So by the Triangle inequality, d(p,q) < d(p,y) + d(q,y) < 6 +¢/2 < e.
Therefore ¢! is continuous.

To prove ¢! is smooth, we estimate d¢ and show it is non-degenerate.
Let (p,s) € W(a,b)! x R and let vy, ..., v be a basis for the tangent space of
W (a,b)t at p, and let 9/0¢ be the tangent vector to R. Now if d¢ is degenerate
at (p, s), then dé(v1),...,do(vg),dd(0/0t) would be linearly dependent. Now
since @lw (a,p)tx {5} is just the flow map T, and this flow map is a diffeomor-
phism, we know that d¢(vi),...,dd(vi) are linearly independent. Therefore
any linear dependence would involve d¢(9/0t), so that

dp(0/dt) =) cpdd(vg)
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for some real numbers cg.
Now since ¢(p, s) = Ty(p), dp(8/dt) at (p,s) is 2Ty(p) = 7/(s), where y
is the flow with «(0) = p. Then if we compose with T_,

dT_odp(D/0t) = cxdT—od(vy)
dT_sv'(s) = chvk
7(0) = chvk.

But we know 7/(0) is transverse to TW (a,b)*, which is a level set of f. There-
fore, we have a contradiction, and d¢ is non-degenerate. Therefore ¢! is
smooth. O

If we use the notation +a to denote the function +a : R — R with
+a(z) = z + a, then the following diagram commutes:

W(a,b)t x R —2— W(a,b)

“’“)l Tbl

W(a,b)t x R —2— W(a,b)
We now sketch a proof that the set of metrics for which a Morse function
is Morse—Smale is dense.

Theorem 12.14. Let M be a manifold. Let f : M — R be a Morse function.
For a dense set of metrics g, f is Morse-Smale.

Proof. (Sketch of proof) We suppose a Riemannian metric g is given, and
show that there exists a Riemannian metric ¢’ arbitrarily close to g so that f
is Morse-Smale with respect to ¢’. For the purposes of this proof V, refers to
the gradient using the metric g.

We start by finding a vector field X close to V, f that agrees with V, f near
the critical points of f but so that the ascending and descending manifolds
are transverse (step 1). We then show that for some metric ¢’ close to g,
X = Vy(f) (step 2).

Step 1: finding the vector field X

The details of this step are found in Smale’s proof of Theorem A in the
work just cited above ([?]).

Let the critical values of f be ¢; < --- < ¢gx. Choose € > 0 arbitrary, but
small enough so that for each i, ¢;41 > ¢; + 4e, and in fact, small enough so
that for each critical point p, Theorem 12.9 gives us that W#(p)N f~1((—oo, c])
is a ball for all f(p) < c < f(p) + 4e.

We first let X = Vg. Then we proceed by induction on i, starting at c;
and ending at ¢y, at each stage altering X in f~1(c; + €, ¢; + 3e).
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At stage 7 in the induction, we consider each critical point p so that f(p) =
¢;. In a neighborhood of p, we consider

Q= fci +2¢) NWE(p).

Since —V(f) is transverse to level sets of f, the gradient flow can be integrated
in a small neighborhood of ) so that there is a coordinate z with —m < z <m
so that 9/0z is —V(f) and z = 0 coinciding with Q. Here m is chosen so that
this keeps us in f~(c; + €,¢; + 3¢). By the coordinate structure of f near
p, a tubular neighborhood U of @ is a trivial A-disk bundle. So if P is a A
dimensional disk of radius 1, then there is a diffeomorphism sending [—m, m] x
P x @ onto this tubular neighborhood of @, so that the first coordinate is the
coordinate z, and 0 x 0 X @ is mapped to @ by the identity function. From
now on, we will identify U with [—m,m] X P X @ in our notation.
Consider all critical points ¢ with f(q) > ¢;. Let

S = Uq,f(q)>ci,Vq(f):O(0 x P x Q) n Ws(q)

and let g : S — P be the restriction of 7p : [-m,m] X P x Q — 0 x P x 0
to S. By Sard’s theorem there exist v € P arbitrarily close to zero so that 2v
is a regular value of g.

Now construct 3 : [-m, m] — R so that S(z) > 0, 8(z) = 0 in a neigh-
borhood of 9[—m, m], and foim B(z) dz = £|v|. If v was chosen small enough,
B(z) and |5'(2)| can be kept smaller than e.

Let Py C P be a A-dimensional disk of radius 1/3.

We also construct a smooth 7 : P — Rsothat 0 <y <1,v=01ina
neighborhood of P, v =1 on Py, and |07y/dz;| < 2.

Let X’ be the vector field on M that equals X outside U, and on [—m, m] x
P x @Q let X’ be given by

0 v
X' =~ = Ben(a)
We use the bounds on 8 and ~ to ensure that df(X’) > 0.

To see that the new stable and unstable manifolds W'¢(p) and W' (q)
intersect transversally, we examine any point of intersection, and flow by X’
until it is in f~*(c; + 2€). It will then be at a point {0} x P x Q C [~m,m] x
P x Q. The flow X’ for time +m carries (0,z,y) € [-m,m] X P x @ to
(£m,x £ v,y), as can be seen by explicitly integrating out X'.

If ¢ is any critical point with f(¢q) > ¢;, then consider the new stable
manifold W'$(q) of ¢ under X’. It agrees with the old stable manifold W*(q)
on (m,0,y), and after flowing by —m we get to (0, —v,y).

Also, the new unstable manifold W'*(p) agrees with the old unstable man-
ifold W*(p) for z = —m, and flowing by X’ for time m from here shows that
WH(p)N(0x PxQ)is

{00,z +v,9)[(0,z,y) € W*(p)}.



294 Bundles, Homotopy, and Manifolds

So their intersection is the set

{(0, =v,9)[(0,2v,y) € W*(p)}

and since 2v is a regular value of g, this intersection is transverse.

We do this for all the critical points with critical value ¢;, and these do not
interfere with each other as long as € is small enough that the neighborhoods
U do not intersect.

We then proceed with larger and larger ¢, until we have constructed a new
X'.

Step 2: finding the metric ¢’

Note that X is unchanged (it still equals V, f) near critical points of f. So
near critical points of f we define ¢’ to equal g. Outside these neighborhoods
we define, at each point x € M, a linear transformation A, on T,M that is
the identity on the kernel of df, and sends X to

df (X)
lldf Ilg

Since df (X) > 0, this is invertible, and if X is close to V4(f), then A, is close
to the identity. Let ¢'(v, w) = g(Av, Aw). Then ¢’ is close to g.

Now if we write an arbitrary vector w € T, (M) as w = wgy + aX where
df (wg) = 0, then it is a matter of computation to verify that ¢’ (X, w) = df (w).
By definition of gradient, this means X = Vg (f). O

Vo(f)-

Corollary 12.15. Given a Morse function f : M — R, there exists a metric
g so that f is Morse—Smale.

12.4 The moduli space of gradient flows M(a,b), its com-
pactification, and the flow category of a Morse func-
tion

Throughout this section we assume that M is a C*° closed, Riemannian metric

and that f : M — R is a Morse function satisfying the Morse-Smale condition.
As seen above, the Morse-Smale condition is generic.

12.4.1 The moduli space M(a,b)

By Proposition 12.13 above, there is a diffeomorphism W (a, b) = W(a,b) xR,
and so in particular W (a,b) has a free R-action. This action can be described
as follows. Let © € W(a,b), and let v, : R — M be the unique flow line
satisfying 7,(0) = x. (Such a flow ~, by the existence and uniqueness of
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solutions of ordinary differential equations.) Then for t € R, let ¢ - & = 7, ().

In other words, t € R acts by “flowing from z for time ¢”. Since any to points

on the the same orbit of this R-action lie in the same flow line, if we define
M(a,b) be the orbit space

M(a,b) = W(a,b)/R (12.10)

then M(a,b) can be viewed as the (moduli) space of gradient flow lines of
f with “starting critical point” a, and “ending critical point” b. Notice that
M(a,b) is homeomorphic to W(a,b), and is therefore a smooth manifold of
dimension ind(a) — ind(b) — 1. (Recall we are assuming that f : M — R
satisfies the Morse-Smale condition.)

Of course the gradient flow lines in M(a,b) don’t really “start” at a or
“end” at b, but rather they satisfy the initial conditions lim;_, ., v(t) = a and
lim; 4 oo v(t) = b. This is a rather clumsy arrangement, especially if we want
to “glue” flow lines. That is, if & € M(a,b) and 8 € M(b, ¢), then we should
be able to describe a (“piecewise”) flow « o 8 which should “start” at a and
“end” at c. This is most easily done if we reparameterize these curves so that
they be “height parameterized gradient flow lines”, as defined in Definition
12.1.

12.4.2 The compactified moduli space of flows and the flow
category

As above let M be a closed Riemannian manifold and let f : M — R be a
Morse function satisfying the Morse-Smale condition. Let V(f) be the gradient
vector field of f. Consider a flow lines of f which is a curve v : R — M
satisfying the differential equation

dy
- ).

If 7 is a flow-line then 7(¢) converges to critical points of f as t — oo and
we define

s(y) = lim ~(1), e(v) = lim ~(¢).

t——o0 t—o00

Since f is strictly decreasing along flow lines it defines a diffeomorphism
of the flow line y(t) with the open interval (f(b), f(a)) where s(vy) = a and
e(y) = b. This reparameterises the flow-line as a smooth function

w: (f(b), fla)) = M

such that
flw(®) =t.
We can extend w to a smooth function defined on [f(b), f(a)] by setting
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w(f(b)) = b and w(f(a)) = a. Then as seen above, this extended function
satisfies the differential equation

d V()
T O (12.11)

with boundary conditions

w(f(b)) =b,  w(f(a))=a. (12.12)
It is a “height-parameterized” flow line.

We define M(a,b) to be the space of all continuous curves in M which
are smooth on the complement of the critical points of f and satisfy the
differential equation (12.11) and boundary condition (12.12). Here, of course,
we understand that w satisfies (12.11) on the complement of the set of critical
points of f. This space M(a,b) is topologized as a subspace of the space
Map([f (D), f(a)], M), of all continuous maps with the compact open topology.
Note that if w is any solution of (12.11) and (12.12) then if we remove the
points where w(t) is a critical point of f each component of w is geometrically
a flow-line but it is parameterized so that f(w(t)) = t. Therefore by an abuse
of terminology we refer to a curve in M(a,b) as a piecewise flow-line from
a to b.

It is straightforward to check that M (a, b) is a compact space and it clearly
contains M (a,b). It is possible to show that since f is Morse-Smale, then
M(a,b) is open and dense in M (a,b) and so M(a,b) is a “ compactification”
of the moduli space of flow lines M (a, b).

There is an obvious associative, continuous composition law

M(a,b) x M(b,c) — M(a,c)

which is denoted by 71 o 2.
We are now ready to define the “flow category” of f, Cy:

Definition 12.7. We define the flow category Cs as follows:

e The objects of Cy: The objects of C; are the critical points of f.

e The morphisms of C;: If a and b are distinct critical points of f then
the morphisms from a to b are defined to be

Cr(a,b) = M(a,b).
The only morphism from a to itself is the identity.
e The composition law: The composition law is defined by

M(a,b) x M(b,c) — M(a,c)
(71:72) — 711072 (12.13)
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In fact C; is a topological category in the sense that each of the sets Cy(a, b)
comes equipped with a natural topology and the composition law

M(a,b) x M(b,c) — M(a,c)

is continuous. The topological category C; has a simplicial classifying space
BCy. The main result of [14] is the following:

Theorem 12.16. If M is a closed Riemannian manifold and f : M — R
is a Morse function satisfying the Morse-Smale condition, then there is a
homeomorphism

M = Bcy.

Moreover, even if f does not satisfy the Morse-Smale condition (but is still
a Morse function), there is a homotopy equivalence, M ~ BCy.

We now illustrate this theorem by considering the example of the height
function on the “tilted torus”. Recall that for this we view the torus as em-
bedded in ordinary three-space, standing on one of its ends with the hole
facing the reader, but tilted slightly toward the reader. We let f be the height
function.
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Qm‘y"*);?

There are four critical points; a has index 2, b and ¢ have index 1, and d has
index 0. As the figure depicts, the moduli spaces M(a,b), M(a,c), M(b,d),
and M(c,d) are all spaces consisting of two distinct points each. We will
denote these flows by «ay, S, i, and d; respectively. All points on the torus
not lying on any of these flows is on a flow in M(a,d). This moduli space
is one dimensional, and indeed is the disjoint union of four open intervals.
Furthermore the compactification M (a,d) is the disjoint union of four closed
intervals.

Now consider the simplicial description in the classifying space BCy. The
vertices correspond to the objects of the category Cy, that is the critical points.

Thus there are four vertices. There is one one simplex (interval) for each
morphism (flow line), glued to the vertices corresponding to the starting and
endpoints of the flows. Notice that the points in M(a,d) index a one pa-
rameter family of one simplices attached to the vertices labelled by a and d.
Finally observe that there is a two-simplex for every pair of composable flows.
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° ’;?(ab\ = m‘u“u)’ﬁ?(ﬁva = @.”BL) ﬁ{}AS:%;ug‘_IWC,A)%,“%L
o Aad) =T, 0T, 2Ty

FIGURE 12.6
Simplicial decomposition of BC¢, where f is the height function on the tilted
torus
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There are eight such pairs (coming from the four points in each of the prod-
uct moduli spaces M(a,b) x M(b,d) and M(a,c) x M(c,d).) A two-simplex
labelled by a pair of flows, say («, 8) will have its three faces identified with
the one simplices labelled by «, 8, and « o1 8 respectively. Notice that all
higher dimensional simplices in the nerve N(Cy) are degenerate and so do
not contribute to the geometric realization. The figure depicts the resulting
simplicial structure of the classifying space and illustrates Theorem 12.16 that
this space is homeomorphic to the underlying manifold.

Remark. The manuscript [14] was never published, primarily because the
proof of the main theorem relied on knowing that, assuming f : M — R
satisfies the Morse-Smale condition, then the compactified moduli spaces,
M(a,b) are manifolds with corners and that the corner structure is appro-
priately preserved under the composition of piecewise flow lines. At the time
that manuscript was written, the authors thought that this was a ”folk the-
orem”. However upon further inspection, the authors realized that although
experts in the community believed that this was true, there was no proof in
the literature, and that the issues involved in proving this result were more
complicated than the authors originally imagined. Therefore the manuscript
was never submitted for publication. In any case, the required manifold with
corners properties were eventually proved [50] [62], and the proof of Theorem
12.16 can now be completed using these results. A discussion of manifolds
with corners and a sketch of such a proof will be given in an appendix.
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