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Introduction

Differential Topology is the study of the topology of differentiable manifolds
and differentiable mappings between them. This subject is of central impor-
tance throughout most mathematics, especially those areas with a geometric
perspective, such as differential geometry, geometric analysis, and algebraic
geometry.

In these notes we will assume the reader is familiar with the basics of
algebraic topology, such as the fundamental group, homology, and cohomology,
through the statement of the famous Poincaré Duality theorem. The text by
Hatcher [27] is an excellent reference for these topics.

These notes will cover a variety of topics in differential topology such as

• The basics of differentiable manifolds (tangent spaces, vector fields, tensor
fields, differential forms)

• Embeddings, immersions, tubular neighborhoods, and normal bundles

• The Pontrjagin-Thom construction and cobordism

• Intersection theory using Poincaré duality

• Morse theory

These notes emanated from my class lecture notes for a graduate level
course on Differential Topology, Math 215b, given at Stanford University in
2018. The author is grateful to the students in that course for their feedback.

xi
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Topological Manifolds and Poincaré
Duality

The subject of much of this book is the topology of manifolds. n-dimensional
manifolds are topological spaces that have a well defined local topology (they
are locally homeomorphic to Rn), but globally, two n-dimensional manifolds
may have very different topologies.

Nonetheless we will find that the homological structure of manifolds is
quite striking. In particular they satisfy an important, unifying property, called
“Poincaré Duality”. The discussion and proof of this property is the subject
of this chapter. As the reader will see, this property will be used throughout
the book, and is used in a basic way in many areas of topology and geometry.

Definition 1.1. An n-dimensional (topological) manifold is a Hausdorff space
Mn that is locally homeomorphic to Rn. That is, each point x ∈ Mn has a
neighborhood Ux which is homeomorphic to Rn, or equivalently, to the open
ball Bn = {v ∈ Rn : |v| < 1}. A specific homeomorphism φ : Ux → Rn is
called a chart around x. An open cover of Mn consisting of charts is called an
atlas.

1.0.1 Orientations

We observe that the local-Euclidean property of manifolds has a manifestation
homologically. Namely, suppose Mn is a connected, n-dimensional manifold,
and let x ∈Mn. Then the relative homology:

Hq(M
n,M − x) ∼= Hq(U,U − x) by excision

∼= Hq(Rn,Rn − {0}) by the local-Euclidean property

∼= Hq−1(Rn − {0}) ∼=

{
Z if q = 0, n

0 otherwise

In particular, observe that the dimension n, is determined homologically.

Definition 1.2. Let Mn be an n-dimensional manifold. A local orientation
of Mn at x is a choice of generator of Hn(Mn,Mn − {x}) ∼= Z.

1



2 Bundles, Homotopy, and Manifolds

 

0 0

FIGURE 1.1
These surfaces are all 2-dimensional manifolds, as they are all locally homeo-
morphic to R2. However their global topologies are quite different.



Topological Manifolds and Poincaré Duality 3

Notice that there are two choices of local orientations at any point x ∈
Mn, and a choice of orientation is equivalent to choosing an isomorphism

Φx : Hn(Mn,Mn − {x})
∼=−→ Z.

Definition 1.3. A manifold Mn is orientable, if there is a continuous choice of
local orientations at each point x ∈Mn. A specific choice of such a continuous
choice of local orientations is called a (global) orientation of Mn.

Of course this definition is not yet complete, because we have not yet
defined what is meant by a “continuous choice of local orientations”. To make
this precise, we use the theory of covering spaces.

For x ∈ Mn, let Orx(Mn) be the set of local orientations of Mn at x.
That is, it is the set of generators of Hn(Mn,Mn − x). As observed above,
this is a set with two elements, as there are two possible choices of generators
for the infinite cyclic group. Let Or(Mn) be the space of all local orientations
on Mn. That is, as a set,

Or(Mn) =
⋃

x∈Mn

Orx(Mn). (1.1)

Proposition 1.1. There is a natural topology on Or(Mn) with respect to
which the map p : Or(Mn) → Mn defined by p(v) = x if and only if v ∈
Orx(Mn), is a two-fold covering space.

Before we prove this proposition, we note that we can, as a result, de-
fine what we mean by a “continuous choice of local orientations”. That
is, such a continuous choice would simply be a continuous cross section
σ : Mn → Or(Mn) of this covering space. This means that σ is a continuous
map with the property that p(σ(x)) = x for all x ∈ Mn. Notice that such
a continuous section x → σ(x) ∈ Orx(Mn) is precisely a continuous choice
of local orientation as x varies over all points of x ∈ Mn. The continuity is
reflected by the topology of Or(Mn) stated in Proposition 1.1.

We now prove Proposition 1.1.

Proof. Let U = {(Uα, φUα) : α ∈ Λ} be an open cover of Mn by charts. That
is, M =

⋃
α∈Λ Uα, and each φα : Uα → Rn is a homeomorphism. Notice that

for each pair α, β ∈ Λ, there is a continuous map

ψα,β : Uα ∩ Uβ → Homeo(φUα(Uα ∩ Uβ); φUβ (Uα ∩ Uβ)

where the target is the space of homeomorphisms between these two open
subspaces of Rn. This space of homeomorphism is endowed with the compact-
open topology. Each such homeomorphism determines an isomorphism

Hn(φα(Uα∩Uβ);φα(Uα∩Uβ)−{φα(x)})
∼=−→ Hn(φβ(Uα∩Uβ);φβ(Uα∩Uβ)−{φβ(x)}).
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By excision, this in turn determines a self-isomorphism

Hn(Rn,Rn − {0})
∼=−→ Hn(Rn,Rn − {0}).

Notice that since Hn(Rn,Rn−{0}) ∼= Z, The group of such self isomorphisms
consists of the identity and minus the identity. That is, this isomorphism group
is Z/2.

Thus ψα,β determines a continuous locally constant (i.e constant on each
path component) map

Ψα,β : Uα ∩ Uβ → Z/2 = {±1}.

We then define

Or(Mn) =
∐
α∈Λ

Uα ×Gen(Hn(Rn,Rn − {0}))/ ∼ (1.2)

where Gen(Hn(Rn,Rn − {0}) is the two-point set of generators of this ho-
mology group, and the equivalence relation ∼ is defined by the following: If
x ∈ Uα ∩ Uβ and γ ∈ Gen(Hn(Rn,Rn − {0})), then

(x, γ) ∼ (x,Ψα,β(γ))

where (x, γ) ∈ Uα × Gen(Hn(Rn,Rn − {0})) and (x,Ψα,β(γ)) ∈ Uβ ×
Gen(Hn(Rn,Rn − {0})).

Or(Mn), as defined by (1.2) then is given the quotient topology.

Exercise. Finish the proof of Proposition 1.1. Specifically show that as sets,
the two definitions of Or(Mn) given in (1.1) and (1.2) are the same, and that
the map

p : Or(Mn)→Mn

(x, γ)→ x

is a two-fold covering map.

Notice that if Mn is orientable, which is to say, the orientation double
cover admits a section, σ : Mn → Or(Mn), then it has another orientation,
called the opposite orientaion, and written −σ, whose value on a point x ∈Mn

is the unique point in Orx(Mn) that is not equal to σ(x).

Corollary 1.2. A manifold Mn admits an orientation if and only if the
orientation double covering p : Or(Mn) → Mn is trivial. That is, it admits
an isomorphism of covering spaces, to the trivial double covering space, π :
M × Z/2→M defined by projecting onto the first coordinate.
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Proof. Suppose Mn is orientable. Then the orientation double cover p :
Or(Mn) → Mn admits a continuous section σ : Mn → Or(Mn). We can
then define a trivialization Θ of the covering space

Mn × Z/2 Θ−−−−→ Or(Mn)

π

y yp
Mn −−−−→

=
Mn

by Θ(x, 1) = σ(x), and Θ(x,−1) = −σ(x).
Conversely, assume that Or(Mn) is trivial. That is, Or(Mn) is isomorphic

to M ×Z/2 as covering spaces. Since π : Mn×Z/2→Mn clearly admits two
distinct sections, then so does p : Or(Mn)→Mn.

It will be quite helpful to have the following homological characterization
of orientability.

Theorem 1.3. Let Mn be an n-manifold and A ⊂ Mn a compact subspace.
Then

1. If α : Mn → Or(Mn) is a section of the orientation double cover (i.e
an orientation of Mn), then there exists a unique homology class αA ∈
Hn(M,M −A) whose image in Hn(M,M − x) is α(x) for every x ∈ A.

2. Hi(M,M −A) = 0 for i > n.

Observation. A compact manifold is often called “closed”. Notice that if
Mn is a closed oriented manifold, we can let A = Mn and then the above
theorem implies that exists a unique “orientation class” or “fundamental class”
[Mn] = αM ∈ Hn(M) ∼= Z with the property that the restriction of [Mn] to
Hn(Mn,Mn − x) is the value of the orientation α(x).

Proof. We sketch the proof here. We refer the reader to Hatcher [27] Lemma
3.27.

The idea of the proof follows a theme that is often followed in studying
homological properties of manifolds. Namely, one proves the theorem first for
Rn, which will imply a local version of the theorem for every manifold, and
then use “patching arguments” such as the Mayer-Vietoris sequence, to prove
the theorem for general manifolds.

We break down the proof of this theorem into four steps.
Step 1. We first observe that if the theorem is true for A and B (both
compact), as well as A ∩B, then the theorem is true for A ∪B.

Consider the following Mayer-Vietoris sequence:
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0→ Hn(M,M − (A ∪B))
Φ−→ Hn(M,M −A)⊕Hn(M,M −B)

Ψ−→ Hn(M,M − (A ∩B))→ · · ·

Here we are using the facts that (M −A) ∪ (M −B) = M − (A ∩B) and
(M −A) ∩ (M −B) = M − (A ∪B).

Notice that the zero on the left side is the assumption that Hn+1(M,M −
(A ∩B)) = 0.

Notice that Ψ(αA ⊕ αB) = 0, since by assumption, αA and αB re-
strict to the same class in Hn(M,M − (A ∩ B)). Using the fact that Φ is
a monomorphism, one can conclude that there is a unique class αA∪B ∈
Hn(Mn,Mn − (A ∪ B)) that restricts to αA in Hn(Mn,Mn − A) and to
αB in Hn(Mn,Mn −B). This completes Step 1.

Step 2. Assume the theorem is true for Mn = Rn. We then prove the theorem
for general n-manifolds Mn.

Notice that a compact set A ⊂ Mn can be written as a finite union A =
A1 ∪ · · · ∪ Ak, where each Ai is a subspace of a chart Ai ⊂ Ui. We apply the
result of Step 1 to (A1 ∪ · · · ∪ Ak−1) and Ak. Notice that the intersection of
these two spaces is (A1 ∩ Ak) ∪ · · · ∪ (Ak−1 ∩ Ak). This is a union of k − 1
compact subspaces, each of which is contained in a chart. By induction, we
could conclude the validity of the result in this step, if we knew it to be true
for k = 1, i.e compact subsets A that are contained in a chart, A ⊂ U . But in
this case,

Hn(Mn,Mn −A) ∼= Hn(U,U −A)

by excision, which is isomorphic to Hn(Rn,Rn − C), where C is a compact
subspace of Rn. But by the assumptions of this step, we know the theorem to
be true in this case.

We are therefore reduced to proving the theorem for Mn = Rn.

Step 3. Assume Mn = Rn, and prove the theorem for the case A = A1∪· · ·∪
Ak where each Ai is convex. The same argument as was used to prove Step 2
reduces this to the case when A is itself convex. In this case

H(Rn,Rn −A) ∼= H∗(Rn,Rn − x)

since A is contractible with a canonical contraction to any x ∈ A. In particular
Rn −A ' Rn − x.

We leave the general case of an arbitrary compact subspace A ⊂ Rn to the
reader. This argument is carried out in detail in Hatcher’s book [27].

We observe that if R is any commutative ring with unit, we could have
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done the entire discussion above using homology with R-coefficients. That is,
we may define a covering space

p : Or(Mn;R)→Mn

with the property that

p−1(x) = Orx(Mn;R) = Gen(Hn(Mn,Mn − x;R)).

By Gen(Hn(Mn,Mn − x;R) we mean the following. By choosing a chart U
around x, one has an isomorphism Hn(Mn,Mn − x;R) ∼= Hn(U,U − x;R) ∼=
Hn(Rn,Rn − x;R) ∼= R. A generator of R is an element u ∈ R such that
R·u = R. Gen(Hn(Mn,Mn−x;R) is the preimage of the group of generators
of R under this isomorphism. We observe that this group of “generators” is
well defined. That is, it is independent of the choice of chart, even though the
chart is what defines the isormorphism of

Gen(Hn(Mn,Mn − x;R)

with Gen(R).

Definition 1.4. If R is a commutative ring with unit, then an R-orientation
of an n-dimensional manifold Mn is a section of the “R-orientation covering
space” p : Or(Mn;R)→Mn.

Observations.

1. By sending 1 ∈ Z to 1 ∈ R, there is always a canonical ring homomorphism
Z → R. This induces a map of covering spaces Or(Mn) → Or(Mn;R).
Thus if Mn is (Z) orientable, it is orientable with respect to any ring R.
In fact a choice of (Z) orientation of Mn induces an R-orientation.

2. Let R = Z/2. Then sinceGen(Z/2) = {1} is the trivial, one-element group,
then the covering space p : Or(Mn;Z/2) → Mn is a homeomorphism.
Thus it has a unique section. So every manifold is Z/2-orientable, and has
a unique Z/2-orientation.

3. Finally observe that Theorem 1.3 can be generalized to a statement about
R-orientations for any commutative ring R. In particular when R = Z/2
one has the following consequence.

Corollary 1.4. Let Mn be a connected, closed n-dimensional manifold. Then

Hn(Mn;Z/2) ∼= Z/2.
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1.0.2 Poincaré Duality

Poincaré duality states that for a closed, orientable n-dimensional manifold
Mn, the kth-cohomology group and the (n−k)th homology group are isomor-
phic. The isomorphism is given by the “cap product” with the fundamental,
or orientation class [Mn] ∈ Hn(M). Before we state the Poincaré Duality
theorem more carefully, and in more generality, we recall the cap product op-
eration. We refer the reader to any introductory text in algebraic topology for
details.

Let X be any topological space, and R aa commutative ring with unit.
The cap product operation is an operation of the form

∩ : Ck(X;R)× C`(X;R) −→ Ck−`(X;R) for k ≥ `.
Let [v0, · · · vk] represent the k- simplex spanned by vectors v0, · · · vk ∈ RN ,
where N is large. Let σ ∈ Ck(X;R), and φ ∈ C`(X;R). Then one defines

σ ∩ φ = φ(σ|[v0,··· ,v`]) · σ|[v`,··· ,vk]
(1.3)

One will then find that the boundary of this cap product chain is given by

∂(σ ∩ φ) = (−1)`(∂σ ∩ φ− σ ∩ δφ) (1.4)

where ∂ : Cr(X;R) → Cr−1(X;R) is the boundary operator and δ :
Cp(X;R) → Cp+1(X;R) is the coboundary operator. Notice that this for-
mula quickly implies that the cap product of a cycle with a cocycle is a cycle,
and hence induces an operation

∩ : Hk(X;R)×H`(X;R) −→ Hk−`(X;R). (1.5)

And indeed it gives operations on relative (co)homology:

∩ :Hk(X,A;R)×H`(X;R) −→ Hk−`(X,A;R) (1.6)

Hk(XA;R)×H`(X,A;R) −→ Hk−`(X;R)

The reader can check that the cap product satisfies the following rather
odd naturality property:

f∗(α) ∩ φ = f∗(α ∩ f∗(φ)). (1.7)

This property becomes more reasonable (and easier to remember) when
one realizes that it simply says that if f : X → Y , then the following diagram
commutes:

Hk(X)×H`(X)
∩−−−−→ Hk−`(X)yf∗ xf∗ yf∗

Hk(Y )×H`(Y ) −−−−→
∩

Hk−`(Y )
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Exercise. Show that the cap product is adjoint to the cup product in
cohomology. That is, prove that for φ ∈ H`(X;R), σ ∈ Hk(X;R), and
ψ ∈ Hk−`(X;R), then

〈ψ ∪ φ;σ〉 = ±〈ψ, σ ∩ φ〉. (1.8)

Here <,> represents the evaluation pairing of cohomology on homology.

The following is the basic statement of Poincaré Duality:

Theorem 1.5. (Poincaré Duality) If Mn is a closed, R-oriented n-
dimensional manifold with fundamental class [Mn] ∈ Hn(Mn;R), then the
map

D = [Mn] ∩ : Hk(Mn : R)→ Hn−k(Mn;R)

is an isomorphism for all k.

Exercise. Show that the Poincaré Duality theorem implies that if F is a
field and Mn is a closed F -oriented manifold with fundamental class [Mn] ∈
Hn(Mn;F ), then the pairing

Hk(Mn;F )×Hn−k(Mn;F ) −→ F (1.9)

φ× ψ → 〈φ ∪ ψ, [Mn]〉

is nonsingular for every k = 0, · · · , n.
In order to prove the Poincaré Duality theorem for compact manifolds,

it actually is useful to generalize the theorem to the setting of noncompact
manifolds. In this setting, however, one must use the notion of “cohomology
with compact supports”.

Roughly, a cochain with compact supports is one which is zero on chains
living outside some compact set. More carefully,

Cic(X;G) =
⋃

K compact

Ci(X,X −K;G).

(Strictly speaking, by the union sign we mean the colimit.) The ordinary
coboundary map defines a cochain complex

· · · → Ci(X;G)
δ−→ Ci+1(X;G)

δ−→ · · · (1.10)

The resulting cohomology is written as H∗c (X;G).

Exercise. Show that
H∗c (Rn;G) ∼= H̃∗(Sn;G)

and more generally that

H∗c (X;G) ∼= H̃∗(X ∪∞;G)
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where X ∪ ∞ is the one-point compactification of X. Here we must assume
that the point at infinity in the one-point compactification has a contractible
neighborhood.

Notice that by Theorem 1.3, that if Mn is an R-orientable n-manifold
with orientation α, then for every compact subspace K ⊂ Mn, there is a
well-defined orientation class αK ∈ Hn(Mn;Mn −K;R) that restricts to the
R-orientation α(x) ∈ Hn(Mn,Mn − {x};R). Consider the cap product

Hk(Mn,Mn −K;R)×Hn(Mn,Mn −K;R)→ Hn−k(Mn;R).

Capping with αK defines an operation

∩αK : Hk(Mn,Mn −K;R)→ Hn−k(Mn;R).

Taking the colimit over K defines a duality operation from the cohomology
with compact supports:

DMn : Hk
c (Mn;R)→ Hn−k(Mn;R).

The following is the generalized form of Poincaré that we will prove:

Theorem 1.6. Let Mn be an R-oriented manifold. Then the duality map

DMn : Hk
c (Mn;R)→ Hn−k(Mn;R).

is an isomorphism for all k.

The proof of Theorem 1.6 (and thereby Theorem 1.5) involves a “patch-
ing” argument, for which we will need a lemma involving the Mayer Vietoris
sequence.

Notice that if K and L are compact subspaces of M , we have the set
theoretic properties,

(M −K) ∪ (M − L) = M − (K ∩ L) and

(M −K) ∩ (M − L) = M − (K ∪ L).

So in cohomology there is a Mayer-Vietoris sequence

· · · → Hk(M ;M − (K ∩ L))→ Hk(M,M −K)⊕Hk(M,M − L) (1.11)

→Hk(M,M − (K ∪ L))→ Hk+1(M,M − (K ∩ L))→ · · ·

Now suppose Mn = U ∪W , where both U and W are open subsets. By
taking a limit over compact subsets, Mayer-Vietoris sequence (1.11) yields the
following Mayer-Vietoris sequence of cohomologies with compact supports:

· · · → Hk
c (U ∩W )→ Hk

c (U)⊕Hk
c (W )→ Hk

c (Mn)→ Hk+1
c (U ∩W )→ · · ·

We leave to the reader to check the following lemma.
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Lemma 1.7. Let Mn be an R- oriented n-manifold with M = U ∪W , where
both U and W are open subsets. Then there is a commutative diagram of
Mayer-Vietoris sequences:

Hk
c (U ∩W ) −−−−→ Hk

c (U)⊕Hk
c (W ) −−−−→ Hk

c (Mn) −−−−→ Hk+1
c (U ∩W ) −−−−→yDU∩W yDU⊕DW yDMn yDU∩V

Hn−k(U ∩W ) −−−−→ Hn−k(U)⊕Hn−k(W ) −−−−→ Hn−k(Mn) −−−−→ Hn−k−1(U ∩W ) −−−−→

Here all (co)homologies are taken with R-coefficients.

We now prove Theorem 1.6.

Proof. This proof has several steps.

Step 1. If Mn = U ∪W , and DU , DW and DU∩W are isomorphisms, then so
is DM ,

This follows from the above Lemma 1.7 and the five lemma.

Step 2. The theorem holds for Mn = Rn.

Proof. Think of Rn as the interior of the closed unit ball around the origin,
B1. Let r be a number strictly between 0 and 1. Notice that

Hn(B1, B1 −Br) = Hn(Br, ∂Br) ∼= Hn(B1, ∂B1) ∼= H̃n(Sn) ∼= Z.

Since any compact set K ⊂ Rn = interior(B1) is a subset of BR for some R,
we see that H∗c (Rn) ∼= H∗(B1, ∂B1), and the reader can readily check that
taking the cap product with the generator of Hn(B1, ∂B1) gives the evaluation
map

Hn(B1, ∂B1) ∼= Hom(Hn(B1, ∂B1),Z) ∼= Hom(Z,Z) = Z

where the last isomorphism s given by evaluating on a generator of
Hn(B1, ∂B1), which is to say, its fundamental class.

Step 3. The theorem holds for Mn an arbitrary open subset of Rn.

Proof. Write Mn as a countable union of convex open sets in Rn.

Mn =
⋃
j

Uj .

Let Vi =
⋃
j<i Uj . Notice that both Vi and Vi ∩ Ui are unions of i− 1 convex

open sets. So we may make an inductive assumption that the theorem holds
for manifolds that are the union of less than or equal to i − 1 convex open
sets in Rn. So DVi and DVi∩Ui are isomorphisms. Then Step 1 implies that
DVi∪Ui is an isomorphism. But Vi ∪ Ui = Vi+1. This completes the inductive
step.
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Step 4. The theorem holds if Mn is a countable union of open sets Ui each
homeomorphic to Rn.

Proof. This follows by the same argument as in Step 3, with “open set in
Rn” replacing “convex open set in Rn. We leave the details to the reader.

We are now done for manifolds that can be expressed as a countable union
of charts. We now prove the general case.

Step 5. The general case.

Proof. Consider the collection of open sets U ⊂ Mn for which DU is an
isomorphism. This collection is partially ordered by inclusion. Notice that the
union of every totally ordered subcollection is again in this collection, by the
argument in Step 3.

Zorn’s Lemma implies that there is a maximal open set U for which this
theorem holds. We claim that U = Mn. If U 6= Mn, let x ∈Mn − U , and let
V be a chart around x. Since V is homeomorphic to Rn, the theorem holds
for V by Step 2. It also holds for U ∩ V by Step 3. Therefore by Step 1, the
theorem holds for U ∪ V . This contradicts the maximality of U , so we must
conclude that U = Mn.



2

Fiber Bundles

In this chapter we define our basic object of study: locally trivial fibrations, or
“fiber bundles”. We discuss many examples, including covering spaces, vector
bundles, and principal bundles. We also describe various constructions on
bundles, including pull-backs, sums, and products.

Throughout all that follows, all spaces will be Hausdorff and paracompact.

2.1 Definitions and examples

Let B be connected space with a basepoint b0 ∈ B, and p : E → B be a
continuous map.

Definition 2.1. The map p : E → B is a locally trivial fibration, or fiber
bundle, with fiber F if it satisfies the following properties:

1. p−1(b0) = F

2. p : E → B is surjective

3. For every point x ∈ B there is an open neighborhood Ux ⊂ B and a
“fiber preserving homeomorphism” ΨUx : p−1(Ux) → Ux × F , that is a
homeomorphism making the following diagram commute:

p−1(Ux)
ΨUx−−−−→∼= Ux × F

p

y yproj
Ux = Ux

Some examples:

• The projection map X×F −→ X is the trivial fibration over X with fiber
F .

13
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• Let S1 ⊂ C be the unit circle with basepoint 1 ∈ S1. Consider the map
fn : S1 → S1 given by fn(z) = zn. Then fn : S1 → S1 is a locally trivial
fibration with fiber a set of n distinct points (the nth roots of unity in S1).

• Let exp : R→ S1 be given by

exp(t) = e2πit ∈ S1.

Then exp is a locally trivial fibration with fiber the integers Z.

• Recall that the n - dimensional real projective space RPn is defined by

RPn = Sn/ ∼

where x ∼ −x, for x ∈ Sn ⊂ Rn+1.

Let p : Sn → RPn be the projection map. This is a locally trivial fibration
with fiber the two point set.

• Here is the complex analogue of the last example. Let S2n+1 be the unit
sphere in Cn+1. Recall that the complex projective space CPn is defined
by

CPn = S2n+1/ ∼

where x ∼ ux, where x ∈ S2n+1 ⊂ Cn, and u ∈ S1 ⊂ C. Then the
projection p : S2n+1 → CPn is a locally trivial fibration with fiber S1.

• Consider the Moebeus band M = [0, 1] × [0, 1]/ ∼ where (t, 0) ∼ (1 −
t, 1). Let C be the “center circle” C = {(1/2, s) ∈ M} and consider the
projection

p : M → C

(t, s)→ (1/2, s).

This map is a locally trivial fibration with fiber [0, 1].

Given a fiber bundle p : E → B with fiber F , the space B is called the
base space and the space E is called the total space. We will denote this data
by a triple (F,E,B).

Definition 2.2. A map (or “morphism”) of fiber bundles Φ : (F1, E1, B1)→
(F2, E2, B2) is a pair of basepoint preserving continuous maps φ̄ : E1 → E2

and φ : B1 → B2 making the following diagram commute:

E1
φ̄−−−−→ E2

p1

y yp2

B1 −−−−→
φ

B2
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Notice that such a map of fibrations determines a continuous map of the
fibers, φ0 : F1 → F2.

A map of fiber bundles Φ : (F1, E1, B1)→ (F2, E2, B2) is an isomorphism
if there is an inverse map of fibrations Φ−1 : (F2, E2, B2) → (F1, E1, B1) so
that Φ ◦ Φ−1 = Φ−1 ◦ Φ = 1.

Finally we say that a fibration (F,E,B) is trivial if it isomorphic to the
trivial fibration B × F → B.

Exercise. Verify that all of the above examples of fiber bundles are all
nontrivial except for the first one.

The notion of a locally trivial fibration is quite general and includes exam-
ples of many types. For example you may have already noticed that covering
spaces are examples of locally trivial fibrations. In fact one may simply define
a covering space to be a locally trivial fibration with discrete fiber. Two other
very important classes of examples of locally trivial fiber bundles are vector
bundles and principal bundles. We now describe these notions in some detail.

2.1.1 Vector Bundles

Definition 2.3. An n- dimensional vector bundle over a field k is a locally
trivial fibration p : E → B with fiber an n - dimensional k - vector space V
satisfying the additional requirement that the local trivializations

ψ : p−1(U)→ U × V

induce k - linear transformations on each fiber. That is, restricted to each
x ∈ U , ψ defines a k - linear transformation (and thus isomorphism)

ψ : p−1(x)
∼=−−−−→ {x} × V.

It is common to denote the data (V,E,B) defining an n - dimensional
vector bundle by a Greek letter, e.g ζ.

A “map” or “morphism” of vector bundles Φ : ζ → ξ is a map of fiber
bundles as defined above, with the added requirement that when restricted to
each fiber, φ̄ is a k - linear transformation.

Examples

• Given an n - dimensional k vector space V , then B × V → B is the
corresponding trivial bundle over the base space B. Notice that since all n
- dimensional trivial bundles over B are isomorphic, we denote it (or more
precisely, its isomorphism class) by εn.
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• Consider the “ Moebeus line bundle” µ defined to the the one dimensional
real vector bundle (“line bundle”) over the circle given as follows. Let
E = [0, 1] × R/ ∼ where (0, t) ∼ (1,−t). Let C be the “middle” circle
C = {(s, 0) ∈ E}. Then µ is the line bundle defined by the projection

p : E → C

(s, t)→ (s, 0).

• Define the real line bundle γ1 over the projective space RPn as follows.
Let x ∈ Sn. Let [x] ∈ RPn = Sn/ ∼ be the class represented by x. Then
[x] determines (and is determined by) the line through the origin in Rn+1

going through x. It is well defined since both representatives of [x] (x and
−x) determine the same line. Thus RPn can be thought of as the space of
lines through the origin in Rn+1. Let E = {([x], v) : [x] ∈ RPn, v ∈ [x]}.
Then γ1 is the line bundle defined by the projection

p : E → RPn

([x], v)→ [x].

Exercise. Verify that the RP1 is a homeomorphic to a circle, and the
line bundle γ1 over RP1 is isomorphic to the Moebeus line bundle µ.

• By abuse of notation we let γ1 also denote the complex line bundle over
CPn defined analogously to the real line bundle γ1 over RPn above.

• Let Grk(Rn) (respectively Grk(Cn)) be the space whose points are k -
dimensional subvector spaces of Rn (respectively Cn). These spaces are
called “Grassmannian” manifolds, and are topologized as follows. Let
Vk(Rn) denote the space of injective linear transformations from Rk to
Rn. Let Vk(Cn) denote the analogous space of injective linear transforma-
tions Ck ↪→ Cn. These spaces are called “Stiefel manifolds”, and can be
thought of as spaces of n × k matrices of rank k. These spaces are given
topologies as subspaces of the appropriate vector space of matrices. To
define Grk(Rn) and Grk(Cn), we put an equivalence relation on Vk(Rn)
and Vk(Cn) by saying that two transformations A and B are equivalent
if they have the same image in Rn (or Cn). If viewed as matrices, then
A ∼ B if and only if there is an element C ∈ GL(k,R) (or GL(k,C)) so
that A = BC. Then the equivalence classes of these matrices are com-
pletely determined by their image in Rn (or Cn), i.e the equivalence class
is determined completely by a k - dimensional subspace of Rn (or Cn).
Thus we define

Grk(Rn) = Vk(Rn)/ ∼ and Grk(Cn) = Vk(Cn)/ ∼

with the corresponding quotient topologies.
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Consider the vector bundle γk over Grk(Rn) whose total space E is the
subspace of Grk(Rn)× Cn defined by

E = {(W,ω) : W ∈ Grk(Rn) andω ∈W ⊂ Rn}.

Then γk is the vector bundle given by the natural projection

E → Grk(Rn)

(W,ω)→W

For reasons that will become more apparent later in these notes, the bun-
dles γk are called the “universal” or “canonical” k - dimensional bundles
over the Grassmannians.

• Notice that the universal bundle γk over the Grassmanians Grk(Rn) and
Grk(Cn) come equipped with embeddings (i.e injective vector bundle
maps) in the trivial bundles Grk(Rn) × Rn and Grk(Cn) × Cn respec-
tively. We can define the orthogonal complement bundles γ⊥k to be the
n− k dimensional bundles whose total spaces are given by

E⊥k = {(W, ν) ∈ Grk(Rn)× Rn : ν ⊥W}

and similarly over Grk(Cn). Observe that the natural projection to the
Grassmannian defines n − k dimensional vector bundles (over R and C
respectively).

Exercises
1. Verify that γk is a k -dimensional real vector bundle over Grk(Rn).
2. Define the analogous bundle (which by abuse of notation we also call γk)
over Grk(Cn). Verify that it is a k-dimensional complex vector bundle over
Grk(Cn).
3. Verify that RPn−1 = Gr1(Rn) and that the line bundle γ1 defined above is
the universal bundle. Do the analogous exercise with CPn−1 and Gr1(Cn).

An important notion associated to vector bundles (and in fact all fibra-
tions) is the notion of a (cross) section. We’ve already encountered this notion
when the fiber bundle is a covering space in our discussion of orientations in
Chapter 1.

Definition 2.4. Given a fiber bundle

p : E → B

a section s is a continuous map s : B → E such that p◦s = identity : B → B.
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Notice that every vector bundle has a section, namely the zero section

z : B → E

x→ 0x

where 0x is the origin in the vector space p−1(x). However most geometrically
interesting sections have few zero’s. Indeed as we will see later, an appropriate
count of the number of zero’s of a section of an n - dimensional bundle over an
n - dimensional manifold is an important topological invariant of that bundle
(called the “Euler number”). In particular an interesting geometric question is
to determine when a vector bundle has a nowhere zero section, and if it does,
how many linearly independent sections it has. (Sections {s1, · · · , sm} are
said to be linearly independant if the vectors {s1(x), · · · , sm(x)} are linearly
independent for every x ∈ B.) These questions are classical in the case where
the vector bundle is the tangent bundle, as we will see later in our discussion
of differentiable manifolds. A section of the tangent bundle is called a vector
field.The question of how many linearly independent vector fields exist on
the sphere Sn was answered by J.F. Adams [2] in the early 1960’s using
sophisticated techniques of homotopy theory.

Exercises (from [47])

1. Let x ∈ Sn, and [x] ∈ RPn be the corresponding element. Consider the
functions fi,j : RPn → R defined by fi,j([x]) = xixj . Show that these func-

tions define a diffeomorphism between RPn and the submanifold of R(n+1)2

consisting of all symmetric (n+ 1)× (n+ 1) matrices A of trace 1 satisfying
AA = A.

2. Use exercise 1 to show that RPn is compact.

3. Prove that an n -dimensional vector bundle ζ has n - linearly indepen-
dent sections if and only if ζ is trivial.

2.1.2 Principal Bundles

Principal bundles are basically parameterized families of topological groups,
and often Lie groups. In order to define the notion carefully we first review
some basic properties of group actions.

Recall that a right action of topological group G on a space X is a map

µ : X ×G→ X

(x, g)→ xg

satisfying the basic properties
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1. x · 1 = x for all x ∈ X

2. x(g1g2) = (xg1)g2 for all x ∈ X and g1, g2 ∈ G.

Notice that given such an action, every element g acts as a homeomor-
phism, since action by g−1 is its inverse. Thus the group action µ defines a
map

µ : G→ Homeo(X)

where Homeo(X) denotes the group of homeomorphisms of X. The two condi-
tions listed above are equivalent to the requirement that µ : G→ Homeo(X)
be a group homomorphism.

Let X be a space with a right G - action. Given x ∈ X, let xG = {xg :
g ∈ G} ⊂ X. This is called the orbit of x under the G - action. The isotropy
subgroup of x, Iso(x), is defined by Iso(x) = {g ∈ G : xg = x} Notice that
the map

G→ xG

defined by sending g to xg defines a homeomorphism from the coset space to
the orbit

G/Iso(x)
∼=−−−−→ xG ⊂ X.

A group action on a space X is said to be transitive if the space X is the
orbit of a single point, X = xG. Notice that if X = x0G for some x0 ∈ X, then
X = xG for any x ∈ X. Notice furthermore that the transitivity condition is
equivalent to saying that for any two points x1, x2 ∈ X, there is an element
g ∈ G such that x1 = x2g. Finally notice that if X has a transitive G - action,
then the above discussion about isotropy subgroups implies that there exists
a subgroup H < G and a homeomorphism

G/H
∼=−−−−→ X.

Of course if X is smooth, G is a Lie group, and the action is smooth, then the
above map would be a diffeomorphism.

A group action is said to be (fixed point) free if the isotropy groups of
every point x are trivial,

Iso(x) = {1}

for all x ∈ X. Said another way, the action is free if and only if the only time
there is an equation of the form xg = x is if g = 1 ∈ G. That is, if for g ∈ G,
the fixed point set Fix(g) ⊂ X is the set

Fix(g) = {x ∈ X : xg = x},

then the action is free if and only if Fix(g) = ∅ for all g 6= 1 ∈ G.

We are now able to define principal bundles.

Definition 2.5. Let G be a topological group. A principal G bundle is a fiber
bundle p : E → B with fiber F = G satisfying the following properties.
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1. The total space E has a free, fiberwise right G action. That is, it has a
free group action making the following diagram commute:

E ×G µ−−−−→ E

p×ε
y yp

B × {1} = B

where ε is the constant map.

2. The induced action on fibers

µ : p−1(x)×G→ p−1(x)

is free and transitive.

3. There exist local trivializations

ψ : p−1(U)
∼=−−−−→ U ×G

that are equivariant. That is, the following diagrams commute:

p−1(U)×G ψ×1−−−−→∼= U ×G×G

µ

y y1×mult.

p−1(U)
∼=−−−−→
ψ

U ×G.

Notice that in a principal G - bundle, the group G acts freely on the total
space E. It is natural to ask if a free group action suffices to induce a principal
G - bundle. That is, suppose E is a space with a free, right G action, and define
B to be the orbit space

B = E/G = E/ ∼

where y1 ∼ y2 if and only if there exists a g ∈ G with y1 = y2g (i.e if and
only if their orbits are equal: y1G = y2G). Define p : E → B to be the
natural projection, E → E/G. Then the fibers are the orbits, p−1([y]) = yG.
So for p : E → B to be a principal bundle we must check the local triviality
condition. In general for this to hold we need the following extra condition.

Definition 2.6. A group action E ×G→ E has slices if projection onto the
orbit space

p : E → E/G

has local sections. That is, around every x ∈ E/G there is a neighborhood U
and a continuous map s : U → E such that p ◦ s = id : U → U.
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Proposition 2.1. If E has a free G action with slices, then the projection
map

p : E → E/G

is a principal G - bundle.

Proof. We need to verify the local triviality condition. Let x ∈ E/G. Let
U be an open set around x admitting a section s : U → E. Define a local
trivialization

ψ : U ×G→ p−1(U)

by ψ(y, g) = s(y) · g. Clearly ψ is a local trivialization.

Examples.

• The projection map p : S2n+1 → CPn is a principal S1 - bundle.

• Let Vk(Rn) be the Stiefel manifold of rank k n × k matrices described
above. Then the projection map

p : Vk(Rn)→ Grk(Rn)

is a principal GL(k,R) - bundle. Similarly the projection map

p : Vk(Cn)→ Grk(Cn)

is a principal GL(k,C) - bundle.

• Let Vk(Rn)O ⊂ R denote those n × k matrices whose k - columns are
orthonormal n - dimensional vectors. This is the Stiefel manifold of or-
thonormal k - frames in Rn. Then the induced projection map

p : Vk(Rn)O → Grk(Rn)

is a principal O(k) - bundle. Similarly, if Vk(Cn)U is the space of or-
thonormal k - frames in Cn (with respect to the standard Hermitian inner
product), then the projection map

p : Vk(Cn)U → Grk(Cn)

is a principal U(n) - bundle.

• There is a homeomorphism

ρ : U(n)/U(n− 1)
∼=−−−−→ S2n−1

and the projection map U(n)→ S2n−1 is a principal U(n− 1) - bundle.

To see this, notice that U(n) acts transitively on the unit sphere in Cn (i.e
S2n−1). Moreover the isotropy subgroup of the point e1 = (1, 0, · · · , 0) ∈
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S2n−1 are those elements A ∈ U(n) which have first column equal to
e1 = (1, 0, · · · , 0). Such matrices also have first row = (1, 0, · · · , 0). That
is, A is of the form

A =

(
1 0
0 A′

)
where A′ is an element of U(n−1). Thus the isotropy subgroup Iso(e1) ∼=
U(n− 1) and the result follows.

Notice that a similar argument gives a diffeomorphism SO(n)/SO(n−1) ∼=
Sn−1.

• There is a homeomorphism

ρ : U(n)/U(n− k)
∼=−−−−→ Vk(Cn)U .

The argument here is similar to the above, noticing that U(n) acts tran-
sitively on Vk(Cn)U , and the isotopy subgroup of the n× k matrix

e =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0
...

. . .
...

0 0 · · · 0 0


consist of matrices in U(n) of them form

1 0 0 · · · 0 0 0 · · · 0 0

0 1 0 · · · 0
...

. . .
...

0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1 0 0 · · · 0 0
(0) (B)


where B is an (n− k)× (n− k) dimensional unitary matrix.

• A similar argument shows that there are homeomorphisms

ρ : U(n)/ (U(k)× U(n− k))
∼=−−−−→ Grk(Cn)

and

ρ : O(n)/ (O(k)×O(n− k))
∼=−−−−→ Grk(Rn)

Principal bundles define other fiber bundles in the presence of group ac-
tions. Namely, suppose p : E → B be a principal G - bundle and F is
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a space with a cellular right group action. Then the product space E × F
has the “diagonal” group action (e, f)g = (eg, fg). Consider the orbit space,
E ×G F = (E × F )/G. Then the induced projection map

p : E ×G F → B

is a locally trivial fibration with fiber F .
For example we have the following important class of fiber bundles.

Proposition 2.2. Let G be a compact topological group and K < H < G
closed subgroups. Then the projection map of coset spaces

p : G/K → G/H

is a fiber bundle with fiber H/K.

Proof. Observe that G/K ∼= G×HH/K where H acts on H/K in the natural
way. Moreover the projection map p : G/K → G/H is the projection can be
viewed as the projection

G/K = G×H H/K → G/H

and so is the H/K - fiber bundle induced by the H - principal bundle G →
G/H via the action of H on the coset space H/K.

Example

We know by the above examples, that U(2)/U(1) ∼= S3, and that
U(2)/U(1) × U(1) ∼= Gr1(C2) = CP1 ∼= S2. Therefore there is a principal
U(1) - fibration

p : U(2)/U(1)→ U(2)/U(1)× U(1),

or equivalently, a principal U(1) = S1 fibration

p : S3 → S2.

This fibration is the well known “Hopf fibration”, and is of central importance
in both geometry and algebraic topology. In particular, as we will see later,
the map from S3 to S2 gives an nontrivial element in the homotopy group
π3(S2), which from the naive point of view is quite surprising. It says, that,
in a sense that can be made precise, there is a “three dimensional hole” in
S2 that cannot be filled. Many people (eg. Whitehead, see [64]) refer to this
discovery as the beginning of modern homotopy theory.

The fact that the Hopf fibration is a locally trivial fibration also leads to an
interesting geometric observation. First, it is not difficult to see directly (and



24 Bundles, Homotopy, and Manifolds

we will prove this later) that one can take the upper and lower hemispheres of
S2 to be a cover of S2 over which the Hopf fibration is trivial. That is, there
are local trivializations,

ψ+ : D2
+ × S1 → p−1(D2

+)

and
ψ− : D2

− × S1 → p−1(D2
−)

where D2
+ and D2

− are the upper and lower hemispheres of S2, respectively.
Putting these two local trivializations together yields the following classical
result:

Theorem 2.3. The sphere S3 is homeomorphic to the union of two solid tori
D2 × S1 whose intersection is their common torus boundary, S1 × S1.

As another example of fiber bundles induced by principal bundles, suppose
that

ρ : G→ GL(n,R)

is a representation of a topological group G, and p : E → B is a principal G
bundle. Then let Rn(ρ) denote the space Rn with the action of G given by the
representation ρ. Then the projection

E ×G Rn(ρ)→ B

is a vector bundle.

Exercise.

Let p : Vk(Rn) → Grk(Rn) be the principal bundle described above. Let Rn
have the standard GL(n,R) representation. Proved that the induced vector
bundle

p : Vk(Rn)×GL(n,R) Rn

is isomorphic to the universal bundle γk described in the last section.

In the last section we discussed sections of vector bundles and in particular
vector fields. For principal bundles, the existence of a section (or lack thereof)
completely determines the triviality of the bundle.

Theorem 2.4. A principal G - bundle p : E → B is trivial if and only if it
has a section.
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Proof. If p : E → B is isomorphic to the trivial bundle B × G → B, then
clearly it has a section. So we therefore only need to prove the converse.

Suppose s : B → E is a section of the principal bundle p : E → B. Define
the map

ψ : B ×G→ E

by ψ(b, g) = s(b)g where multiplication on the right by g is given by the right
G - action of G on E. It is straightforward to check that ψ is an isomorphism
of principal G - bundles, and hence a trivialization of E.

2.1.3 Clutching Functions and Structure Groups

Let p : E → B be a fiber bundle with fiber F . Cover the basespace
B by a collection of open sets {Uα} equipped with local trivializations

ψα : Uα × F
∼=−−−−→ p−1(Uα). Let us compare the local trivializations on the

intersection: Uα ∩ Uβ :

Uα ∩ Uβ × F
ψβ−−−−→∼= p−1(Uα ∩ Uβ)

ψ−1
α−−−−→∼= Uα ∩ Uβ × F.

For every x ∈ Uα ∩ Uβ , ψ−1
α ◦ ψβ determines a homeomorphism of the fiber

F . That is, this composition determines a map φα,β : Uα ∩Uβ → Homeo(F ).
These maps are called the clutching functions of the fiber bundle. When the
bundle is a real n - dimensional vector bundle then the clutching functions
are of the form

φα,β : Uα ∩ Uβ → GL(n,R).

Similarly, complex vector bundles have clutching functions that take values in
GL(n,C).

If p : E → B is a G - principal - bundle, then the clutching functions take
values in G:

φα,β : Uα ∩ Uβ → G.

In general for a bundle p : E → B with fiber F , the group in which the
clutching values take values is called the structure group of the bundle. If
no group is specified, then the structure group is the homeomorphism group
Homeo(F ).

The clutching functions and the associated structure group completely
determine the isomorphism type of the bundle. Namely, given an open covering
of a space B, and a compatible family of clutching functions φα,β : Uα∩Uβ →
G, and a space F upon which the group acts, we can form the space

E =
⋃
α

Uα × F/ ∼

where if x ∈ Uα ∩ Uβ , then (x, f) ∈ Uα × F is identified with (x, fφα,β(x)) ∈
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Uβ × F . E is the total space of a locally trivial fibration over B with fiber
F and structure group G. If the original data of clutching functions came
from locally trivializations of a bundle, then notice that the construction of
E above yields a description of the total space of the bundle. Thus we have
a description of the total space of a fiber bundle completely in terms of the
family of clutching functions.

Suppose ζ is an n - dimensional vector bundle with projection map p :
E → B and local trivializations ψα : Uα×Rn → p−1(Uα). Then the clutching
functions take values in the general linear group

φα,β : Uα ∩ Uβ → GL(n,R).

So the total space E has the form E =
⋃
α Uα×Rn/ ∼ as above. We can then

form the corresponding principal GL(n,R) bundle with total space

EGL =
⋃
α

Uα ×GL(n,R)

with the same clutching functions. That is, for x ∈ Uα ∩ Uβ , (x, g) ∈ Uα ×
GL(n,R) is identified with (x, g · φα,β(x)) ∈ Uβ × GL(n,R). The principal
bundle

p : EGL → B

is called the associated principal bundle to the vector bundle ζ, or sometimes
is referred to as the associated frame bundle.

Observe also that this process is reversable. Namely if p : P → X is
a principal GL(n,R) - bundle with clutching functions θα,β : Vα ∩ Vβ →
GL(n,R), then there is an associated vector bundle p : PRn → X where

PRn =
⋃
α

Vα × Rn

where if x ∈ Vα ∩Vβ , then (x, v) ∈ Vα×Rn is identified with (x, v · θα,β(x)) ∈
Vβ × Rn.

This correspondence between vector bundles and principal bundles proves
the following result:

Theorem 2.5. Let V ectRn(X) and V ectCn(X) denote the set of isomorphism
classes of real and complex n - dimensional vector bundles ovr X respectively.
For a Lie group G let PrinG(X) denote the set of isomorphism classes of
principal G - bundles. Then there are bijective correspondences

V ectRn(X)
∼=−−−−→ PrinGL(n,R)(X)

V ectCn(X)
∼=−−−−→ PrinGL(n,C)(X).

This correspondence and theorem 1.6 allows for the following method of
determining whether a vector bundle is trivial:
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Corollary 2.6. A vector bundle ζ : p : E → B is trivial if and only if its
associated principal GL(n) - bundle p : EGL → B admits a section.

Clutching functions and structure groups are also useful in studying struc-
tures on principal bundles and their associated vector bundles.

Definition 2.7. Let p : P → B be a principal G - bundle, and let H < G be
a subgroup. P is said to have a reduction of its structure group to H if and
only if P is isomorphic to a bundle whose clutching functions take values in
H:

φα,β : Uα ∩ Uβ → H < G.

Let P → X be a principal G - bundle. Then P has a reduction of its
structure group to H < G if and only if there is a principal H - bundle
P̃ → X and an isomorphism of G bundles,

P̃ ×H G
∼=−−−−→ Py y

X = X

Definition 2.8. Let H < GL(n,R). Then an H - structure on an n - dimen-
sional vector bundle ζ is a reduction of the structure group of its associated
GL(n,R) - principal bundle to H.

Examples.

• A {1} < GL(n,R) - structure on a vector bundle ( or its associated princi-
pal bundle) is a trivialization or framing of the bundle. A framed manifold
is a manifold with a framing of its tangent bundle.

• Given a 2n - dimensional real vector bundle ζ, an almost complex struc-
ture on ζ is a GL(n,C) < GL(2n,R) structure on its associated principal
bundle. An almost complex structure on a manifold is an almost complex
structure on its tangent bundle.

We now study two examples of vector bundle structures in some detail:
Euclidean structures, and orientations.

Example 1: O(n) - structures and Euclidean structures on vector
bundles.
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Recall that a Euclidean vector space is a real vector space V together with a
positive definite quadratic function

µ : V → R.

Specifically, the statement that µ is quadratic means that it can written in
the form

µ(v) =
∑
i

αi(v)βi(v)

where each αi and βi : V → R is linear. The statement that µ is positive
definite means that

µ(v) > 0 for v 6= 0.

Positive definite quadratic functions arise from, and give rise to inner prod-
ucts (i.e symmetric bilinear pairings (v, w)→ v · w) defined by

v · w =
1

2
(µ(v + w)− µ(v)− µ(w)).

Notice that if we write |v| =
√
v · v then |v|2 = µ(v). So in particular there is

a metric on V .

This notion generalizes to vector bundles in the following way.

Definition 2.9. A Euclidean vector bundle is a real vector bundle ζ : p : E →
B together with a map

µ : E → R

which when restricted to each fiber is a positive definite quadratic function.
That is, µ induces a Euclidean structure on each fiber.

Exercise.

Show that an O(n) - structure on a vector bundle ζ gives rise to a Euclidean
structure on ζ. Conversely, a Euclidean structure on ζ gives rise to an O(n) -
structure.

Hint. Make the constructions directly in terms of the clutching functions.

Definition 2.10. A smooth Euclidean structure on the tangent bundle µ :
TM → R is called a Riemannian structure on M .

Exercises.
1. Existence theorem for Euclidean metrics. Using a partition of unity, show
that any vector bundle over a paracompact space can be given a Euclidean
metric.
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2. Isometry theorem. Let µ and µ′ be two different Euclidean metrics on the
same vector bundle ζ : p : E → B. Prove that there exists a homeomorphism
f : E → E which carries each fiber isomorphically onto itself, so that the
composition µ ◦ f : E → R is equal to µ′. (Hint. Use the fact that every
positive definite matrix A can be xpressd uniquely as the square of a positive
definite matrix

√
A. The power series expansion√
(tI +X) =

√
t(I +

1

2t
X − 1

8t2
X2 +− · · · ),

is valid providing that the characteristic roots of tI +X = A lie between 0
and 2t. This shows that the function A→

√
A is smooth.)

Example 2: SL(n,R) - structures and orientations.

Recall that an orientation of a real n - dimensional vector space V
is an equivalence class of basis for V , where two bases {v1, · · · , vn} and
{w1, · · · , wn} are equivalent (i.e determine the same orientation) if and only
if the change of basis matrix A = (ai,j), where wi =

∑
j ai,jvj has positive

determinant, det(A) > 0. Let Or(V ) be the set of orientations of V . Notice
that Or(V ) is a two point set.

For a vector bundle ζ : p : E → B, an orientation is a continuous choice of
orientations of each fiber. Said more precisely, we may define the “orientation
double cover” Or(ζ) to be the two - fold covering space

Or(ζ) = EGL ×GL(n,R) Or(Rn)

where EGL is the associated principal bundle, and where GL(n,R) acts on
Or(Rn) by matrix multiplication on a basis representing the orientation.

Definition 2.11. ζ is orientable if the orientation double cover Or(ζ) admits
a section. A choice of section is an orientation of ζ.

This definition is reasonable, in that a continuous section of Or(ζ) is a
continuous choice of orientations of the fibers of ζ.

Recall that SL(n,R) < GL(n,R) and SO(n) < O(n) are the sub-
groups consisting of matrices with positive determinants. The following is
now straightforward.

Theorem 2.7. An n - dimensional vector bundle ζ has an orientation if and
only if it has a SL(n,R) - structure. Similarly a Euclidean vector bundle is
orientable if and only if it has a SO(n) - structure. Choices of these structures
are equivalent to choices of orientations.

Finally, a manifold is said to be orientable if its tangent bundle τM is
orientable.
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2.2 Pull Backs and Bundle Algebra

In this section we describe the notion of the pull back of a bundle along a
continuous map. We then use it to describe constructions on bundles such as
direct sums, tensor products, symmetric and exterior products, and homo-
morphisms.

2.2.1 Pull Backs

Let p : E → B be a fiber bundle with fiber F . Let A ⊂ B be a subspace. The
restriction of E to A, written E|A is simply given by

E|A = p−1(A).

The restriction of the projection p : E|A → A is clearly still a locally trivial
fibration with fiber F .

This notion generalizes from inclusions of subsets A ⊂ B to general maps
f : X → B in the form of the pull back bundle over X, f∗(E). This bundle is
defined by

f∗(E) = {(x, u) ∈ X × E : f(x) = p(u)}.

Proposition 2.8. The map

pf : f∗(E)→ X

(x, u)→ x

is a locally trivial fibration with fiber F . Furthermore if ι : A ↪→ B is an
inclusion of a subspace, then the pull-back ι∗(E) is equal to the restriction
E|A .

Proof. Let {Uα} be a collection of open sets in B and ψα : Uα×F → p−1(Uα)
local trivializations of the bundle p : E → B. Then {f−1(Uα)} is an open
cover of X, and the maps

ψα(f) : f−1(Uα)× F → p−1
f (f−1(Uα))

defined by (x, y)→ (x, ψα(f(x), y)) are clearly local trivializations.
This proves the first statement in the proposition. The second statement

is obvious.

We now use the pull back construction to define certain algebraic construc-
tions on bundles.
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Let p1 : E1 → B1 and p2 : E2 → B2 be fiber bundles with fibers F1 and
F2 respectively. Then the cartesian product

p1 × p2 : E1 × E2 → B1 ×B2

is clearly a fiber bundle with fiber F1 × F2. In the case when B1 = B2 = B,
we can consider the pull back (or restriction) of this cartesian product bundle
via the diagonal map

∆ : B ↪→ B ×B
x→ (x, x).

Then the pull-back ∆∗(E1×E2)→ B is a fiber bundle with fiber F1×F2,
is defined to be the internal product, or Whitney sum of the fiber bundles E1

and E2. It is written
E1 ⊕ E2 = ∆∗(E1 × E2).

Notice that if E1 and E2 are G1 and G2 principal bundles respectively,
then E1 ⊕ E2 is a principal G1 × G2 - bundle. Similarly, if E1 and E2 are
n and m dimensional vector bundles respectively, then E1 ⊕ E2 is an n +
m - dimensional vector bundle. E1 ⊕ E2 is called the Whitney sum of the
vector bundles. Notice that the clutching functions of E1 ⊕ E2 naturally lie
in GL(n,R) ×GL(m,R) which is thought of as a subgroup of GL(n + m,R)
consisting of (n+m)× (n+m) - dimensional matrices of the form(

A 0
0 B

)
where A ∈ GL(n,R) and B ∈ GL(m,R).

We now describe other algebraic constructions on vector bundles. The first
is a generalization of the fact that a given a subspace of a vector space, the
ambient vector space splits as a direct sum of the subspace and the quotient
space.

Let η : Eη → B be a k - dimensional vector bundle and ζ : Eζ → B an n
- dimensional bundle. Let ι : η ↪→ ζ be a linear embedding of vector bundles.
So on each fiber ι is a linear embedding of a k - dimensional vector space into
an n - dimensional vector space. Define ζ/η to be the vector bundle whose
fiber at x is Eζx/E

η
x .

Exercise.

Verify that ζ/η is an n− k - dimensional vector bundle over B.

Theorem 2.9. There is a splitting of vector bundles

ζ ∼= η ⊕ ζ/η.
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Proof. Give ζ a Euclidean structure. Define η⊥ ⊂ ζ to be the subbundle whose
fiber at x is the orthogonal complement

Eη
⊥

x = {v ∈ Eζx : v · w = 0 for all w ∈ Eηx}

Then clearly there is an isomorphism of bundles

η ⊕ η⊥ ∼= ζ.

Moreover the composition
η⊥ ⊂ ζ → ζ/η

is also an isomorphism. The theorem follows.

Corollary 2.10. Let ζ be a Euclidean n - dimensional vector bundle. Then
ζ has a O(k)×O(n− k) - structure if and only if ζ admits a k - dimensional
subbundle η ⊂ ζ.

We now describe the dual of a vector bundle. So let ζ : Eζ → B be an
n - dimensional bundle. Its dual, ζ∗ : Eζ

∗ → B is the bundle whose fiber at
x ∈ B is the dual vector space Eζ

∗

x = Hom(Eζ ,R). If

{φα,β : Uα ∩ Uβ → GL(n,R)}

are clutching functions for ζ, then

{φ∗α,β : Uα ∩ Uβ → GL(n,R)}

form the clutching functions for ζ∗, where φ∗α,β(x) is the adjoint (transpose)
of φα,β(x). The dual of a complex bundle is defined similarly.

Exercise.

Prove that ζ and ζ∗ are isomorophic vector bundles. HInt. Give ζ a Euclidean
structure.

Now let η : Eη → B be a k - dimensional, and as above, ζ : Eζ → B an
n - dimensional bundle. We define the tensor product bundle η ⊗ ζ to be the
bundle whose fiber at x ∈ B is the tensor product of vector spaces, Eηx ⊗Eζx.
The clutching fucntions can be thought of as compositions of the form

φη⊗ζα,β : Uα ∩ Uβ
φηα,β×φ

ζ
α,β−−−−−−−→ GL(k,R)×GL(n,R)

⊗−−−−→ GL(kn,R)

where the tensor product of two linear transformations A : V1 → V2 and
B : W1 →W2 is the induced linear transformation A⊗B : V1⊗W1 → V2⊗W2.
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With these two constructions we are now able to define the “homomor-
phism bundle”, Hom(η, ζ). This will be the bundle whose fiber at x ∈ B is
the k ·m - dimensional vector space of linear transformations

Hom(Eηx , E
ζ
x) ∼= (Eηx)∗ ⊗ Eζx.

So as bundles we can define

Hom(η, ζ) = η∗ ⊗ ζ.

Observation. A bundle homomorphsim θ : η → ζ assigns to every x ∈ B
a linear transformation of the fibers, θx : Eηx → Eζx. Thus a bundle homomor-
phism can be thought of as a section of the bundle Hom(η, ζ). That is, there
is a bijection between the space of sections, Γ(Hom(η, ζ)) and the space of
bundle homomorphisms, {θ : η → ζ}.





3

General Background on Differentiable
Manifolds

In geometry one most often studies manifolds that have differentiable struc-
tures. They are precisely the types of spaces on which one can do calculus and
study differential equations. We begin this chapter by defining these “differ-
entiable manifolds”.

Definition 3.1. An n-dimensional topological manifold Mn is a Cr-
differentiable manifold if it admits a Cr-differentiable atlas. This is an atlas
A = {Uα,ΨUα) such that every composition of the form

ΨUβ ◦Ψ−1
Uα

: ΨUα(Uα ∩ Uβ)→ Uα ∩ Uβ → ΨUβ (Uα ∩ Uβ)

is a Cr-diffeomorphism of open sets in Rn. We say that each pair of charts
(Uα,ΨUα) and (Uβ ,ΨUβ ) have a “Cr-overlap”.

We note that a Cr-differentiable manifoldMn with atlasA admits a unique
maximal Cr-atlas Ã containing A. Namely Ã consists of all charts which have
Cr-overlap with every chart of A.

Notice that with this definition, it makes sense to say that a continuous
map between Cr-differentiable manifolds, f : Mn → Nm is Cr- differentiable
at x ∈ Mn if there are charts (U,Φ) around x ∈ Mn and (V,Ψ) around
f(x) ∈ N with f(U) ⊂ V such that the map

Ψ ◦ f ◦ Φ−1 : Φ(U)→ Ψ(V )

is a differentiable map between open sets Φ(U) ⊂ Rn and Ψ(V ) ⊂ Rm. We
say that f is Cr-differentiable if it is Cr-differentiable at every point x ∈Mn.

For the most part, in these notes we will be studying the topology of
“smooth”, meaning C∞- manifolds.

In our definition, we assume that manifolds are always Hausdorff topo-
logical spaces. Recall that this means that any two points x, y ∈ M can be
separated by disjoint open sets. That is, there are open sets U1 ⊂M contain-
ing x and U2 ⊂M containing y with U1 ∩U2 = ∅. Throughout these notes we
will also assume our manifolds are paracompact. Recall that a space X is
paracompact if every open cover U of X has a locally finite refinement. That
is there is another cover V, all of whose open sets are all contained in U , and

35
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so that V is locally finite. That is, each x ∈M lies in only finitely many of the
open sets in V. Recall that a Hausdorff space is paracompact if and only if it
admits a partition of unity subordinate to any open cover U = {Ui, i ∈ Λ}.
Such a partition of unity is a collection of maps ρi : X → [0, 1] so that

• The support supp (ρi) ⊂ Ui, and

•
∑
i∈Λ ρi(x) = 1 for every x ∈ X.

3.1 History

Reference: Hirsch’s book [30].
Historically, the notion of a differentiable manifold grew from geometry

and function theory in the 19th century. Geometers studied curves and sur-
faces in R3, and were mainly interested in local structures, such as curvature,
introduced by Gauss in the early part of the 19th century. Function theorists
were interested in studying “level sets” of differentiable functions F : Rn → R,
i.e the spaces F−1(c) ⊂ Rn for c ∈ R. They observed that for “most” values of
c these level sets are “smooth” and nonsingular. This was part of the analytic
study of “Calculus of Variations”, which let to “Morse theory” in the 20th
century.

In the mid-19th century Riemann broke new ground with the study of
what are now called “Riemann surfaces”. These were historically the first
examples of “abstract manifolds”, which is to say not defined to be a subspace
of some Euclidean space. Riemann surfaces represent the global nature of
the analytic continuation process. Riemann also studied topological invariants
of these surfaces, such as the “connectivity” of a surface, which is defined
to be the maximal number of embedded closed curves on a surface whose
union does not disconnect the surface plus one. Riemann showed in the 1860’s
that for compact, orientable surfaces, this number classifies the surface up to
homeomorphism. In particular for a surface of genus g, Riemann’s connectivity
number is 2g + 1.

In the early 20th century, Poincaré studied 3-dimensional manifolds in
his famous treatise, “Analysis Situs”. In that work Poincaré introduced some
notions in Algebraic Topology such as the fundamental group. The famous
“Poincaré Conjecture” which was proved by Perelman nearly a hundred years
later in 2003, states that every simply connected compact 3-dimensional man-
ifold is homeomoprhic, and indeed diffeomorphic to the sphere S3.

Poincaré’s conjecture was a statement about the classification of mani-
folds. Such a classification has been a key problem in differential topology
for the past hundred years. Currently there is great interest and work on the
classification of symmetries (“diffeomorphisms”) of manifolds.
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Herman Weyl defined abstract differentiable manifolds in 1912. But it was
not until the work of H. Whitney (1936-1940) when basic geometric and topo-
logical properties of manifolds, such as existence of embeddings into Euclidean
space, were proved. At that time the modern notion of differentiable manifold
became firmly established as a fundamental object in mathematics.

3.2 Examples and Basic Notions

3.2.1 Examples

Consider the following standard examples of manifolds:

1. Consider the unit sphere Sn ⊂ Rn+1. It has an atlas consisting of two
charts. Let ε > 0 be small. Then define

U1 = {(x1, · · · , xn+1) : xn+1 > −ε}
U2 = {(x1, · · · , xn+1) : xn+1 < ε}

There are natural projections of U1 and U2 onto B1(0) with C∞-overlaps,
thus defining a smooth structure on Sn.

2. Let RPn = Sn/ ∼ where x ∼ −x. This is the (real) projective space. This
is a C∞-n-dimensional manifold. To see a smooth atlas we use “projective
coordinates”. These are obtained by viewing RPn as the quotient of the
nonzero elements of Euclidean space, Rn+1 by the group action of the
nonzero real numbers, R× given by scalar multiplication:

RPn =
(
Rn+1 − {0}

)
/R×.

We describe a point in RPn as the equivalence class of a point in Rn+1−{0},
which we denote using square brackets: [x0, x1, · · · , xn] ∈ RPn. For 0 ≤
i ≤ n define

Ui = {[x0, · · · , xn] ∈ RPn : xi 6= 0}.

Notice that RPn = U0 ∪ · · · ∪ Un and that the map

Ψi : Ui → Rn

[x0, · · · , xn]→ (
x0

xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · , xn

xi
)

defines a homeomorphism of Ui onto Rn. Moreover its easily checked that
these homeomorphisms have C∞-overlaps. Thus {(Ui,Ψi), : i = 0, · · · , n}
is a smooth (C∞ ) atlas for RPn.
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FIGURE 3.1
Charts for Sn

3.2.2 The tangent bundle

An important concept in the study of differentiable manifolds is that of a
tangent bundle.

Definition 3.2. Let Mn be a differentiable (C1) n-dimensional manifold with
an atlas U = {Uα : α ∈ Λ}. A tangent vector to M at x ∈M is an equivalence
class of triples (x, α, v) ∈M × Λ× Rn under the equivalence relation

(x, α, v) ∼ (x, β, u)

if D(φβφ
−1
α )(φα(x))(v) = u. The tangent space of M at x, denoted TxM is

defined to be the set of all tangent vectors at x.

Notice that the functions we are differentiating in this definition are defined
on open subspaces of Euclidean space. More specifically, they are defined on
open sets of the form φα(Uα∩Uβ) ⊂ Rn and take values in φβ(Uα∩Uβ) ⊂ Rn.

We leave it to the reader to verify that TxM is an n-dimensional real vector
space. One can also verify that this definition does not depend on the choice
of atlas or charts. The tangent bundle is defined to be the union of all tangent
spaces

TM =
⋃
x∈M

TxM.
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So far TM is defined only set theoretically. We have yet to discuss its topology.
We do so as follows:

Definition 3.3. Let U = {(Uα, φα) : α ∈ Λ} be an atlas for a differentiable
n-dimensional manifold Mn. Define the tangent bundle

TM =
∐
α∈Λ

Uα × Rn/ ∼

where (x, v) ∈ Uα × Rn is identified with (x, u) ∈ Uβ × Rn if x ∈ Uα ∩ Uβ
and D(φβφ

−1
α )(φα(x))(v) = u. TM is given the quotient topology under this

identification.

We can give the tangent bundle has a more concrete definition in the
setting where Mn is a subset of RL for some L. (We will later prove that
every manifold can be appropriately viewed as a subset of Euclidean space of
sufficiently high dimension.)

Assume Mn ⊂ RL. Given x ∈ Mn ⊂ RL, we say that a vector v ∈ RL is
tangent to Mn at x ∈M if there exists an ε > 0 and differentiable curve

γ : (−ε, ε)→Mn ⊂ RL

such that dγ
dt (0) = v.

We define the tangent space TxM
n to be the set of all vectors tangent to

X. Clearly this is an n-dimensional real vector space. Moreover we can now
topologize the tangent bundle as a subspace of RL × RL:

TMn =
⋃
x∈M

TxM
n ⊂ RL × RL

v ∈ TxMn → (x, v).

There is a natural continuous projection map

p : TM →M

v ∈ TxM →M. (3.1)

We leave it to the reader to check that these two definitions of tangent
bundle agree up to isomorphism. By isomorphism, we are referring to the
notion of isomorphism of vector bundles. Clearly p : TM → M is an n-
dimensional vector bundle as defined in section 1.1 of [13] using either of the
two definitions of TM given above. It is also clear that there is a natural
isomorphism between them.

A differentiable section of the tangent bundle σ : Mn → TMn is called
a vector field. At every point of the manifold, a section picks out a tangent
vector. The question of which manifolds admit a nowhere zero vector field, and
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if so, how many linearly independent vector fields are possible, has long been
a fundamental question in differential topology. (A collection of vector fields
are linearly independent if they pick out linearly independent tangent vectors
at every point.) A manifold is called parallelizable if its tangent bundle is
trivial. Notice that a parallelizable manifold of dimension n admits n linearly
independent vector fields.

Exercises

1. Show that a manifold Mn is parallelizable if and only if it admits n
linearly independent vector fields.

2. Show that the unit sphere Sn admits a nowhere zero vector field if n is
odd.

3. If Sn admits a nowhere zero vector field show that the identity map of
Sn is homotopic to the antipodal map. For n even show that the antipodal
map of Sn is homotopic to the reflection

r(x1, · · · , xn+1) = (−x1, x2, · · · , xn+1);

and therefore has degree −1. Combining these facts, show that Sn is not
parallelizable for n even, n ≥ 2.

3.2.3 The implicit and inverse function theorems, embed-
dings and immersions

We assume the reader is familiar with the following basic theorems from the
analysis of differentiable maps on Euclidean space. We observe that they are
local theorems, and so can be used to study differentiable manifolds and maps
between them.

Theorem 3.1. (The Implicit Function Theorem - the surjective version) Let
U ⊂ Rm be an open subspace and f : U → Rn a Cr-map, where r ≥ 1. For
p ∈ U , assume f(p) = 0. Suppose the derivative at p,

Dfp : Rm → Rn

is surjective. Then there is a local diffeomorphism φ of Rm at 0 such that
φ(0) = p and

f ◦ φ(x1, · · · , xn, · · · , xm) = (x1, · · · , xn).

That is, f ◦ φ is the projection onto the first n-coordinates.

There is another version of the implicit function theorem when the deriva-
tive is injective.
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Theorem 3.2. (The Implicit Function Theorem - the injective version) Let
U ⊂ Rm be an open set and f : U → Rn a Cr-map, where r ≥ 1. Let q ∈ Rn
be such that 0 ∈ f−1(q). Suppose that

Df0 : Rm → Rn

is injective. Then there is a local diffeomorphism ψ of Rn such that ψ(q) = 0
and

ψ ◦ f(x1, · · · , xm) = (x1, · · · , xm, 0, 0, · · · , 0) ∈ Rn.
That is ψ ◦ f is the inclusion of the first m-coordinate axes.

Finally, consider the following theorem, which is equivalent to the implicit
function theorems.

Theorem 3.3. (Inverse Function Theorem) Let U ⊂ Rn be an open set and
f : U → Rn be a Cr-map where r ≥ 1. If p ∈ U is such that Dfp : Rn → Rn is
invertible, then f is a Cr-local diffeomorphism at p. That is there is an open
set V ⊂ U ⊂ Rn such that f : V → f(V ) is a diffeomorphism.

We end with the definition of immersion and embedding.

Definition 3.4. Suppose f : Mm → Nn is Cr, for r ≥ 1, where Mm and
Nn are Cr manifolds of dimensions m and n, respectively. We say that f is
immersive at x ∈M if the linear map

Dfx : TxM → Tf(x)N

is injective. f is an immersion if f is immersive at every point x ∈ M . We
use the symbol f : Mm # Nn to mean that f is an immersion.

Definition 3.5. Suppose f : Mm → Nm is Cr, for r ≥ 1, where Mm and
Nn are Cr manifolds of dimensions m and n, respectively. We say that f is
submersive at x ∈M if the linear map

Dfx : TxM → Tf(x)N

is surjective. f is an submersion if f is submersive at every point x ∈M .

Definition 3.6. A Cr-map f : M → N is an embedding if it is an immer-
sion and f maps M homeomorphically onto its image. In this case we write
f : M ↪→ N .

Finally we have the following definition.

Definition 3.7. Suppose N is a Cr-manifold, r ≥ 1. A subspace A ⊂ N is
a Cr-submanifold if and only if A is the image of a Cr-embedding of some
manifold into N .

The following is an immediate corollary of Implicit Function Theorem (the
injective version).

Proposition 3.4. If f : M → N is an immersion, then it is a local embedding.
That is, around every x ∈M there is an open neighborhood U of x so that the
restriction f : U → N is an embedding.
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3.2.4 Manifolds with boundary

In many areas of mathematics one often confronts manifolds that have a
boundary. A closed disk in Rn is a typical example. In this section we de-
scribe how the concepts developed above for smooth manifolds, can be be
generalized to “smooth manifolds with boundary”.

Definition 3.8. The “upper half space” Hn ⊂ Rn is the subspace

Hn = {(x1, · · · , xn) ∈ Rn such thatxn ≥ 0}.

The boundary points of Hn are those (x1, · · · , xn) with xn = 0.

An n-dimensional topological manifold with boundary is then one that has
charts homeomorphic to open sets in Hn rather than Rn. That is, we have the
following definition, which is completely analogous to Definition 1.1 above.

Definition 3.9. An n-dimensional topological manifold manifold with bound-
ary is a Hausdorff space Mn with the property that for every x ∈M , there is
an open neighborhood U containing x and a homeomorphism,

ψU : U
∼=−→ V ⊂ Hn

where V is an open subspace of Rn. The boundary of Mn, written ∂Mn con-
sists of those points p ∈ Mn for which there is an open neighborhood p ∈ U
and a chart ψU : U

∼=−→ V ⊂ Hn where ψU (p) is a boundary point of Hn.
Observe that the condition of p ∈ Mn being a boundary point is independent
of the particular chart used.

We leave it for the reader to check that if Mn is a topological n-manifold
with boundary, then the boundary ∂Mn is a topological (n− 1)-dimensional
manifold (without boundary).

We need to be careful about the definition of submanifolds in the setting
of manifolds with boundary. First, for k ≤ n, consider a standard inclusion
Hk ↪→ Rn mapping (x1, · · · , xk) to (x1, · · · , xk, 0, · · · 0). A subspace V ⊂ Rn
is a Cr-dimensional submanifold if each x ∈ V belongs to the domain of a
chart φ : U → Rn of Rn such that V ∩ U = φ−1(Hk).

A general definition of a submanifold (with boundary) can be taken to be
the following:

Definition 3.10. Let M be a Cr-manifold, with or without boundary. A subset
N ⊂ M is a Cr-submanifold if each x ∈ N there is an open set subset U of
M containing x, a Cr embedding g : U ↪→ Rn, such that

N ∩ U = g−1(Hk),

A particularly important type of embedding of one manifold into another
is when one restricts to the boundary of the submanifold, the image of the
embedding lies in the boundary of the ambient manifold. This is called a neat
embedding,
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FIGURE 3.2
A 2-dimensional manifold with boundary

Definition 3.11. An embedding e : N ↪→M of Cr-manifolds is neat if ∂N =
N ∩ ∂M and N is covered by charts (φ,U) of M such that N ∩U = φ−1(Hk).
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FIGURE 3.3
N1 is neat, N2 and N3 are not.

3.2.5 Regular Values and transversality

We begin this section with the notion of regular points and values as well as
critical points and values.

Definition 3.12. Suppose f : M → N is a Cr map between Cr manifolds,
where r ≥ 1. A point x ∈ M is called a regular point if f is submersive at x.
If u ∈ M is not a regular point it is called a critical point. f(u) ∈ N is then
called a critical value. If y ∈ N is not a critical value it is called a regular
value. In particular every point y ∈ N that is not in the image of f is a regular
value. If y ∈ N is a regular value, its inverse image f−1(y) ⊂ M is called a
regular level set.

The following is one of the most fundamental theorems in differential topol-
ogy:

Theorem 3.5. (The Regular Value Theorem) Suppose f : Mn → Nk is a
Cr-map between Cr manifolds of dimension n and k respectively. Here r ≥ 1.
If y ∈ M is a regular value, then the regular level set f−1() ⊂ Mn is a Cr-
submanifold of dimension n− k.

Proof. Since being a manifold is a local property, it suffices to prove this
theorem in the case when Mn ⊂ Rn is an open set, and N = Rm. The theorem
now follows from the surjective version of the Implicit Function Theorem.

The Regular Value Theorem for manifolds with boundary has the following
formulation.
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Theorem 3.6. Let M ba a Cr manifold with boundary, and N a Cr manifold
(with or without boundary). Here we are assuming r ≥ 1. Let f : M → N be
a Cr map. If y ∈ N − ∂N is a regular value for both f and f|∂M , then f−1(y)
is a neat Cr submanifold of M .

 

fi

M R

FIGURE 3.4
f is the height function from the torus to the real line. It has 4 critical values.
The level sets of the critical values are shown in red, and regular sets of regular
values, which are all one-dimensional submanifolds, are shown in blue.

We now want to discuss an important generalization of the concepts in-
volved in the Regular Value Theorem. This is the concept of transversality.
The following is probably the most conceptual setting for transversality.
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Let Nn be an n-dimensional manifold, and let A ⊂ N and B ⊂ N be
submanifolds of dimensional p and q respectively.

B
⊂−−−−→ Nx∪

A

We say that A and B have a transverse intersection in N if for every
x ∈ A ∩ B, the tangent spaces of the submanifolds A and B at x, together
span the entire tangent space of the ambient manifold N . That is,

TxA+ TxB = TxN (3.2)

When A and B have transverse intersection we write A t B. We will see
that such transversal intersections are, in an appropriate sense, generic. We
begin, though, with the following theorem.

Theorem 3.7. Let A and B be submanifolds of the n-dimensional manifold
N , where DimA = p and DimB = q. Suppose furthermore that A t B. The
A ∩B ⊂ N is a submanifold of dimension p+ q − n.

We will actually prove the following generalization of Theorem 3.7.
Let Ap be a p-dimensional manifold and Nn an n-dimensional manifold

with a q-dimensional submanifold Bq ⊂ Nn. Let f : A → N be a smooth
map. We say that f is transverse to B, and write f t B if whenever b ∈ B is
such that f−1(b) is nonempty, then for any x ∈ f−1(b)

Dfx(TxA) + TbB = TbN. (3.3)

Notice that if f : A → N is an embedding, then f t B if and only if the
submanifold given by the image of f has transverse intersection with B. Notice
furthermore that if B = y ∈ N is a point, viewed as a zero dimensional
submanifold, then f t B if and only if yis a regular value of f . This is the
sense in which the notion of transversality is a generalization of the notion of
regular value.

The following is a strengthening of both transversality Theorem 3.7 and
of the Regular Value Theorem 3.5:

Theorem 3.8. Let f : Ap → Nn and Bq ⊂ Nn be as above. Then if f t B,
then the inverse image f−1(B) ⊂ A is a submanifold of codimension n −
q, which is the same as the codimension of B in N . That is, f−1(B) has
dimension p+ q − n.

Notice that this theorem is precisely the statement of the Regular Value
Theorem when B a point.
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Proof. It suffices to prove this theorem locally. By the Implicit Function The-
orem, we can locally replace Bq ⊂ Nn by U × {0} ⊂ U × V , where U ⊂ Rq
and V ⊂ Rn−q are open sets. Notice that

f : Ap → U × V

is transverse to U × {0} if and only if the composition

g : Ap
f−→ U × V project−−−−−→ V

has 0 ∈ V ⊂ Rn−q as a regular value. Sincef−1(U × {0}) = g−1(0), the
theorem follows from the Regular Value Theorem (Theorem 3.5).

A generalization of this theorem to the setting of manifolds with boundary
is the following. The above proof applies to this situation with only minor
modifications.

Theorem 3.9. Suppose Bq ⊂ Nn is a Cr submanifold with boundary. Suppose
that either Bq is neat or Bq ⊂ Nn − ∂Nn, or Bq ⊂ ∂Nn. If f : Ap → Nn is
a Cr map between manifolds with boundary with both f and f|∂Ap transverse
to Bq, the f−1(Bq) is a Cr submanifold and ∂f−1(Bq) = f−1(∂Bq). The
dimension of f−1(Bq) is p+ q − n.

3.3 Bundles and Manifolds

3.3.1 The tangent bundle of Projective Space

We now use these constructions to identify the tangent bundle of projective
spaces, TRPn and TCPn. We study the real case first.

Recall the canonical line bundle, γ1 : Eγ1 → RPn. If [x] ∈ RPn is viewed as
a line in Rn+1, then the fiber Eγ1

[x] is the one dimensional space of vectors in the

line [x]. Thus γ1 has a natural embedding into the trivial n+ 1 - dimensional
bundle ε : RPn × Rn+1 → RPn via

Eγ1 = {([x], u) ∈ RPn × Rn+1 : u ∈ [x]} ↪→ RPn × Rn+1.

Let γ⊥1 be the n - dimensional orthogonal complement bundle of this embed-
ding.

Theorem 3.10. There is an isomorphism of the tangent bundle with the
homomorphism bundle

TRPn ∼= Hom(γ1, γ
⊥
1 )
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Proof. Let p : Sn → RPn be the natural projection. For x ∈ Sn, recall that
the tangent space of Sn can be described as

TxS
n = {(x, v) ∈ Sn × Rn+1 : x · v = 0}.

Notice that (x, v) ∈ TxS
n and (−x,−v) ∈ T−xS

n have the same image in
T[x]RPn under the derivative Dp : TSn → TRPn. Since p is a local diffeomor-
phism, Dp(x) : TxS

n → T[x]RPn is an isomorphism for every x ∈ Sn. Thus
T[x]RPn can be identified with the space of pairs

T[x]RPn = {(x, v), (−x,−v) : x, v ∈ Rn+1, |x| = 1, x · v = 0}.

If x ∈ Sn, let Lx = [x] denote the line through ±x in Rn+1. Then a pair
(x, v), (−x,−v) ∈ T[x]RPn is uniquely determined by a linear transformation

` : Lx → L⊥

`(tx) = tv.

Thus T[x]RPn is canonically isomorphic to Hom(Eγ1
x , E

γ⊥1
x ), and so

TRPn ∼= Hom(γ1, γ
⊥
1 ),

as claimed.

The following description of the TRPn ⊕ ε1 will be quite helpful to us in
future calculations of characteristic classes.

Theorem 3.11. The Whiney sum of the tangent bundle and a trivial line
bundle, TRPn ⊕ ε1 is isomorphic to the Whitney sum of n + 1 copies of the
canonical line bundle γ1,

TRPn ⊕ ε1 ∼= ⊕n+1γ1.

Proof. Consider the line bundle Hom(γ1, γ1) over RPn. This line bundle is
trivial since it has a canonical nowhere zero section

ι(x) = 1 : Eγ1

[x] → Eγ1

[x].

We therefore have

TRPn ⊕ ε1 ∼= TRPn ⊕Hom(γ1, γ1)

∼= Hom(γ1, γ
⊥
1 )⊕Hom(γ1, γ1)

∼= Hom(γ1, γ
⊥
1 ⊕ γ1)

∼= Hom(γ1, εn+1)
∼= ⊕n+1γ

∗
1

∼= ⊕n+1γ1

as claimed.
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The following are complex analogues of the above theorems and are proved
in the same way.

Theorem 3.12.
TCPn ∼=C HomC(γ1, γ

⊥
1 )

and
TCPn ⊕ ε1 ∼= ⊕n+1γ

∗
1 ,

where ∼=C and HomC denote isomorphisms and homomorphisms of complex
bundles, respectively.

Note. γ∗ is not isomorphic as complex vector bundles to γ1. It is iso-
morphic to γ1 with the conjugate complex structure. We will discuss this
phenomenon more later.

3.3.2 K - theory

Let V ect∗(X) = ⊕n≥0V ect
n(X) where, as above, V ectn(X) denotes the set

of isomorphism classes of n - dimensional complex bundles over X. V ect∗R(X)
denotes the analogous set of real vector bundles. In both these cases V ect0(X)
denotes, by convention, the one point set, representing the unique zero dimen-
sional vector bundle.

Now the Whitney sum operation induces pairings

V ectn(X)× V ectm(X)
⊕−−−−→ V ectn+m(X)

which in turn give V ect∗(X) the structure of an abelian monoid. Notice that
it is indeed abelian because given vector bundles η and ζ we have an obvious
isomorphism

η ⊕ ζ ∼= ζ ⊕ η.

The “zero” in this monoid structure is the unique element of V ect0(X).
Given an abelian monoid, A, there is a construction due to Grothendieck

of its group completion K(A). Formally, K(A) is the smallest abelian group
equipped with a homomorphism of monoids, ι : A → K(A). It is smallest in
the sense if G is any abelian group and φ : A → G is any homomorphism of
monoids, then there is a unique extension of φ to a map of abelian groups
φ̄ : K(A)→ G making the diagram commute:

A
ι−−−−→ K(A)

φ

y yφ̄
G = G

This formal property, called the universal property, characterizes K(A),
and can be taken to be the definition. However there is a much more explicit
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description. Basically the group completion K(A) is obtained by formally
adjoining inverses to the elements of A. That is, an element of K(A) can be
thought of as a formal difference α− β, where α, β ∈ A. Strictly speaking we
have the following definition.

Definition 3.13. Let F (A) be the free abelian group generated by the elements
of A, and let R(A) denote the subgroup of F (A) generated by elements of the
form a ⊕ b − (a + b) where a, b ∈ A. Here “⊕” is the group operation in the
free abelian group and “+” is the addition in the monoid structure of A. We
then define the Grothendieck group completion K(A) to be the quotient group

K(A) = F (A)/R(A).

Notice that an element of K(A) is of the form

θ =
∑
i

niai −
∑
j

mjbj

where the ni’s and mj ’s are positive integers, and each ai and bj ∈ A. That
is, by the relations in R(A), we may write

θ = α− β

where α =
∑
i niai ∈ A, and β =

∑
jmjbj ∈ A.

Notice also that the composition ι : A ⊂ F (A)→ F (A)/R(A) = K(A) is a
homomorphism of monoids, and clearly has the universal property described
above. We can now make the following definition.

Definition 3.14. Given a space X, its complex and real (or orthogonal) K
- theories are defined to be the Grothendieck group completions of the abelian
monoids of isomorphism classes of vector bundles:

K(X) = K(V ect∗(X))

KO(X) = K(V ect∗R(X)

An element α = ζ − η ∈ K(X) is often referred to as a “virtual vector
bundle” over X.

Notice that the discusion of the tangent bundles of projective spaces above
(section 2.2) can be interpreted in K -theoretic language as follows:

Proposition 3.13. As elements of K(CPn), we have the equation

[TCPn] = (n+ 1)[γ∗1 ]− [1]

where [m] ∈ K(X) refers to the class represented by the trivial bundle of
dimension m. Similarly, in the orthogonal K - theory KO(RPn) we have the
equation

[TRPn] = (n+ 1)[γ1]− [1].
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Notice that for a point, V ect∗(pt) = Z+, the nonnegative integers, since
there is precisely one vector bundle over a point (i.e vector space) of each
dimension. Thus

K(pt) ∼= KO(pt) ∼= Z.

Notice furthermore that by taking tensor products there are pairings

V ectm(X)× V ectn(X)
⊗−−−−→ V ectmn(X).

The following is verified by a simple check of definitions.

Proposition 3.14. The tensor product pairing of vector bundles gives K(X)
and KO(X) the structure of commutative rings.

Now given a bundle ζ over Y , and a map f : X → Y , we saw in the
previous section how to define the pull-back, f∗(ζ) over X. This defines a
homomorphism of abelian monoids

f∗ : V ect∗(Y )→ V ect∗(X).

After group completing we have the following:

Proposition 3.15. A continuous map f : X → Y induces ring homomor-
phisms,

f∗ : K(Y )→ K(X)

and
f∗ : KO(Y )→ KO(X).

In particular, consider the inclusion of a basepoint x0 ↪→ X. This induces
a map of rings, called the augmentation,

ε : K(X)→ K(x0) ∼= Z.

This map is a split surjection of rings, because the constant map c : X →
x0 induces a right inverse of ε, c∗ : Z = K(x0) → K(X). Notice that the
augmentation can be viewed as the “dimension” map in that when restricted
to the monoid V ect∗(X), then ε : V ectm(X) → {m} ⊂ Z. That is, on an
element ζ − η ∈ K(X), ε(ζ − η) = dim(ζ) − dim(η). We then define the
reduced K -theory as follows.

Definition 3.15. The reduced K - theory of X, denoted K̃(X) is defined to
be the kernel of the augmentation map

K̃(X) = ker{ε : K(X)→ Z}

and so consists of classes ζ − η ∈ K(X) such that dim(ζ) = dim(η). The
reduced orthogonal K - theory, K̃O(X) is defined similarly.
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The following is an immediate consequence of the above observations:

Proposition 3.16. There are natural splittings of rings

K(X) ∼= K̃(X)⊕ Z

KO(X) ∼= K̃O(X)⊕ Z.

Clearly then the reduced K - theory is the interesting part of K - theory.
Notice that a bundle ζ ∈ V ectn(X) determines the element [ζ]− [n] ∈ K̃(X),
where [n] is the K - theory class of the trivial n - dimensional bundle.

The definitions of K - theory are somewhat abstract. The following discus-
sion makes it clear precisely what K - theory measures in the case of compact
spaces.

Definition 3.16. Let ζ and η be vector bundles over a space X. ζ and η are
said to be stably isomorphic if for some m and n, there is an isomorphism

ζ ⊕ εn ∼= η ⊕ εm

where, as above, εk denotes the trivial bundle of dimension k. We let SV ect(X)
denote the set of stable isomorphism classes of vector bundles over X.

Notice that SV ect(X) is also an abelian monoid under Whitney sum, and
that since any two trivial bundles are stably isomorphic, and that adding a
trivial bundle to a bundle does not change the stable isomorphic class, then
any trivial bundle represents the zero element of SV ect(X).

Theorem 3.17. Let X be a compact space, then SV ect(X) is an abelian
group and is isomorphic to the reduced K -theory,

SV ect(X) ∼= K̃(X).

Proof. A main component of the proof is the following result, which we will
prove in the next chapter when we study the classification of vector bundles.

Theorem 3.18. Every vector bundle over a compact space can be embedded
in a trivial bundle. That is, if ζ is a bundle over a compact space X , then for
sufficiently large N > 0, there is bundle embedding

ζ ↪→ εN .
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We use this result in the following way in order to prove the above theorem.
Let ζ be a bundle over a compact space X. Then by this result we can find
an embedding ζ ↪→ εN . Let ζ⊥ be the orthogonal complement bundle to this
embedding. So that

ζ ⊕ ζ⊥ = εN .

Since εN represents the zero element in SV ect(X), then as an equation in
SV ect(X) this becomes

[ζ] + [ζ⊥] = 0.

Thus every element in SV ect(X) is invertible in the monoid structure, and
hence SV ect(X) is an abelian group.

To prove that SV ect(X) is isomorphic to K̃(X), notice that the natural
surjection of V ect∗(X) onto SV ect(X) is a morphism of abelian monoids,
and since SV ect(X) is an abelian group, this surjection extends linearly to a
surjective homomorphism of abelian groups,

ρ : K(X)→ SV ect(X).

Since [εn] = [n] ∈ K(X) maps to zero in SV ect(X) under ρ, this map factors
through a surjective homomorphism from reduced K - theory, which by abuse
of notation we also call ρ,

ρ : K̃(X)→ SV ect(X).

To prove that ρ is a injective (and hence an isomorphism), we will construct
a left inverse to ρ. This is done by considering the composition

V ect∗(X)
ι−−−−→ K(X)→ K̃(X)

which is given by mapping an n - dimensional bundle ζ to [ζ]− [n]. This map
clearly sends two bundles which are stably isomorphic to the same class in
K̃(X), and hence factors through a homomorphism

j : SV ect(X)→ K̃(X).

By checking its values on bundles, it becomes clear that the composition
j ◦ ρ : K̃(X) → SV ect(X) → K̃(X) is the identity map. This proves the
theorem.

We end this section with the following observation. As we said above, in
the next chapter we will study the classification of bundles. In the process
we will show that homotopic maps induce isomorphic pull - back bundles,
and therefore homotopy equivalences induce bijections, via pulling back, on
the sets of isomorphism classes of bundles. This tells us that K -theory is
a “homotopy invariant” of topological spaces and continuous maps between
them. More precisely, the results of the next chapter will imply the following
important properties of K - theory.
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Theorem 3.19. Let f : X → Y and g : X → Y be homotopic maps. then the
pull back homomorphisms are equal

f∗ = g∗ : K(Y )→ K(X)

and
f∗ = g∗ : KO(Y )→ KO(X).

This can be expressed in categorical language as follows: (Notice the simi-
larity of role K - theory plays in the following theorem to cohomology theory.)

Theorem 3.20. The assignments X → K(X) and X → KO∗(X) are
contravariant functors from the category of topological spaces and homotopy
classes of continuous maps to the category of rings and ring homomorphisms.

3.3.3 Differential Forms

In the next two sections we describe certain differentiable constructions on
bundles over smooth manifolds that are basic in geometric analysis. We begin
by recalling some “multilinear algebra”.

Let V be a vector space over a field k. Let T (V ) be the associated tensor
algebra

T (V ) = ⊕n≥0V
⊗n

where V 0 = k. The algebra structure is comes from the natural pairings

V ⊗n ⊗ V ⊗m =−−−−→ V ⊗(n+m).

Recall that the exterior algebra

Λ(V ) = T (V )/A

where A ⊂ T (V ) is the two sided ideal generated by {a⊗b+b⊗a : a, b ∈ V }.
The algebra Λ(V ) inherits the grading from the tensor algebra, Λ(V ) =

⊕n≥0Λk(V ), and the induced multiplication is called the “wedge product”,
u ∧ v. Recall that if V is an n - dimensional vector space, Λk(V ) is an

(
n
k

)
-

dimensional vector space.
Assume now that V is a real vector space. An element of the dual space,

(V ⊗n)∗ = Hom(V ⊗n,R) is a multilinear form V × · · · × V → R. An element
of the dual space (Λk(V ))∗ is an alternating form, i.e a multilinear function θ
so that

θ(vσ(1), · · · , vσ(k)) = sgn(σ)θ(v1, · · · , vk)

where σ ∈ Σk is any permutation.
Let Ak(V ) = (Λk(V ))∗ be the space of alternating k - forms. Let U ⊂ Rn

be an open set. Recall the following definition.
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Definition 3.17. A differential k - form on the open set U ⊂ Rn is a smooth
function

ω : U → Ak(Rn).

By convention, 0 -forms are just smooth functions, f : U → R. Notice that
given such a smooth function, its differential, df assigns to a point x ∈ U ⊂ Rn
a linear map on tangent spaces, df(x) : Rn = TxRn → Tf(x)R = R. That is,
df : U → (Rn)∗, and hence is a one form on U .

Let Ωk(U) denote the space of k - forms on the open set U . Recall that
any k -form ω ∈ Ωk(U) can be written in the form

ω(x) =
∑
I

fI(x)dxI (3.4)

where the sum is taken over all sequences of length k of integers from 1 to n,
I = (i1, · · · , ik), fI : U → R is a smooth function, and where

dxI = dxi1 ∧ · · · ∧ dxik .

Here dxi denotes the differential of the function xi : U ⊂ Rn → R which is
the projection onto the ith - coordinate.

Recall also that there is an exterior derivative,

d : Ωk(U)→ Ωk+1(U)

defined by

d(fdxI) = df ∧ dxI ==

k∑
j=1

∂f

∂xj
dxj ∧ dxI

A simple calculation shows that d2(ω) = d(dω) = 0, using the symmetry
of second order partial derivatives.

These constructions can be extended to arbitrary manifolds in the following
way. Given an n - dimensional smooth manifold M , let Λk(T (M)) be the

(
n
k

)
- dimensional vector bundle whose fiber at x ∈ M is the k - fold exterior
product, of the tangent space, Λk(TxM).

Exercise.

Define clutching functions of Λk(T (M)) in terms of clutching functions of the
tangent bundle, T (M)

Definition 3.18. A differential k-form on M is a section of the dual bundle,

Λk(T (M))∗ ∼= Λk(T ∗(M)) ∼= Hom(Λk(T (M)), ε1).
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That is, the space of k -forms is given by the space of sections,

Ωk(M) = Γ(Λk(T ∗(M))).

So a k -form ω ∈ Ωk(M) assigns to x ∈M an alternating k form on its tangent
space,

ω(x) : TxM × · · · × TxM → R.

and hence given a local chart with a local coordinate system, then locally ω
can be written in the form (3.4).

Since differentiation is a local operation, we may extend the definition of
the exterior derivative of forms on open sets in Rn to all n - manifolds,

d : Ωk(M)→ Ωk+1(M).

In particular, the zero forms are the space of functions, Ω0(M) = C∞(M ;R),
and for f ∈ Ω0(M), then df ∈ Ω1(M) = Γ(T (M)∗) is the 1 -form defined by
the differential,

df(x) : TxM → Tf(x)R = R.

Now as above, d2(ω) = 0 for any form ω. Thus we have a cochain complex,
called the deRham complex,

Ω0(M)
d−−−−→ Ω1(M)

d−−−−→ · · · d−−−−→ Ωk−1(M)
d−−−−→ Ωk(M)

d−−−−→ Ωk+1(M)

d−−−−→ · · · d−−−−→ Ωn(M)
d−−−−→ 0.

(3.5)

Recall that a k - form ω with dω = 0 is called a closed form. A k - form
ω in the image of d, i.e ω = dη for some η ∈ Ωk−1(M) is called an exact
form. The quotient vector space of closed forms modulo exact forms defined
the “deRham cohomology” group:

Definition 3.19.

Hk
deRham(M) = {closed k - forms}/{exact k - forms}.

The famous de Rham theorem asserts that these cohomology groups are
isomorphic to singular cohomology with R - coefficients. To see the relation-
ship, let Ck(M) be the space of k - dimensional singular chains on M , (i.e the
free abelian group generated by smooth singular simplices σ : ∆k →M), and
let

Ck(M ;R) = Hom(Ck(M),R)

be the space of real valued singular cochains. Notice that a k -form ω gives
rise to a k - dimensional singular cochain in that it acts on a singular simplex
σ : ∆k →M by

〈ω, σ〉 =

∫
σ

ω.
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This defines a homomorphism

γ : Ωk(M)→ Ck(M ;R)

for each k.

Exercise. Prove that γ is a map of cochain complexes. That is,

γ(dω) = δγ(ω)

where δ : Ck(M ;R)→ Ck+1(M ;R) is the singular coboundary operator.
Hint. Use Stokes’ theorem.

We refer the reader to [5] for a proof of the deRham Theorem:

Theorem 3.21. The map of cochain complexes,

γ : Ω∗(M)→ C∗(M ;R)

is a chain homotopy equivalence. Therefore it induces an isomorphism in co-
homology

H∗deRham(M)
∼=−−−−→ H∗(M ;R).

3.3.4 Lie Groups

Lie groups play a central role in bundle theory and in differential topology and
geometry. In this section we give a basic description of Lie groups, their actions
on manifolds (and other spaces), as well as their their principal bundles.

Definition 3.20. A Lie group is a topological group G which has the structure
of a differentiable manifold. Moreover the multiplication map

G×G→ G

and the inverse map

G→ G

g → g−1

are required to be differentiable maps.

The following is an important basic property of the differential topology
of Lie groups.
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Theorem 3.22. Let G be a Lie group. Then G is parallelizable. That is, its
tangent bundle TG is trivial.

Proof. Let 1 ∈ G denote the identity element, and T1G the tangent space of
G at 1. If G is an n - dimensional manifold, T1G is an n- dimensional vector
space. We define a bundle isomorphism of the tangent bundle TG with the
trivial bundle G× T1(G), which, on the total space level is given by a map

φ : G× T1G −→ TG

defined as follows. Let g ∈ G. Then multiplication by g on the right is a
diffeomorphism

×g : G→ G

x→ xg

Since ×g is a diffeomorphism, its derivative is a linear isomorphism at every
point:

Dg(x) : TxG
∼=−−−−→ TxgG.

We can now define
φ : G× T1G→ TG

by
φ(g, v) = Dg(1)(v) ∈ TgG.

Clearly φ is a bundle isomorphism.

If G is a Lie group and M is a smooth manifold with a right G - action. We
say that the action is smooth if the homomorphism µ defined above factors
through a homomorphism

µ : G→ Diffeo(M)

where Diffeo(M) is the group of diffeomorphisms of M .

The following result is originally due to A. Gleason [22], and its proof can
be found in Steenrod’s book [58]. It is quite helpful in studying free group
actions.

Theorem 3.23. Let E be a smooth manifold, having a free, smooth G - action,
where G is a compact Lie group. Then the action has slices. In particular, the
projection map

p : E → E/G

defines a principal G - bundle.
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The following was one of the early theorems in fiber bundle theory, ap-
pearing originally in H. Samelson’s thesis. [51]

Corollary 3.24. Let G be a Lie group, and let H < G be a compact subgroup.
Then the projection onto the orbit space

p : G→ G/H

is a principal H - bundle.

3.3.5 Connections and Curvature

In modern geometry, differential topology, and geometric analysis, one often
needs to study not only smooth functions on a manifold, but more generally,
spaces of smooth sections of a vector bundle Γ(ζ). (Notice that sections of
bundles are indeed a generalization of smooth functions in that the space of
sections of the n - dimensional trivial bundle over a manifold M , Γ(εn) =
C∞(M ;Rn) = ⊕nC∞(M ;R).) Similarly, one needs to study differential forms
that take values in vector bundles. These are defined as follows.

Definition 3.21. Let ζ be a smooth bundle over a manifold M . A differential
k - form with values in ζ is defined to be a smooth section of the bundle of
homomorphisms, Hom(Λk(T (M)), ζ) = Λk(T (M)∗)⊗ ζ.

We write the space of k -forms with values in ζ as

Ωk(M ; ζ) = Γ(Λk(T (M)∗ ⊗ ζ).

The zero forms are simply the space of sections, Ω0(M ; ζ) = Γ(ζ). Notice that
if ζ is the trivial bundle ζ = εn, then one gets standard forms,

Ωk(M ; εn) = Ωk(M)⊗ Rn = ⊕nΩk(M).

Even though spaces of forms with values in a bundle are easy to define,
there is no canonical analogue of the exterior derivative. There do however
exist differential operators

D : Ωk(M ; ζ)→ Ωk+1(M ; ζ)

that satisfy familiar product formulas. These operators are called covariant
derivatives (or connections ) and are related to the notion of a connection on
a principal bundle, which we now define and study.

Let G be a compact Lie group. Recall that the tangent bundle TG has a
canonical trivialization

ψ : G× T1G→ TG

(g, v)→ D(`g)(v)
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where for any g ∈ G, `g : G → G is the map given by left multiplication by
g, and D(`g) : ThG → TghG is its derivative. rg and D(rg) will denote the
analogous maps corresponding to right multiplication.

The differential of right multiplication on G defines a right action of G on
the tangent bundle TG. We claim that the trivialization ψ is equivariant with
respect to this action, if we take as the right action of G on T1G to be the
adjoint action:

T1G×G→ T1G

(v, g)→ D(`g−1)(v)D(rg).

Exercise. Verify this claim.

As is standard, we identify T1G with the Lie algebra g. This action is
referred to as the adjoint representation of the Lie group G on its Lie algebra
g. Now let

p : P →M

be a smooth principal G -bundle over a manifold M . This adjoint representa-
tion induces a vector bundle ad(P ),

ad(P ) : P ×G g→M. (3.6)

This bundle has the following relevance. Let p∗(TM) : p∗(TM) → P be
the pull - back over the total space P of the tangent bundle of M . We have a
surjective map of bundles

TP → p∗(TM).

Define TFP to be the kernel bundle of this map. So the fiber of TFP at
a point y ∈ P is the kernel of the surjective linear transformation Dp(y) :
TyP → Tp(y)M . Notice that the right action of G on the total space of the
principal bundle P defines an action of G on the tangent bundle TP , which
restricts to an action of G on TFP . Furthermore, by recognizing that the fibers
are equivariantly homeomorphic to the Lie group G, the following is a direct
consequence of the above considerations:

Proposition 3.25. TFP is naturally isomorphic to the pull - back of the
adjoint bundle,

TFP ∼= p∗(ad(P )).

Thus we have an exact sequence of G - equivariant vector bundles over P :

0→ p∗(ad(P ))→ TP
Dp−−−−→ p∗(TM)→ 0. (3.7)

Recall that short exact sequences of bundles split as Whitney sums. A
connection is a G - equivariant splitting of this sequence:
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Definition 3.22. A connection on the principal bundle P is a G - equiv-
ariant splitting

ωA : TP → p∗(ad(P ))

of the above sequence of vector bundles. That is, ωA defines a G - equivariant
isomorphism

ωA ⊕Dp : TP → p∗(ad(P ))⊕ p∗(TM).

The following is an important description of the space of connections on
P , A(P ).

Proposition 3.26. The space of connections on the principal bundle P ,
A(P ), is an affine space modeled on the infinite dimensional vector space of
one forms on M with values in the bundle ad(P ), Ω1(M ; ad(P )).

Proof. Consider two connections ωA and ωB ,

ωA, ωB : TP → p∗(ad(P ).

Since these are splittings of the exact sequence 3.7, they are both the identity
when restricted to p∗(ad(P )) ↪→ TP . Thus their difference, ωA − ωB is zero
when restricted to p∗(ad(P )). By the exact sequence it therefore factors as a
composition

ωA − ωB : TP → p∗(TM)
α−−−−→ p∗(ad(P ))

for some bundle homomorphism α : p∗(TM)→ p∗(ad(P )). That is, for every
y ∈ P , α defines a linear transformation

αy : p∗(TM)y → p∗(ad(P ))y.

Hence for every y ∈ P , α defines (and is defined by) a linear transformation

αy : Tp(y)M → ad(P )p(y).

Furthermore, the fact that both ωA and ωB are equivariant splittings says
that ωA−ωB is equivariant, which translates to the fact that αy only depends
on the orbit of y under the G - action. That is,

αy = αyg : Tp(y)M → ad(P )p(y)

for every g ∈ G. Thus αy only depends on p(y) ∈M . Hence for every x ∈M ,
α defnes, and is defined by, a linear transformation

αx : TxM → ad(P )x.
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Thus α may be viewed as a section of the bundle of homormorphisms,
Hom(TM, ad(P )), and hence is a one form,

α ∈ Ω1(M ; ad(P )).

Thus any two connections on P differ by an element in Ω1(M ; ad(P )) in this
sense.

Now reversing the procedure, an element β ∈ Ω1(M ; ad(P )) defines an
equivariant homomorphism of bundles over P ,

β : p∗(TM)→ p∗(ad(P )).

By adding the composition

TP
Dp−−−−→ p∗(TM)

β−−−−→ p∗(ad(P ))

to any connection (equivariant splitting)

ωA : TP → p∗(ad(P ))

one produces a new equivariant splitting of TP , and hence a new connection.
The proposition follows.

Remark. Even though the space of connections A(P ) is affine, it is not, in
general a vector space. There is no “zero” in A(P ) since there is no
pre-chosen, canonical connection. The one exception to this, of course, is
when P is the trivial G - bundle,

P = M ×G→M.

In this case there is an obvious equvariant splitting of TP , which serves as
the “zero” in A(P ). Moreover in this case the adjoint bundle ad(P ) is also
trivial,

ad(P ) = M × g→M.

Hence there is a canonical identification of the space of connections on the
trivial bundle with Ω1(M ; g) = Ω1(M)⊗ g.

Let p : P → M be a principal G - bundle and let ωA ∈ A(P ) be a
connection.

The curvature FA of ωA is a two form

FA ∈ Ω2(M ; ad(P ))

which measures to what extent the splitting ωA commutes with the braket
operation on vector fields. More precisely, let X and Y be vector fields on M .
The connection ωA defines an equivariant splitting of TP and hence defines
a “horizontal” lifting of these vector fields, which we denote by X̃ and Ỹ
respectively.
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Definition 3.23. The curvature FA ∈ Ω2(M ; ad(P )) is defined by

FA(X,Y ) = ωA[X̃, Ỹ ].

For those unfamiliar with the bracket operation on vector fields, we refer
you to [57]

Another important construction with connections is the associated covari-
ant derivative which is defined as follows.

Definition 3.24. The covariant derivative induced by the connection ωA

DA : Ω0(M ; ad(P ))→ Ω1(M ; ad(P ))

is defined by
DA(σ)(X) = [X̃, σ].

where X is a vector field on M .

The notion of covariant derivative, and hence connection, extends to vector
bundles as well. Let ζ : p : Eζ → M be a finite dimensional vector bundle
over M .

Definition 3.25. A connection on ζ (or a covariant derivative) is a linear
transformation

DA : Ω0(M ; ζ)→ Ω1(M ; ζ)

that satisfies the Leibnitz rule

DA(fφ) = df ⊗ φ+ fDA(φ) (3.8)

for any f ∈ C∞(M ;R) and any φ ∈ Ω0(M ; ζ).

Now we can model the space of connections on a vector bundle, A(ζ)
similarly to how we modeled the space of connections on a principal bundle
A(P ). Namely, given any two connections DA and DB on ζ and a function
f ∈ C∞(M ;R), one can take the convex combination

f ·DA + (1− f) ·DB

and obtain a new connection. From this it is not difficult to see the following.
We leave the proof as an exercise to the reader.

Proposition 3.27. The space of connections on the vector bundle ζ, A(ζ)
is an affine space modeled on the vector space of one forms Ω1(M ;End(ζ)),
where End(ζ) is the bundle of endomorphisms of ζ.



64 Bundles, Homotopy, and Manifolds

Let X be a vector field on M and DA a connection on the vector bundle
ζ. The covariant derivative in the direction of X, which we denote by (DA)X
is an operator on the space of sections of ζ,

(DA)X : Ω0(M ; ζ)→ Ω0(M ; ζ)

defined by
(DA)X(σ) = 〈DA(φ);X〉.

One can then define the curvature FA ∈ Ω2(M ;End(ζ)) by defining its action
on a pair of vector fields X and Y to be

FA(X,Y ) = (DA)X(DA)Y − (DA)Y (DA)X − (DA)[X,Y ]. (3.9)

To interpret this formula notice that a - priori FA(X,Y ) is a second order
differential operator on the space of sections of ζ. However a direct calculation
shows that for f ∈ C∞(M ;R) and σ ∈ Ω0(M ; ζ), then

FA(X,Y )(fσ) = fFA(X,Y )(σ)

and hence FA(X,Y ) is in fact a zero - order operator on Ω0(M ; ζ). But a zero
order operator on the space of sections of ζ is a section of the endomorphism
bundle End(ζ). Thus FA assigns to any pair of vector fields X and Y a section
of End(ζ). Moreover it is straightforward to check that this assignment is ten-
sorial in X and Y (i.e FA(fX, Y ) = FA(X, fY ) = fFA(X,Y )). Thus FA is an
element of Ω2(M ;End(ζ)). The curvature measures the lack of commutativity
in second order partial covariant derivatives.

Given a connection on a bundle ζ the linear mapping DA : Ω0(M ; ζ) →
Ω1(M ; ζ) extends to a deRham type sequence,

Ω0(M ; ζ)
DA−−−−→ Ω1(M ; ζ)

DA−−−−→ Ω2(M ; ζ)
DA−−−−→ · · ·

where for σ ∈ Ωp(M ; ζ), DA(σ) is the p+ 1 -form defined by the formula

DA(σ)(X0, · · · , Xp) =

p∑
j=0

(−1)j(DA)Xj (σ(X0, · · · , X̂j , · · · , Xp)) (3.10)

+
∑
i<j

(−1)i+jσ([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xp).

We observe that unlike with the standard deRham exterior derivative
(which can be viewed as a connection on the trivial line bundle), it is not
generally true that DA ◦DA = 0. In fact we have the following, whose proof
is a direct calculation that we leave to the reader.
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Proposition 3.28.

DA ◦DA = FA : Ω0(M ; ζ)→ Ω2(M ; ζ)

where in this context the curvature FA is interpreted as a assigning to a section
σ ∈ Ω0(M ; ζ) the 2 - form FA(σ) which associates to vector fields X and Y
the section FA(X,Y )(σ) as defined in (3.9).

Thus the curvature of a connection FA can also be viewed as measuring the
extent to which the covariant derivative DA fails to form a cochain complex
on the space of differential forms with values in the bundle ζ. However it is
always true that the covariant derivative of the curvature tensor is zero. This
is the well known Bianchi identity (see [57] for a complete discussion).

Theorem 3.29. Let A be a connection on a vector bundle ζ. Then

DAFA = 0.

We end this section by observing that if P is a principal G - bundle with
a connection ωA, then any representation of G on a finite dimensional vector
space V induces a connection on the corresponding vector bundle

P ×G V →M.

We refer the reader to [29] and [57] for thorough discussions of the various
ways of viewing connections. [3] has a nice, brief discussion of connections
on principal bundles, and [21] and [38] have similarly concise discussions of
connections on vector bundles.

3.3.6 The Levi - Civita Connection

Let M be a manifold equipped with a Riemannian structure. Recall that this is
a Euclidean structure on its tangent bundle. In this section we will show how
this structure induces a connection, or covariant derivative, on the tangent
bundle. This connection is called the Levi - Civita connection associated to
the Riemannian structure. Our treatment of this topic follows that of Milnor
and Stasheff [47]

Let DA : Ω0(M ; ζ) → Ω1(M ; ζ) be a connection (or covariant derivative)
on an n - dimensional vector bundle ζ. Its curvature is a two- form with values
in the endomorphism bundle

FA ∈ Ω2(M ;End(ζ))

The endomorphism bundle can be described alternatively as follows. Let Eζ be
the principal GL(n,R) bundle associated to ζ. Then of course ζ = Eζ⊗GL(n,R)

Rn. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.
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Proposition 3.30.

End(ζ) ∼= ad(ζ) = Eζ ×GL(n,R) Mn(R)

where GL(n,R) acts on Mn(R) by conjugation,

A ·B = ABA−1.

Let ω be a differential p - form on M with values in End(ζ),

ω ∈ Ωp(M ;End(ζ)) ∼= Ωp(M ; ad(ζ)) = Ωp(M ;Eζ ×GL(n,R) Mn(R)).

Then on a coordinate chart U ⊂M with local trivialization ψ : ζ|U
∼= U ×Cn

for ζ, (and hence the induced coordinate chart and local trivialization for
ad(ζ)), ω can be viewed as an n× n matrix of p -forms on M . We write

ω = (ωi,j).

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x ∈ U , then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (ωi,j(x)) and (ω′i,j(x)) are two
matrix descriptions of ω(x) defined by two different local trivializations of ζ|U ,
then there exists an A ∈ GL(n,C) with

A(ωi,j(x))A−1 = (ω′i,j(x)).

Now suppose the bundle ζ is equipped with a Euclidean structure. As seen
earlier in this chapter this is equivalent to its associated principal GL(n,R) -
bundle Eζ having a reduction to the structure group O(n). We let EO(n) →M
denote this principal O(n) - bundle.

Now the Lie algebra o(n) of O(n) (i.e the tangent space T1(O(n))) is a
subspace of the Lie algebra of GL(n,R), i.e

o(n) ⊂Mn(R).

The following is well known (see, for example[52])

Proposition 3.31. The Lie algebra o(n) ⊂Mn(R) is the subspace consisting
of skew symmetric n× n - matrices. That is, A ∈ o(n) if and only if

At = −A

where At is the transpose.

So if ζ has a Euclidean structure, we can form the adjoint bundle

adO(ζ) = EO(n) ×O(n) o(n) ⊂ Eζ ×GL(n,R) Mn(R) = ad(ζ)

where, again O(n) acts on o(n) by conjugation.
Now suppose DA is an orthogonal connection on ζ. That is, it is induced

by a connection on the principal O(n) - bundle EO(n) →M . The following is
fairly clear, and we leave its proof as an exercise.
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Corollary 3.32. If DA is an orthogonal connection on a Euclidean bundle
ζ, then the curvature FA lies in the space of o(n) valued two forms

FA ∈ Ω2(M ; adO(ζ)) ⊂ Ω2(M ; ad(ζ)) = Ω2(M ;End(ζ)).

Furthermore, on a coordinate chart U ⊂M with local trivialization ψ : ζ|U
∼=

U × Cn that preserves the Euclidean structure, we may write the form FA as
a skew - symmetric matrix of two forms,

FA|U = (ωi,j) i, j = 1, · · · , n

where each ωi,j ∈ Ω2(M) and ωi,j = −ωj,i. In fact the connection DA itself
can be written as skew symmetric matrix of one forms

DA|U
= (αi,j)

where each αi,j ∈ Ω1(M).

We now describe the notion of a “symmetric” connection on the cotangent
bundle of a manifold, and then show that if the manifold is equipped with
a Riemannian structure (i.e there is a Euclidean structure on the (co) - tan-
gent bundle), then there is a unique symmetric, orthogonal connection on the
cotangent bundle.

Definition 3.26. A connection DA on the cotangent bundle T ∗M is sym-
metric (or torsion free ) if the composition

Γ(T ∗) = Ω0(M ;T ∗)
DA−−−−→ Ω1(M ;T ∗) = Γ(T ∗ ⊗ T ∗) ∧−−−−→ Γ(Λ2T ∗)

is equal to the exterior derivative d.

In terms of local coordinates x1, · · · , xn, if we write

DA(dxk) =
∑
i,j

Γki,jdxi ⊗ dxj (3.11)

(the functions Γki,j are called the “Christoffel symbols”), then the requirement

that DA is symmetric is that the image
∑
i,j Γki,jdxi ⊗ dxj be equal to the

exterior derivative d(dxk) = 0. This implies that the Christoffel symbols Γki,j
must be symmetric in i and j. The following is straightforward to verify.

Lemma 3.33. A connection DA on T ∗ is symmetric if and only if the co-
variant derivative of the differential of any smooth function

DA(df) ∈ Γ(T ∗ ⊗ T ∗)
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is a symmetric tensor. That is, if ψ1, · · · , ψn form a local basis of sections of
T ∗, and we write the corresponding local expression

DA(df) =
∑
i,j

ai,j ψi ⊗ ψj

then ai,j = aj,i.

We now show that the (co)-tangent bundle of a Riemannian metric has a
preferred connection.

Theorem 3.34. The cotangent bundle T ∗M of a Riemannian manifold has
a unique orthogonal, symmetric connection. (It is orthogonal with respect to
the Euclidean structure defined by the Riemannian metric.)

Proof. Let U be an open neighborhood in M with a trivialization

ψ : U × Rn :→ T ∗|U

which preserves the Euclidean structure. ψ defines n orthonormal sections of
T ∗|U , ψ1, · · · , ψn. The ψj ’s constitute an orthonormal basis of one forms on M .

We will show that there is one and only one skew-symmetric matrix (αi,j) of
one forms such that

dψk =
∑

αk,j ∧ ψj .

We can then define a connection DA on T ∗|U by requiring that

DA(ψk) =
∑

αk,j ⊗ ψj .

It is then clear that DA is the unique symmetric connection which is compati-
ble with the metric. Since the local connections are unique, they glue together
to yield a unique global connection with this property.

In order to prove the existence and uniqueness of the skew symmetric
matrix of one forms (αi,j) we need the following combinatorial observation.

Any n×n×n array of real valued functions Ai,j,k can be written uniquely
as the sum of an array Bi,j,k which is symmetric in i, j, and an array Ci,j,k
which is skew symmetric in j, k. To see this, consider the formulas

Bi,j,k =
1

2
(Ai,j,k +Aj,i,k −Ak,i,j −Ak,j,i +Aj,k,i +Ai,k,j)

Ci,j,k =
1

2
(Ai,j,k −Aj,i,k +Ak,i,j +Ak,j,i −Aj,k,i −Ai,k,j)

Uniqueness would follow since if an array Di,j,k were both symmetric in i, j
and skew symmetric in j, k, then one would have

Di,j,k = Dj,i,k = −Dj,k,i = −Dk,j,i = Dk,i,j = Di,k,j = −Di,j,k
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and hence all the entries are zero.
Now choose functions Ai,j,k such that

dψk =
∑

Ai,j,k ψi ∧ ψj

and set Ai,j,k = Bi,j,k + Ci,j,k as above. It then follows that

dψk =
∑

Ci,j,k ψi ∧ ψj

by the symmetry of the Bi,j,k’s. Then we define the one forms

αk,j =
∑

Ci,j,k ψi.

They clearly form the unique skew symmetric matrix of one forms with dψk =∑
αk,j ∧ ψj . This proves the lemma.

This preferred connection on the (co)tangent bundle of a Riemannian met-
ric is called the Levi - Civita connection. Statements about the curvature of a
metric on a manifold are actually statements about the curvature form of the
Levi - Civita connection associated to the Riemannian metric. For example,
a “flat metric” on a manifold is a Riemannian structure whose correspond-
ing Levi-Civita connection has zero curvature form. As is fairly clear, these
connections form a central object of study in Riemannian geometry.





4

Classification of Bundles

In this chapter we prove Steenrod’s classification theorem of principal G -
bundles, and the corresponding classification theorem of vector bundles. This
theorem states that for every group G, there is a “classifying space” BG with a
well defined homotopy type so that the homotopy classes of maps from a space
X, [X,BG], is in bijective correspondence with the set of isomorphism classes
of principal G - bundles, PrinG(X). We then describe various examples and
constructions of these classifying spaces, and use them to study structures on
principal bundles, vector bundles, and manifolds.

4.1 The homotopy invariance of fiber bundles

The goal of this section is to prove the following theorem, and to examine
certain applications such as the classification of principal bundles over spheres
in terms of the homotopy groups of Lie groups.

Theorem 4.1. Let p : E → B be a fiber bundle with fiber F , and let f0 :
X → B and f1 : X → B be homotopic maps.Then the pull - back bundles are
isomorphic,

f∗0 (E) ∼= f∗1 (E).

The main step in the proof of this theorem is the basic Covering Homotopy
Theorem for fiber bundles which we now state and prove.

Theorem 4.2. Covering Homotopy theorem. Let p0 : E → B and q :
Z → Y be fiber bundles with the same fiber, F , where B is normal and locally
compact. Let h0 be a bundle map

E
h̃0−−−−→ Z

p

y yq
B −−−−→

h0

Y

71
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Let H : B× I → Y be a homotopy of h0 (i.e h0 = H|B×{0} .) Then there exists
a covering of the homotopy H by a bundle map

E × I H̃−−−−→ Z

p×1

y yq
B × I −−−−→

H
Y.

Proof. We prove the theorem here when the base space B is compact. The
natural extension is to when B has the homotopy type of a CW - complex.
The proof in full generality can be found in Steenrod’s book [58].

The idea of the proof is to decompose the homotopy H into homotopies
that take place in local neighborhoods where the bundle is trivial. The theorem
is obviously true for trivial bundles, and so the homotopy H can be covered
on each local neighborhood. One then must be careful to patch the coverings
together so as to obtain a global covering of the homotopy H.

Since the space X is compact, we may assume that the pull - back bundle
H∗(Z) → B × I has locally trivial neighborhoods of the form {Uα × Ij},
where {Uα} is a locally trivial covering of B (i.e there are local trivializations
φα,β : Uα×F → p−1(Uα)), and I1, · · · , Ir is a finite sequence of open intervals
covering I = [0, 1], so that each Ij meets only Ij−1 and Ij+1 nontrivially.
Choose numbers

0 = t0 < t1 < · · · < tr = 1

so that tj ∈ Ij ∩ Ij+1. We assume inductively that the covering homotopy

H̃(x, t) has been defined E× [0, tj ] so as to satisfy the theorem over this part.
For each x ∈ B, there is a pair of neighborhoods (W,W ′) such that for

x ∈ W , W̄ ⊂ W ′ and W̄ ′ ⊂ Uα for some Uα. Choose a finite number of such
pairs (Wi,W

′
i ), (i = 1, · · · , s) covering B. Then the Urysohn lemma implies

there is a map ui : B → [tj , tj+1] such that ui(W̄i) = tj+1 and uj(B−W ′i ) = tj .
Define τ0(x) = tj for x ∈ B, and

τi(x) = max(u1(x), · · · , ui(x)), x ∈ B, i = 1, · · · , s.

Then
tj = τ0(x) ≤ τ1(x) ≤ · · · ≤ ts(x) = tj+1.

Define Bi to be the set of pairs (x, t) such that tj ≤ t ≤ τi(x). Let Ei be
the part of E × I lying over Bi. Then we have a sequence of total spaces of
bundles

E × tj = E0 ⊂ E1 ⊂ · · · ⊂ Es = E × [tj , tj+1].

We suppose inductively that H̃ has been defined on Ei−1 and we now define
its extension over Ei.

By the definition of the τ ’s, the set Bi−Bi−1 is contained in W ′i×[tj , tj+1];
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and by the definition of the W ’s, W̄ ′i× [tj , tj+1] ⊂ Uα× Ij which maps via H
to a locally trivial neighborhood, say Vk, for q : Z → Y . Say φk : Vk × F →
q−1(Vk) is a local trivialization. In particular we can define ρk : q−1(Vk)→ F
to be the inverse of φk followed by the projection onto F . We now define

H̃(e, t) = φk(H(x, t), ρ(H̃(e, τi−1(x)))

where (e, t) ∈ Ei − Ei−1 and x = p(e) ∈ B.
It is now a straightforward verification that this extension of H̃ is indeed

a bundle map on Ei. This then completes the inductive step.

We now prove theorem 4.1 using the covering homotopy theorem.

Proof. Let p : E → B, and f0;X → B and f1 : X → B be as in the
statement of the theorem. Let H : X × I → B be a homotopy with H0 = f0

and H1 = f1. Now by the covering homotopy theorem there is a covering
homotopy H̃ : f∗0 (E)× I → E that covers H : X × I → B. By definition this
defines a map of bundles over X × I, that by abuse of notation we also call
H̃,

f∗0 (E)× I H̃−−−−→ H∗(E)y y
X × I −−−−→

=
X × I.

This is clearly a bundle isomorphism since it induces the identity map on
both the base space and on the fibers. Restricting this isomorphism to X×{1},
and noting that since H1 = f1, we get a bundle isomorphism

f∗0 (E)
H̃−−−−→∼= f∗1 (E)y y

X × {1} −−−−→
=

X × {1}.

This proves theorem 4.1

We now derive certain consequences of this theorem.

Corollary 4.3. Let p : E → B be a principal G - bundle over a connected
space B. Then for any space X the pull back construction gives a well defined
map from the set of homotopy classes of maps from X to B to the set of
isomorphism classes of principal G - bundles,

ρE : [X,B]→ PrinG(X).
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Definition 4.1. A principal G - bundle p : EG → BG is called universal if
the pull back construction

ρEG : [X,BG]→ PrinG(X)

is a bijection for every space X. In this case the base space of the universal
bundle BG is called a classifying space for G (or for principal G - bundles).

The main goal of this chapter is to show that universal bundles exist for
every group G, and that the classifying spaces are unique up to homotopy
type.

Applying theorem 4.1 to vector bundles gives the following, which was
claimed at the end of chapter 1.

Corollary 4.4. If f0 : X → Y and f1 : X → Y are homotopic, they induce
the same homomorphism of abelian monoids,

f∗0 = f∗1 : V ect∗(Y )→ V ect∗(X)

V ect∗R(Y )→ V ect∗R(X)

and hence of K theories

f∗0 = f∗1 : K(Y )→ K(X)

KO(Y )→ KO(X)

Corollary 4.5. If f : X → Y is a homotopy equivalence, then it induces
isomorphisms

f∗ : PrinG(Y )
∼=−−−−→ PrinG(X)

V ect∗(Y )
∼=−−−−→ V ect∗(X)

K(Y )
∼=−−−−→ K(X)

Corollary 4.6. Any fiber bundle over a contractible space is trivial.

Proof. If X is contractible, it is homotopy equivalent to a point. Apply the
above corollary.

The following result is a classification theorem for bundles over spheres. It
begins to describe why understanding the homotopy type of Lie groups is so
important in Topology.
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Theorem 4.7. There is a bijective correspondence between principal bundles
and homotopy groups

PrinG(Sn) ∼= πn−1(G)

where as a set πn−1G = [Sn−1, x0; G, {1}], which refers to (based) homotopy
classes of basepoint preserving maps from the sphere Sn−1 with basepoint x0 ∈
Sn−1, to the group G with basepoint the identity 1 ∈ G.

Proof. Let p : E → Sn be a G - bundle. Write Sn as the union of its upper
and lower hemispheres,

Sn = Dn
+ ∪Sn−1 Dn

−.

Since Dn
+ and Dn

− are both contractible, the above corollary says that E re-
stricted to each of these hemispheres is trivial. Morever if we fix a trivialization
of the fiber of E at the basepoint x0 ∈ Sn−1 ⊂ Sn, then we can extend this
trivialization to both the upper and lower hemispheres. We may therefore
write

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

where θ is a clutching function defined on the equator, θ : Sn−1 → G. That
is, E consists of the two trivial components, (Dn

+ × G) and (Dn
− × G) where

if x ∈ Sn−1, then (x, g) ∈ (Dn
+ ×G) is identified with (x, θ(x)g) ∈ (Dn

− ×G).
Notice that since our original trivializations extended a common trivialization
on the basepoint x0 ∈ Sn−1, then the trivialization θ : Sn−1 → G maps the
basepoint x0 to the identity 1 ∈ G. The assignment of a bundle its clutching
function, will define our correspondence

Θ : PrinG(Sn)→ πn−1G.

To see that this correspondence is well defined we need to check that if E1

is isomorphic to E2, then the corresponding clutching functions θ1 and θ2

are homotopic. Let Ψ : E1 → E2 be an isomorphism. We may assume this
isomorphism respects the given trivializations of these fibers of these bundles
over the basepoint x0 ∈ Sn−1 ⊂ Sn. Then the isomorphism Ψ determines an
isomorphism

(Dn
+ ×G) ∪θ1 (Dn

− ×G)
Ψ−−−−→∼= (Dn

+ ×G) ∪θ2 (Dn
− ×G).

By restricting to the hemispheres, the isomorphism Ψ defines maps

Ψ+ : Dn
+ → G

and
Ψ− : Dn

− → G

which both map the basepoint x0 ∈ Sn−1 to the identity 1 ∈ G, and further-
more have the property that for x ∈ Sn−1,

Ψ+(x)θ1(x) = θ2(x)Ψ−(x),
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or, Ψ+(x)θ1(x)Ψ−(x)−1 = θ2(x) ∈ G. Now by considering the linear homo-
topy Ψ+(tx)θ1(x)Ψ−(tx)−1 for t ∈ [0, 1], we see that θ2(x) is homotopic to
Ψ+(0)θ1(x)Ψ−(0)−1, where the two zeros in this description refer to the ori-
gins of Dn

+ and Dn
− respectively, i.e the north and south poles of the sphere

Sn. Now since Ψ+ and Ψ− are defined on connected spaces, their images lie
in a connected component of the group G. Since their image on the basepoint
x0 ∈ Sn−1 are both the identity, there exist paths α+(t) and α−(t) in Sn that
start when t = 0 at Ψ+(0) and Ψ−(0) respectively, and both end at t = 1
at the identity 1 ∈ G. Then the homotopy α+(t)θ1(x)α−(t)−1 is a homotopy
from the map Ψ+(0)θ1(x)Ψ−(0)−1 to the map θ1(x). Since the first of these
maps is homotopic to θ2(x), we have that θ1 is homotopic to θ2, as claimed.
This implies that the map Θ : PrinG(Sn)→ πn−1G is well defined.

The fact that Θ is surjective comes from the fact that every map Sn−1 → G
can be viewed as the clutching function of the bundle

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

as seen in our discussion of clutching functions in chapter 1.
We now show that Θ is injective. That is, suppose E1 and E2 have homo-

topic clutching functions, θ1 ' θ2 : Sn−1 → G. We need to show that E1 is
isomorphic to E2 As above we write

E1 = (Dn
+ ×G) ∪θ1 (Dn

− ×G)

and
E2 = (Dn

+ ×G) ∪θ2 (Dn
− ×G).

Let H : Sn−1 × [−1, 1] → G be a homotopy so that H1 = θ1 and H1 = θ2.
Identify the closure of an open neighborhood N of the equator Sn−1 in Sn

with Sn−1 × [−1, 1] Write D+ = D2
+ ∪ N̄ and D− = D2

− ∪ N̄ Then D+ and
D− are topologically closed disks and hence contractible, with

D+ ∩ D− = N̄ ∼= Sn−1 × [−1, 1].

Thus we may form the principal G - bundle

E = D+ ×G ∪H D− ×G

where by abuse of notation, H refers to the composition

N̄ ∼= Sn−1 × [−1, 1]
H−−−−→ G.

We leave it to the interested reader to verify that E is isomorphic to both
E1 and E2. This completes the proof of the theorem.
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4.2 Universal bundles and classifying spaces

The goal of this section is to study universal principal G - bundles, the result-
ing classification theorem, and the corresponding classifying spaces. We will
discuss several examples including the universal bundle for any subgroup of
the general linear group. We postpone the proof of the existence of universal
bundles for all groups until the next section.

In order to identify universal bundles, we need to recall the following def-
inition from homotopy theory.

Definition 4.2. A space X is said to be aspherical if all of its homotopy
groups are trivial,

πn(X) = 0 for all n ≥ 0.

Equivalently, a space X is aspherical if every map from a sphere Sn → X can
be extended to a map of its bounding disk, Dn+1 → X.

Note. A famous theorem of J.H.C. Whitehead states that if X has the
homotopy type of a CW - complex, then X being aspherical is equivalent to
X being contractible (see [65]).

The following is the main result of this section. It identifies when a principal
bundle is universal.

Theorem 4.8. Let p : E → B be a principal G - bundle, where the total space
E is aspherical. Then this bundle is universal in the sense that if X is any
space of the homotopy type of a CW -complex, the induced pull-back map

ψ : [X,B]→ PrinG(X)

f → f∗(E)

is a bijective correspondence.

For the purposes of these notes we will prove the theorem in the setting
where the action of G on the total space E is cellular. That is, there is a CW
- decomposition of the space E which, in an appropriate sense, is respected
by the group action. There is not much loss in making these assumptions,
since the actions of compact Lie groups on manifolds, and algebraic actions
on projective varieties satisfy this property. For the proof of the theorem in
its full generality we refer the reader to Steenrod’s book [58], and for a full
reference on equivariant CW - complexes and how they approximate a wide
range of group actions, we refer the reader to [39]

In order to make the notion of cellular action precise, we need to define
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the notion of an equivariant CW - complex, or a G - CW - complex. The
idea is the following. Recall that a CW - complex is a space that is made up
out of disks of various dimensions whose interiors are disjoint. In particular
it can be built up skeleton by skeleton, and the (k + 1)st skeleton X(k+1) is
constructed out of the kth skeleton X(k) by attaching (k+ 1) - dimensional
disks via “attaching maps”, Sk → X(k).

A “G - CW - complex” is one that has a group action so that the orbits
of the points on the interior of a cell are uniform in the sense that each point
in a cell Dk has the same isotropy subgroup, say H, and the orbit of a cell
itself is of the form G/H ×Dk. This leads to the following definition.

Definition 4.3. A G - CW - complex is a space with G -action X which
is topologically the direct limit of G - invariant subspaces {X(k)} called the
equivariant skeleta,

X(0) ⊂ X(1) ⊂ · · · ⊂ X(k−1) ⊂ X(k) ⊂ · · ·X

where for each k ≥ 0 there is a countable collection of k dimensional disks,
subgroups of G, and maps of boundary spheres

{Dk
j , Hj < G, φj : ∂Dk

j ×G/Hj = Sk−1
j ×G/Hj → X(k−1) j ∈ Ik}

so that

1. Each “attaching map” φj : Sk−1
j ×G/Hj → X(k−1) is G -equivariant, and

2.
X(k) = Xk−1)

⋃
φj j∈Ij

(Dk
j ×G/Hj).

This notation means that each “ disk orbit ” Dk
j ×G/Hj is attached to X(k−1)

via the map φj : Sk−1
j ×G/Hj → X(k−1).

We leave the following as an exercise to the reader.

Exercise. Prove that when X is a G - CW complex the orbit space X/G
has the an induced structure of a (non-equivariant) CW - complex.

Note. Observe that in a G -CW complex X with a free G action, all disk
orbits are of the form Dk ×G, since all isotropy subgroups are trivial.

We now prove the above theorem under the assumption that the principal
bundle p : E → B has the property that with respect to group action of G
on E, then E has the structure of a G - CW - complex. The basespace is
then given the induced CW - structure. The spaces X in the statement of the
theorem are assumed to be of the homotopy type of CW - complexes.
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Proof. We first prove that the pull - back map

ψ : [X,B]→ PrinG(X)

is surjective. So let q : P → X be a principal G - bundle, with P a G - CW -
complex. We prove there is a G - equivariant map h : P → E that maps each
orbit pG homeomorphically onto its image, h(y)G. We prove this by induction
on the equivariant skeleta of P . So assume inductively that the map h has
been constructed on the (k − 1) - skeleton,

hk−1 : P (k−1) → E.

Since the action of G on P is free, all the k - dimensional disk orbits are of
the form Dk ×G. Let Dk

j ×G be a disk orbit in the G-CW - structure of the

k - skeleton P (k). Consider the disk Dk
j × {1} ⊂ Dk

j ×G. Then the map hk−1

extends to Dk
j × {1} if and only if the composition

Sk−1
j × {1} ⊂ Sk−1

j ×G φj−−−−→ P (k−1) hk−1−−−−→ E

is null homotopic. But since E is aspherical, any such map is null homotopic
and extends to a map of the disk, γ : Dk

j × {1} → E. Now extend γ equiv-

ariantly to a map hk,j : Dk
j ×G→ E. By construction hk,j maps the orbit of

each point x ∈ Dk
j equivariantly to the orbit of γ(x) in E. Since both orbits

are isomorphic to G (because the action of G on both P and E are free), this
map is a homeomorphism on orbits. Taking the collection of the extensions
hk,j together then gives an extension

hk : P (k) → E

with the required properties. This completes the inductive step. Thus we may
conclude we have a G - equivariant map h : P → E that is a homeomorphism
on the orbits. Hence it induces a map on the orbit space f : P/G = X →
E/G = B making the following diagram commute

P
h−−−−→ E

q

y yp
X −−−−→

f
B

Since h induces a homeomorphism on each orbit, the maps h and f deter-
mine a homeomorphism of principal G - bundles which induces an equivariant
isomorphism on each fiber. This implies that h induces an isomorphism of
principal bundles to the pull - back

P
h−−−−→∼= f∗(E)

q

y yp
X −−−−→

=
X.
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Thus the isomorphism class [P ] ∈ PrinG(X) is given by f∗(E). That is,
[P ] = ψ(f), and hence

ψ : [X,B]→ PrinG(X)

is surjective.

We now prove ψ is injective. To do this, assume f0 : X → B and f1 : X →
B are maps so that there is an isomorphism

Φ : f∗0 (E)
∼=−−−−→ f∗1 (E).

We need to prove that f0 and f1 are homotopic maps. Now by the cellular
approximation theorem (see [56]) we can find cellular maps homotopic to f0

and f1 respectively. We therefore assume without loss of generality that f0

and f1 are cellular. This, together with the assumption that E is a G - CW
complex, gives the pull back bundles f∗0 (E) and f∗1 (E) the structure of G -CW
complexes.

Define a principal G - bundle E → X × I by

E = f∗0 (E)× [0, 1/2] ∪Φ f
∗
1 (E)× [1/2, 1]

where v ∈ f∗0 (E)× {1/2} is identified with Φ(v) ∈ f∗1 (E)× {1/2}. E also has
the structure of a G - CW - complex.

Now by the same kind of inductive argument that was used in the sur-
jectivity argument above, we can find an equivariant map H : E → E that
induces a homeomorphism on each orbit, and that extends the obvious maps
f∗0 (E)× {0} → E and f∗1 (E)× {1} → E. The induced map on orbit spaces

F : E/G = X × I → E/G = B

is a homotopy between f0 and f1. This proves the correspondence Ψ is injec-
tive, and completes the proof of the theorem.

The following result establishes the homotopy uniqueness of universal bun-
dles.

Theorem 4.9. Let E1 → B1 and E2 → B2 be universal principal G - bundles.
Then there is a bundle map

E1
h̃−−−−→ E2y y

B1 −−−−→
h

B2

so that h is a homotopy equivalence.



Classification of Bundles 81

Proof. The fact that E2 → B2 is a universal bundle means, by 4.8 that there
is a “classifying map” h : B1 → B2 and an isomorphism h̃ : E1 → h∗(E2).
Equivalently, h̃ can be thought of as a bundle map h̃ : E! → E2 lying over
h : B1 → B2. Similarly, using the universal property of E1 → B1, we get
a classifying map g : B2 → B1 and an isomorphism g̃ : E2 → g∗(E1), or
equivalently, a bundle map g̃ : E2 → E1. Notice that the composition

g ◦ f : B1 → B2 → B1

is a map whose pull back,

(g ◦ f)∗(E1) = g∗(f∗(E1))
∼= g∗(E2)
∼= E1.

That is, (g◦f)∗(E1) ∼= id∗(E1), and hence by 4.8 we have g◦f ' id : B1 → B1.
Similarly, f ◦ g ' id : B2 → B2. Thus f and g are homotopy inverses of each
other.

Because of this theorem, the basespace of a universal principal G - bundle
has a well defined homotopy type. We denote this homotopy type by BG, and
refer to it as the classifying space of the group G. We also use the notation
EG to denote the total space of a universal G - bundle.

We have the following immediate result about the homotopy groups of the
classifying space BG.

Corollary 4.10. For any group G, there is an isomorphism of homotopy
groups,

πn−1G ∼= πn(BG).

Proof. By considering 4.7 and 4.8 we see that both of these homotopy groups
are in bijective correspondence with the set of principal bundles PrinG(Sn).
To realize this bijection by a group homomorphism, consider the “suspension”
of the group G, ΣG obtained by attaching two cones on G along the equator.
That is,

ΣG = G× [−1, 1]/ ∼

where all points of the form (g, 1), (h,−1), or (1, t) are identified to a single
point.

Notice that this suspension construction can be applied to any space with
a basepoint, and in particular ΣSn−1 ∼= Sn.

Consider the principal G bundle E over ΣG defined to be trivial on both
cones with clutching function id : G× {0} =−−−−→ G on the equator. That is,
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if C+ = G × [0, 1]/ ∼⊂ ΣG and C− = G × [−1, 0] ⊂ ΣE are the upper and
lower cones, respectively, then

E = (C+ ×G) ∪id (C− ×G)

where ((g, 0), h) ∈ C+×G is identified with ((g, 0)gh ∈ C−×G. Then by 4.8
there is a classifying map

f : ΣG→ BG

such that f∗(EG) ∼= E.
Now for any space X, let ΩX be the loop space of X,

ΩX = {γ : [−1, 1]→ X such that γ(−1) = γ(1) = x0 ∈ X}

where x0 ∈ X is a fixed basepoint. Then the map f : ΣG → BG determines
a map (its adjoint)

f̄ : G→ ΩBG

defined by f̄(g)(t) = f(g, t). But now the loop space ΩX of any connected
space X has the property that πn−1(ΩX) = πn(X) (see the exercise below).
We then have the induced group homomorphism

πn−1(G)
f̄∗−−−−→ πn−1(ΩBG)

∼=−−−−→ πn(BG)

which induces the bijective correspondence described above.

Exercises. 1. Prove that for any connected space X, there is an
isomorphism

πn−1(ΩX) ∼= πn(X).

2. Prove that the composition

πn−1(G)
f̄∗−−−−→ πn−1(ΩBG)

∼=−−−−→ πn(BG)

in the above proof yields the bijection associated with identifying both
πn−1(G) and πn(BG) with PrinG(Sn).

We recall the following definition from homotopy theory.

Definition 4.4. An Eilenberg - MacLane space of type (G,n) is a space X
such that

πk(X) =

{
G if k = n

0 otherwise

We write K(G,n) for an Eilenberg - MacLane space of type (G,n). Recall
that for n ≥ 2, the homotopy groups πn(X) are abelian groups, so in this
K(G,n) only exists
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Corollary 4.11. Let π be a discrete group. Then the classifying space Bπ is
an Eilenberg - MacLane space K(π, 1).

Examples.

• R has a free, cellular action of the integers Z by

(t, n)→ t+ n t ∈ R, n ∈ Z.

Since R is contractible, R/Z = S1 = BZ = K(Z, 1).

• The inclusion Sn ⊂ Sn+1 as the equator is clearly null homotopic since
the inclusion obviously extends to a map of the disk. Hence the direct
limit space

lim−→
n

Sn = ∪nSn = S∞

is aspherical. Now Z2 acts freely on each Sn by the antipodal map, and
the inclusions Sn ⊂ Sn+1 are equivariant with respect to these actions.
Hence there is an induced free action of Z2 on S∞. Thus the projection
map

S∞ → S∞/Z2 = RP∞

is a universal principal Z2 = O(1) - bundle, and so

RP∞ = BO(1) = BZ2 = K(Z2, 1)

.

• Similarly, the inclusion of the unit sphere in Cn into the unit sphere in
Cn+1 gives an the inclusion S2n−1 ⊂ S2n+1 which is null homotopic. It is
also equivariant with respect to the free S1 = U(1) - action given by
(complex) scalar multiplication. Then the limit S∞ = ∪nS2n+1 is
aspherical with a free S1 action. We therefore have that the projection

S∞ → S∞/S1 = CP∞

is a principal S1 = U(1) bundle. Hence we have

CP∞ = BS1 = BU(1).

Moreover since S1 is a K(Z, 1), then we have that

CP∞ = K(Z, 2).

• The cyclic groups Zn are subgroups of U(1) and so they act freely on S∞

as well. Thus the projection maps

S∞ → S∞/Zn

is a universal principal Zn bundle. The quotient space S∞/Zn is denoted
L∞(n) and is referred to as the infinite Zn - lens space.
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These examples allow us to give the following description of line bundles
and their relation to cohomology. We first recall a well known theorem in
homotopy theory. This theorem will be discussed further in chapter 4. We
refer the reader to [63] for details.

Theorem 4.12. Let G be an abelian group. Then there is a natural isomor-
phism

φ : Hn(K(G,n);G)
∼=−−−−→ Hom(G,G).

Let ι ∈ Hn(K(G,n);G) be φ−1(id). This is called the fundamental class.
Then if X has the homotopy type of a CW - complex, the mapping

[X,K(G,n)]→ Hn(X;G)

f → f∗(ι)

is a bijective correspondence.

With this we can now prove the following:

Theorem 4.13. There are bijective correspondences which allow us to classify
complex line bundles,

V ect1(X) ∼= PrinU(1)(X) ∼= [X,BU(1)] = [X,CP∞] ∼= [X,K(Z, 2)] ∼= H2(X;Z)

where the last correspondence takes a map f : X → CP∞ to the class

c1 = f∗(c) ∈ H2(X),

where c ∈ H2(CP∞) is the generator. In the composition of these correspon-
dences, the class c1 ∈ H2(X) corresponding to a line bundle ζ ∈ V ect1(X)
is called the first Chern class of ζ (or of the corresponding principal U(1) -
bundle).

Proof. These correspondences follow directly from the above considerations,
once we recall that V ect1(X) ∼= PrinGL(1,C)(X) ∼= [X,BGL(1,C)], and that
CP∞ is a model for BGL(1,C) as well as BU(1). This is because, we can
express CP∞ in its homogeneous form as

CP∞ = lim−→
n

(Cn+1 − {0})/GL(1,C),

and that lim−→n
(Cn+1 − {0}) is an aspherical space with a free action of

GL(1,C) = C∗.

There is a similar theorem classifying real line bundles:
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Theorem 4.14. There are bijective correspondences

V ect1R(X) ∼= PrinO(1)(X) ∼= [X,BO(1)] = [X,RP∞] ∼= [X,K(Z2, 1)] ∼= H1(X;Z2)

where the last correspondence takes a map f : X → RP∞ to the class

w1 = f∗(w) ∈ H1(X;Z2),

where w ∈ H1(RP∞;Z2) is the generator. In the composition of these cor-
respondences, the class w1 ∈ H1(X;Z2) corresponding to a line bundle
ζ ∈ V ect1R(X) is called the first Stiefel - Whitney class of ζ (or of the corre-
sponding principal O(1) - bundle).

More Examples.

• Let Vn(CN ) be the Stieflel - manifold studied in the last chapter. We claim
that the inclusion of vector spaces CN ⊂ C2N as the first N - coordinates
induces an inclusion Vn(CN ) ↪→ Vn(C2N ) which is null homotopic. To see
this, let ι : Cn → C2N be a fixed linear embedding, whose image lies in
the last N - coordinates in C2N . Then given any ρ ∈ Vn(CN ) ⊂ Vn(C2N ),
then t · ι+ (1− t) · ρ for t ∈ [0, 1] defines a one parameter family of linear
embeddings of Cn in C2N , and hence a contraction of the image of Vn(CN )
onto the element ι. Hence the limiting space Vn(C∞) is aspherical with a
free GL(n,C) - action. Therefore the projection

Vn(C∞)→ Vn(C∞)/GL(n,C) = Grn(C∞)

is a universal GL(n,C) - bundle. Hence the infinite Grassmannian is the
classifying space

Grn(C∞) = BGL(n,C)

and so we have a classification

V ectn(X) ∼= PrinGL(n,C)(X) ∼= [X,BGL(n,C)] ∼= [X,Grn(C∞)].

• A simlar argument shows that the infinite unitary Stiefel manifold,
V Un (C∞) is aspherical with a free U(n) - action. Thus the projection

V Un (C∞)→ Vn(C∞)/U(n) = Grn(C∞)

is a universal principal U(n) - bundle. Hence the infinite Grassmanian
Grn(C∞) is the classifying space for U(n) bundles as well,

Grn(C∞) = BU(n).

The fact that this Grassmannian is both BGL(n,C) and BU(n) reflects
the fact that every n - dimensional complex vector bundle has a U(n) -
structure.
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• We have similar universal GL(n,R) and O(n) - bundles:

Vn(R∞)→ Vn(R∞)/GL(n,R) = Grn(R∞)

and
V On (R∞)→ V On (R∞)/O(n) = Grn(R∞).

Thus we have
Grn(R∞) = BGL(n,R) = BO(n)

and so this infinite dimensional Grassmannian classifies real n - dimen-
sional vector bundles as well as principal O(n) - bundles.

Now suppose p : EG → EG/G = BG is a universal G - bundle. Suppose
further that H < G is a subgroup. Then H acts freely on EG as well, and
hence the projection

EG→ EG/H

is a universal H - bundle. Hence EG/H = BH. Using the infinite dimensional
Stiefel manifolds described above, this observation gives us models for the
classifying spaces for any subgroup of a general linear group. So for example
if we have a subgroup (i.e a faithful representation) H ⊂ GL(n,C), then

BH = Vn(C∞)/H.

This observation also leads to the following useful fact.

Proposition 4.15. . Let p : EG→ BG be a universal principal G - bundle,
and let H < G. Then there is a fiber bundle

BH → BG

with fiber the orbit space G/H.

Proof. This bundle is given by

G/H → EG×G G/H → EG/G = BG

together with the observation that EG×G G/H = EG/H = BH.
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4.3 Classifying Gauge Groups

In this section we describe the classifying space of the group of automorphisms
of a principal G - bundle, or the gauge group of the bundle. We describe the
classifying space in two different ways: in terms of the space of connections
on the bundle, and in terms of the mapping space of the base manifold to
the classifying space BG. These constructions are important in Yang - Mills
theory, and we refer the reader to [3] and [17] for more details.

Let A be a connection on a principal bundle P −→M where M is a closed
manifold equipped with a Riemannian metric. The Yang - Mills functional
applied to A, YM(A) is the square of the L2 norm of the curvature,

YM(A) =
1

2

∫
M

‖FA‖2 d(vol).

We view YM as a mapping YM : A(P ) −→ R. The relevance of the gauge
group in Yang - Mills theory is that this is the group of symmetries of A that
YM preserves.

Definition 4.5. The gauge group G(P ) of the principal bundle P is the group
of bundle automorphisms of P −→ M . That is, an element φ ∈ G(P ) is a
bundle isomorphism of P with itself lying over the identity:

P
φ−−−−→∼= Py y

M
=−−−−→ M.

Equivalently, G(P ) is the group G(P ) = AutG(P ) of G - equivariant diffeo-
morphisms of the space P .

The gauge group G(P ) can be thought of in several equivalent ways. The
following one is particularly useful.

Consider the conjugation action of the Lie group G on itself,

G×G −→ G

(g, h) −→ ghg−1.

This left action defines a fiber bundle

Ad(P ) = P ×G G −→ P/G = M

with fiber G. We leave the following as an exercise for the reader.
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Proposition 4.16. The gauge group of a principal bundle P −→ M is nat-
urally isomorphic (as topological groups) the the group of sections of Ad(P ),
C∞(M ;Ad(P )).

The gauge group G(P ) acts on the space of connections A(P ) by the pull
- back construction. More generally, if f : P → Q is any smooth map of
principal G - bundles and A is a connection on Q, then there is a natural pull
back connection f∗(A) on Q, defined by pulling back the equivariant splitting
of τQ to an equivariant splitting of τP in the obvious way. The pull - back
construction for automorphisms φ : P −→ P defines an action of G(P ) on
A(P ).

We leave the proof of the following is an exercise for the reader.

Proposition 4.17. Let P be the trivial bundle M ×G→M . Then the gauge
group G(P ) is given by the function space from M to G,

G(P ) ∼= C∞(M ;G).

Furthermore if φ : M → G is identified with an element of G(P ), and A ∈
Ω1(M ; g) is identified with an element of A(G), then the induced action of φ
on G is given by

φ∗(A) = φ−1Aφ+ φ−1dφ.

It is not difficult to see that in general the gauge group G(P ) does not
act freely on the space of connections A(P ). However there is an important
subgroup G0(P ) < G(P ) that does. This is the group of based gauge transfor-
mations. To define this group, let x0 ∈ M be a fixed basepoint, and let Px0

be the fiber of P at x0.

Definition 4.6. The based gauge group G0(P ) is a subgroup of the group of
bundle automorphisms G(P ) which pointwise fix the fiber Px)

. That is,

G0(P ) = {φ ∈ G(P ) : if v ∈ Px0
thenφ(v) = v}.

Theorem 4.18. The based gauge group G0(P ) acts freely on the space of
connections A(P ).

Proof. Suppose that A ∈ A(P ) is a fixed point of φ ∈ G0(P ). That is, φ∗(A) =
A. We need to show that φ = 1.

The equivariant splitting ωA given by a connection A defines a notion of
parallel transport in P along curves in M (see [29]) . It is not difficult to see
that the statement φ∗(A) = A implies that application of the automorphism
φ commutes with parallel transport. Now let w ∈ Px be a point in the fiber of
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an element x ∈ M . Given curve γ in M between the basepoint x0 and x one
sees that

φ(w) = Tγ(φ(Tγ−1(w))

where Tγ is parallel transport along γ. But since Tγ−1(w) ∈ Px0
and φ ∈

G0(P ),
φ(Tγ−1(w)) = w.

Hence φ(w) = w, that is, φ = 1.

Remark. Notice that this argument actually says that if A ∈ A(P ) is the
fixed point of any gauge transformation φ ∈ G(P ), then φ is determined by
its action on a single fiber.

Let B(P ) and B0(P ) be the orbit spaces of connections on P up to guage
and based gauge equivalence respectively,

B(P ) = A(P )/G(P ) B0(P ) = A(P )/G0(P ).

Now it is straightforward to check directly that the Yang - Mills functional
in invariant under gauge transformations. Thus it yields maps

YM : B(P )→ R and YM : B0(P )→ R.

It is therefore important to understand the homotopy types of these orbit
spaces. Because of the freeness of the action of G0(P ), the homotopy type of
the orbit space G0(P ) is easier to understand.

We end this section with a discussion of its homotopy type. Since the space
of connections A(P ) is affine, it is contractible. Moreover it is possible to show
that the free action of the based gauge group G0(P ) has local slices (see [17]).
Thus we have B0(P ) = A(P )/G0(P ) is the classifying space of the based gauge
group,

B0(P ) = BG0(P ).

But the classifying spaces of the gauge groups are relatively easy to un-
derstand. (see [3].)

Theorem 4.19. Let G −→ EG −→ BG be a universal principal bundle for
the Lie group G (so that EG is aspherical). Let y0 ∈ BG be a fixed basepoint.
Then there are homotopy equivalences

BG(P ) 'MapP (M,BG) and B0(P ) ' BG0(P ) 'MapP0 (M,BG)

where Map(M,BG) is the space of all continuous maps from M to BG and
Map0(M,BG) is the space of those maps that preserve the basepoints. The
superscript P denotes the path component of these mapping spaces consisting
of the homotopy class of maps that classify the principal G - bundle P .
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Proof. Consider the space of all G - equivariant maps from P to EG,
MapG(P,EG). The gauge group G(P ) ∼= AutG(P ) acts freely on the left of
this space by composition. It is easy to see that MapG(P,EG) is aspherical,
and its orbit space is given by the space of maps from the G - orbit space of
P (= M) to the G - orbit space of EG (= BG),

MapG(P,EG)/G(P ) ∼= MapP (M,BG).

This proves that Map(M,BG) = BG(P ). Similarly MapG0 (P,EG), the space
of G - equivariant maps that send the fiber Px0 to the fiber EGy0 , is an
aspherical space with a free G0(P ) action, whose orbit space is MapP0 (M,BG).
Hence MapP0 (M,BG) = BG0(P ).

4.4 Existence of universal bundles: the Milnor join con-
struction and the simplicial classifying space

In the last section we proved a “recognition principle” for universal principal
G bundles. Namely, if the total space of a principal G - bundle p : E → B
is aspherical, then it is universal. We also proved a homotopy uniqueness
theorem, stating among other things that the homotopy type of the base space
of a universal bundle, i.e the classifying space BG, is well defined. We also
described many examples of universal bundles, and particular have a model
for the classifying space BG, using Stiefel manifolds, for every subgroup of a
general linear group.

The goal of this section is to prove the general existence theorem. Namely,
for every group G, there is a universal principal G - bundle p : EG → BG.
We will give two constructions of the universal bundle and the corresponding
classifying space. One, due to Milnor [45] involves taking the “infinite join”
of a group with itself. The other is an example of a simplicial space, called
the simplicial bar construction. It is originally due to Eilenberg and MacLane
[18]. These constructions are essentially equivalent and both yield G - CW -
complexes. Since they are so useful in algebraic topology and combinatorics,
we will also take this opportunity to introduce the notion of a general simplicial
space and show how these classifying spaces are important examples.

4.4.1 The join construction

The “join” between two spaces X and Y , written X ∗ Y is the space of all
lines connecting points in X to points in Y . The following is a more precise
definition:
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Definition 4.7. The join X ∗ Y is defined by

X ∗ Y = X × I × Y/ ∼

where I = [0, 1] is the unit interval and the equivalence relation is given by
(x, 0, y1) ∼ (x, 0, y2) for any two points y1, y2 ∈ Y , and similarly (x1, 1, y) ∼
(x2, 1, y) for any two points x1, x2 ∈ X.

A point (x, t, y) ∈ X ∗Y should be viewed as a point on the line connecting
the points x and y. Here are some examples.

Examples.

• Let y be a single point. Then X ∗ y is the cone CX = X × I/X × {1} .

• Let Y = {y1, y2} be the space consisting of two distinct points. Then
X ∗ Y is the suspension ΣX discussed earlier. Notice that the suspension
can be viewed as the union of two cones, with vertices y1 and y2

respectively, attached along the equator.

• Exercise. Prove that the join of two spheres, is another sphere,

Sn ∗ Sm ∼= Sn+m+1.

• Let {x0, · · · , xk} be a collection of k + 1 - distinct points. Then the k -
fold join x0 ∗ x1 ∗ · · · ∗ xk is the convex hull of these points and hence is
by the k - dimensional simplex ∆k with vertices {x0, · · · , xk}.

Observe that the space X sits naturally as a subspace of the join X ∗ Y as
endpoints of line segments,

ι : X ↪→ X ∗ Y
x→ (x, 0, y).

Notice that this formula for the inclusion makes sense and does not depend
on the choice of y ∈ Y . There is a similar embedding

j : Y ↪→ X ∗ Y
y → (x, 1, y).

Lemma 4.20. The inclusions ι : X ↪→ X ∗ Y and j : Y ↪→ X ∗ Y are null
homotopic.
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Proof. Pick a point y0 ∈ Y . By definition, the embedding ι : X → X ∗ Y
factors as the composition

ι : X ↪→ X ∗ y0 ⊂ X ∗ Y
x→ (x, 0, y0).

But as observed above, the join X∗y0 is the cone on X and hence contractible.
This means that ι is null homotopic, as claimed. The fact that j : Y ↪→ X ∗Y
is null homotopic is proved in the same way.

Now let G be a group and consider the iterated join

G∗(k+1) = G ∗G ∗ · · · ∗G

where there are k + 1 copies of the group element. This space has a free G
action given by the diagonal action

g · (g0, t1, g1, · · · , tk, gk) = (gg0, t1, gg1, · · · , tk, ggk).

Exercise. 1. Prove that there is a natural G - equivariant map

∆k ×Gk+1 → G∗(k+1)

which is a homeomorphism when restricted to ∆̃k ×Gk+1 where ∆̃k ⊂ ∆k is
the interior. Here G acts on ∆k ×Gk+1 trivially on the simplex ∆k and
diagonally on Gk+1.
2. Use exercise 1 to prove that the iterated join G∗(k+1) has the structure of
a G - CW - complex.

Define J (G) to be the infinite join

J (G) = lim
k→∞

G∗(k+1)

where the limit is taken over the embeddings ι : G∗(k+1) ↪→ G∗(k+2) Since
these embedding maps are G -equivariant, we have an induced G - action on
J (G).

Theorem 4.21. The projection map

p : J (G)→ J (G)/G

is a universal principal G - bundle.



Classification of Bundles 93

Proof. By the above exercise the space J (G) has the structure of a G - CW -
complex with a free G - action. Therefore by the results of the last section the
projection p : J (G) → J (G)/G is a principal G - bundle. To see that J (G)
is aspherical, notice that since Sn is compact, any map α : Sn → J (G) is
homotopic to one that factors through a finite join (that by abuse of notation
we still call α), α : Sn → G∗(n+1) ↪→ J (G). But by the above lemma the
inclusion G∗(n+1) ⊂ J (G) is null homotopic, and hence so is α. Thus J (G)
is aspherical. By the results of last section, this means that the projection
J (G)→ J (G)/G is a universal G - bundle.

4.4.2 Simplicial spaces and classifying spaces

We therefore now have a universal bundle for every topological group G. We
actually know a fair amount about the geometry of the total space EG = J (G)
which, by the above exercise can be described as the union of simplices, where
the k - simplices are parameterized by k + 1 -tuples of elements of G,

EG = J (G) =
⋃
k

∆k ×Gk+1/ ∼

and so the classifying space can be described by

BG = J (G)/G ∼=
⋃
k

∆k ×Gk/ ∼

It turns out that in these constructions, the simplices are glued together along
faces, and these gluings are parameterized by the k + 1 - product maps ∂i :
Gk+2 → Gk+1 given by multiplying the ith and (i+ 1)st coordinates.

Having this type of data (parameterizing spaces of simplices as well as
gluing maps) is an example of an object known as a “simplicial set” which is
an important combinatorial object in topology. We now describe this notion in
more detail and show how these universal G - bundles and classifying spaces
can be viewed in these terms.

Good references for this theory are [16], [?].
The idea of simplicial sets is to provide a combinatorial technique to study

cell complexes built out of simplices; i.e simplicial complexes. A simplicial
complex X is built out of a union of simplices, glued along faces. Thus if Xn

denotes the indexing set for the n - dimensional simplices of X, then we can
write

X =
⋃
n≥0

∆n ×Xn/ ∼

where ∆n is the standard n - simplex in Rn;

∆n = {(t1, · · · , tn) ∈ Rn : 0 ≤ tj ≤ 1, and

n∑
i=1

ti ≤ 1}.



94 Bundles, Homotopy, and Manifolds

The gluing relation in this union can be encoded by set maps among the
Xn’s that would tell us for example how to identify an n− 1 simplex indexed
by an element of Xn−1 with a particular face of an n - simplex indexed by an
element of Xn. Thus in principal simplicial complexes can be studied purely
combinatorially in terms of the sets Xn and set maps between them. The
notion of a simplicial set makes this idea precise.

Definition 4.8. A simplicial set X∗ is a collection of sets

Xn, n ≥ 0

together with set maps

∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

for 0 ≤ i, j ≤ n called face and degeneracy maps respectively. These maps
are required to satisfy the following compatibility conditions

∂i∂j = ∂j−1∂i for i < j

sisj = sj+1si for i < j

and

∂isj =


sj−1∂i for i < j

1 for i = j, j + 1

sj∂i−1 for i > j + 1

As mentioned above, the maps ∂i and sj encode the combinatorial infor-
mation necessary for gluing the simplices together. To say precisely how this
works, consider the following maps between the standard simplices:

δi : ∆n−1 −→ ∆n and σj : ∆n+1 −→ ∆n

for 0 ≤ i, j ≤ n defined by the formulae

δi(t1, · · · , tn−1) =

{
(t1, · · · , ti−1, 0, ti, · · · , tn−1) for i ≥ 1

(1−
∑n−1
q=1 tq, t1, · · · , tn−1) for i = 0

and

σj(t1, · · · , tn+1) =

{
(t1, · · · , ti−1, ti + ti+1, ti+2, · · · , tn+1) for i ≥ 1

(t2, · · · , tn+1) for i = 0 .

δi includes ∆n−1 in ∆n as the ith face, and σj projects, in a linear fashion,
∆n+1 onto its jth face.

We can now define the space associated to the simplicial set X∗ as follows.
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Definition 4.9. The geometric realization of a simplicial set X∗ is the space

‖X∗‖ =
⋃
n≥0

∆n ×Xn/ ∼

where if t ∈ ∆n−1 and x ∈ Xn, then

(t, ∂i(x)) ∼ (δi(t), x)

and if t ∈ ∆n+1 and x ∈ Xn then

(t, sj(x)) ∼ (σj(t), x).

In the topology of ‖X∗‖, each Xn is assumed to have the discrete topology,
so that ∆n ×Xn is a discrete set of n - simplices.

Thus ‖X∗‖ has one n - simplex for every element of Xn, glued together in
a way determined by the face and degeneracy maps.

Example. Consider the simplicial set S∗ defined as follows. The set of n -
simplices is given by

Sn = Z/(n+ 1), generated by an element τn.

The face maps are given by

∂i(τ
r
n) =

{
τ rn−1 if r ≤ i ≤ n
τ r−1
n−1 if 0 ≤ i ≤ r − 1.

The degeneracies are given by

si(τ
r
n) =

{
τ rn+1 if r ≤ i ≤ n
τ r+1
n+1 if 0 ≤ i ≤ r − 1.

Notice that there is one zero simplex, two one simplices, one of them the
image of the degeneracy s0 : S0 −→ S1, and the other nondegenerate (i.e not
in the image of a degeneracy map). Notice also that all simplices in dimensions
larger than one are in the image of a degeneracy map. Hence we have that the
geometric realization

‖S∗‖ = ∆1/0 ∼ 1 = S1.

Let X∗ be any simplicial set. There is a particularly nice and explicit way
for computing the homology of the geometric realization, H∗(‖X∗‖).

Consider the following chain complex. Define Cn(X∗) to be the free abelian
group generated by the set of n - simplices Xn. Define the homomorphism

dn : Cn(X∗) −→ Cn−1(X∗)
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by the formula

dn([x]) =

n∑
i=0

(−1)i∂i([x])

where x ∈ Xn.

Proposition 4.22. The homology of the geometric realization H∗(‖X∗‖) is
the homology of the chain complex

−→ · · · dn+1−−−−→ Cn(X∗)
dn−−−−→ Cn−1(X∗)

dn−1−−−−→ · · · d0−−−−→ C0(X∗).

Proof. It is straightforward to check that the geometric realization ‖X∗‖ is a
CW - complex and that this is the associated cellular chain complex.

Besides being useful computationally, the following result establishes the
fact that all CW complexes can be studied simplicially.

Theorem 4.23. Every CW complex has the homotopy type of the geometric
realization of a simplicial set.

Proof. Let X be a CW complex. Define the singular simplicial set of X ,
S(X)∗ as follows. The n simplices S(X)n is the set of singular n - simplices,

S(X)n = {c : ∆n −→ X}.

The face and degeneracy maps are defined by

∂i(c) = c ◦ δi : ∆n−1 −→ ∆n −→ X

and
sj(c) = c ◦ σi : ∆n+1 −→ ∆n −→ X.

Notice that the associated chain complex to S(X)∗ as in 4.22 is the sin-
gular chain complex of the space X. Hence by 4.22 we have that

H∗(‖S(X)‖) ∼= H∗(X).

This isomorphism is actually realized by a map of spaces

E : ‖S(X)∗‖ −→ X

defined by the natural evaluation maps

∆n × S(X)n −→ X

given by
(t, c) −→ c(t).
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It is straightforward to check that the map E does induce an isomorphism in
homology. In fact it induces an isomorphism in homotopy groups. We will not
prove this here; it is more technical and we refer the reader to [M] for details.
Note that it follows from the homological isomorphism by the Hurewicz the-
orem if we knew that X was simply connected. A map between spaces that
induces an isomorphism in homotopy groups is called a weak homotopy equiv-
alence. Thus any space is weakly homotopy equivalent to a CW - complex (i.e
the geometric realization of its singular simplicial set). But by the White-
head theorem, two CW complexes that are weakly homotopy equivalent are
homotopy equivalent. Hence X and ‖S(X)∗‖ are homotopy equivalent.

We next observe that the notion of simplicial set can be generalized as
follows. We say that X∗ is a simplicial space if it is a simplicial set (i.e it
satisfies definition 4.8) where the sets Xn are topological spaces and the face
and degeneracy maps

∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

are continuous maps. The definition of the geometric realization of a simplicial
space X∗, ‖X∗‖, is the same as in 4.9 with the proviso that the topology of
each ∆n × Xn is the product topology. Notice that since the “set of n -
simplices” Xn is actually a space, it is not necessarily true that ‖X∗‖ is a
CW complex. However if in fact each Xn is a CW complex and the face and
degeneracy maps are cellular, then ‖X∗‖ does have a natural CW structure
induced by the product CW - structures on ∆n ×Xn.

Notice that this simplicial notion generalizes even further. For example
a simplicial group would be defined similarly, where each Xn would be a
group and the face and degeneracy maps are group homomorphisms. Simplicial
vector spaces, modules, etc. are defined similarly. The categorical nature of
these definitions should by now be coming clear. Indeed most generally one
can define a simplicial object in a category C using the above definition
where now the Xn’s are assumed to be objects in the category and the face and
degenarcies are assumed to be morphisms. If the category C is a subcategory
of the category of sets then geometric realizations can be defined as in 4.9 For
example the geometric realization of a simplicial (abelian) group turns out to
be a topological (abelian) group.(Try to verify this for yourself!)

We now use this simplicial theory to construct universal principal G -
bundles and classifying spaces.

Let G be a topological group and let EG∗ be the simplicial space defined
as follows. The space of n - simplices is given by the n + 1 - fold cartesian
product

EGn = Gn+1.
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The face maps ∂i : Gn+1 −→ Gn are given by the formula

∂i(g0, · · · , gn) = (g0, · · · , ĝi, · · · , gn).

The degeneracy maps sj : Gn+1 −→ Gn+2 are given by the formula

sj(g0, · · · , gn) = (g0, · · · , gj , gj , · · · , gn).

Exercise. Show that the geometric realization ‖EG∗‖ is aspherical. Hint.
Let ‖EG∗‖(n) be the nth - skeleton,

‖EG∗‖(n) =
n⋃
p=0

∆p ×Gp+1.

Then show that the inclusion of one skeleton in the next
‖EG∗‖(n) ↪→ ‖EG∗‖(n+1) is null - homotopic. One way of doing this is to
establish a homeomorphism between ‖EG∗‖(n) and n - fold join G ∗ · · · ∗G.
See [M] for details.

Notice that the group G acts freely on the right of ‖EG∗‖ by the rule

‖EG∗‖ ×G =

⋃
p≥0

∆p ×Gp+1

×G −→ ‖EG∗‖ (4.1)

(t; (g0, · · · , gp))× g −→ (t; (g0g, · · · , gpg)) .

Thus we can define EG = ‖EG∗‖. The projection map

p : EG→ EG/G = BG

is therefore a universal principal G - bundle.
This description gives the classfiying space BG an induced simplicial struc-

ture described as follows.
.
Let BG∗ be the simplicial space whose n - simplices are the cartesian

product

BGn = Gn. (4.2)

The face and degeneracy maps are given by

∂i(g1, · · · , gn) =


(g2, · · · , gn) for i = 0

(g1, · · · , gigi+1, · · · gn) for 1 ≤ i ≤ n− 1

(g1, · · · , gn−1) for i = n.
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The degeneracy maps are given by

sj(g1, · · · , gn) =

{
(1, g1, · · · , gn) for j = 0

(g1, · · · gj , 1, gj+1, · · · , gn) for j ≥ 1.

The simplicial projection map

p : EG∗ −→ BG∗
defined on the level of n - simplicies by

p(g0, · · · , gn) = (g0g
−1
1 , g1g

−1
2 , · · · , gn−1g

−1
n )

is easily checked to commute with face and degeneracy maps and so induces
a map on the level of geometric realizations

p : EG = ‖EG∗‖ −→ ‖BG∗‖
which induces a homemorphism

BG = EG/G
∼=−−−−→ ‖BG∗‖.

Thus for any topological group this construction gives a simplicial space
model for its classifying space. This is referred to as the simplicial bar con-
struction. Notice that when G is discrete the bar construction is a CW
complex for the classifying space BG = K(G, 1) and 4.22 gives a particu-
larly nice complex for computing its homology. (The homology of a K(G, 1)
is referred to as the homology of the group G.)

The n - chains are the group ring

Cn(BG∗) = Z[Gn] ∼= Z[G]⊗n

and the boundary homomorphisms

dn : Z[G]⊗n −→ Z[G]⊗n−1

are given by

dn(a1 ⊗ · · · ⊗ an) = (a2 ⊗ · · · ⊗ an)+

n−1∑
i=1

(−1)i(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(a1 ⊗ · · · ⊗ an−1).

This complex is called the bar complex for computing the homology of
a group and was discovered by Eilenberg and MacLane in the mid 1950’s.

We end this chapter by observing that the bar construction of the classi-
fying space of a group did not use the full group structure. It only used the
existence of an associative multiplication with unit. That is, it did not use the
existence of inverse. So in particular one can study the classifying space BA
of a monoid A. This is an important construction in algebraic - K - theory.
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4.5 Some Applications

In a sense much of what we will study in the next chapter are applications of
the classification theorem for principal bundles. In this section we describe a
few immediate applications.

4.5.1 Line bundles over projective spaces

By the classification theorem we know that the set of isomorphism classes of
complex line bundles over the projective space CPn is given by

V ect1(CPn) ∼= PrinGL(1,C)(CPn) ∼= PrinU(1)(CPn) ∼= [CPn, BU(1)] = [CPn,CP∞]

= [CPn,K(Z, 2)] ∼= H2(CPn,Z) ∼= Z

Theorem 4.24. Under the above isomorphism,

V ect1(CPn) ∼= Z

the n - fold tensor product of the universal line bundle γ⊗n1 corresponds to the
integer n ≥ 0.

Proof. The classification theorem says that every line bundle ζ over CPn is
the pull back of the universal line bundle via a map fζ : CPn → CP∞. That
is,

ζ ∼= f∗ζ (γ1).

The cohomology class corresponding to ζ, the first chern class c1(ζ), is given
by

c1(ζ) = f∗ζ (c) ∈ H2(CPn) ∼= Z

where c ∈ H2(CP∞) ∼= Z is the generator. Clearly ι∗(c) ∈ H2(CPn) is the
generator, where ι : CPn ↪→ CP∞ is natural inclusion. But ι∗(γ1) = γ1 ∈
V ect1(CPn). Thus γ1 ∈ V ect1(CPn) ∼= Z corresponds to the generator.

To see the effect of taking tensor products, consider the following “tensor
product map”

BU(1)× · · · ×BU(1)
⊗−−−−→ BU(1)

defined to be the unique map (up to homotopy) that classifies the external
tensor product γ1⊗· · ·⊗γ1 over BU(1)×· · ·×BU(1). Using CP∞ ∼= Gr1(C∞)
as our model for BU(1), this tensor product map is given by taking k lines
`1, · · · , `k in C∞ and considering the tensor product line

`1 ⊗ · · · ⊗ `k ⊂ C∞ ⊗ · · · ⊗ C∞
∼=−−−−→
ψ

C∞
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where ψ : C∞ ⊗ · · · ⊗ C∞ ∼= C∞ is a fixed isomorphism. The induced map

τ : CP∞ × · · · × CP∞ → CP∞ ∼= K(Z, 2)

is determined up to homotopy by what its effect on H2 is. Clearly the restric-
tion to each factor is the identity map and so

τ∗(c) = c1+· · ·+ck ∈ H2(CP∞×· · ·×CP∞) = H2(CP∞)⊕· · ·⊕H2(CP∞) ∼= Z⊕· · ·⊕Z

where ci denotes the generator of H2 of the ith factor in the product. Therefore
the composition

tk : CP∞ ∆−−−−→ CP∞ × · · · × CP∞ τ−−−−→ CP∞

has the property that t∗k(c) = kc ∈ H2(CP∞). But also we have that on the
bundle level,

t∗k(γ1) = γ⊗k1 ∈ V ect1(CP∞).

The theorem now follows.

We have a similar result for real line vector bundles over real projective
spaces.

Theorem 4.25. The only nontrivial real line bundle over RPn is the canonical
line bundle γ1.

Proof. We know that γ1 is nontrivial because its restriction to S1 = RP1 ⊂
RPn is the Moebeus strip line bundle, which is nonorientable, and hence non-
trivial. On the other hand, by the classification theorem,

V ect1R(RPn) ∼= [RPn, BGL(1,R)] = [RPn,RP∞] = [RPn,K(Z2, 1)] ∼= H1(RPn,Z2) ∼= Z2.

Hence there is only one nontrivial line bundle over RPn.

.

4.5.2 Structures on bundles and homotopy liftings

The following theorem is a direct consequence of the classification theorem.
We leave its proof as an exercise.

Theorem 4.26. . Let p : E → B be a principal G - bundle classified by
a map f : B → BG. Let H < G be a subgroup. By the naturality of the
construction of classifying spaces, this inclusion induces a map (well defined
up to homotopy) ι : BH → BG. Then the bundle p : E → B has an H -
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structure (i.e a reduction of its structure group to H) if and only if there is a
map

f̃ : B → BH

so that the composition

B
f̃−−−−→ BH

ι−−−−→ BG

is homotopic to f : B → BG. In particular if p̃ : Ẽ → B is the principal H -
bundle classified by f̃ , then there is an isomorphism of principal G bundles,

Ẽ ×H G ∼= E.

The map f̃ : B → BH is called a “lifting” of the classifying map f : B →
BG. It is called a lifting because, as we saw at the end of the last section, the
map ι : BH → BG can be viewed as a fiber bundle, by taking our model for
BH to be BH = EG/H. Then ι is the projection for the fiber bundle

G/H → EG/H = BH
ι−−−−→ EG/G = BG.

This bundle structure will allow us to analyze in detail what the obstructions
are to obtaining a lift f̃ of a classifying map f : B → BG. We will study this
is chapter 4.

Examples.

• An orientation of a bundle classified by a map f : B → BO(k) is a lifting
f̃ : B → BSO(k). Notice that the map ι : BSO(k)→ BO(k) can be
viewed as a two - fold covering map

Z2 = O(k)/SO(k)→ BSO(k)
ι−−−−→ BO(k).

• An almost complex structure of a bundle classified by a map
f : B → BO(2n) is a lifting f̃ : B → BU(n). Notice we have a bundle

O(2n)/U(n)→ BU(n)→ BO(2n).

The following example will be particularly useful in the next chapter when
we define characteristic classes and do calculations with them.

Theorem 4.27. A complex bundle vector bundle ζ classified by a map f :
B → BU(n) has a nowhere zero section if and only if f has a lifting f̃ : B →
BU(n−1). Similarly a real vector bundle η classified by a map f : B → BO(n)
has a nowhere zero section if and only if f has a lifting f̃ : B → BO(n− 1).
Notice we have the following bundles:

S2n−1 = U(n)/U(n− 1)→ BU(n− 1)→ BU(n)

and
Sn−1 = O(n)/O(n− 1)→ BO(n− 1)→ BO(n).
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This theorem says that BU(n − 1) forms a sphere bundle (S2n−1) over
BU(n), and similarly, BO(n − 1) forms a Sn−1 - bundle over BO(n). We
identify these sphere bundles as follows.

Corollary 4.28. The sphere bundles

S2n−1 → BU(n− 1)→ BU(n)

and
Sn−1 → BO(n− 1)→ BO(n)

are isomorphic to the unit sphere bundles of the universal vector bundles γn
over BU(n) and BO(n) respectively.

Proof. We consider the complex case. The real case is proved in the same
way. Notice that the model for the sphere bundle in the above theorem is the
projection map

p : BU(n− 1) = EU(n)/U(n− 1)→ EU(n)/U(n) = BU(n).

But γn is the vector bundle EU(n) ×U(n) Cn → BU(n) which therefore has
unit sphere bundle

S(γn) = EU(n)×U(n) S
2n−1 → BU(n) (4.3)

where S2n−1 ⊂ Cn is the unit sphere with the induced U(n) - action. But
S2n−1 ∼= U(n)/U(n − 1) and this diffeomorphism is equivariant with respect
to this action. Thus the unit sphere bundle is given by

S(γn) = EU(n)×U(n) U(n)/U(n− 1) ∼= EU(n)/U(n− 1) = BU(n− 1)

as claimed.

We observe that by using the Grassmannian models for BU(n) and BO(n),
then their relation to the sphere bundles can be seen explicitly in the following
way. This time we work in the real case.

Consider the embedding

ι : Grn−1(RN ) ↪→ Grn(RN × R) = Grn(RN+1)

defined by
(V ⊂ RN )→ (V × R ⊂ RN × R).

Clearly as N →∞ this map becomes a model for the inclusion BO(n− 1) ↪→
BO(n). Now for V ∈ Grn−1(RN ) consider the vector (0, 1) ∈ V ×R ⊂ RN×R.
This is a unit vector, and so is an element of the fiber of the unit sphere bundle
S(γn) over V × R. Hence this association defines a map

j : Grn−1(RN )→ S(γn)
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which lifts ι : Grn−1(RN ) ↪→ Grn(RN+1). By taking a limit over N we get a
map j : BO(n− 1)→ S(γn).

To define a homotopy inverse ρ : S(γn) → BO(n − 1), we again work on
the finite Grassmannian level.

Let (W,w) ∈ S(γn), the unit sphere bundle over Grn(RK). Thus W ⊂ RK
is an n -dimensional subspace and w ∈W is a unit vector. Let Ww ⊂W denote
the orthogonal complement to the vector w in W . Thus Ww ⊂W ⊂ RK is an
n− 1 - dimensional subspace. This association defines a map

ρ : S(γn)→ Grn−1(RK)

and by taking the limit over K, defines a map ρ : S(γn) → BO(n − 1). We
leave it to the reader to verify that j : BO(n − 1) → S(γn) and ρ : S(γn) →
BO(n− 1) are homotopy inverse to each other.

4.5.3 Embedded bundles and K -theory

The classification theorem for vector bundles says that for every n - dimen-
sional complex vector bundle ζ over X, there is a classifying map fζ : X →
BU(n) so that ζ is isomorphic to pull back, f∗(γn) of the universal vector bun-
dle. A similar statement holds for real vector bundles. Using the Grassmannian
models for these classifying spaces, we obtain the following as a corollary.

Theorem 4.29. Every n - dimensional complex bundle ζ over a space X can
be embedded in a trivial infinite dimensional bundle, X×C∞. Similarly, every
n - dimensional real bundle η over X can be embedded in the trivial bundle
X × R∞.

Proof. Let fζ : X → Grn(C∞) = BU(n) classify ζ. So ζ ∼= f∗(γn). But recall
that

γn = {(V, v) ∈ Grn(C∞)× C∞ such that v ∈ V.}
Hence γn is naturally embedded in the trivial bundleGrn(C∞)×C∞. Thus ζ ∼=
f∗(γn) is naturally embedded in X×C∞. The real case is proved similarly.

Notice that because of the direct limit topology on Grn(C∞) =
lim−→Grn(CN ), then if X is a compact space, any map f : X → Grn(C∞)

has image that lies in Grn(CN ) for some finite N . But notice that over this
finite Grassmannian, γn ⊂ Grn(CN )× CN . The following is then an immedi-
ate corollary. This result was used in chapter one in our discussion about K
-theory.

Corollary 4.30. If X is compact, then every n - dimensional complex bundle
zeta can be embedded in a trivial bundle X ×CN for some N . The analogous
result also holds for real vector bundles.
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Let f : X → BU(n) classify the n - dimensional complex vector bundle ζ.
Then clearly the composition f : X → BU(n) ↪→ BU(n+1) classifies the n+1
dimensional vector bundle ζ ⊕ ε1, where as before, ε1 is the one dimensional
trivial line bundle. This observation leads to the following.

Proposition 4.31. Let ζ1 and ζ2 be two n -dimensional vector bundles over
X classified by f1 and f2 : X → BU(n) respectively. Then if we add trivial
bundles, we get an isomorphism

ζ1 ⊕ εk ∼= ζ2 ⊕ εk

if and only if the compositions,

f1, f2 : X → BU(n) ↪→ BU(n+ k)

are homotopic.

Now recall from the discussion of K - theory in chapter 1 that the set of
stable isomorphism classes of vector bundles SV ect(X) is isomorphic to the
reduced K - theory, K̃(X), when X is compact. This proposition then implies
the following important result, which displays how in the case of compact
spaces, computing K -theory reduces to a specific homotopy theory calcula-
tion.

Definition 4.10. Let BU be the limit of the spaces

BU = lim−→
n

BU(n).

Similarly,
BO = lim−→

n

BO(n).

Theorem 4.32. For X compact there are isomorphisms (bijective correspon-
dences)

K̃(X) ∼= SV ect(X) ∼= [X,BU ]

and
K̃O(X) ∼= SV ectR(X) ∼= [X,BO].

4.5.4 Representations and flat connections

Recall the following classification theorem for covering spaces.
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Theorem 4.33. . Let X be a connected space. Then the set of isomorphism
classes of connected covering spaces, p : E → X is in bijective correspondence
with conjugacy classes of normal subgroups of π1(X). This correspondence
sends a covering p : E → B to the image p∗(π1(E)) ⊂ π1(X).

Let π = π1(X) and let p : E → X be a connected covering space with
π1(E) = N C π. Then the group of deck transformations of E is the quotient
group π/N , and so can be thought of as a principal π/N - bundle. Viewed
this way it is classified by a map fE : X → B(π/N), which on the level of
fundamental groups,

f∗ : π = π1(X)→ π1(Bπ/N) = π/N

(4.4)

is just the projection on to the quotient space. In particular the universal
cover X̃ → X is the unique simply connected covering space. It is classified
by a map

γX : X → Bπ

which induces an isomorphism on the fundamental group.

Now let θ : π → G be any group homomorphism. By the naturality of
classifying spaces this induces a map on classifying spaces,

Bθ : Bπ → BG.

This induces a principal G - bundle over X classified by the composition

X
γX−−−−→ Bπ

Bθ−−−−→ BG.

The bundle this map classifies is given by

X̃ ×π G→ X

where π acts on G via the homomorphism θ : π → G.

This construction defines a map

ρ : Hom(π1(X), G)→ PrinG(X).

Now if X is a smooth manifold then its universal cover p : X̃ → X induces an
isomorphism on tangent spaces,

Dp(x) : TxX̃ → Tp(x)X

for every x ∈ X̃. Thus, viewed as a principal π - bundle, it has a canonical
connection. Notice furthermore that this connection is flat, i.e its curvature is
zero. (Exercise. Check this claim!) Moreover notice that any bundle of the
form X̃ ×π G→ X has an induced flat connection. In particular the image of
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ρ : Hom(π1(X), G)→ PrinG(X) consists of principal bundles equipped with
flat connections.

Notice furthermore that by taking G = GL(n,C) the map ρ assigns to
an n - dimensional representation an n - dimensional vector bundle with flat
connection

ρ : Repn(π1(X))→ V ectn(X).

By taking the sum over all n and passing to the Grothendieck group com-
pletion,we get a homomorphism of rings from the representation ring to K -
theory,

ρ : R(π1(X))→ K(X).

An important question is what is the image of this map of rings. Again we
know the image is contained in the classes represented by bundles that have
flat connections. For X = Bπ, for π a finite group, the following is a famous
theorem of Atiyah and Segal:

Let
ε : R(π)→ Z and ε : K(Bπ)→ Z

be the augmentation maps induced by sending a representation or a vector
bundle to its dimension. Let I ⊂ R(π) and I ⊂ K(Bπ) denote the kernels
of these augmentations, i.e the “augmentation ideals”. Finally let R̄(π) and
K̄(Bπ) denote the completions of these rings with respect to these ideals.
That is,

R̄(π) = lim←−
n

R(π)/In and K̄(Bπ) = lim←−
n

K(Bπ)/In

where In is the product of the ideal I with itself n - times.

Theorem 4.34. (Atiyah and Segal) [4] For π a finite group, the induced map
on the completions of the rings with respect ot the augmentation ideals,

ρ : R̄(π)→ K̄(Bπ)

is an isomorphism.
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Characteristic Classes

In this chapter we define and calculate characteristic classes for principal
bundles and vector bundles. Characteristic classes are the basic cohomologi-
cal invariants of bundles and have a wide variety of applications throughout
topology and geometry. Characteristic classes were introduced originally by E.
Stiefel in Switzerland and H. Whitney in the United States in the mid 1930’s.
Stiefel, who was a student of H. Hopf intoduced in his thesis certain “charac-
teristic homology classes” determined by the tangent bundle of a manifold. At
about the same time Whitney studied general sphere bundles, and later in-
troduced the general notion of a characteristic cohomology class coming from
a vector bundle, and proved the product formula for their calculation.

In the early 1940’s, L. Pontrjagin, in Moscow, introduced new charac-
teristic classes by studying the Grassmannian manifolds, using work of C.
Ehresmann from Switzerland. In the mid 1940’s, after just arriving in Prince-
ton from China, S.S Chern defined characteristic classes for complex vector
bundles using differential forms and his calculations led a great clarification
of the theory.

Much of the modern view of characteristic classes has been greatly influ-
enced by the highly influential book of Milnor and Stasheff. This book was
originally circulated as lecture notes written in 1957 and finally published
in 1974. This book is one of the great textbooks in modern mathematics.
These notes follow, in large part, their treatment of the subject. The reader
is encouraged to consult their book for further details.

5.1 Preliminaries

Definition 5.1. Let G be a topological group (possibly with the discrete topol-
ogy). Then a characteristic class for principal G - bundles is an assignment to
each principal G - bundle p : P → B a cohomology class

c(P ) ∈ H∗(B)

109



110 Bundles, Homotopy, and Manifolds

satisfying the following naturality condition. If

P1
f̄−−−−→ P2

p1

y yp2

B1 −−−−→
f

B2

is a map of principal G - bundles inducing an equivariant homeomorphism on
fibers, then

f∗(c(P2)) = c(P1) ∈ H∗(B1).

Remarks. 1. In this definition cohomology could be taken with any co-
efficients, including, for example, DeRham cohomology which has coefficients
in the real numbers R. The particular cohomology theory used is referred to
as the “values” of the characteristic classes.

2. The same definition of characteristic classes applies to real or complex
vector bundles as well as principal bundles.

The following is an easy consequence of the definition.

Lemma 5.1. Let c be a characteristic class for principal G - bundles so that
c takes values in Hq(−), for q ≥ 1. Then if ε is the trivial G bundle,

ε = X ×G→ X

then c(ε) = 0.

Proof. The trivial bundle ε is the pull - back of the constant map to the one
point space e : X → pt of the bundle ν = G→ pt. Thus c(ε) = e∗(c(ν)). But
c(ν) ∈ Hq(pt) = 0 when q > 0.

The following observation is also immediate from the definition.

Lemma 5.2. Characteristic classes are invariant under isomorphism. More
specifically, Let c be a characteristic class for principal G - bundles. Also let
p1 : E1 → X and p2 : E2 → X be isomorphic principal G - bundles. Then

c(E1) = c(E2) ∈ H∗(X).

Thus for a given space X, a characteristic class c can be viewed as a map

c : PrinG(X)→ H∗(X).

3. The naturality property in the definition can be stated in more functorial
terms in the following way.



Characteristic Classes 111

Cohomology (with any coefficients) H∗(−) is a contravariant functor from
the category hoT op of topological spaces and homotopy classes of maps, to the
category Ab of abelian groups. By the results of chapter 2, the set of principal
G - bundles PrinG(−) can be viewed as a contravariant functor from the
category hoT op to the category of sets Sets.

Definition 5.2. (Alternative) A characteristic class is a natural transfor-
mation c between the functors PrinG(−) and H∗(−):

c : PrinG(−) H∗(−)

Examples.

1. The first Chern class c(ζ) is a characteristic class on principal U(1) -
bundles, or equivalently, complex line bundles. If ζ is a line bundle over
X, then c1(ζ) ∈ H2(X;Z). As we saw in the last chapter, c1 is a
complete invariant of line bundles. That is to say, the map

c1 : PrinU(1)(X)→ H2(X;Z)

is an isomorphism.

2. The first Stiefel - Whitney class w1(η) is a characteristic class of two fold
covering spaces (i.e a principal Z2 = O(1) - bundles) or of real line
bundles. If η is a real line bundle over a space X, then
w1(η) ∈ H1(X;Z2). Moreover, as we saw in the last chapter, the first
Stiefel - Whitney class is a complete invariant of line bundles. That is,
the map

w1 : PrinO(1)(X)→ H1(X;Z2)

is an isomorphism.

We remark that the first Stiefel - Whitney class can be extended to be a
characteristic class of real n - dimensional vector bundles (or principal O(n)
- bundles) for any n. To see this, consider the subgroup SO(n) < O(n). As
we saw in the last chapter, a bundle has an SO(n) structure if and only if it
is orientable. Moreover the induced map of classifying spaces gives a 2 - fold
covering space or principal O(1) - bundle,

Z2 = O(1) = O(n)/SO(n)→ BSO(n)→ BO(n).

This covering space defines, via its classifying map w1 : BO(n) → BO(1) =
RP∞ an element w1 ∈ H1(BO(n);Z2) which is the first Stiefel - Whitney class
of this covering space.

Now let η be any n - dimensional real vector bundle over X, and let

fη : X → BO(n)

be its classifying map.
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Definition 5.3. The first Stiefel - Whitney class w1(η) ∈ H1(X;Z2) is de-
fined to be

w1(η) = f∗η (w1) ∈ H1(X;Z2)

The first Chern class c1 of an n - dimensional complex vector bundle ζ over
X is defined similarly, by pulling back the first Chern class of the principal
U(1) - bundle

U(1) ∼= U(n)/SU(n)→ BSU(n)→ BU(n)

via the classifying map fζ : X → BU(n).

The following is an immediate consequence of the above lemma and the
meaning of SO(n) and SU(n) - structures.

Theorem 5.3. Given a complex n - dimensional vector bundle ζ over X,
then c1(ζ) ∈ H2(X) is zero if and only if ζ has an SU(n) -structure.

Furthermore, given a real n - dimensional vector bundle η over X, then
w1(η) ∈ H1(X;Z2) is zero if and only if the bundle η has an SO(n) - structure,
which is equivalent to η being orientable.

We now use the classification theorem for bundles to describe the set of
characteristic classes for principal G - bundles.

Let R be a commutative ring and let CharG(R) be the set of all character-
istic classes for principal G bundles that take values in H∗(−;R). Notice that
the sum (in cohomology) and the cup product of characteristic classes is again
a characteristic class. This gives CharG the structure of a ring. (Notice that
the unit in this ring is the constant characteristic class c(ζ) = 1 ∈ H0(X).

Theorem 5.4. There is an isomorphism of rings

ρ : CharG(R)
∼=−−−−→ H∗(BG;R)

Proof. Let c ∈ CharG(R). Define

ρ(c) = c(EG) ∈ H∗(BG;R)

where EG → BG is the universal G - bundle over BG. By definition of the
ring structure of CharG(R), ρ is a ring homomorphism.

Now let γ ∈ Hq(BG;R). Define the characteristic class cγ as follows. Let
p : E → X be a principal G - bundle classified by a map fE : X → BG. Define

cγ(E) = f∗E(γ) ∈ Hq(X;R)

where f∗E : H∗(BG : R) → H∗(X;R) is the cohomology ring homomorphism
induced by fE . This association defines a map

c : H∗(BG;R)→ CharG(R)

which immediately seen to be inverse to ρ.
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5.2 Chern Classes and Stiefel - Whitney Classes

In this section we compute the rings of unitary characteristic classes
CharU(n)(Z) and Z2 - valued orthogonal characteristic classes CharO(n)(Z2).
These are the characteristic classes of complex and real vector bundles and
as such have a great number of applications. By 5.4 computing these
rings of characteristic classes reduce to computing the cohomology rings
H∗(BU(n);Z) and H∗(BO(n);Z2). The following is the main theorem of this
section.

Theorem 5.5. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

CharU(n)(Z) ∼= H∗(BU(n);Z) ∼= Z[c1, c2, · · · , cn]

where ci ∈ H2i(BU(n);Z) is known as the ith - Chern class.
b.The ring of Z2 - valued O(n) characteristic classes is a polynomial algebra

on n - generators,

CharO(n)(Z2) ∼= H∗(BO(n);Z2) ∼= Z2[w1, w2, · · · , wn]

where wi ∈ Hi(BO(n);Z2) is known as the ith - Stiefel - Whitney class.

This theorem will be proven by induction on n. For n = 1 BU(1) = CP∞
and BO(1) = RP∞ and so the theorem describes the ring structure in the
cohomology of these projective spaces. To complete the inductive step we will
study the sphere bundles

Sn−1 → BO(n− 1)→ BO(n)

and
S2n−1 → BU(n− 1)→ BU(n)

described in the last chapter. In particular recall from 4.28 that in these
fibrations, BO(n−1) and BU(n−1) are the unit sphere bundles S(γn) of the
universal bundle γn over BO(n) and BU(n) respectively. Let D(γn) be the
unit disk bundles of the universal bundles. That is, in the complex case,

D(γn) = EU(n)×U(n) D
2n → BU(n)

and in the real case,

D(γn) = EO(n)×O(n) D
n → BO(n)

where D2n ⊂ Cn and Dn ⊂ Rn are the unit disks, and therefore have the
induced unitary and orthogonal group actions.

Here is one easy observation about these disk bundles.
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Proposition 5.6. The projection maps

p : D(γn) = EU(n)×U(n) D
2n → BU(n)

and
D(γn) = EO(n)×O(n) D

n → BO(n)

are homotopy equivalences.

Proof. Both of these bundles have zero sections Z : BU(n) → D(γn) and
Z : BO(n)→ D(γn). In both the complex and real cases, we have p ◦ Z = 1.
To see that Z ◦ p ' 1 consider the homotopy H : D(γn)× I → D(γn) defined
by H(v, t) = tv.

We will use this result when studying the cohomology exact sequence of
the pair (D(γn), S(γn)):

· · · → Hq−1(S(γn))
δ−−−−→ Hq(D(γn), S(γn))→ Hq(D(γn))→ Hq(S(γn))

δ−−−−→ Hq+1(D(γn), S(γn))→ Hq+1(D(γn))→ · · ·
(5.1)

Using the above proposition and 4.28 we can substitute H∗(BU(n)) for
H∗(D(γn)), and H∗(BU(n − 1)) for H∗(S(γn)) in this sequence to get the
following exact sequence

· · · → Hq−1(BU(n− 1))
δ−−−−→ Hq(D(γn), S(γn))→ Hq(BU(n))

ι∗−−−−→ Hq(BU(n− 1))

δ−−−−→ Hq+1(D(γn), S(γn))→ Hq+1(BU(n))→ · · ·
(5.2)

and we get a similar exact sequence in the real case

· · · → Hq−1(BO(n− 1);Z2)
δ−−−−→ Hq(D(γn), S(γn);Z2)→ Hq(BO(n);Z2)

ι∗−−−−→

Hq(BO(n− 1);Z2)
δ−−−−→ Hq+1(D(γn), S(γn);Z2)→ Hq+1(BO(n);Z2)→ · · ·

(5.3)

These exact sequences will be quite useful for inductively computing the
cohomology of these classifying spaces, but to do so we need a method for
computing H∗(D(γn), S(γn)), or more generally, H∗(D(ζ), S(ζ)), where ζ is
any Euclidean vector bundle and D(ζ) and S(ζ) are the associated unit disk
bundles and sphere bundles respectively. The quotient space,
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T (ζ) = D(ζ)/S(ζ) (5.4)

is called the Thom space of the bundle ζ. As the name suggests, this con-
struction was first studied by R. Thom [?], and has been quite useful in both
bundle theory and cobordism theory. Notice that on each fiber (say at x ∈ X)
of the n - dimensional disk bundle ζ, the Thom space construction takes the
unit n - dimensional disk modulo its boundary n − 1 - dimensional sphere
which therefore yields an n - dimensional sphere, with marked basepoint, say
∞x ∈ Sn(ζx) = Dn(ζx)/Sn−1(ζx). The Thom space construction then identi-
fies all the basepoints ∞x to a single point. Notice that for a bundle over a
point Rn → pt, the Thom space T (Rn) = Dn/Sn−1 = Sn ∼= Rn ∪ ∞. More
generally, notice that when the basespace X is compact, then the Thom space
is simply the one point compactification of the total space of the vector bundle
ζ,

T (ζ) ∼= ζ+ = ζ ∪∞ (5.5)

where we think of the extra point in this compactification as the common
point at infinity assigned to each fiber. In order to compute with the above
exact sequences, we will need to study the cohomology of Thom spaces. But
before we do we examine the topology of the Thom spaces of product bundles.
For this we introduce the “smash product” construction.

Let X and Y be spaces with basepoints x0 ∈ X and y0 ∈ Y .

Definition 5.4. The wedge X ∨ Y is the “one point union”,

X ∨ Y = X × y0 ∪ x0 × Y ⊂ X × Y.

The smash product X ∧ Y is given by

X ∧ Y = X × Y/X ∨ Y.

Observations. 1. The k be a field. Then the Kunneth formula gives

H̃∗(X ∧ Y ; k) ∼= H̃∗(X; k)⊗ H̃∗(Y ; k).

2. Let V and W be vector spaces, and let V + and W+ be their one point
compactifications. These are spheres of the same dimension as the respective
vector spaces. Then

V + ∧W+ = (V ×W )+.

So in particular,
Sn ∧ Sm = Sn+m.
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Proposition 5.7. Let ζ be an n - dimensional vector bundle over a space
X, and let η be an m - dimensional bundle over X. Let ζ × η be the product
n+m - dimensional vector bundle over X ∧Y . Then the Thom space of ζ× η
is given by

T (ζ × η) ∼= T (ζ) ∧ T (η).

Proof. Notice that the disk bundle is given by

D(ζ × η) ∼= D(ζ)×D(η)

and its boundary sphere bundle is given by

S(ζ × η) ∼= S(ζ)×D(η) ∪D(ζ)× S(η).

Thus

T (ζ × η) = D(ζ × η)/S(ζ × η) ∼= D(ζ)×D(η)/ (S(ζ)×D(η) ∪D(ζ)× S(η))
∼= D(ζ)/S(ζ) ∧D(η)/S(η)
∼= T (ζ) ∧ T (η).

We now proceed to study the cohomology of Thom spaces.

5.2.1 The Thom Isomorphism Theorem

We begin by describing a cohomological notion of orientability of an vector
bundle ζ over a space X.

Consider the 2 - fold cover overX defined as follows. Let Eζ be the principal
GL(n,R) bundle associated to ζ. Also let Genn be the set of generators of
Hn(Sn) ∼= Z. So Genn is a set with two elements. Moreover the general
linear group GL(n,R) acts on Sn = Rn ∪∞ by the usual linear action on Rn
extended to have a fixed point at ∞ ∈ Sn. By looking at the induced map on
cohomology, there is an action of GL(n,R) on Genn. We can then define the
double cover

G(ζ) = Eζ ×GL(n,R) Genn −→ Eζ/GL(n,R) = X.

Lemma 5.8. The double covering G(ζ) is isomorphic to the orientation double
cover Or(ζ).
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Proof. Recall from chapter 1 that the orientation double cover Or(ζ) is given
by

Or(ζ) = Eζ ×GL(n,R) Or(Rn)

where Or(Rn) is the two point set consistingof orientations of the vector space
Rn. A matrix A ∈ GL(n,R) acts on this set trivially if and only if the deter-
minant detA is positive. It acts nontrivially (i.e permutes the two elements) if
and only if detA is negative. Now the same is true of the action of GL(n,R)
on Genn. This is because A ∈ GL(n,R) induces multiplication by the sign of
detA on Hn(Sn). (Verify this as an exercise!)

Since Or(Rn) and Genn are both two point sets with the same action
of GL(n,R), the corresponding two fold covering spaces Or(ζ) and G(ζ) are
isomorphic.

Corollary 5.9. An orientation of an n - dimensional vector bundle ζ is equiv-
alent to a section of G(ζ) and hence defines a continuous family of generators

ux ∈ Hn(Sn(ζx)) ∼= Z

for every x ∈ X. Here Sn(ζx) is the unit disk of the fiber ζx modulo its
boundary sphere. Sn(ζx) is called the sphere at x.

Now recall that given a pair of spaces A ⊂ Y , there is a relative cup
product in cohomology,

Hq(Y )⊗Hr(Y,A)
∪−−−−→ Hq+r(Y,A).

So in particular the relative cohomology H∗((Y,A) is a (graded) module
over the (graded) ring H∗(Y ).

In the case of a vector bundle ζ over a space X, we then have that
H∗(D(ζ), S(ζ)) = H̃∗(T (ζ)) is a module over H∗(D(ζ)) ∼= H∗(X). So in
particular, given any cohomology class in the Thom space, α ∈ Hr(T (ζ)) we
get an induced homomorphism

Hq(X)
∪α−−−−→ Hq+r(T (ζ)).

Our next goal is to prove the famous Thom Isomorphism Theorem which
can be stated as follows.

Theorem 5.10. Let ζ be an oriented n - dimensional real vector bundle over
a connected space X. Let R be any commutative ring. The orientation gives
generators ux ∈ Hn(Sn(ζx);R) ∼= R. Then there is a unique class (called the
Thom class) in the cohomology of the Thom space

u ∈ Hn(T (ζ);R)
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so that for every x ∈ X, if

jx : Sn(ζx) ↪→ D(ζ)/S(ζ) = T (ζ)

is the natural inclusion of the sphere at x in the Thom space, then under the
induced homomorphism in cohomology,

j∗x : Hn(T (ζ);R)→ Hn(Sn(ζx);R) ∼= R

j∗x(u) = ux.
Furthermore The induced cup product map

γ : Hq(X;R)
∪u−−−−→ H̃q+n(T (ζ);R)

is an isomorphism for every q ∈ Z. So in particular H̃r(T (ζ);R) = 0 for
r < n.

If ζ is not an orientable bundle over X, then the theorem remains true if
we take Z2 coefficients, R = Z2.

Proof. We prove the theorem for oriented bundles. We leave the nonorientable
case (when R = Z2) to the reader. We also restrict our attention to the case
R = Z, since the theorem for general coefficients will follow immediately from
this case using the universal coefficient theorem.

Case 1: ζ is the trivial bundle X × Rn.
In this case the Thom space T (ζ) is given by

T (ζ) = X ×Dn/X × Sn−1.

The projection of X to a point, X → pt defines a map

π : T (ζ) = X ×Dn/X × Sn−1 → Dn/Sn−1 = Sn.

Let u ∈ Hn(T (ζ)) be the image in cohomology of a generator,

Z ∼= Hn(Sn)
π∗−−−−→ Hn(T (ζ)).

The fact that taking the cup product with this class

Hq(X)
∪u−−−−→ Hq+n(T (ζ)) = Hq+n(X ×Dn, X × Sn−1) = Hq+n(X × Sn, X × pt)

is an isomorphism for every q ∈ Z follows from the universal coefficient theo-
rem.

Case 2: X is the union of two open sets X = X1 ∪ X2, where we know
the Thom isomorphism theorem holds for the restrictions ζi = ζ|Xi for i = 1, 2
and for ζ1,2 = ζ|X1∩X2

.
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We prove the theorem for X using the Mayer - Vietoris sequence for co-
homology. Let X1,2 = X1 ∩X2.

→ Hq−1(T (ζ1,2))→ Hq(T (ζ))→ Hq(T (ζ1))⊕Hq(T (ζ2))→ Hq((T (ζ1,2))→ · · ·

Looking at this sequence when q < n, we see that since

Hq(T (ζ1,2)) = Hq(T (ζ1)) = Hq(T (ζ2)) = 0,

then by exactness we must have that Hq(T (ζ)) = 0.
We now let q = n, and we see that by assumption, Hn(T (ζ1)) ∼=

Hn(T (ζ2)) ∼= Hn(T (ζ1,2)) ∼= Z, and that the Thom classes of each of the
restriction maps Hn(T (ζ1)) → Hn(T (ζ1,2)) and Hn(T (ζ2)) → Hn(T (ζ1,2))
correspond. Moreover Hn−1(T (ζ1,2)) = 0. Hence by the exact sequence,
Hn(T (ζ)) ∼= Z and there is a class u ∈ Hn(T (ζ)) that maps to the direct
sum of the Thom classes in Hn(T (ζ1))⊕Hn(T (ζ2)).

Now for q ≥ n we compare the above Mayer - Vietoris sequence with the
one of base spaces,

→ Hq−1(X1,2)→ Hq(X)→ Hq(X1)⊕Hq(X2)→ Hq(X1,2)→ · · ·

This sequence maps to the one for Thom spaces by taking the cup product
with the Thom classes. By assumption this map is an isomorphism on H∗(Xi),
i = 1, 2 and on H∗(X1,2). Thus by the Five Lemma it is an isomorphism on
H∗(X). This proves the theorem in this case.

Case 3. X is covered by finitely many open sets Xi, i = 1, · · · , k so that
the restrictions of the bundle to each Xi, ζi is trivial.

The proof in this case is an easy inductive argument (on the number of
open sets in the cover), where the inductive step is completed using cases 1
and 2.

Notice that this case includes the situation when the basespace X is com-
pact.

Case 4. General Case. We now know the theorem for compact spaces.
However it is not necessarily true that the cohomology of a general space (i.e
homotopy type of a C.W complex) is determined by the cohomology of its
compact subspaces. However it is true that the homology of a space X is
given by

H∗(X) ∼= lim−→
K

H∗(K)

where the limit is taken over the partially ordered set of compact subspaces
K ⊂ X. Thus we want to first work in homology and then try to transfer our
observations to cohomology.

To do this, recall that the construction of the cup product pairing actually
comes from a map on the level of cochains,

Cq(Y )⊗ Cr(Y,A)
∪−−−−→ Cq+r(Y,A)
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and therefore has a dual map on the chain level

C∗(Y,A)
ψ−−−−→ C∗(Y )⊗ C∗(Y,A).

and thus induces a map in homology

ψ : Hk(Y,A)→ ⊕r≥0Hk−r(Y )⊗Hr(Y,A).

Hence given α ∈ Hr(Y,A) we have an induced map in homology (the “slant
product”)

/α : Hk(Y,A)→ Hk−r(Y )

defined as follows. If θ ∈ Hk(Y,A) and

ψ(θ) =
∑
j

aj ⊗ bj ∈ H∗(Y )⊗H∗(Y,A)

then
/α(θ) =

∑
j

α(bj) · aj

where by convention, if the degree of a homology class bj is not equal to the
degree of α, then α(bj) = 0.

Notice that this slant product is dual to the cup product map

Hq(Y )
∪α−−−−→ Hq+r(Y,A).

Again, by considering the pair (D(ζ), S(ζ)), and identifying H∗(D(ζ)) ∼=
H∗(X), we can apply the slant product operation to the Thom class, to define
a map

/u : Hk(T (ζ))→ Hk−n(X).

which is dual to the Thom map γ : Hq(X)
∪u−−−−→ Hq+n(T (ζ)). Now since γ is

an isomorphism in all dimensions when restricted to compact sets, then by the
universal coefficient theorem, /u : Hq(T (ζ|K ))→ Hq−n(K) is an isomorphism
for all q and for every compact subset K ⊂ X. By taking the limit over the
partially ordered set of compact subsets of X, we get that

/u : Hq(T (ζ))→ Hq−n(X)

is an isomorphism for all q. Applying the universal coefficient theorem again,
we can now conclude that

γ : Hk(X)
∪u−−−−→ Hk+n(T (ζ))

is an isomorphism for all k. This completes the proof of the theorem.

We now observe that the Thom class of a product of two bundles is the
appropriately defined product of the Thom classes.
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Lemma 5.11. Let ζ and η be an n and m dimensional oriented vector bundles
over X and Y respectively. Then the Thom class u(ζ×η) is given by the tensor
product: u(ζ × η) ∈ Hn+m(T (ζ × η)) is equal to

u(ζ)⊗ u(η) ∈ Hn(T (ζ))⊗Hm(T (η))

∼= Hn+m(T (ζ) ∧ T (η))

= Hn+m(T (ζ × η)).

In this description, cohomology is meant to be taken with Z2 - coefficients if
the bundles are not orientable.

Proof. u(ζ)⊗ u(η) restricts on each fiber (x, y) ∈ X × Y to

ux ⊗ uy ∈ Hn(Sn(ζx))⊗Hm(Sm(ηy))

∼= Hn+m(Sn(ζx) ∧ Sm(ηy))

= Hn+m(Sn+m(ζ × η)(x,y)))

which is the generator determined by the product orientation of ζx × ηy. The
result follows by the uniqueness of the Thom class.

We now use the Thom isomorphism theorem to define a characteristic class
for oriented vector bundles, called the Euler class.

Definition 5.5. The Euler class of an oriented, n dimensional bundle ζ, over
a connected space X, is the n - dimensional cohomology class

χ(ζ) ∈ Hn(X)

defined to be the image of the Thom class u(ζ) ∈ Hn(T (ζ)) under the compo-
sition

Hn(T (ζ)) = Hn(D(ζ), S(ζ))→ Hn(D(ζ)) ∼= Hn(X).

Again, if ζ is not orientable, cohomology is taken with Z2 - coefficients.

Exercise. Verify that the Euler class is a characteristic class according to
our definition.

The following is then a direct consequence of 5.11.

Corollary 5.12. Let ζ and η be as in 5.11. Then the Euler class of the
product is given by

χ(ζ × η) = χ(ζ)⊗ χ(η) ∈ Hn(X)⊗Hm(Y ) ↪→ Hn+m(X × Y ).
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We will also need the following observation.

Proposition 5.13. Let η be an odd dimensional oriented vector bundle over
a space X. Say dim (η) = 2n+ 1. Then its Euler class has order two:

2χ(η) = 0 ∈ H2n+1(X).

Proof. Consider the bundle map

ν : η → η

v → −v.

Since η is odd dimensional, this bundle map is an orientation reversing au-
tomorphism of η. This means that ν∗(u) = −u, where u ∈ H2n+1(T (η)) is
the Thom class. By the definition of the Euler class this in turn implies that
ν∗(χ(η)) = −χ(η). But since the Euler class is a characteristic class and ν is
a bundle map, we must have ν∗(χ(η)) = χ(η). Thus χ(η) = −χ(η).

5.2.2 The Gysin sequence

We now input the Thom isomorphism theorem into the cohomology exact
sequence of the pair D(ζ), S(ζ)) in order to obtain an important calculational
tool for computing the homology of vector bundles and sphere bundles.

Namely, let ζ be an oriented n - dimensional oriented vector bundle over
a space X, and consider the exact sequence

· · · → Hq−1(S(ζ))
δ−−−−→ Hq(D(ζ), S(ζ))→ Hq(D(ζ))→ Hq(S(ζ))

δ−−−−→ Hq+1(D(ζ), S(ζ))→ Hq+1(D(ζ))→ · · ·

By identifying H∗(D(ζ), S(ζ)) = H̃∗(T (ζ)) and H∗(D(ζ)) ∼= H∗(X), this
exact sequence becomes

· · · → Hq−1(S(ζ))
δ−−−−→ Hq(T (ζ))→ Hq(X)→ Hq(S(ζ))

δ−−−−→ Hq+1(T (ζ))→ Hq+1(X)→ · · ·

Finally, by inputting the Thom isomorphism, Hq−n(X)
∪u−−−−→∼= Hq(T (ζ))

we get the following exact sequence known as the Gysin sequence:

· · · → Hq−1(S(ζ))
δ−−−−→ Hq−n(X)

χ−−−−→ Hq(X)→ Hq(S(ζ))

δ−−−−→ Hq−n+1(X)
χ−−−−→ Hq+1(X)→ · · ·

(5.6)
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We now make the following observation about the homomorphism χ :
Hq(X)→ Hq+n(X) in the Gysin sequence.

Proposition 5.14. The homomorphism χ : Hq(X) → Hq+n(X) is given by
taking the cup product with the Euler class,

χ : Hq(X)
∪χ−−−−→ Hq+n(X).

Proof. The theorem is true for q = 0, by definition. Now in gen-
eral, the map χ was defined in terms of the Thom isomorphism

γ : Hr(X)
∪u−−−−→ Hr+n(T (ζ)), which, by definition is a homomorphism of

graded H∗(X) - modules. This will then imply that

χ : Hq(X)→ Hq+n(X)

is a homomorphism of graded H∗(X) - modules. Thus

χ(α) = χ(1 · α)

= χ(1) ∪ α since χ is an H∗(X) - module homomorphism

= χ(ζ) ∪ α

as claimed.

5.2.3 Proof of theorem 5.5

the goal of this section is to use the Gysin sequence to prove 5.5, which we
begin by restating:

Theorem 5.15. a. The ring of U(n) characteristic classes is a polynomial
algebra on n - generators,

CharU(n)(Z) ∼= H∗(BU(n);Z) ∼= Z[c1, c2, · · · , cn]

where ci ∈ H2i(BU(n);Z) is known as the ith - Chern class.
b.The ring of Z2 - valued O(n) characteristic classes is a polynomial algebra

on n - generators,

CharO(n)(Z2) ∼= H∗(BO(n);Z2) ∼= Z2[w1, w2, · · · , wn]

where wi ∈ Hi(BO(n);Z2) is known as the ith - Stiefel - Whitney class.
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Proof. We start by considering the Gysin sequence, applied to the universal
bundle γn over BU(n). We input the fact that the sphere bundle S(γn) is
given by BU(n− 1) see 5.2:

· · · → Hq−1(BU(n− 1))
δ−−−−→ Hq−2n(BU(n))

∪χ(γn)−−−−−→ Hq(BU(n))
ι∗−−−−→ Hq(BU(n− 1))

δ−−−−→ Hq−2n+1(BU(n))
∪χ(γn)−−−−−→ Hq+1(BU(n))→ · · ·

(5.7)

and we get a similar exact sequence in the real case

· · · → Hq−1(BO(n− 1);Z2)
δ−−−−→ Hq−n(BO(n);Z2)

∪χ(γn)−−−−−→ Hq(BO(n);Z2)
ι∗−−−−→

Hq(BO(n− 1);Z2)
δ−−−−→ Hq−n+1(BO(n));Z2)

∪χ(γn)−−−−−→ Hq+1(BO(n);Z2)→ · · ·
(5.8)

We use these exact sequences to prove the above theorem by induction on
n. For n = 1 then sequence 5.7 reduces to the short exact sequences,

0→ Hq−2(BU(1))
∪χ(γ1)−−−−→∼= Hq(BU(1))→ 0

for each q ≥ 2. We let c1 ∈ H2(BU(1)) = H2(CP∞) be the Euler class χ(γ1).
These isomorphisms imply that the ring structure of H∗(BU(1)) is that of a
polynomial algebra on this single generator,

H∗(BU(1)) = H∗(CP∞) = Z[c1]

which is the statement of the theorem in this case.
In the real case when n = 1 the Gysin sequence 5.8 reduces to the short

exact sequences,

0→ Hq−1(BO(1);Z2)
∪χ(γ1)−−−−→∼= Hq(BO(1);Z2)→ 0

for each q ≥ 1. We let w1 ∈ H(BO(1);Z2) = H1(RP∞;Z2) be the Euler class
χ(γ1). These isomorphisms imply that the ring structure of H∗(BO(1);Z2) is
that of a polynomial algebra on this single generator,

H∗(BO(1);Z2) = H∗(RP∞;Z2) = Z2[w1]

which is the statement of the theorem in this case.

We now inductively assume the theorem is true for n− 1. That is,

H∗(BU(n−1)) ∼= Z[c1, · · · , cn−1] and H∗(BO(n−1);Z2) ∼= Z2[w1, · · · , wn−1].
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We first consider the Gysin sequence 5.7, and observe that by exactness, for
q ≤ 2(n− 1), the homomorphism

ι∗ : Hq(BU(n))→ Hq(BU(n− 1))

is an isomorphism. That means there are unique classes, c1, · · · , cn−1 ∈
H∗(BU(n)) that map via ι∗ to the classes of the same name in H∗(BU(n −
1)). Furthermore, since ι∗ is a ring homomorphism, every polynomial in
c1, · · · , cn−1 in H∗(BU(n − 1)) is in the image under ι∗ of the correspond-
ing polynomial in the these classes in H∗(BU(n)). Hence by our inductive
assumption,

ι∗ : H∗(BU(n))→ H∗(BU(n− 1)) = Z[c1, · · · , cn−1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.7
this implies that this long exact splits into short exact sequences,

0→ H∗−2n(BU(n))
∪χ(γn)−−−−−→ H∗(BU(n))

ι∗−−−−→ H∗(BU(n− 1)) ∼= Z[c1, · · · cn−1]→ 0

Define cn ∈ H2n(BU(n)) to be the Euler class χ(γn). Then this sequence
becomes

0→ H∗−2n(BU(n))
∪cn−−−−→ H∗(BU(n))

ι∗−−−−→ Z[c1, · · · cn−1]→ 0

which implies that H∗(BU(n)) ∼= Z[c1, · · · , cn]. This completes the inductive
step in this case.

In the real case now consider the Gysin sequence 5.8, and observe that by
exactness, for q < n− 1, the homomorphism

ι∗ : Hq(BO(n);Z2)→ Hq(BO(n− 1);Z2)

is an isomorphism. That means there are unique classes, w1, · · · , wn−2 ∈
H∗(BO(n);Z2) that map via ι∗ to the classes of the same name in H∗(BO(n−
1);Z2).

In dimension q = n−1, the exactness of the Gysin sequence tells us that the
homomorphism ι∗Hn−1(BO(n);Z2)→ Hn−1(BO(n−1);Z2) is injective. Also
by exactness we see that ι∗ is surjective if and only if χ(γn) ∈ Hn(BO(n);Z2)
is nonzero. But to see this, by the universal property of γn, it suffices to prove
that there exists some n -dimensional bundle ζ with Euler class χ(ζ) 6= 0.
Now by 5.12, the Euler class of the product

χ(γk × γn−k) = χ(γk)⊗ χ(γn−k) ∈ Hk(BO(k)×BO(n− k);Z2)

= wk ⊗ wn−k ∈ H∗(BO(k);Z2)⊗Hn−k(BO(n− k);Z2)

which, by the inductive assumption is nonzero for k ≥ 1. Thus χ(γn) ∈
Hn(BO(n);Z2) is nonzero, and we define it to be the nth Stiefel - Whitney
class

wn = χ(γn) ∈ Hn(BO(n);Z2).
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As observed above, the nontriviality of χ(γn) implies that ι∗Hn−1(BO(n);Z2)→
Hn−1(BO(n − 1);Z2) is an isomorphism, and hence there is a unique class
wn−1 ∈ Hn−1(BO(n − 1);Z2) (as well as w1, · · ·wn−2) restricting to the in-
ductively defined classes of the same names in H∗(BO(n− 1);Z2).

Furthermore, since ι∗ is a ring homomorphism, every polynomial in
w1, · · · , wn−1 in H∗(BO(n − 1);Z2) is in the image under ι∗ of the corre-
sponding polynomial in the these classes in H∗(BO(n);Z2). Hence by our
inductive assumption,

ι∗ : H∗(BO(n);Z2)→ H∗(BO(n− 1);Z2) = Z2[w1, · · · , wn−1]

is a split surjection of rings. But by the exactness of the Gysin sequence 5.8
this implies that this long exact splits into short exact sequences,

0→ H∗−n(BO(n);Z2)
∪wn−−−−→ H∗(BO(n);Z2)

ι∗−−−−→ H∗(BO(n− 1);Z2) ∼= Z2[w1, · · ·wn−1]→ 0

which implies that H∗(BO(n);Z2) ∼= Z2[w1, · · · , wn]. This completes the in-
ductive step and therefore the proof of the theorem.

5.3 The product formula and the splitting principle

Perhaps the most important calculational tool for characteristic classes is the
Whitney sum formula, which we now state and prove.

Theorem 5.16. a. Let ζ and η be vector bundles over a space X. Then the
Stiefel - Whitney classes of the Whitney sum bundle ζ ⊕ η are given by

wk(ζ ⊕ η) =

k∑
j=0

wj(ζ) ∪ wk−j(η) ∈ Hk(X;Z2).

where by convention, w0 = 1 ∈ H0(X;Z2).
b. If ζ and η are complex vector bundles, then the Chern classes of the

Whitney sum bundle ζ ⊕ η are given by

ck(ζ ⊕ η) =

k∑
j=0

cj(ζ) ∪ ck−j(η) ∈ H2k(X).

Again, by convention, c0 = 1 ∈ H0(X).
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Proof. We prove the formula in the real case. The complex case is done the
same way.

Let ζ be an n - dimensional vector bundle over X, and let η be an m -
dimensional bundle. Let N = n + m. Since we are computing wk(ζ ⊕ η), we
may assume that k ≤ N , otherwise this characteristic class is zero.

We prove the Whitney sum formula by induction on N ≥ k. We begin
with the case N = k. Since ζ ⊕ η is a k - dimensional bundle, the kth Stiefel -
Whitney class, wk(ζ ⊕ η) is equal to the Euler class χ(ζ ⊕ η). We then have

wk(ζ ⊕ η) = χ(ζ ⊕ η)

= χ(ζ) ∪ χ(η) by 5.12

= wn(ζ) ∪ wm(η).

This is the Whitney sum formula in this case as one sees by inputting the fact
that for a bundle ρ with j > dim (ρ), wj(ρ) = 0.

Now inductively assume that the Whitney sum formula holds for comput-
ing wk for any sum of bundles whose sum of dimensions is ≤ N − 1 ≥ k. Let
ζ have dimension n and η have dimension m with n + m = N . To complete
the inductive step we need to compute wk(ζ ⊕ η).

Suppose ζ is classified by a map fζ : X → BO(n), and η is classified by a
map fη : X → BO(m). Then ζ ⊕ η is classified by the composition

fζ⊕η : X
fζ×fη−−−−→ BO(n)×BO(m)

µ−−−−→ BO(n+m)

where µ is the map that classifies the product of the universal bundles γn×γm
over BO(n)×BO(m). Equivalently, µ is the map on classifying spaces induced
by the inclusion of the subgroup O(n) × O(m) ↪→ O(n + m). Thus to prove
the theorem we must show that the map µ : BO(n)×BO(m)→ BO(n+m)
has the property that

µ∗(wk) =

k∑
j=0

wj ⊗ wk−j ∈ H∗(BO(n);Z2)⊗H∗(BO(m);Z2). (5.9)

For a fixed j ≤ k, let

pj : Hk(BO(n)×BO(m);Z2)→ Hj(BO(n);Z2)⊗Hk−j(BO(m);Z2)

be the projection onto the summand. So we need to show that pj(µ
∗(wk)) =

wj ⊗ wk−j . Now since n + m = N > k, then either j < n or k − j < m (or
both). We assume without loss of generality that j < n. Now by the proof of
5.5

ι∗ : Hj(BO(n);Z2)→ Hj(BO(j);Z2)

is an isomorophism. Moreover we have a commutative diagram:
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Hk(BO(N);Z2)
µ∗−−−−→ Hk(BO(n)×BO(m);Z2)

pj−−−−→ Hj(BO(n);Z2)⊗Hk−j(BO(m);Z2)

ι∗
y yι∗⊗1

Hk(BO(j +m);Z2) −−−−→
µ∗

Hk(BO(j)×BO(m);Z2) −−−−→
pj

Hj(BO(j);Z2)⊗Hk−j(BO(m);Z2).

Since j < n, j + m < n + m = N and ι∗(wk) = wk ∈ Hk(BO(j + m);Z2).
This fact and the commutativity of this diagram give,

(ι∗ ⊗ 1) ◦ pj ◦ µ∗(wk) = pj ◦ µ∗ ◦ ι∗(wk)

= pj ◦ µ∗(wk)

= wj ⊗ wk−j by the inductive assumption.

Since ι∗ ⊗ 1 is an isomorphism in this dimension, and since ι∗(wj ⊗ wk−j) =
wj ⊗ wk−j we have that

pj ◦ µ∗(wk) = wj ⊗ wk−j .

As remarked above, this suffices to complete the inductive step in the proof
of the theorem.

We can restate the Whitney sum formula in the following convenient way.
For an n - dimensional bundle ζ, let

w(ζ) = 1 + w1(ζ) + w2(ζ) + · · ·+ wn(ζ) ∈ H∗(X;Z2)

This is called the total Stiefel - Whitney class. The total Chern class of a
complex bundle is defined similarly.

The Whitney sum formula can be interpreted as saying these total charac-
teristic classes have the “exponential property” that they take sums to prod-
ucts. That is, we have the following:

Corollary 5.17.
w(ζ ⊕ η) = w(ζ) ∪ w(η)

and
c(ζ ⊕ η) = c(ζ) ∪ c(η).

This implies that these characteristic classes are invariants of the stable
isomorphism types of bundles:

Corollary 5.18. If ζ and η are stably equivalent real vector bundles over a
space X, then

w(ζ) = w(η) ∈ H∗(X;Z2),

Similarly if they are complex bundles,

c(ζ) = c(η) ∈ H∗(X).
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Proof. If ζ and η are stably equivalent, then

ζ ⊕ εm ∼= η ⊕ εr

for some m and r. So
w(ζ ⊕ εm) = w(η ⊕ εr).

But by 5.17
w(ζ ⊕ εm) = w(ζ)w(ε) = w(ζ) · 1 = w(ζ).

Similarly w(η⊕εr) = w(η). The statement follows. The complex case is proved
in the same way.

By our description of K - theory in chapter 2, we have that these charac-
teristic classes define invariants of K - theory.

Theorem 5.19. The Chern classes ci and the Stiefel - Whitney classes wi
define natural transformations

ci : K(X)→ H2i(X)

and
wi : KO(X)→ Hi(X;Z2).

The total characteristic classes

c : K(X)→ H̄∗(X)

and
w : KO(X)→ H̄∗(X;Z2)

are exponential in the sense that

c(α+ β) = c(α)c(β) and w(α+ β) = w(α)w(β).

Here H̄∗(X) is the direct product H̄∗(X) =
∏
qH

q(X).

As an immediate application of these product formulas, we can deduce a
“splitting principle” for characteristic classes. We now explain this principle.

Recall that an n - dimensional bundle ζ over X splits as a sum of n line
bundles if and only if its associated principal bundle has an O(1)× · · · ×O(1)
- structure. That is, the classifying map fζ : X → BO(n) lifts to the n -fold
product, BO(1)n. The analogous observation also holds for complex vector
bundles. If we have such a lifting, then in cohomology, f∗ζ : H∗(BO(n);Z2)→
H∗(X;Z2) factors through ⊗nH∗(BO(1);Z2).

The “splitting principle” for characteristic classes says that this cohomo-
logical property always happens.
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To state this more carefully, recall that H∗(BO(1);Z2) = Z2[w1]. Thus

H∗(BO(1)n;Z2) ∼= Z2[x1, · · · , xn]

where xj ∈ H1 is the generator of the cohomology of the jth factor in this
product. Similarly,

H∗(BU(1)n) ∼= Z[y1, · · · , yn]

where yj ∈ H2 is the generator of the cohomology of the jth factor in this
product.

Notice that the symmetric group Σn acts on these polynomial algebras
by permuting the generators. The subalgebra consisting of polynomials fixed
under this symmetric group action is called the algebra of symmetric polyno-
mials, Sym[x1, · · · , xn] or Sym[y1, · · · , yn].

Theorem 5.20. (Splitting Principle.) The maps

µ : BU(1)n → BU(n) and µ : BO(1)n → BO(n)

induce injections in cohomology

µ∗ : H∗(BU(n))→ H∗(BU(1)n) and µ∗ : H∗(BO(n);Z2)→ H∗(BO(1)n;Z2).

Furthermore the images of these monomorphisms are the symmetric polyno-
mials

H∗(BU(n)) ∼= Sym[y1, · · · , yn] and H∗(BO(n);Z2) ∼= Sym[x1, · · · , xn].

Proof. By the Whitney sum formula,

µ∗(wj) =
∑

j1+···+jn=j

wj1 ⊗ · · · ⊗wjn ∈ H∗(BO(1);Z2)⊗ · · · ⊗H∗(BO(1);Z2).

But wi(γ1) = 0 unless i = 0, 1. So

µ∗(wj) =
∑

1≤i1<···<ij≤n

xi1 · · ·xij ∈ Z2[x1, · · · , xn].

This is the jth - elementary symmetric polynomial, σj(x1, · · · , xn). Thus the
image of Z2[w1, · · · , wn] = H∗(BO(n);Z2) is the subalgebra of Z2[x1, · · · , xn]
generated by the elementary symmetric polynomials, Z[σ1, · · · , σn]. But
it is well known that the elementary symmetric polynomials generate
Sym[x1, · · · , xn] (see [37]). The complex case is proved similarly.

This result gives another way of producing characteristic classes which is
particularly useful in index theory.
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Let p(x) be a power series in one variable, which is assumed to have a
grading equal to one. Say

p(x) =
∑
i

aix
i.

Consider the corresponding symmetric power series in n -variables,

p(x1, · · · , xn) = p(x1) · · · p(xn).

Let pj(x1, · · · , xn) be the homogeneous component of p(x1, · · · , xn) of grading
j. So

pj(x1, · · · , xn) =
∑

i1+···+in=j

ai1 · · · ainx
i1
1 · · ·xinn .

Since pj is symmetric, by the splitting principle we can think of

pj ∈ Hj(BO(n);Z2)

and hence determines a characteristic class (i.e a polynomial in the Stiefel -
Whitney classes).

Similarly if we give x grading 2, we can think of pj ∈ H2j(BU(n)) and so
determines a polynomial in the Chern classes.

In particular, given a real valued smooth function y = f(x), its Tay-

lor series pf (x) =
∑
k
f(k)(0)
k! xk determines characteristic classes fi ∈

Hi(BO(n);Z2) or fi ∈ H2i(BU(n);Z2).

Exercise. Consider the examples f(x) = ex, and f(x) = tanh(x). Write the
low dimensional characteristic classes fi in H∗(BU(n)) for i = 1, 2, 3, as
explicit polynomials in the Chern classes.

5.4 Applications

In this section all cohomology will be taken with Z2 - coefficients, even if not
explicitly written.

5.4.1 Characteristic classes of manifolds

We have seen that the characteristic classes of trivial bundles are trivial. How-
ever the converse is not true, as we will now see, by examining the character-
istic classes of manifolds.

Definition 5.6. The characteristic classes of a manifold M , wj(M), ci(M),
are defined to be the characteristic classes of the tangent bundle, τM .



132 Bundles, Homotopy, and Manifolds

Theorem 5.21. wj(S
n) = 0 for all j, n > 0.

Proof. As we saw in chapter 1, the normal bundle of the standard embedding
Sn ↪→ Rn+1 is a trivial line bundle. Thus

τSn ⊕ ε1 ∼= εn+1

and so τSn+1 is stably trivial. The theorem follows.

Of course we know τS2 is nontrivial since it has no nowhere zero cross
sections. Thus the Stiefel- Whitney classes do not form a complete invariant
of the bundle. However they do constitute a very important class of invariants,
as we will see below.

Write a ∈ H1(RPn;Z2) ∼= Z2 as the generator. Then the total Stiefel -
Whitney class of the canonical line bundle γ1 is

w(γ1) = 1 + a ∈ H∗(RPn).

This allows us to compute the Stiefel - Whitney classes of RPn (i.e of the
tangent bundle τRPn).

Theorem 5.22. w(RPn) = (1 + a)n+1 ∈ H∗(RPn;Z2). So wj(RPn) =(
n+1
j

)
aj ∈ Hj(RPn).

Note: Even though the polynomial (1 + a)n+1 has highest degree term
an+1, this class is zero in H∗(RPn) since Hn+1(RPn) = 0.

Proof. As seen in chapter 1,

τRPn ⊕ ε1 ∼= ⊕n+1γ1.

Thus

w(τRPn) = w(τRPn ⊕ ε1)

= w(⊕n+1γ1)

= w(γ1)n+1, by the Whitney sum formula

= (1 + a)n+1.

Observation. The same argument shows that the total Chern class of CPn
is

c(CPn) = (1 + a)n+1 (5.10)

where a ∈ H2(CPnZ) is the generator.
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This calculation of the Stiefel - Whitney classes of RPn allows us to rule out
the possibility that many of these projective spaces are parallelizable.

Corollary 5.23. If RPn is parallelizable, then n is of the form n = 2k−1 for
some k.

Proof. We show that if n 6= 2k − 1 then there is some j > 0 such that
wj(RPn) 6= 0. But wj(RPn) =

(
n+1
j

)
aj , so we are reduced to verifying that if m

is not a power of 2, then there is a j ∈ {1, · · · ,m−1} such that
(
m
j

)
≡ 1 mod2.

This follows immediately from the following combinatorial lemma, whose proof
we leave to the reader.

Lemma 5.24. Let j ∈ {1, · · · ,m− 1}. Write j and m in their binary repre-
sentations,

m =

k∑
i=0

ai2
i

j =

k∑
i=0

bi2
i

where the ai’s and bi’s are either 0 or 1. Then(
m

j

)
≡

k∏
i=0

(
ai
bi

)
mod 2.

Note. Here we are adopting the usual conventions that
(

0
0

)
= 1 and

(
0
1

)
= 0.

Since we know that Lie groups are parallelizable, this result says that RPn
can only have a Lie group structure if n is of the form 2k − 1. However a
famous theorem of Adams [1] says that the only RPn’s that are parallelizable
are RP1, RP3, and RP7.

Now as seen in chapter 2 an n - dimensional vector bundle ζn has k -
linearly independent cross sections if and only if

ζn ∼= ρn−k ⊕ εk

for some n−k dimensional bundle ρ. Moreover, having this structure is equiv-
alent to the classifying map

fζ : X → BO(n)

having a lift (up to homotopy) to a map fρ : X → BO(n− k).
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Now the Stiefel - Whitney classes give natural obstructions to the existence
of such a lift because the map ι : BO(n − k) → BO(n) induces the map of
rings

ι∗ : Z2[w1, · · · , wn]→ Z2[w1, · · ·wn−k]

that maps wj to wj for j ≤ n−k, and wj to 0 for n ≥ j > n−k. We therefore
have the following result.

Theorem 5.25. Let ζ be an n -dimensional bundle over X. Suppose wk(ζ)
is nonzero in Hk(X;Z2). Then ζ has no more than n−k linearly independent
cross sections. In particular, if wn(ζ) 6= 0, then ζ does not have a nowhere
zero cross section.

This result has applications to the existence of linearly independent vector
fields on a manifold. The following is an example.

Theorem 5.26. If m is even, RPm does not have a nowhere zero vector field.

Proof. By 5.22

wm(RPm) =

(
m+ 1

m

)
am

= (m+ 1)am ∈ Hm(RPm;Z2).

For m even this is nonzero. Hence wm(RPm) 6= 0.

5.4.2 Normal bundles and immersions

Theorem 5.25 has important applications to the existence of immersions of a
manifold M in Euclidean space, which we now discuss.

Let e : Mn # Rn+k be an immersion. Recall that this means that the
derivative at each point,

De(x) : TxM
n → Te(x)Rn+k = Rn+k

is injective. Recall also that the Inverse Function Theorem implies that an
immersion is a local embedding.

The immersion e defines a k - dimensional normal bundle νke whose fiber
at x ∈M is the orthogonal complement of the image of TxM

n in Rn+k under
De(x). In particular we have

τMn ⊕ νke ∼= e∗τRnk ∼= εn+k.

Thus we have the Whitney sum relation among the Stiefel - Whitney classes
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w(Mn) · w(νke ) = 1. (5.11)

So we can compute the Stiefel - Whitney clases of the normal bundle
formally as the power series

w(νke ) = 1/w(M) ∈ H̄∗(M ;Z2).

This proves the following:

Proposition 5.27. The Stiefel - Whitney classes of the normal bundle to an
immersion e : Mn # Rn+k are independent of the immersion. They are called
the normal Stiefel - Whitney classes, and are written w̄i(M). These classes
are determined by the formula

w(M) · w̄(M) = 1.

Example. w̄(RPn) = 1/(1 + a)n+1 ∈ H̄∗(RPn;Z2).

So for example, when n = 2k, k > 0, w(RP2k) = 1 +a+a2k . This is true since

by 5.24
(

2k+1
r

)
≡ 1 mod 2 if and only if r = 0, 1, 2k. Thus the total normal

Stiefel - Whitney class is given by

w̄(RP2k) = 1/(1 + a+ a2k) = 1 + a+ a2 + · · ·+ a2k−1.

Note. The reason this series is truncated a a2k−1 is because

(1 + a+ a2k)(1 + a+ a2 + · · ·+ a2k−1) = 1 ∈ H∗(RPn;Z2)

since Hq(RPn) = 0 for q > n.

Corollary 5.28. There is no immersion of RP2k in RN for N ≤ 2k+1 − 2.

Proof. The above calculation shows that w̄2k−1(RP2k) 6= 0. Thus it cannot
have a normal bundle of dimension less than 2k − 1. The result follows.

In the 1940’s, Whitney proved the following seminal result in the theory
of embeddings and immersions [?]

Theorem 5.29. Let Mn be a closed n - dimensional manifold. Then there is
an embedding

e : Mn ↪→ R2n

and an immersion
ι : Mn # R2n−1.
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Thus combining these results gives the following best immersion dimension

for RP2k .

Corollary 5.30. RP2k has an immersion in R2k+1−1 but not in R2k+1−2.

A natural question raised by Whitney’s theorem is to find the best possible
immersion dimension for other manifolds, or for some class of manifolds. In
general this is a very difficult problem. However by the following important
result of Smale and Hirsch [30], this is purely a bundle theoretic question, and
ultimately a homotopy theoretic question (via classifying maps).

Theorem 5.31. Let Mn be a closed n - manifold. Then Mn immerses in
Rn+k if and only if there is a k - dimensional bundle νk over Mn with

τMn ⊕ νk ∼= εn+k.

Thus questions of immersions boil down to bundle theoretic questions. By
classifying space theory they can be viewed as homotopy theoretic questions.
More specifically, let ν : M → BO represent the element in K̃O(X) given by

[ν] = −[τM ] ∈ K̃O(X).

Notice that if viewed with values in BO(N), for N large, ν classifies the normal
bundle of an embedding of Mn in Rn+N , and in particular

ν∗(wi) = w̄i(M) ∈ Hi(M ;Z2).

ν : M → BO is called the “stable normal bundle” map of M . The following is
an interpretation of the above theorem of Smale and Hirsch using classifying
space theory.

Theorem 5.32. Mn admits an immersion in Rn+k if and only if the stable
normal bundle map ν : M → BO has a homotopy lifting to a map

νk : M → BO(k).

In the late 1950’s, Wu, in China, computed a formula for how the Steenrod
square cohomology operations are affected by Poincare duality in a manifold.
W. Massey then used Wu’s formulas to prove the following [40]:

Write an integer n in its binary expansion

n =

k∑
i=0

ai · 2i
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where each ai is 0 or 1. Let

α(n) =

k∑
i=0

ai. (5.12)

So α(n) is the number of ones in the base 2 representation of n.

Theorem 5.33. Let Mn be a closed n - dimensional manifold. Then

w̄i(M
n) = 0

for i > n− α(n).

Thus Stiefel - Whitney classes give no obstruction to existence of immer-
sions of n - manifolds in R2n−α(n). The conjecture that every n - manifold does
indeed immerse in this dimension became known as the “Immersion Conjec-
ture”, and was proved in [?].

Theorem 5.34. Every closed manifold Mn immerses in R2n−α(n)

This theorem was proved homotopy theoretically. Namely it was shown
that the stable normal bundle map ν : Mn → BO always has a lift (up to
homotopy) to a map Mn → BO(n−α(n)). The theorem then follows from the
Hirsch - Smale theorem 5.31. The lifting to BO(n−α(n)) was constructed in
two steps. First, by work of Brown and Peterson [?] there is a “universal space
for normal bundles” BO/In and a map ρ : BO/In → BO with the property
that every stable normal bundle map from an n - manifold ν : Mn → BO
lifts to a map ν̃ : Mn → BO/In. Then the main work in [?] was to develop an
obstruction theory to analyze the homotopy types of BO/In and BO(n−α(n))
to show that ρ : BO/In → BO lifts to a map ρ̃ : BO/In → BO(n − α(n)).
The composition

Mn ν̃−−−−→ BO/In
ρ̃−−−−→ BO(n− α(n))

then classifies the normal bundle of an immersion Mn # R2n−α(n).

This result, and indeed Massey’s theorem 5.33 are best possible, as can
be seen by the following example.

Let ej : RP2j # R2j+1−1 be an immersion which is guaranteed by Whit-
ney’s theorem. Now write n in its binary expansion

n = 2j1 + 2j2 + · · ·+ 2jr

where the 0 ≤ j1 < · · · < jr and r = α(n). Consider the n - dimensional
manifold

Mn = RP2j1 × · · · × RP2jr .
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Consider the product immersion

e : Mn = RP2j1 × · · · × RP2jr
ej1×···×ejr−−−−−−−→ R2j1+1−1 × · · · × R2jr+1−1 = R2n−α(n).

Since Mn = RP2j1 × · · · × RP2jr , the Whitney sum formula will imply that

w̄n−α(n)(M
n) = w̄2j1−1(RP2j1 )⊗ · · · ⊗ w̄2jr−1(RP2jr )

which, by the proof of 5.28 is nonzero. Hence Mn does not have an immersion
in R2n−α(n)−1.

Other results along these lines includes a fair amount known about the
best immersion dimensions of projective spaces (see [?]). However the best
immersion dimensions of all manifolds with structure, say an orientation or
an almost complex structure, is unknown. Also the best embedding dimension
for all n - manifolds is unknown.

5.5 Pontrjagin Classes

In this section we define and study Pontrjagin classes. These are integral char-
acteristic classes for real vector bundles and are defined in terms of the Chern
classes of the complexification of the bundle. We will then show that polynomi-
als in Pontrjagin classes and the Euler class define all possible characteristic
classes for oriented, real vector bundles when the values of the character-
istic classes is cohomology with coefficients in an integral domain R which
contains 1/2. By the classification theorem,to deduce this we must compute
H∗(BSO(n);R). For this calculation we follow the treatment given in Milnor
and Stasheff [47].

5.5.1 Orientations and Complex Conjugates

We begin with a reexamination of certain basic properties of complex vector
bundles.

Let V be an n - dimensional C - vector space with basis {v1, · · · , vn}.
By multiplication of these basis vectors by the complex number i, we get a
collection of 2n - vectors {v1, iv1, v2, iv2, · · · , vn, ivn} which forms a basis for
V as a real 2n - dimensional vector space. This basis then determines an
orientation of the underlying real vector space V .
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Exercise. Show that the orientation of V that the basis
{v1, iv1, v2, iv2, · · · , vn, ivn} determines is independent of the choice of the
original basis {v1, · · · , vn}

Thus every complex vector space V has a canonical orientation. By choos-
ing this orientation for every fiber of a complex vector bundle ζ, we see that
every complex vector bundle has a canonical orientation. By the results of
section 2 this means that every n - dimensional complex vector bundle ζ over
a space X has a canonical choice of Thom class u ∈ H2n(T (ζ)) and hence
Euler class

χ(ζ) = cn(ζ) ∈ H2n(X).

Now given a complex bundle ζ there exists a conjugate bundle ζ̄ which is
equal to ζ as a real, 2n - dimensional bundle, but whose complex structure is
conjugate. More specifically, recall that a complex structure on a 2n - dimen-
sional real bundle ζ determines and is determined by a linear transformation

Jζ : ζ → ζ

with the property that J2
ζ = Jζ ◦ Jζ = −id. If ζ has a complex structure then

Jζ is just scalar multiplication by the complex number i on each fiber. If we
replace Jζ by −Jζ we define a new complex structure on ζ referred to as the
conjugate complex structure. We write ζ̄ to denote ζ with this structure. That
is,

Jζ̄ = −Jη.

Notice that the identity map
id : ζ → ζ̄

is anti-complex linear (or conjugate complex linear) in the sense that

id(Jζ · v) = −Jζ̄ · id(v).

We note that the conjugate bundle ζ̄ is often not isomorphic to ζ as com-
plex vector bundles. For example, consider the two dimensional sphere as
complex projective space

S2 = CP1 = C ∪∞.

The tangent bundle τCP1 has the induced structure as a complex line bundle.

Proposition 5.35. The complex line bundles τS2 and τ̄S2 are not isomorphic.
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Proof. Suppose φ : τS2 → τ̄S2 is a isomorphism as complex vector bundles.
Then at every tangent space

φx : TxS
2 → TxS

2

is a an isomorphism that reverses the complex structure. Any such isomor-
phism is given by reflection through a line `x in the tangent plane TxS

2.
Therefore for every x we have picked a line `x ⊂ TxS

2. This defines a (real)
one dimensional subbundle ` of τS2 , which, by the classification theorem is
given by an element of

[S2, BO(1)] ∼= H1(S2,Z2) = 0.

Thus ` is a trivial subbundle of τS2 . Hence we can find a nowhere vanishing
vector field on S2, which gives us a contradiction.

Exercise. Let γ̄n be the conjugate of the universal bundle γn over BU(n).
By the classification theorem, γ̄n is classified by a map

q : BU(n)→ BU(n)

having the property that q∗(γn) = γ̄n. Using the Grassmannian model of
BU(n), find an explicit description of a map q : BU(n)→ BU(n) with this
property.

The following describes the effect of conjugating a vector bundle on its
Chern classes.

Theorem 5.36. ck(ζ̄) = (−1)kck(ζ)

Proof. Suppose ζ is an n - dimensional bundle. By the classification theorem
and the functorial property of Chern classes it suffices to prove this theorem
when ζ is the universal bundle γn over BU(n). Now in our calculations of
the cohomology of these classifying spaces, we proved that the inclusion ι :
BU(k)→ BU(n) induces an isomorphism in cohomology in dimension k,

ι∗ : H2k(BU(n))
∼=−−−−→ H2k(BU(k)).

Hence it suffices to prove this theorem for the universal k - dimensional bundle
γk over BU(k).

Now ck(γk) = χ(γk) and similarly, ck(γ̄k) = χ(γ̄k). So it suffices to prove
that

χ(γk) = (−1)−kχ(γ̄k).

But by the observations above, this is equivalent to showing that the canonical
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orientation of the underlying real 2k - dimensional bundle from the complex
structures of γk and γ̄k are the same if k is even, and opposite if k is odd.
To do this we only need to compare the orientations at a single point. Let
x ∈ BU(k) be given by Ck ⊂ C∞ as the first k - coordinates. If {e1, · · · , ek}
forms the standard basis for Ck, then the orientations of γk(x) determined by
the complex structures of γk and γ̄k are respectively represented by the real
bases

{e1, ie1, · · · , ek, iek} and {e1,−ie1, · · · , ek,−iek}.

The change of basis matrix between these two basis has determinant (−1)k.
The theorem follows.

Now suppose η is a real n - dimensional vector bundle over a space X, we
then let ηC be its complexification

ηC = η ⊗R C.

ηC has the obvious structure as an n - dimensional complex vector bundle.

Proposition 5.37. There is an isomorphism

φ : ηC
∼=−−−−→ η̄C.

Proof. Define

φ : ηC → η̄C

η × C→ η ⊗ C̄
v ⊗ z → v ⊗ z̄

for v ∈ η and z ∈ C. Clearly φ is an isomorphism of complex vector bundles.

Corollary 5.38. For a real n - dimensional bundle η, then for k odd,

2ck(ηC) = 0.

Proof. By 5.36 and 5.37

ck(ηC) = (−1)kck(ηC).

Hence for k odd ck(ηC) has order 2.
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5.5.2 Pontrjagin classes

We now use these results to define Pontrjagin classes for real vector bundles.

Definition 5.7. Let η be an n - dimensional real vector bundle over a space
X. Then define the ith - Pontrjagin class

pi(η) ∈ H4i(X;Z)

by the formula
pi(η) = (−1)ic2i(ηC).

Remark. The signs used in this definition are done to make calculations in
the next section come out easily.

As we’ve done with Stiefel - Whitney and Chern classes, define the total
Pontrjagin class

p(η) = 1 + p1(η) + · · ·+ pi(η) + · · · ∈ H̄∗(X,Z).

The following is the Whitney sum formula for Pontrjagin classes, and fol-
lows immediately for the Whitney sum formula for Chern classes and 5.38.

Theorem 5.39. For real bundles η and ξ over X, we have

2(p(η ⊕ ξ)− p(η)p(ξ)) = 0 ∈ H∗(X;Z).

In particular if R is a commutative integral domain containing 1/2, then
viewed as characteristic classes with values in H∗(X;R), we have

p(η ⊕ ξ) = p(η)p(ξ) ∈ H̄∗(X : R).

Remark. Most often Pontryagin classes are viewed as having values in
rational cohomology, and so the formula p(η ⊕ ξ) = p(η)p(ξ) applies.

We now study the Pontrjagin classes of a complex vector bundle. Let ζ be
a complex n - dimensional bundle over a space X, and let ζC = ζ ⊗R C be
the complexification of its underlying real 2n - dimensional bundle. So ζC is a
complex 2n - dimensional bundle. We leave the proof of the following to the
reader.

Proposition 5.40. As complex 2n - dimensional bundles,

ζC ∼= ζ ⊕ ζ̄.
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This result, together with 5.36 and the definition of Pontrjagin classes
imply the following.

Corollary 5.41. Let ζ be a complex n - dimensional bundle. Then its Pon-
tryagin classes are determined by its Chern classes according to the formula

1− p1 + p2 − · · · ± pn = (1− c1 + c2 − · · · ± cn)(1 + c1 + c2 + · · ·+ cn)

∈ H∗(X,Z).

Example. We will compute the Pontrjagin classes of the tangent bundle of
projective space, τCPn . Recall that the total Chern class is given by

c(τCPn) = (1 + a)n+1

where a ∈ H2(CPn) ∼= Z is the generator. Notice that this implies that for
the conjugate, τ̄CPn we have

c(τ̄CPn) = (1− a)n+1

Thus by the above formula we have

1− p1 + p2 − · · · ± pn = (1 + a)n+1(1− a)n+1

= (1− a2)n+1.

We therefore have the formula

pk(CPn) =

(
n+ 1

k

)
a2k ∈ H4k(CPn).

Now let η be an oriented real n- dimensional vector bundle. Then the
complexification ηC = η ⊗ C = η ⊕ iη which is simply η ⊕ η as real vector
bundles.

Lemma 5.42. The above isomorphism

ηC ∼= η ⊕ η

of real vector bundles takes the canonical orientation of ηC to (−1)
n(n−1)

2 times
the orientation of η ⊕ η induced from the given orientation of η.

Proof. Pick a particular fiber, ηx. Let {v1, · · · , vn} be a C - basis for V . Then
the basis {v1, iv1, · · · , vnivn} determines the orientation for ηx ⊗ C. However
the basis {v1, · · · , vn, iv1, · · · ivn} gives the natural basis for (η ⊕ iη)x. The

change of basis matrix has determinant (−1)
n(n−1)

2 .
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Corollary 5.43. If η is an oriented 2k - dimensional real vector bundle, then

pk(η) = χ(η)2 ∈ H4k(X).

Proof.

pk(η) = (−1)kc2k(η × C)

= (−1)kχ(η ⊗ C)

= (−1)k(−1)k(2k−1)χ(η ⊕ η)

= χ(η ⊕ η)

= χ(η)2.

5.5.3 Oriented characteristic classes

We now use the results above to show that Pontrjagin classes and the Euler
class yield all possible characteristic classes for oriented vector bundles, if the
coefficient ring contains 1/2. More specifically we prove the following.

Theorem 5.44. Let R be an integral domain containing 1/2. Then

H∗(BSO(2n+ 1);R) = R[p1, · · · , pn]

H∗(BSO(2n);R) = R[p1, · · · , pn−1, χ(γ2n)]

Remark. This theorem can be restated by saying that H(BSO(n);R) is
generated by {p1, · · · , p[n/2]} and χ, subject only to the relations

χ = 0 if n is odd

χ2 = p[n/2] if n is even.

Proof. In this proof all cohomology will be taken with R coefficients. We first
observe that since SO(1) is the trivial group, BSO(1) is contractible, and so
H∗(BSO(1)) = 0. This will be the first step in an inductive proof. So we
assume the theorem has been proved for BSO(n − 1), and we now compute
H∗(BSO(n)) using the Gysin sequence:

· · · → Hq−1(BSO(n− 1))
δ−−−−→ Hq−n(BSO(n))

∪χ−−−−→ Hq(BSO(n))
ι∗−−−−→

Hq(BSO(n− 1))
δ−−−−→ Hq−n+1(BSO(n))

∪χ−−−−→ Hq+1(BSO(n))→ · · ·
(5.13)
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Case 1. n is even.

Since the first n/2 − 1 Pontrjagin classes are defined in H∗(BSO(n)) as
well as in H∗(BSO(n − 1)), the inductive assumption implies that ι∗ :
H∗(BSO(n)) → H∗(BSO(n − 1)) is surjective. Thus the Gysin sequence
reduces to short exact sequences

0→ Hq(BSO(n))
∪χ−−−−→ Hq+n(BSO(n))

ι∗−−−−→ Hq+n(BSO(n− 1))→ 0.

The inductive step then follows.

Case 2. n is odd, say n = 2m+ 1.

By 5.13 in this case the Euler class χ has order two in integral cohomology.
Thus since R contains 1/2, in cohomology with R coefficients, the Euler class
is zero. Thus the Gysin sequence reduces to short exact sequences:

0→ Hj(BSO(2m+ 1))
ι∗−−−−→ H∗(BSO(2m))→ Hj−2m(BSO(2m+ 1))→ 0.

Thus the map ι∗ makes H∗(BSO(2m + 1)) a subalgebra of H∗(BSO(2m)).
This subalgeabra contains the Pontrjagin classes and hence it contains the
graded algebra A∗ = R[p1, · · · pm]. By computing ranks we will now show
that this is the entire image of ι∗. This will complete the inductive step in this
case.

So inductively assume that the rank of Aj−1 is equal to the rank of
Hj(BSO(2m + 1)). Now we know that every element of Hj(BSO(2m)) can
be written uniquely as a sum a+ χb where a ∈ Aj and b ∈ Aj−2m. Thus

Hj(BSO(2m)) ∼= Aj ⊕Aj−2m

which implies that

rk(Hj(BSO(2m)) = rk(Aj) + rk(Aj−2m).

But by the exactness of the above sequence,

rk(Hj(BSO(2m)) = rk(Hj(BSO(2m+ 1)) + rk(Hj−2m(BSO(2m+ 1))).

Comparing these two equations, and using our inductive assumption, we con-
clude that

rk(Hj(BSO(2m+ 1)) = rk(Aj).

Thus Aj = ι∗(Hj(BSO(2m + 1))), which completes the inductive argument.
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5.6 Connections, Curvature, and Characteristic Classes

In this section we describe how Chern and Pontrjagin classes can be defined
using connections (i.e covariant derivatives) on vector bundles. What we will
describe is an introduction to the theory of Chern and Weil that describe the
cohomology of a classifying space of a compact Lie group in terms of invariant
polynomials on its Lie algebra. The treatment we will follow is from Milnor
and Stasheff [47].

Definition 5.8. Let Mn(C) be the ring of n × n matrices over C. Then an
invariant polynomial on Mn(C) is a function

P : Mn(C)→ C

which can be expressed as a complex polynomial in the entries of the matrix,
and satisfies,

P (ABA−1) = P (B)

for every B ∈Mn(C) and A ∈ GL(n,C).

Examples. The trace function (ai,j)→
∑n
j=1 aj,j and the determinant

function are examples of invariant polynomials on Mn(C).

Now let DA : Ω0(M ; ζ)→ Ω1(M ; ζ) be a connection (or covariant derivative)
on a complex n - dimensional vector bundle ζ. Its curvature is a a two- form
with values in the endomorphism bundle

FA ∈ Ω2(M ;End(ζ))

The endomorphism bundle can be described alternatively as follows. Let Eζ be
the principal GL(n,C) bundle associated to ζ. Then of course ζ = Eζ⊗GL(n,C)

Cn. The endomorphism bundle can then be described as follows. The proof is
an easy exercise that we leave to the reader.

Proposition 5.45.

End(ζ) ∼= ad(ζ) = Eζ ×GL(n,C) Mn(C)

where GL(n,C) acts on Mn(bc) by conjugation,

A ·B = ABA−1.
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Let ω be a differential p - form on M with values in End(ζ),

ω ∈ Ωp(M ;End(ζ)) ∼= Ωp(M ; ad(ζ)) = Ωp(M ;Eζ ×GL(n,C) Mn(C)).

Then on a coordinate chart U ⊂M with local trivialization ψ : ζ|U
∼= U ×Cn

for ζ, and hence the induced coordinate chart and local trivialization for ad(ζ),
ω can be viewed as an n× n matrix of p -forms on M . We write

ω = (ωi,j).

Of course this description depends on the coordinate chart and local trivial-
ization chosen, but at any x ∈ U , then by the above proposition, two trivi-
alizations yield conjugate matrices. That is, if (ωi,j(x)) and (ω′i,j(x)) are two
matrix descriptions of ω(x) defined by two different local trivializations of ζ|U ,
then there exists an A ∈ GL(n,C) with

A(ωi,j(x))A−1 = (ω′i,j(x)).

Now let P be an invariant polynomial on Mn(C) of degree d. Then using
the wedge bracket we can apply P to a matrix of p forms, and produce a
differential form of top dimension pd on U ⊂ M : P (ωi,j) ∈ Ωpd(U). Now
since the polynomial P is invariant under conjugation the form P (ωi,j) is
independent of the local trivialization of ζ|U . These forms therefore fit together
to give a well defined global form

P (ω) ∈ Ω∗(M). (5.14)

If P is homogeneous of degree d, then

P (ω) ∈ Ωpd(M) (5.15)

An important example is when ω = FA ∈ Ω2(M ;End(ζ)) is the curvature
form of a connection DA on ζ. We have the following fundamental lemma,
that will allow us to define characteristic classes in terms of these forms and
invariant polynomials.

Lemma 5.46. For any connection DA and invariant polynomial (or invariant
power series) P , the differential form P (FA) is closed. That is,

dP (FA) = 0.

Proof. (following Milnor and Stasheff [47]) Let P be an invariant polynomial
or power series. We write P (A) = P (ai,j) where the ai,j ’s are the entries of the
matrix. We can then consider the matrix of partial derivatives (∂P/∂(xi,j))
where the xi,j ’s are indeterminates. Let FA = (ωi,j) be the curvature matrix



148 Bundles, Homotopy, and Manifolds

of two - forms on an open set U with a given trivialization. Then the exterior
derivative has the following local expression

dP (FA) =
∑

(∂P/∂ωi,j)dωi,j . (5.16)

In matrix notation this can be written as

dP (FA) = trace(P ′(FA)dFA)

Now as seen in chapter 1, on a trivial bundle, and hence on this local coordinate
patch, a connection DA can be viewed as a matrix valued one form,

DA = (αi,j)

and with respect to which the curvature FA has the formula

ωi,j = dαi,j −
∑
k

ωi,k ∧ ωk,j .

In matrix notation we write

FA = dα− α ∧ α.

Differentiating yields the following form of the Bianchi identity

dFA = α ∧ FA − FA ∧ α. (5.17)

We need the following observation.

Claim. The transpose of the matrix of first derivatives of an invariant
polynomial (or power series) P ′(A) commutes with A.

Proof. Let Ej,i be the matrix with entry 1 in the (j, i)-th place and zeros in
all other coordinates. Now differentiate the equation

P ((I + tEj,i)A) = P (A(I + tEj,i))

with respect to t and then setting t = 0 yields∑
k

Ai,k(∂P/∂Aj,k) =
∑
k

(∂P/∂Ak,i)Ak,i.

Thus the matrix A commutes with the transpose of (∂P/∂Ai, j) as claimed.

We now complete the proof of the lemma. Substituting FA for the matrix
of indeterminates in the above claim means we have

FA ∧ P ′(FA) = P ′(FA) ∧ FA. (5.18)
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Now for notational convenience let X = P ′(FA) ∧ α. Then substituting the
Bianchi identity 5.17 into 5.16 and using 5.18 we obtain

dP (FA) = trace (X ∧ FA − FA ∧X)

=
∑

(Xi,j ∧ ωj,i − ωj,i ∧Xi,j).

Since each Xi,j commutes with the 2 - form ωj,i, this sum is zero, which proves
the lemma.

Thus for any connection DA on the complex vector bundle ζ over M , and
invariant polynomial P , the form P (FA) represents a deRham cohomology
class with complex coefficients. That is,

[P (FA)] ∈ H∗(M : C).

Theorem 5.47. The cohomology class [P (FA)] ∈ H∗(X,C) is independent
of the connection DA.

Proof. Let DA0
and DA1

be two connections on ζ. Pull back the bundle ζ over
M × R via the projection map M × R → M . Call this pull - back bundle ζ̄
over M × R. We get the induced pull back connections D̄Ai , i = 0, 1 as well.
We can then form the linear combination of connections

DA = tD̄A1
+ (1− t)DA0

.

Then P (FA) is a deRham cocycle onM×R. Now let i = 0 or 1 and consider the
inclusions ji : M = M×{i} ↪→M×R. The induced connection j∗i (DA) = DAi

on ζ. But since there is an obvious homotopy between j0 and j1 and hence
the cohomology classes

[j∗0 (P (FA)) = P (FA0)] = [j∗1 (P (FA)) = P (FA1)].

This proves the theorem.

Thus the invariant polynomial P determines a cohomology class given
any bundle ζ over a smooth manifold. It is immediate that these classes are
preserved under pull - back, and are hence characteristic classes for U(n)
bundles, and hence are given by elements of

H∗(BU(n);C) ∼= C[c1, · · · , cn].

In order to see how an invariant polynomial corresponds to a polynomial in
the Chern classes we need the following bit of algebra.

Recall the elementary symmetric polynomials σ1, · · ·σn in n -variables,
discussed in section 3. If we view the n - variables as the eigenvalues of an
n× n matrix, we can write

det(I + tA) = 1 + tσ1(A) + · · ·+ tnσn(A). (5.19)
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Lemma 5.48. Any invariant polynomial on Mn(C) can be expressed as a
polynomial of σ1, · · · , σn.

Proof. Given A ∈Mn(C), chose a B such that BAB−1 is in Jordan canonical
form. Replacing B with diag(ε, ε2, · · · , εn)B, we can make the off diagonal
entries arbitrarily close to zero. By continuity it follows that P (A) depends
only on the diagonal entries of BAB−1, i,e the eigenvalues of A. Since P (A)
is invariant, it must be a symmetric polynomial of these eigenvalues. Hence it
is a polynomial in the elementary symmetric polynomials.

So we now consider the elementary symmetric polynomials, viewed as in-
variant polynomials in Mn(C). Hence by the above constructions they deter-
mine characteristic classes [σr(FA)] ∈ H2r(M ;C) where FA is a connection
on a vector bundle ζ over M .

Now we’ve seen the elementary symmetric functions before in the context
of characteristic classes. Namely we’ve seen that H∗(BU(n)) can be viewed as
the subalgebra of symmetric polynomials in Z[x1, · · ·xn] = H∗(BU(1)× · · · ×
BU(1)), with the Chern class Cr corresponding to the elementary symmetric
polynomial σr. This was the phenomenon of the splitting principle.

We will now use a splitting principle argument to prove the following.

Theorem 5.49. Let ζ be a complex n - dimensional vector bundle with con-
nection DA. Then the cohomology class [σr(FA)] ∈ H2r(X;C) is equal to
(2πi)rcr(ζ), for r = 1, · · · , n.

Proof. We first prove this theorem for complex line bundles. That is, n = 1.
In this case σ1(FA) = FA which is a closed form in Ω2(M ; ad(ζ)) = Ω2(M ;C)
because the adjoint action of GL(1,C) is trivial since it is an abelian group. In
particular FA is closed in this case by 5.46. Thus FA represents a cohomology
class in H2(M ;C). Moreover as seen above, this cohomology class [FA] is a
characteristic class for line bundles and hence is an element ofH2(BU(1);C) ∼=
C generated by the first Chern class c1 ∈ H2(BU(1)). So for this case we need
to prove the following generalization of the Gauss - Bonnet theorem.

Lemma 5.50. Let ζ be a complex line bundle over a manifold M with con-
nection DA. Then the curvature form FA is a closed two - form representing
the cohomology class

[FA] = 2πic1(ζ) = 2πiχ(ζ).

Before we prove this lemma we show how this lemma can in fact be in-
terpreted as a generalization of the classical Gauss - Bonnet theorem. So let
DA be a unitary connection on ζ. (That is, DA is induced by a connection



Characteristic Classes 151

on an associated principal U(1) - bundle.) If we view ζ as a two dimensional,
oriented vector bundle which, to keep notation straight we refer to as ζR, then
DA induces (and is induced by) a connection DAR on the real bundle ζR.
Notice that since SO(2) ∼= U(1) then orthogonal connections on oriented real
two dimensional bundes are equivalent to unitary connections on complex line
bundles.

Since SO(2) is abelian, the real adjoint bundle

ad(ζR) = EζR ×SO(2) M2(R)

is trivial. Hence the curvature FAR is then a 2× 2 matrix valued two - form.

FAR ∈ Ω2(M ;M2(R)).

Moreover, since the Lie algebra of SO(2) consists of skew symmetric 2×2 real
matrices, then it is straightforward to check the following relation between
the original complex valued connection FA ∈ Ω2(M ;C) and the real curvature
form FAR ∈ Ω1(M ;M2(R)).

Claim. If FAR is written as the skew symmetric matrix of 2− forms

FAR =

(
0 ω
−ω 0

)
∈ Ω2(M ;M2(R))

then
FA = iω ∈ Ω2(M ;C).

When the original connection DAR is the Levi - Civita connection associated
to a Riemannian metric on the tangent bundle of a Riemann surface, the
curvature form

ω ∈ Ω2(M,R)

is referred to as the “Gauss - Bonnet”” connection. If dA denotes the area
form with respect to the metric, then we can write

ω = κ dA

then κ is a scalar valued function called the “Gaussian curvature” of the
Riemann surface M . In this case, by the claim we have [FA] = 2πiχ(τ(M)),
and since

〈χ(τ(M)), [M ]〉 = χM ,

Where χM the Euler characteristic of M , we have

〈[FA], [M ]〉 =

∫
M

FA = i

∫
M

ω = i

∫
M

κ dA.

Thus the above lemma applied to this case, which states that

〈[FA], [M ]〉 = 2πiχM
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is equivalent to the classical Gauss - Bonnet theorem which states that∫
M

κ dA = 2πχM = 2π(2− 2g) (5.20)

where g is the genus of the Riemann surface M .

We now prove the above lemma.

Proof. As mentioned above, since [FA] is a characteristic class for line bundles,
and so it is some multiple of the first Chern class, say [FA] = qc1(ζ). By the
naturality, the coefficient q is independent of the bundle. So to evaluate q it is
enough to compute it on a specific bundle. We choose the tangent bundle of the
unit sphere τS2 , equipped with the Levi - Civita connection DA corresponding
to the usual round metric (or equivalently the metric coming from the complex
strucure S2 = CP1). In this case the Gaussian curvature is constant at one,

κ = 1.

Moreover since τS2 ⊕ ε1 ∼= γ1 ⊕ γ1, the Whitney sum formula yields

〈c1(S2), [S2]〉 = 2〈c1(γ1), [S2]〉 = 2.

Thus we have

〈[FA], [S2]〉 = q〈c1(S2), [S2]〉
= 2q.

Putting these facts together yields that

2q = 〈[FA], [S2]〉

=

∫
S2

FA

= i

∫
S2

κ dA

= i

∫
S2

dA = i · surface area of S2

= i · 4π.

Hence q = 2πi, as claimed.

We now proceed with the proof of theorem 5.49 in the case when the
bundle is a sum of line bundles. By the splitting principal we will then be able
to conclude the theorem is true for all bundles.

So let ζ = L1 ⊕ · · · ⊕ Ln where L1, · · · , Ln are complex line bundles over
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M . Let D1, · · · , Dn be connections on L!, · · · , Ln respectively. Now let DA be
the connection on ζ given by the sum of these connections

DA = D1 ⊕ · · · ⊕Dn.

Notice that with respect to any local trivialization, the curvature ma-
trix FA is the diagonal n × n matrix with diagonal entries, the curvatures
F1, · · · , Fn of the connections D1, · · ·Dn respectively. Thus the invariant poly-
nomial applied to the curvature form σr(FA) is given by the symmetric poly-
nomial in the diagonal entries,

σr(FA) = σr(F1, · · · , Fr).

Now since the curvatures Fi are closed 2 - forms on M , we have an equation
of cohomology classes

[σr(FA)] = σr([F1], · · · , [Fr]).

By the above lemma we therefore have

[σr(FA)] = σr([F1], · · · , [Fn])

= σr((2πi)c1(L1), · · · , (2πi)c1(Ln))

= (2πi)rσr(c1(L), · · · , c1(Ln)) since σr is symmetric

= (2πi)rcr(L1 ⊕ · · · ⊕ Ln) by the splitting principal 5.20

= (2πi)rcr(ζ)

as claimed.
This proves the theorem when ζ is a sum of line bundles. As observed

above, the splitting principal implies that the theorem then must be true for
all bundles.

We end this section by describing two corollaries of this important theorem.

Corollary 5.51. For any real vector bundle η, the deRham cocycle σ2k(FA)
represent the cohomology class (2π)2kpk(η) ∈ H4k(M ;R), while [σ2k+1(FA)]
is zero in H4k+2(M ;R).

Proof. This just follows from the definition of the Pontrjagin classes in terms
of the even Chern classes of the complexification, and the fact that the odd
Chern classes of the complexification have order two and therefore represent
the zero class in H∗(M ;R).

Recall that a flat connection is one whose curvature is zero. The following
is immediate form the above theorem.
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Corollary 5.52. If a real (or complex) vector bundle has a flat connection,
then all its Pontrjagin (or Chern) classes with rational coefficients are zero.

We recall that a bundle has a flat connection if and only if its structure
group can be reduced to a discrete group. Thus a complex vector bundle with
a discrete structure group has zero Chern classes with rational coefficients.
This can be interpreted as saying that if ι : G ⊂ GL(n,C) is the inclusion of
a discrete subgroup, then the map in cohomology,

Q[c1, · · · , cn] = H∗(BU(n);Q) = H∗(BGLn(C);Q)
ι∗−−−−→ H∗(BG;Q)

is zero.



6

Embeddings and Immersions in Euclidean
Space

6.1 The existence of embeddings: The Whitney Embed-
ding Theorem

The following result is often known as the “Easy Whitney Embedding Theo-
rem”. It tells us that we may view any manifold as a submanifold of Euclidean
space.

Theorem 6.1. Let Mn be a Cr manifold of dimension n. Then there is a
Cr-embedding e : Mn ↪→ RL for L sufficiently large.

Proof. We prove this theorem in the case when Mn is closed. We refer the
reader to [30] for the general case. Since Mn is compact we can find a finite
atlas {φi, Ui}Mi=1 with the following properties:

1. For all i = 1, · · · ,m,B2(0) ⊂ φi(Ui) ⊂ Rn, and

2. Mn =
⋃m
i=1 Int φ

−1
i (B1(0)).

Here Br(0) ⊂ Rn is the open ball around the origin of radius r.
Let λ : Rn → [0, 1] be a C∞ “bump function” such that

λ(x) =

{
1 on B1(0)

0 on Rn −B2(0)

Define λi : Mn → [0, 1] by

λi =

{
λ ◦ φi on Ui

0 on Mn − Ui.

These are “local bump functions”. Notice that the sets Si = λ−1
i (1) ⊂ Ui,

i = 1, · · · ,m cover Mn.
Now define fi : Mn → Rn by

fi(x) =

{
λi(x)φi(x) if x ∈ Ui
0 if x ∈M − Ui

155
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LB G

Notice that fi is Cr. Define gi(x) = (fi(x), λi(x)) ∈ Rn × R = Rn+1, and

g = (g1, · · · , gm) : Mn → Rn+1 × · · · × Rn+1 = Rm(n+1).

g is a Cr map. We claim it is an embedding.
If x ∈ Si, gi is immersive at x, so therefore g is immersive at x. Since the

Si’s cover Mn, gi is an immersion. We observe that g is one-to-one.
Suppose x 6= y and y ∈ Si. If x also lies in Si, then since

fi|Si
= φi|Si

then fi(x) 6= fi(y) since φi is injective. If x does not lie in Si, then

λi(y) = 1 6= λi(x).

So g(x) 6= g(y).
So g : Mn → Rn(m+1) is an injective immersion. Since Mn is compact, g

is an embedding.
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FIGURE 6.1
A graph of λ when n = 2.

Remark. Notice that this theorem implies that a compact n-manifold Mn

can be embedding in any manifold Nm if the dimension of Nm is sufficiently
large. This is because Nm looks locally like Euclidean space, and so by the
above theorem Nm can be embedding in an open set inside Mn.

6.1.1 Obstructions to the existence of embeddings and im-
mersions and the immersion conjecture

A stronger version of Theorem 6.1 was proved by H. Whitney in a seminal
paper published in 1944 [68].

Theorem 6.2. [68] A. (Whitney Embedding Theorem) Let Mn be a compact
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Cr manifold of dimension n, with r ≥ 1. Then there is a Cr-embedding e :
Mn ↪→ R2n. Furthermore there is a Cr-immersion j : Mn # R2n−1.

An extension of Whitney’s theorem to the setting of manifolds with bound-
ary is the following:

Theorem 6.3. Let Mn be a Cr-n-dimensional compact manifold with bound-
ary, with r ≥ 1. Then there is a neat Cr embedding of Mn into H2n.

It is natural to ask if Whitney’s theorem is the best possible. More specf-
ically, one can ask the following question. From now on all manifolds we con-
sider are closed and C∞, unless specifically stated otherwise.

Question 1. What is the smallest positive integer φ(n) so that every
compact n-dimensional manifold can be embedded in Rn+φ(n)? Notice that
Whitney’s theorem says that φ(n) ≤ n.

Question 2. What is the smallest positive integer ψ(n) so that every com-
pact n-dimensional manifold can be immersed in Rn+ψ(n)? Whitney’s theorem
says that ψ(n) ≤ n− 1.

Question 1 poses a problem that as of this date is unsolved. There are many
results of the best possible embedding dimension for particular n-manifolds,
but general the answer to Question 1 is unknown. However in the case when
n is a power of 2 one can prove that Whitney’s result is best possible. That is,
if n = 2k, then φ(2k) = 2k. We give a sketch of a proof of this fact by proving
the following.

Proposition 6.4. The projective space RP2k embeds in R2k+1

by Whitney’s

theorem, but it does not embedd in R2k+1−1.

Proof. We give a sketch of an argument that uses a theory of Haefliger devel-
oped in [28]. For X any space, consider the configuration space of k ordered,
distinct points in X:

F (X, k) = {(x1, · · · , xk) ∈ Xk : xi 6= xj if i 6= j}.

Notice that the symmetric group Σk acts freely on F (X, k) by permuting the
order of the elements.

Notice that if e : Mn ↪→ RL is an embedding of a manifold into Euclidean
space, there is an induced map of configuration spaces

F (e) : F (Mn, 2)/Σ2 → F (RL, 2)/Σ2.

We claim that F (RL, 2)/Σ2 has the homotopy type of the projective space
RPL−1. To see this, notice that F (RL, 2) is diffeomorphic to RL × (RL −
{0}) via the map that sends (x1, x2) to (x1 + x2, x1 − x2). This is a Σ2-
equivariant diffeomorphism, where the action on RL × (RL − {0}) is given by



Embeddings and Immersions in Euclidean Space 159

(u, v) → (u,−v). But clearly with respect to this action RL × (RL − {0}) is
Σ2-equivariantly homotopy equivalent to the sphere SL−1 with the antipodal
Σ2-action. Then claim then follows.

Now since any compact n- manifold Mn embeds in RL for L sufficiently
large, and since any two embeddings into sufficiently large dimensional Eu-
clidean space are isotopic (to be discussed below), then one always comes
equipped with a map, well defined up to homotopy,

ω : F (Mn, 2)/Σ2 → F (R∞, 2)/Σ2 ' RP∞.

Furthermore, by the above claim, if Mn embeds in RL, this map factors, up
to homotopy, through a map ωL : F (Mn, 2)/Σ2 → RPL−1. By Whitney’s
theorem, one can always find such a ωL for L = n. However in the case of

Mn = RP2k , Haefliger showed using obstruction theory that there is no map

ω2k−1 : F (RP2k , 2)/Σ2) 99K RP2k−2 that factors ω : F (RP2k , 2)/Σ2)→ RP∞.

This means that RP2k cannot be embedded in R2k+1−1.

Notice that this proposition says that in the case n = 2k the answer to
Question 1 above is φ(2k) = 2k. But as was mentioned above, in general Ques-
tion 1 is unresolved. However, as we have observed, Haefligger’s theory supplies
a homotopy theoretic obstruction to embedding manifolds in Euclidean space.
We remark that in recent years Haefligger’s theory has been generalized to a
theory of “Embedding Calculus”, as developed by T. Goodwillie, M. Weiss,
and others [24], [25], [66] [67]. This is a beautiful and effective theory for study-
ing spaces of embeddings of one manifold into an other, using sophisticated
homotopy theoretic techniques. We encourage the reader to learn more about
this theory.

The situation with immersions instead of embeddings is considerably eas-
ier, due to the following famous result of Hirsch and Smale [31]. This is an
early example of the h-principle (where “h” stands for homotopy) as defined
by Gromov [23] and developed further by Eliashberg and Mishachev [20]. We
now describe the Hirsch-Smale result.

Suppose f : Mn # Pn+k is an immersion between smooth (C∞) mani-
folds. Then one has the induced map of tangent bundles yielding the commu-
tative diagram

TMn Df−−−−→ TPn+ky y
Mn −−−−→

f
Pn+k

This is an example of a bundle monomorphism , meaning a map of vector
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bundles
ζ

γ̄−−−−→ ξy y
X −−−−→

γ
Y

so that γx : ζx → ξγ(x) is a linear monomorphism of vector spaces for each
x ∈ X. We denote the space of such bundle monomorphisms by Mono(ζ, ξ).
Let Imm(Mn, Pn+k) be the space of immersions, topologized in the space
of all maps given the compact-open topology. Then differentiation induces a
map

D : Imm(Mn, Pn+k)→Mono(TMn, TPn+k).

Theorem 6.5. (Hirsch and Smale [31]). Let Mn be a compact, smooth man-
ifold of dimension n, and Pn+k be a smooth manifold of dimension n+k, with
k ≥ 1. Then the map

D : Imm(Mn, Pn+k)→Mono(TMn, TPn+k).

is a weak homotopy equivalence.

Notice that in particular, if Mono(TMn, TRn+k) is nonempty, then there
exists an immersion Mn # Rn+k, for k ≥ 1.

Notice furthermore that a bundle monomorphism γ : TMn → TRn+k

determines a k-dimensional normal bundle,

π : νkγ →Mn

where π−1(x) = {v ∈ Rn+k such that v ⊥ γ(TxM
n)}. That is νkγ is the orthog-

onal complement to TMn, inside TRn+k. In otherwords,

TMn ⊕ νkγ ∼= M × Rn+k.

The following is is a direct consequence of the Hirsch-Smale theorem.

Corollary 6.6. A compact n-manifold Mn immerses in Rn+k if and only if
there is a k-dimensional bundle νk →Mn such that

TMn ⊕ νk ∼= Mn × Rn+k.

We now give an interpretation of these results in terms of classifying spaces.
We use [13] as a reference. This allows one to recast the question of immersing
manifolds into Euclidean space into a homotopy theoretic problem.
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As in chapter 2 of [13] let BO(k) denote the classifying space of k-
dimensional vector bundles, and let B) = limk→∞BO(k). Since every mani-
fold immerses, and indeed embeds in sufficiently high dimensional Euclidean
space means there is a map

ν : Mn → BO

representing this high dimensional (or “stable” ) normal bundle. This map
is well-defined up to homotopy for the following reason. Given any compact
space X with basepoint, the homotopy classes of basepoint preserving maps
[X,BO] represents the set of stable vector bundles SV ect(S), which is iso-
morphic to the reduced K-theory, K̃O(X), and is therefore an abelian group.
(We refer the reader to chapter 1 of [13] for a discussion of this fact. In par-
ticular the addition in this abelian group corresponds to the Whitney sum of
vector bundles. In this abelian group structure, the stable normal bundle is
the inverse of the stable tangent bundle represented by the composite

τM : Mn → BO(n)→ BO.

Thus the stable normal bundle map is well-defined, up to homotopy. We may
therefore restate Corollary 6.6 as follows.

Theorem 6.7. Let Mn be a compact n-manifold and ν : Mn → BO represent
its stable normal bundle. Then Mn immerses in Rn+k if and only if there is
a map νk : Mn → BO(k) so that the composite

Mn νk−→ BO(k)→ BO

is homotopic to the stable normal bundle map ν : Mn → BO.

Using this theorem, the work of Brown and Peterson [8] [9] [10], and the
author [12], combined to give a resolution of Question 2 above. We now outline
how this was achieved.

In [40] Massey showed that for every closed n-manifold Mn, the homo-
morphism induced by the stable normal bundle map

ν∗ : H∗(BO;Z/2)→ H∗(Mn;Z/2)

factors through H∗(BO(n − α(n)), where α(n) is the number of ones in the
dyadic (base 2) expansion of n. That is to say, there is a homomorphism
ν̃∗ : H∗(BO(2n− α(n);Z/2)→ H∗(Mn;Z/2) so that the composition

H∗(BO;Z/2)
ι∗−→ H∗(BO(n− α(n));Z/2)

ν̃∗−→ H∗(Mn;Z/2)

is equal to ν∗. Here ι : (BO(n − α(n)) → BO is the usual inclusion.
Now recall from [13] that H∗(BO;Z/2) ∼= Z/2[ω1, · · · , ωk, · · · ] and that
H∗(BO(m);Z/2) ∼= Z/2[ω1, · · · , ωm] for every m. So Massey’s result can be
restated as the following.
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Theorem 6.8. (Massey [40]) Let Mn be a closed n-dimensional manifold,
and let νM : Mn → BO classify its stable normal bundle. Then

ωi(νM ) = 0

for all i > n− α(n).

For a closed n-manifoldMn, let IMn ⊂ H∗(BO;Z/2) ∼= Z/2[w1, · · · , wi, · · · ]
be the kernel of the stable normal bundle homomorphism, ν∗ :
H∗(BO;Z/2)→ H∗(Mn;Z/2). Let In be the intersection

In =
⋂
Mm

IMn .

Here the intersection is taken over all closed n-manifolds. In is an ideal in
Z/2[w1, · · · , wi, · · · ], and by Massey’s result we know that wi ∈ In for all i >
n− α(n). In [8] [9] Brown and Peterson computed In explicitly, thus refining
Massey’s theorem. In [10] they went further and constructed a “universal
space” for normal bundles of n-manifolds, and proved the following theorem.

Theorem 6.9. (Brown and Peterson [10]). For every n there is a space
BO/In equipped with a map ρn : BO/In → BO satisfying the following prop-
erties.

1. In cohomology ρ∗n : H∗(BO;Z/2) → H∗BO/In;Z/2) is surjective, with
kernel In. That is, ρ∗n induces an isomorphism

H∗(BO/In;Z/2) ∼= H∗(BO;Z/2)/In.

2. Every closed n-manifold Mn admits a map ν̃Mn : Mn → BO/In such that
the composition

Mn ν̃Mn−−−→ BO/In
ρn−→ BO

is homotopic to the stable normal bundle map νMn : Mn → BO.

Notice that by combining the work of Massey and Brown-Peterson, we
have the following commutative diagram for every closed n-manifold Mn:

H∗(BO;Z/2)
ι∗n−α(n)−−−−−→ H∗(BO(n− α(n);Z/2)

ν∗Mn

y yρ∗n
H∗(Mn;Z/2) ←−−−−

ν̃∗
Mn

H∗(BO;Z/2))/In

Brown and Peterson’s work [10] can be viewed as realizing a part of this
cohomology diagram as coming from a diagram of spaces:
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BO
ιn−α(n)←−−−−− BO(n− α(n))

νMn

x
Mn −−−−→

ν̃Mn
BO/In

In [12] the topological realization of this cohomology diagram was made
complete when the author proved the following.

Theorem 6.10. ([12]) For every n there is a map ρ̃n : BO/In → BO(n −
α(n)) such that the composition BO/In

ρ̃n−→ BO(n − α(n))
ιn−α(n)−−−−−→ BO is

homotopic to ρn : BO/In → BO as in Theorem 6.9.

Now let Mn be an n-manifold, and let ν̃Mn : Mn → BO/In be as in
Theorem 6.9. Combining Theorem 6.9 with Theorem 6.10 implies that the
composition

ν̃Mn : Mn ν̃Mn−−−→ BO/In
ρ̃n−→ BO(n− α(n))

factors (up to homotopy) the stable normal bundle map νMn : Mn → BO.
Then by Theorem 6.7 we can conclude the following theorem.

Theorem 6.11. ([12]) Every closed n-manifold Mn admits an immersion

jMn : Mn # R2n−α(n).

We end this section by describing why this is the best possible result. That
is, the answer to Question 2 above, which asks what is the smallest integer ψ(n)
such that every closed n-manifold immerses in Rn+ψ(n) is ψ(n) = n− α(n).

We will actually describe a closed manifold Mn whose normal Stiefel-
Whitney class, wn−α(n)(νMn) is nonzero. This would then supply an obstruc-

tion to immersing Mn into R2n−α(n)−1.
The manifold Mn can be described as follows. Write n as a sum of distinct

powers of 2:
n = 2i1 + 2i2 + · · ·+ 2ir .

Note that r, the number of distinct powers of 2 in this description, is equal to
α(n). We then define

Mn = RP2i1 × RP2i2 × · · · × RP2ir .

We then need to prove the following.

Proposition 6.12. The normal Stiefel-Whitney class

wn−α(n)(νMn) ∈ Hn−α(n)(Mn;Z/2)

is nonzero.
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Proof. We first consider the case when n is a power of 2. That is, n = 2j . In
this case α(n) = 1 and Mn = RP2j . Recall from [13] that the tangent bundle
of projective space satisfies the following isomorphism:

τ(RPm)⊕ ε1 ∼= ⊕n+1γ1

where γ1 → RPm is the canonical line bundle, and ε1 is the trivial one-
dimensional bundle. This means that there is an isomorphism of total Stiefel-
Whitney classes of the tangent bundle:

w(RPm) = (1 + a)m+1 ∈ H∗(RPm;Z/2).

Here a ∈ H1(RPm;Z/2) is the generator. Thus as a formal power series, we
can think of the total normal Stiefel class w(νRPm) as the inverse:

w(νRPm) =
1

w(RPm)
=

1

(1 + a)m+1
∈
∏
k

Hk(RPm;Z/2).

In the case m = 2j , then (1 + a)2j+1 = 1 + a + a2j + a2j+1mod 2. Moreover

since 0 = a2j+1 ∈ H∗(RP2j ;Z/2), we have that w(RP2j ) = 1 + a + a2j ∈
H∗(RP2j ;Z/2). Therefore

w(νRP2j ) =
1

1 + a+ a2j
= 1 + a+ a2 + · · ·+ a2j−1 ∈ H∗(RP2j ;Z/2).

In particular this says that w2j−1(νRP2j ) = a2j−1 ∈ H2j−1(RP2j ;Z/2), which
is nonzero. This proves the proposition in the case n = 2j . We now turn to
the general case.

Write n = 2i1 + 2i2 + · · ·+ 2ir as above, and let Mn = RP2i1 ×· · ·×RP2ir .
Then the total normal Stiefel-Whitney class is given by

w(νMn) = ⊗rj=1w(RP2ij ) = ⊗rj=1(1+aj+· · · a2ij−1
j ) ∈ ⊗rj=1H

∗(RP2ij ;Z/2) = H∗(Mn;Z/2).

Notice that the highest dimensional nonzero monomial in this expression is

a2i1−1 ⊗ · · · ⊗ a2ir−1

which lies in dimension
∑r
j=1(2ij − 1) = n− r = n− α(n). Thus

wn−α(n)(νMn) = a2i1−1⊗· · ·⊗a2ir−1 ∈ Hn−α(n)(

r∏
j=1

RP2ij ;Z/2) = Hn−α(n)(Mn;Z/2),

and this class is clearly nonzero.

To summarize, this proposition says that for Mn defined as the product
of projective spaces as above, then wn−α(n)(νMn) ∈ Hn−α(n)(Mn;Z/2) is

nonzero. Thus, even though Mn admits an immersion into R2n−α(n), there is
no immersion of Mn into R2n−α(n)−1. In particular this says that the answer
to Question 2 above is ψ(n) = n− α(n).
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6.2 “Turning a sphere inside-out”.

In the last subsection we used the Smale-Hirsch theorem (Theorem 6.5) to dis-
cuss the existence or nonexistence of immersions of manifolds into Euclidean
spaces of varying dimensions. In this subsection we discuss the first applica-
tion of this theorem, which was to show that two immersions of S2 into R3

are isotopic (sometimes referred to as “regularly homotopic”).
Specifically we will give Smale’s proof of his famous theorem saying that

the identity embedding ι : S2 ↪→ R3 defined by ι(x, y, z) = (x, y, z), is isotopic
as immersions to the reflection j : S2 ↪→ R3 defined by (x, y, z) → (x, y,−z).
That is, there exists a one-parameter family of immersions connecting ι to
j. Such a one parameter family is called an “eversion” of the sphere. The
fact that such an eversion exists is perhaps counter-intuitive. It is sometimes
described as “turning the sphere inside out”, and indeed there are now movies
of such eversions. However Smale’s original proof was a nonconstructive one,
which relied on (an early version of) Theorem 6.5.

Notice that the statement that two immersions f, g : M # N are isotopic
(or “regularly homotopic”) is equivalent to the statement that f and g lie in
the same path component of Imm(M,N). To prove that the immersions ι and
j of S2 into R3 are isotopic, Smale proved the following:

Theorem 6.13. (Smale [54]) The space Imm(S2,R3) is path connected.

Proof. By Theorem 6.5 one has a weak homotopy equivalence

D : Imm(S2,R3)
'−→Mono(TS2, TR3).

We can think about the space Mono(TS2, TR3) in the following way. Con-
sider the fiber bundle

Mono(R2,R3)→ I(TS2,R3)
p−→ S2 (6.1)

where I(TS2,R3) is defined to be the space

I(TS2,R3) = {(x, ψ) : x ∈ S2, and ψ : TxS
2 → R3 is a linear monomorphism.}

Then p(x, ψ) = x ∈ S2. So each fiber of p is equivalent to the Stiefel
manifold V2,3 = Mono(R2,R3). Notice that V2,3 has the homotopy type of
O(3)/O(1) ∼= SO(3). This is true by the following reasoning. Using the Gram-
Schmidt process, one sees that Mono(R2,R3) is homotopy equivalent to the
space of inner-product preserving monomorphisms, Mono<,>(R2,R3). Now
this space has a transitive action of the orthogonal group O(3), and the
isotropy subgroup of the inclusion of R2 in R3 given by (x, y) → (0, x, y)
is O(1) < O(3).
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Notice there is a natural homeomorphism

Mono(TS2, TR3)
∼=−→ ΓS2(I(TS2,R3))

where ΓS2(I(TS2,R3)) is the space of (continuous) sections of the bundle
(6.1). To prove the theorem it then suffices to prove the following.

Lemma 6.14. The space of sections ΓS2(I(TS2,R3)) is path connected.

Proof. For ease of notation let γ represent the space ΓS2(I(TS2,R3)) ∼=
Mono(TS2, TR3) ' Imm(S2,R3). Let α, andβ ∈ γ be any two sections. We
will show that they live in the same path component of γ. Write S2 = R2∪∞,
and fix an identification of T∞S

2 with R2. Without loss of generality we may
assume that

α(∞) = β(∞) = (∞, ι) ∈ I(TS2,R3)

where ι : T∞S
2 ∼= R2 ↪→ R3 is the natural inclusion (u, v)→ (0, u, v). This is

because the group SO(3) acts transitively on V2,3, and so one may rotate α
and β if necessary so that they satisfy this basepoint relation. Since SO(3) is
connected such rotations preserve the path components of α and β.

So we may assume that α and β lie in γb ⊂ γ which we define to be the
space of sections satisfying this basepoint condition. Notice that γb can be
viewed as a subspace of the space of all maps S2 to I(TS2,R3) that take ∞
to (∞, ι). This is the two-fold based loop space Ω2I(TS2,R3). Indeed γb is
exactly that subspace of Ω2I(TS2,R3) which maps to the identity element
in Ω2S2 under the map Ω2p : Ω2I(TS2,R3) → Ω2S2. This map, being the
two-fold loop map of the fibration (6.1), defines a fibration

Ω2V2,3 → Ω2I(TS2,R3)
Ω2p−−→ Ω2S2. (6.2)

We make a couple of observations about this fibration. First recall that the
homotopy group π2(V2,3) = π2(SO(3)) = 0. This is because SO(3) ∼= RP3 and
the universal cover of RP3 is S3, whose second homotopy group vanishes. This
implies that Ω2RP3 = Ω2SO(3) ∼= Ω2V2,3 is path connected. By considering
this fibration sequence one then deduces that there is a bijection between
the path components of Ω2I(TS2,R3) and Ω2S2. In fact this bijection is an
isomorphism between abelian groups. This is because the path components of
two-fold loop spaces are abelian groups and Ω2p is a map that preserves this
two-fold loop structure. Thus we may conclude that

π0(Ω2I(TS2,R3)) ∼= π0(Ω2S2) ∼= π2(S2) ∼= Z.

Furthermore, observe that the path components of a two-fold loop space are
all homotopy equivalent. This is seen as follows. Let Ω2Y be a two-fold loop
space. Let g and h represent elements of this space and Ω2

gY and Ω2hY be the
path components of this space containing g and h respectively. “Multiplying



Embeddings and Immersions in Euclidean Space 167

by g−1h defines a map ×g−1h : Ω2
gY → Ω2

hY which has homotopy inverse
×h−1g : Ω2

hY → Ω2
gY .

We conclude that we can restrict two-fold loop fibration (6.2) to any path
component of Ω2S2 to obtain a homotopy fibration sequence

Ω2V2,3 → Ω2
[n]I(TS2,R3)

Ω2p−−→ Ω2
[n]S

2.

(By “homotopy fibration sequence” we mean that the fibers are homotopy
equivalent to Ω2V2,3). Here Ω2

[n]S
2 is the component of Ω2S2 containing maps

of degree n. But notice that when n = 1, then by the definition of what a
section means, γb is the fiber of Ω2p over the identity map of S2, id ∈ Ω2

[1]S
2.

We may then conclude that γb ' Ω2V2,3, which as just observed, is path
connected. In particular our original sections α and β in γ live in the same
path component.

Final Remark. In discussing eversions of spheres, we proved (ala Smale)
that all immersion of S2 in R3 are regularly homotopic (isotopic). Ultimately,
using Hirsch-Smale theory, this was because π2(V2,3) = 0. However, somewhat
surprisingly, there are infinitely many isotopy classes of immersions of S2 into
R4. This is because π2(V2,4) ∼= Z. We leave it to the reader to fill in the details
of this striking result.
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Homotopy Theory of Fibrations

In this chapter we study the basic algebraic topological properties of fiber bun-
dles, and their generalizations, “Serre fibrations”. We begin with a discussion
of homotopy groups and their basic properties. We then show that fibrations
yield long exact sequences in homotopy groups and use it to show that the
loop space of the classifying space of a group is homotopy equivalent to the
group. We then develop basic obstruction theory for liftings in fibrations, use
it to interpret characteristic classes as obstructions, and apply them in several
geometric contexts, including vector fields, Spin structures, and classification
of SU(2) - bundles over four dimensional manifolds. We also use obstruction
theory to prove the existence of Eilenberg - MacLane spaces, and to prove
their basic property of classifying cohomology. We then develop the theory
of spectral sequences and then discuss the famous Leray - Serre spectral se-
quence of a fibration. We use it in several applications, including a proof of
the theorem relating homotopy groups and homology groups, a calculation of
the homology of the loop space ΩSn, and a calculation of the homology of the
Lie groups U(n) and O(n).

7.1 Homotopy Groups

We begin by adopting some conventions and notation. In this chapter, unless
otherwise specified, we will assume that all spaces are connected and come
equipped with a basepoint. When we write [X,Y ] we mean homotopy classes
of basepoint preserving maps X → Y . Suppose x0 ∈ X and y0 ∈ Y are
the basepoints. Then a basepoint preserving homotopy between basepoint
preserving maps f0 and f1 : X → Y is a map

F : X × I → Y

such that each Ft : X × {t} → Y is a basepoint preserving map and F0 = f0

and F1 = f1. If A ⊂ X and B ⊂ Y , are subspaces that contain the basepoints,
(x0 ∈ A, and y0 ∈ B), we write [X,A;Y,B] to mean homotopy classes of maps
f : X → Y so that the restriction f|A maps A to B. Moreover homotopies are
assumed to preserve these subsets as well. That is, a homotopy defining this

169
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equivalence relation is a map F : X × I → Y that restricts to a basepoint
preserving homotopy F : A × I → B. We can now give a strict definition of
homotopy groups.

Definition 7.1. The nth homotopy group of a space X with basepoint x0 ∈ X
is defined to be the set

πn(X) = πn(X,x0) = [Sn, X].

Equivalently, this is the set

πn(X) = [Dn, Sn−1;X,x0]

where Sn−1 = ∂Dn is the boundary sphere.

Exercise. Prove that these two definitions are in fact equivalent.

Remarks. 1. It will often helpful to us to use as our model of the disk Dn

the n - cube In = [0, 1]n. Notice that in this model the boundary ∂In

consists of n - tuples (t1, · · · , tn) with ti ∈ [0, 1] where at least one of the
coordinates is either 0 or 1.
2. Notice that for n = 1, this definition of the first homotopy group is the
usual definition of the fundamental group.

So far the homotopy “groups” have only been defined as sets. We now
examine the group structure. To do this, we will define our homotopy groups
via the cube In, which we give the basepoint (0, · · · , 0). Let

f and g : (In, ∂In) −→ (X,x0)

be two maps representing elements [f ] and [g] ∈ πn(X,x0). Define

f · g : In −→ X

by

f · g(t1, t2, · · · , tn) =

{
f(2t1, t2, · · · , tn) for t1 ∈ [0, 1/2]

g(2t− 1, t2, · · · , tn) for t1 ∈ [1/2, 1]

The map f · g : (In, ∂In)→ (X,x0) represents the product of the classes

[f · g] = [f ] · [g] ∈ πn(X,x0).

Notice that in the case n = 1 this is precisely the definition of the product
structure on the fundamental group π1(X,x0). The same proof that this prod-
uct structure is well defined and gives the fundamental group the structure of
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an associative group extends to prove that all of the homotopy groups are in
fact groups under this product structure. We leave the details of checking this
to the reader. We refer the reader to any introductory textbook on algebraic
topology for the details.

As we know the fundamental group of a space can be quite complicated.
Indeed any group can be the fundamental group of a space. In particular
fundamental groups can be very much noncommutative. However we recall
the relation of the fundamental group to the first homology group, for which
we again refer the reader to any introductory textbook:

Theorem 7.1. Let X be a connected space. Then the abelianization of the
fundamental group is isomorphic to the first homology group,

π1(X)/[π1, π1] ∼= H1(X)

where [π1, π1] is the commutator subgroup of π1(X).

We also have the following basic result about higher homotopy groups.

Proposition 7.2. For n ≥ 2, the homotopy group πn(X) is abelian.

Proof. Let [f ] and [g] be elements of πn(X) represented by basepoint preserv-
ing maps f : (In, ∂In) → (X,x0) and g : (In, ∂In) → (X,x0), respectively.
We need to find a homotopy between the product maps f · g and g · f defined
above. The following schematic diagram suggests such a homotopy. We leave
it to the reader to make this into a well defined homotopy.

Now assume A ⊂ X is a subspace containing the basepoint x0 ∈ A.

Definition 7.2. For n ≥ 1 we define the relative homotopy group πn(X,A) =
πn(X,A, x0) to be homotopy classes of maps of pairs

πn(X,A) = [(Dn, ∂Dn, t0); (X,A, x0)].

where t0 ∈ ∂Dn = Sn−1 and x0 ∈ A are the basepoints.

Exercise. Show that for n > 1 the relative homotopy group πn(X,A) is in
fact a group. Notice here that the zero element is represented by any
basepoint preserving map of pairsf : (Dn, ∂In)→ (X,A) that is homotopic
(through maps of pairs) to one whose image lies entirely in A ⊂ X.
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Again, let A ∈ X be a subset containing the basepoint x0 ∈ A, and let
i : A ↪→ X be the inclusion. This induces a homomorphism of homotopy
groups

i∗ : πn(A, x0)→ πn(X,x0).

Also, by ignoring the subsets, a basepoint preserving map f : (Dn, ∂Dn) →
(X,x0) defines a map of pairs f : (Dn, ∂Dn, t0)→ (X,A, x0) which defines a
homomorphism

j∗ : πn(X,x0)→ πn(X,A, x0).

Notice furthermore, that by construction, the composition

j∗ ◦ i∗ : πn(A)→ πn(X)→ πn(X,A)

is zero. Finally, if given a map of pairs g : (Dn, Sn−1, t0)→ (X,A, x0), then we
can restrict g to the boundary sphere Sn−1 to produce a basepoint preserving
map

∂g : (Sn−1, t0)→ (A, x0).

This defines a homomorphism

∂∗ : πn(X,A, x0)→ πn−1(A, x0).

Notice here that the composition

∂∗ ◦ j∗ : πn(X)→ πn(X,A)→ πn−1(A)

is also zero, since the application of this composition to any representing map
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f : (Dn, Sn−1) → (X,x0) yields the constant map Sn−1 → x0 ∈ A. We now
have the following fundamental property of homotopy groups. Compare with
the analogous theorem in homology.

Theorem 7.3. Let A ⊂ X be a subspace containing the basepoint x0 ∈ A.
Then we have a long exact sequence in homotopy groups

· · · ∂∗−−−−→ πn(A)
i∗−−−−→ πn(X)

j∗−−−−→ πn(X,A)
∂∗−−−−→ πn−1(A)→ · · · → π1(A)

i∗−−−−→ π1(X)

Proof. We’ve already observed that j∗◦i∗ and ∂∗◦j∗ are zero. Similarly, i∗◦∂∗
is zero because an element in the image of ∂∗ is represented by a basepoint
preserving map Sn−1 → A that extends to a map Dn → X. Thus the image
under i∗, namely the composition Sn−1 → A ↪→ X has an extension to Dn

and is therefore null homotopic. We therefore have

image(∂∗) ⊂ kernel(i∗)
image(i∗) ⊂ kernel(j∗)
image(j∗) ⊂ kernel(∂∗).

To finish the proof we need to show that all of these inclusions are actually
equalities. Consider the kernel of (i∗). An element [f ] ∈ πn(A) is in ker(i∗)
if and only if the basepoint preserving composition f : Sn → A ⊂ X is null
homotopic. Such a null - homotopy gives an extension of this map to the
disk F : Dn+1 → X. The induced map of pairs F : (Dn+1, Sn) → (X,A)
represents an element in πn+1(X,A) whose image under ∂∗ is [f ]. This proves
that image(∂∗) = kernel(i∗). The other equalities are proved similarly, and
we leave their verification to the reader.

Remark. Even though this theorem is analogous to the existence of exact
sequences for pairs in homology, notice that its proof is much easier.

Notice that π0(X) is the set of path components of X. So a space is (path) -
connected if and only if π0(X) = 0 (i.e the set with one element). We generalize
this notion as follows.

Definition 7.3. A space X is said to be m - connected if πq(X) = 0 for
0 ≤ q ≤ m.

We now do our first calculation.

Proposition 7.4. An n - sphere is n− 1 connected.
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Proof. We need to show that any map Sk → Sn, where k < n is null homo-
topic. Now since spheres can be given the structure of simplicial complexes,
the simplicial approximation theorem says that any map f : Sk → Sn is homo-
topic to a simplicial map (after suitable subdivisions). So we assume without
loss of generality that f is simplicial. But since k < n, the image of of f lies
in the k - skeleton of the n - dimensional simplicial complex Sn. In particular
this means that f : Sk → Sn is not surjective. Let y0 ∈ Sn be a point that is
not in the image of f . Then f has image in Sn − y0 which is homeomorphic
to the open disk Dn, and is therefore contractible. This implies that f is null
homotopic.

7.2 Fibrations

Recall that in chapter 2 we proved that locally trivial fiber bundles satisfy
the Covering Homotopy Theorem 4.2. A generalization of the notion of a
fiber bundle, due to Serre, is simply a map that satisfies this type of lifting
property.

Definition 7.4. A Serre fibration is a surjective, continuous map p : E → B
that satisfies the Homotopy Lifting Property for CW - complexes. That is, if
X is any CW - complex and F : X × I → B is any continuous homotopy so
that F0 : X × {0} → B factors through a map f0 : X → E, then there exists
a lifting F̄ : X × I → E that extends f0 on X ×{0}, and makes the following
diagram commute:

X × I F̄−−−−→ E

=

y yp
X × I −−−−→

F
B.

A Hurewicz fibration is a surjective, continuous map p : E → B that satisfies
the homotopy lifting property for all spaces.

Remarks. 1. Obviously every Hurewicz fibration is a Serre fibration. The
converse is false. In these notes, unless otherwise stated, we will deal with
Serre fibrations, which we will simply refer to as fibrations.
2. The Covering Homotopy Theorem implies that a fiber bundle is a
fibration in this sense.

The following is an important example of a fibration.
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Proposition 7.5. Let X be any connected space with basepoint x0 ∈ X. Let
PX denote the space of based paths in X. That is,

PX = {α : I → X : α(0) = x0}.

The path space PX is topologized using the compact - open function space
topology. Define

p : PX → X

by p(α) = α(1). Then PX is a contractible space, and the map p : PX → X
is a fibration, whose fiber at x0, p−1(x0) is the loop space ΩX.

Proof. The fact that PX is contractible is straightforward. For a null homo-
topy of the identity map one can take the map H : PX × I → PX, defined
by H(α, s)(t) = α((1− s)t).

To prove that p : PX → X is a fibration, we need to show it satisfies the
Homotopy Lifting Property. So let F : Y × I → X and f0 : X → PX be maps
making the following diagram commute:

Y × {0} f0−−−−→ PX

∩
y yp

Y × I −−−−→
F

X

Then we can define a homotopy lifting, F̄ : Y × I → PX by defining for
(y, s) ∈ Y × I, the path

F̄ (y, s) : I → X

F̄ (y, s)(t) =

{
f0(y)( 2t

2−s ) for t ∈ [0, 2−s
2 ]

F (y, 2t− 2 + s) for t ∈ [ 2−s
2 , 1]

One needs to check that this definition makes F̄ (y, s)(t) a well defined conti-
nous map and satisfies the boundary conditions

F̄ (y, 0)(t) = f0(y, t)

F̄ (y, s)(0) = x0

F̄ (y, s)(1) = F (y, s)

These verifications are all straightforward.

The following is just the observation that one can pull back the Homotopy
Lifting Property.
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Proposition 7.6. Let p : E → B be a fibration, and f : X → B a continuous
map. Then the pull back, pf : f∗(E)→ X is a fibration, where

f∗(E) = {(x, e) ∈ X × E such that f(x) = p(e)}

and pf (x, e) = x.

The following shows that in the setting of homotopy theory, every map
can be viewed as a fibration in this sense.

Theorem 7.7. Every continuous map f : X → Y is homotopic to a fibration
in the sense that there exists a fibration

f̃ : X̃ → Y

and a homotopy equivalence

h : X
'−−−−→ X̃

making the following diagram commute:

X
h−−−−→
'

X̃

f

y yf̃
Y = Y.

Proof. Define X̃ to be the space

X̃ = {(x, α) ∈ X × Y I such thatα(0) = x.}

where here Y I denotes the space of continuous maps α : [0, 1]→ Y given the
compact open topology. The map f̃ : X̃ → Y is defined by f̃(x, α) = α(1).
The fact that f̃ : X̃ → Y is a fibration is proved in the same manner as
theorem 7.5, and so we leave it to the reader.

Define the map h : X → X̃ by h(x) = (x, εx) ∈ X̃, where εx(t) = x is the
constant path at x ∈ X. Clearly f̃ ◦ h = f so the diagram in the statement of
the theorem commutes. Now define g : X̃ → X by g(x, α) = x. Clearly g ◦ h
is the identity map on X. To see that h ◦ g is homotopic to the identity on
X̃, consider the homotopy F : X̃ × I → X̃, defined by F ((x, α), s) = (x, αs),
where αs : I → X is the path αs(t) = α(st). So in particular α0 = εx and
α1 = α. Thus F is a homotopy between h◦g and the identity map on X̃. Thus
h is a homotopy equivalence, which completes the proof of the theorem.

The homotopy fiber of a map f : X → Y , Ff , is defined to be the fiber of

the fibration f̃ : X̃ → Y defined in the proof of this theorem. That is,
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Definition 7.5. The homotopy fiber Ff of a basepoint preserving map f :
X → Y is defined to be

Ff = {(x, α) ∈ X × Y I such thatα(0) = f(x) andα(1) = y0.}

where y0 ∈ Y is the basepoint.

So for example, the homotopy fiber of the inclusion of the basepoint y0 ↪→
Y is the loop space ΩY . The homotopy fiber of the identity map id : Y → Y
is the path space PY . The homotopy fibers are important invariants of the
map f : X → Y .

The following is the basic homotopy theoretic property of fibrations.

Theorem 7.8. Let p : E → B be a fibration over a connected space B with
fiber F . So we are assuming the basepoint of E, is contained in F , e0 ∈ F ,
and that p(e0) = b0 is the basepoint in B. Let i : F ↪→ E be the inclusion of
the fiber. Then there is a long exact sequence of homotopy groups:

· · · ∂∗−−−−→ πn(F )
i∗−−−−→ πn(E)

p∗−−−−→ πn(B)
∂∗−−−−→ πn−1(F )→

· · · → π1(F )
i∗−−−−→ π1(E)

p∗−−−−→ π1(B).

Proof. Notice that the projection map p : E → B induces a map of pairs

p : (E,F )→ (B, b0).

By the exact sequence for the homotopy groups of the pair (E,F ), 7.3 it is
sufficient to prove that the induced map in homotopy groups

p∗ : πn(E,F )→ πn(B, b0)

is an isomorphism for all n ≥ 1. We first show that p∗ is surjective. So let
f : (In, ∂In)→ (B, b0) represent an element of πn(B). We can think of a map
from a cube as a homotopy of maps of cubes of one lower dimension. Therefore
by induction on n, the homotopy lifting property says that that f : In → B
has a basepoint preserving lifting f̄ : In → E. Since p ◦ f̄ = f , and since
the restriction of f to the boundary ∂In is constant at b0, then the image of
the restriction of f̄ to the boundary ∂In has image in the fiber F . That is, f̄
induces a map of pairs

f̄ : (In, ∂In)→ (E,F )

which in turn represents an element [f̄ ] ∈ πn(E,F ) whose image under p∗ is
[f ] ∈ πn(B, b0). This proves that p∗ is surjective.

We now prove that p∗ : πn(E,F ) → πn(B, b0) is injective. So let f :
(Dn, ∂Dn) → (E,F ) be a map of pairs that represents an element in the
kernel of p∗. That means p ◦ f : (Dn, ∂Dn) → (B, b0) is null homotopic. Let
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F : (Dn, ∂Dn) × I → (B, b0) be a null homotopy between F0 = f and the
constant map ε : Dn → b0. By the Homotopy Lifting Property there exists a
basepoint preserving lifting

F̄ : Dn × I → E

having the properties that p ◦ F̄ = F and F̄ : Dn × {0} → E is equal to
f : (Dn, ∂Dn)→ (E,F ). Since p ◦ F̄ = F maps ∂Dn × I to the basepoint b0,
we must have that F̄ maps ∂Dn × I to p−1(b0) = F . Thus F̄ determines a
homotopy of pairs,

F̄ : (Dn, ∂Dn)× I → (E,F )

with F̄0 = f . Now consider F̄1 : (Dn, ∂Dn)× {1} → E. Now p ◦ F̄1 = F1 = ε :
Dn → b0. Thus the image of F̄1 lies in p−1(b0) = F . Thus F̄ gives a homotopy
of the map of pairs f : (Dn, ∂Dn) → (E,F ) to a map of pairs whose image
lies entirely in F . Such a map represents the zero element of πn(E,F ). This
completes the proof that p∗ is injective, and hence is an isomorphism. As
observed earlier, this is what was needed to prove the theorem.

We now use this theorem to make several important calculations of homo-
topy groups. In particular, we prove the following seminal result of Hopf.

Theorem 7.9.

π2(S2) ∼= π3(S3) ∼= Z.
πk(S3) ∼= πk(S2) for all k ≥ 3. In particular,

π3(S2) ∼= Z, generated by the Hopf map η : S3 → S2.

Proof. Consider the Hopf fibration η : S3 → S2 = CP1 with fiber S1. Recall
that S1 is an Eilenberg - MacLane space K(Z, 1) since it is the classifying
space of bz. Thus

πq(S
1) =

{
Z for q = 1

0 for all other q.

(Remark. The fact that the classifying space Bπ of a discrete group π is an
Eilenberg - MacLane space K(π, 1) can now be given a simpler proof, using
the exact sequence in homotopy groups of the universal bundle Eπ → Bπ.)

Using this fact in the exact sequence in homotopy groups for the Hopf
fibration η : S3 → S2, together with the fact that πq(S

3) = 0 for q ≤ 2,
one is led to the facts that π2(S2) ∼= π1(S1) = Z, and that η∗ : πk(S3) →
πk(S2) is an isomorphism for k ≥ 3. To examine the case k = 3, consider the
homomorphism (called the Hurewicz homomorphism)

h : π3(S3)→ H3(S3) = Z
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defined by sending a class represented by a self map f : S3 → S3, to the image
of the fundamental class in homology, f∗([S

3]) ∈ H3(S3) ∼= Z. Clearly this is
a homomorphism (check this!). Moreover it is surjective since the image of the
identity map is the fundamental class, and thus generates, H3(S3), H([id]) =
[S3] ∈ H3(S3). Thus π3(S3) contains an integral summand generated by the
identity. In particular, since η∗ : π3(S3) → π3(S2) is an isomorphism, this
implies that π3(S2) contains an integral summand generated by the Hopf map
[η] ∈ π3(S2). The fact that these integral summands generate the entire groups
π3(S3) ∼= π3(S2) will follow once we know that the Hurewicz homomorphism
is an isomorphism in this case. Later in this chapter we will prove the more
general “Hurewicz theorem” that says that for any k > 1, and any (k −
1) - connected space X, the Hurewicz homomorphism is an isomorphism in
dimension k: h : πk(X) ∼= Hk(X).

Remark. As we remarked earlier in these notes. these were the first
nontrivial elements found in the higher homotopy groups of spheres,
πn+k(Sn), and Hopf’s proof of their nontriviality is commonly viewed as the
beginning of modern Homotopy Theory [64]

We end this section with an application to the “homotopy stability” of the
orthogonal and unitary groups, as well as their classifying spaces.

Theorem 7.10. The inclusion maps

ι : O(n) ↪→ O(n+ 1) and

U(n) ↪→ U(n+ 1)

induce isomorphisms in homotopy groups through dimensions n−2 and 2n−1
respectively. Also, the induced maps on classifying spaces,

Bι : BO(n)→ BO(n+ 1) and

BU(n)→ BU(n+ 1)

induce isomorphisms in homotopy groups through dimensions n − 1 and 2n
respectively.

Proof. The first two statements follow from the existence of fiber bundles

O(n) ↪→ O(n+ 1)→ Sn

and
U(n) ↪→ U(n+ 1)→ S2n+1,
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the connectivity of spheres 7.4, and by applying the exact sequence in ho-
motopy groups to these fiber bundles. The second statement follows from the
same considerations, after recalling from 4.28 the sphere bundles

Sn → BO(n)→ BO(n+ 1)

and
S2n+1 → BU(n)→ BU(n+ 1).

7.3 Obstruction Theory

In this section we discuss the obstructions to obtaining a lifting to the total
space of a fibration of a map to the basespace. As an application we prove the
important “Whitehead theorem” in homotopy theory, and we prove general
results about the existence of cross sections of principal O(n) or U(n) - bun-
dles. We do not develop a formal theory here - we just develop what we will
need for our applications to fibrations. For a full development of obstruction
theory we refer the reader to [63].

Let X be a CW - complex. Recall that its cellular k - chains, Ck(X) is the
free abelian group generated by the k - dimensional cells in X. The co-chains
with coefficients in a group G are defined by

Ck(X,G) = Hom(Ck(X), G).

Theorem 7.11. Let p : E → B be a fibration with fiber F . Let f : X → B
be a continuous map, where X is a CW - complex. Suppose there is a lifting
of the (k − 1) - skeleton f̃k−1 : X(k−1) → E. That is, the following diagram
commutes:

X(k−1) f̃k−1−−−−→ E

∩
y yp
X −−−−→

f
B.

Then the obstruction to the existence of a lifting to the k -skeleton, f̃k : X(k) →
E that extends f̃k−1, is a cochain γ ∈ Ck(X;πk−1(F )). That is, γ = 0 if and
only if such a lifting f̃k exists.
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Proof. We will first consider the special case where X(k) is obtained from
Xk−1) by adjoining a single k -dimensional cell. So assume

X(k) = X(k−1) ∪α Dk

where α : ∂Dk = S(k−1) → Xk−1) is the attaching map. We therefore have
the following commutative diagram:

Sk−1 α−−−−→ X(k−1) f̃k−1−−−−→ E

∩
y ∩

y yp
Dk −−−−→

⊂
X(k−1) ∪α Dk −−−−→

f
B

Notice that f̄k−1 has an extension to X(k−1) ∪α Dk = X(k) that lifts f , if
and only if the composition Dk ⊂ X(k−1) ∪α Dk f−−−−→ B lifts to E in such

a way that it extends f̄k−1 ◦ α.
Now view the composition Dk ⊂ X(k−1) ∪α Dk f−−−−→ B as a a map from

the cone on Sk−1 to B, or in other words, as a null homotopyF : Sk−1×I → B
from F0 = p ◦ f̄k−1 ◦ α : Sk−1 → X(k−1) → E → B to the constant map
F1 = ε : S(k−1) → b0 ∈ B. By the Homotopy Lifting Property, F lifts to a
homotopy

F̄ : S(k−1) × I → E

with F̄0 = f̄k−1 ◦α. Thus the extension fk exists on X(k−1) ∪αDk if and only
if this lifting F̄ can be chosen to be a null homotopy of f̄k−1 ◦α. But we know
F̄1 : Sk−1 × {1} → E lifts F1 which is the constant map ε : Sk−1 → b0 ∈ B.
Thus the image of F̄1 lies in the fiber F , and therefore determines an element
γ ∈ πk−1(F ). The homotopy F̄1 can be chosen to be a null homotopy if and
only if F̄1 : Sk−1 → F is null homotopic. (Because combining F̄ with a null
homotopy of F̄1, i.e an extension of F̄1 to a map Dk → F , is still a lifting of
F , since the extension lives in a fiber over a point.) But this is only true if the
homotopy class γ = 0 ∈ πk−1(F ).

This proves the theorem in the case when X(k) = X(k−1)∪αDk. In the gen-
eral case, suppose that X(k) is obtained from X(k−1) by attaching a collection
of k - dimensional disks, indexed on a set, say J . That is,

X(k) = X(k−1)
⋃
j∈J
∪αjDk.

The above procedure assigns to every j ∈ J an “obstruction” γj ∈ πk−1(F ).
An extension f̄k exists if and only if all these obstructions are zero. This
assignment from the indexing set of the k - cells to the homotopy group can
be extended linear to give a homomorphism γ from the free abelian group
generated by the k - cells to the homotopy group πk−1(F ), which is zero if
and only if the extension f̄k exists. Such a homomorphism γ is a cochain,
γ ∈ Ck(X;πk−1(F )). This completes the proof of the theorem.
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We now discuss several applications of this obstruction theory.

Corollary 7.12. Any fibration p : E → B over a CW - complex with an
aspherical fiber F admits a cross section.

Proof. Since πq(F ) = 0 for all q, by the theorem, there are no obstructions to
constructing a cross section inductively on the skeleta of B.

Proposition 7.13. Let X be an n - dimensional CW - complex, and let ζ
be an m - dimensional vector bundle over X, with m ≥ n. Then ζ has m− n
linearly independent cross sections. If ξ is a d - dimensional complex bundle
over X, then ξ admits d − [n/2] linearly independent cross sections, where
[n/2] is the integral part of n/2.

.

Proof. Let ζ be classified by a map fm : X → BO(m). To prove the theorem
we need to prove that fm lifts (up to homotopy) to a map fnX → BO(n).
We would then have that

ζ ∼= f∗m(γm) ∼= f∗n(γn)⊕ εm−n

where γk is the universal k - dimensional vector bundle over BO(k), and εj
represents the j - dimensional trivial bundle. These isomorphisms would then
produce the m−n linearly independent cross sections of ζ. over X. Now recall
there is a fibration

O(m)/O(n)→ BO(n)→ BO(m).

That is, the fiber of p : BO(n) → BO(m) is the quotient space O(m)/O(n).
Now by a simple induction argument using 7.10 shows that the fiber
O(m)/O(n) is n − 1 connected. That is, piq(O(m)/O(n)) = 0 for q ≤ n − 1.
By 7.11 all obstructions vanish for lifting the n - skeleton of X to the total
space BO(n). Since we are assuming X is n - dimensional, this completes the
proof. The complex case is proved similarly.

Corollary 7.14. Let X be a compact, n - dimensional CW complex. Then
every element of the reduced real K - theory, K̃O(X) can be represented by
a n - dimensional vector bundle. Every element of the complex K - theory,
K̃(X) can be represented by an [n/2] - dimensional complex vector bundle.
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Proof. By 4.32 we know

K̃O(X) ∼= [X,BO] and

K̃(X) ∼= [X,BU ].

But by the above proposition, any element α ∈ [X,BO] lifts to an element
αn ∈ [X,BO(n)] which in turn classifies an n - dimensional real vector bundle
representing the K̃O - class α.

Similarly, any element β ∈ [X,BU ] lifts to an element αn ∈ [X,BU([n/2])]
which in turn classifies an [n/2] - dimensional complex vector bundle repre-
senting the K̃ - class β.

We now use this obstruction theory to prove the well known “Whitehead
Theorem”, one of the most important foundational theorems in homotopy
theory.

Theorem 7.15. Suppose X and Y are CW - complexes and f : X → Y a
continuous map that induces an isomorphism in homotopy groups,

f∗ : πk(X)
∼=−−−−→ πk(Y ) for all k ≥ 0

Then f : X → Y is a homotopy equivalence.

Proof. By 7.7 we can replace f : X → Y by a homotopy equivalent fibration

f̃ : X̃ → Y.

That is, there is a homotopy equivalence h : X → X̃ so that f̃ ◦ h = f .
Since f induces an isomorphism in homotopy groups, so does f̃ . By the exact
sequence in homotopy groups for this fibration, this means that the fiber of
the fibration f̃ : X̃ → Y , i.e the homotopy fiber of f , is aspherical. thus by
7.11 there are no obstructions to finding a lifting g̃ : Y → X̃ of the identity
map of Y . Thus g̃ is a section of the fibration, so that f̃ ◦ g̃ = id : Y → Y . Now
let h−1 : X̃ → X denote a homotopy inverse to the homotopy equivalence h.
Then if we define

g = h−1 ◦ g̃ : Y → X

we then have f ◦ g : Y → Y is given by

f ◦ g = f ◦ h−1 ◦ g̃
= f̃ ◦ h ◦ h−1 ◦ g̃
∼ f̃ ◦ g̃
= id : Y → Y.

Thus f ◦ g is homotopic to the identity of Y . To show that g ◦ f is homotopic
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to the identity of X, we need to construct a homotopy X × I → X that lifts
a homotopy X × I → Y from f ◦ g ◦ f to f . This homotopy is constructed
inductively on the skeleta of X, and like in the argument proving 7.11, one
finds that there are no obstructions in doing so because the homotopy fiber
of f is aspherical. We leave the details of this obstruction theory argument to
the reader. Thus f and g are homotopy inverse to each other, which proves
the theorem.

The following is an immediate corollary.

Corollary 7.16. An aspherical CW - complex is contractible.

Proof. If X is an aspherical CW - complex, then the constant map to a point,
ε : X → pt induces an isomorphism on homotopy groups, and is therefore, by
the above theorem, a homotopy equivalence.

The Whitehead theorem will now allow us to prove the following impor-
tant relationship between the homotopy type of a topological group and its
classifying space.

Theorem 7.17. Let G be a topological group with the homotopy type of a CW
complex., and BG its classiftying space. Then there is a homotopy equivalence
between G and the loop space,

G ' ΩBG.

Proof. It was shown in chapter 2 that there is a model for a universal G -
bundle, p : EG→ BG with EG a G - equivariant CW - complex. In particular,
EG is aspherical, and hence by the Whitehead theorem, it is contractible. Let

H : EG× I → EG

be a contraction. That is, H0 : EG × {0} → EG is the constant map at the
basepoint e0 ∈ EG, , and H1 : EG × {1} → EG is the identity. Composing
with the projection map,

Φ = p ◦H : EG× I → BG

is a homotopy between the constant map to the basepoint Φ0 : EG× {0} →
b0 ∈ BG and the projection map Φ1 = p : EG × {1} → BG. Consider the
adjoint of Φ,

Φ̄ : EG→ P (BG) = {α : I → BG such thatα(0) = b0.}
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defined by Φ̄(e)(t) = Φ(e, t) ∈ BG. Then by definition, the following diagram
commutes:

EG
Φ̄−−−−→ (BG)

p

y yq
BG = BG

where q(α) = α(1), for α ∈ P (BG). Thus Φ is a map of fibrations that induces
a map on fibers

φ : G→ ΩBG.

Comparing the exact sequences in homotopy groups of these two fibrations,
we see that φ induces an isomorphism in homotopy groups. A result of Milnor
[?] that we will not prove says that if X is a CW complex, then the loop space
ΩX has the homotopy type of a CW - complex. Then the Whitehead theorem
implies that φ : G→ ΩBG is a homotopy equivalence.

7.4 Eilenberg - MacLane Spaces

In this section we prove a classification theorem for cohomology. Recall that
in chapter 2 we proved that there are spaces BG that classify principal G
- bundles over a space X, in the sense that homotopy classes of basepoint
preserving maps, [X,BG] are in bijective correspondence with isomorphism
classes of principal G - bundles. Similarly BO(n) and BU(n) classify real and
complex n - dimensional vector vector bundles in this same sense, and BO
and BU classify K -theory. In this section we show that there are classifying
spaces K(G,n) that classify n - dimensional cohomology with coefficients in G
in this same sense. These are Eilenberg - MacLane spaces. We have discussed
these spaces earlier in these notes, but in this section we prove their existence
and their classification properties.

7.4.1 Obstruction theory and the existence of Eilenberg -
MacLane spaces

In chapter 2 we proved that for any topological group G there is a space BG
classifyingG bundles. ForG discrete, we saw that BG = K(G, 1), an Eilenberg
- MacLane space whose fundamental group is G, and whose higher homotopy
groups are all zero. In this section we generalize this existence theorem as
follows.
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Theorem 7.18. Let G be any abelian group and n an integer with n ≥ 2.
Then there exists a space K(G,n) with

πk(K(G,n)) =

{
G, if k = n,

0, otherwise.

This theorem will basically be proven using obstruction theory. For this we
will assume the following famous theorem of Hurewicz, which we will prove
later in this chapter. We first recall the Hurewicz homomorphism from homo-
topy to homology.

Let f : (Dn, Sn−1) → (X,A) represent an element [f ] ∈ πn(X,A). Let
σn ∈ Hn(Dn, Sn−1) ∼= Z be a preferred, fixed generator. Define h([f ]) =
f∗(σn) ∈ Hn(X,A). The following is straightforward, and we leave its verifi-
cation to the reader.

Lemma 7.19. The above construction gives a well defined homomorphism

h∗ : πn(X,A)→ Hn(X,A)

called the “Hurewicz homomorphism”.

The following is the “Hurewicz theorem”.

Theorem 7.20. Let X be simply connected, and let A ⊂ X be a simply
connected subspace. Suppose that the pair (X,A) is (n − 1) - connected, for
n > 2. That is,

πk(X,A) = 0 if k ≤ n− 1.

Then the Hurewicz homomorphism h∗ : πn(X,A) → Hn(X,A) is an isomor-
phism.

We now prove the following basic building block type result concerning
how the homotopy groups change as we build a CW - complex cell by cell.

Theorem 7.21. Let X be a simply connected, CW - complex and let

f : Sk → X

be a map. Let X ′ be the mapping cone of f . That is,

X ′ = X ∪f Dn+1

which denotes the union of X with a disk Dn+1 glued along the boundary
sphere Sk = ∂Dk+1 via f . That is we identify t ∈ Sk with f(t) ∈ X. Let

ι : X ↪→ X ′

be the inclusion. Then
ι∗ : πk(X)→ πk(X ′)

is surjective, with kernel equal to the cyclic subgroup generated by [f ] ∈ πk(X).
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Proof. Let g : Sq → X ′ represent an element in πq(X
′) with q ≤ k. By

the cellular approximation theorem, g is homotopic to a cellular map, and
therefore one whose image lies in the q - skeleton of X ′. But for q ≤ k, the q
- skeleton of X ′ is the q - skeleton of X. This implies that

ι∗ : πq(X)→ πq(X
′)

is surjective for q ≤ k. Now assume q ≤ k− 1, then if g : Sq → X ⊂ X ′ is null
homotopic, any null homotopy, i.e extension to the disk G : Dq+1 → X ′ can
be assumed to be cellular, and hence has image in X. This implies that for
q ≤ k − 1, ι∗ : πq(X) → πq(X

′) is an isomorphism. By the exact sequence in
homotopy groups of the pair (X ′, X), this implies that the pair (X ′, X) is k -
connected. By the Hurewicz theorem that says that

πk+1(X ′, X) ∼= Hk+1(X ′, X) = Hk+1(X ∪f Dk+1, X)

which, by analyzing the cellular chain complex for computing H∗(X
′) is Z if

and only if f : Sk → X is zero in homology, and zero otherwise. In particular,
the generator γ ∈ πk+1(X ′, X) is represented by the map of pairs given by
the inclusion

γ : (Dk+1, Sk) ↪→ (X ∪f Dk+1, X)

and hence in the long exact sequence in homotopy groups of the pair (X ′, X),

· · · → πk+1(X ′, X)
∂∗−−−−→ πk(X)

ι∗−−−−→ πk(X ′)→ · · ·

we have ∂∗(γ) = [f ] ∈ πk(X). Thus ι∗ : πk(X) → πk(X ′) is surjective with
kernel generated by [f ]. This proves the theorem.

We will now use this basic homotopy theory result to establish the existence
of Eilenberg - MacLane spaces.

Proof. of 7.18 Fix the group G and the integer n ≥ 2. Let {γα : α ∈ A} be a
set of generators of G, where A denotes the indexing set for these generators.
Let {θβ : β ∈ B} be a corresponding set of relations. In other words G is
isomorphic to the free abelian group FA generated by A, modulo the subgroup
RB generated by {θβ : β ∈ B}.

Consider the wedge of spheres
∨
A S

n indexed on the set A. Then by the
Hurewicz theorem,

πn(
∨
A
Sn) ∼= Hn(

∨
A
Sn) ∼= FA.

Now the group RB is a subgroup of a free abelian group, and hence is itself
free abelian. Let

∨
B S

n be a wedge of spheres whose nth - homotopy group
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(which by the Hurewicz theorem is isomorphic to its homology, which is free
abelian) is RB. Moreover there is a natural map

j :
∨
B
Sn →

∨
A
Sn

which, on the level of the homotopy group πn is the inclusion RB ⊂ FA. Let
Xn+1 be the mapping cone of j:

Xn+1 =
∨
A
Sn ∪j

⋃
B
Dn+1

where the disk Dn+1 corresponding to a generator in RB is attached via the
map Sn →

∨
A S

n giving the corresponding element in πn(
∨
A S

n) = FA.
Then by using 7.21 one cell at a time, we see that Xn+1 is an n − 1 -
connected space and πn(Xn) is generated by FA modulo the subgroup RB. In
other words,

πn(Xn+1) ∼= G.

Now inductively assume we have constructed an space Xn+k with

πq(Xn+k) =


0 if q < n,

G if q = n and

0 if n < q ≤ n+ k − 1

Notice that we have begun the inductive argument with k = 1, by the con-
struction of the space Xn+1 above. So again, assume we have constructed
Xn+k, and we need to show how to construct Xn+k+1 with these properties.
Once we have done this, by induction we let k →∞, and clearly X∞ will be
a model for K(G,n).

Now suppose π = πn+k(Xn+k) is has a generating set {γu : u ∈ C}, where C
is the indexing set. Let FC be the free abelian group generated by the elements
in this generating set. Let

∨
u∈C S

n+k
u denote a wedge of spheres indexed by

this indexing set. Then, like above, by applying the Hurewicz theorem we see
that

πn+k(
∨
u∈C

Sn+k
u ) ∼= Hn+k(

∨
C
Sn+k) ∼= FC .

Let
f :
∨
C
Sn+k → Xn+k

be a map which, when restricted to the sphere Sn+k
u represents the generator

γu ∈ π = πn+k(Xn+k). We define Xn+k+1 to be the mapping cone of f :

Xn+k+1 = Xn+k ∪f
⋃
u∈C

Dn+k+1.
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Then by 7.21 we have that πq(Xn+k) → πq(Xn+k+1) is an isomorphism for
q < n+ k, and

πn+k(Xn+k)→ πn+k(Xn+k+1)

is surjective, with kernel the subgroup generated by {γu : u ∈ C}. But since
this subgroup generates π = πn+k(Xn+k) we see that this homomorphism is
zero. Since it is surjective, that implies πn+k(Xn+k+1) = 0. Hence Xn+k+1 has
the required properties on its homotopy groups, and so we have completed our
inductive argument.

7.4.2 The Hopf - Whitney theorem and the classification
theorem for Eilenberg - MacLane spaces

We now know that the Eilenberg - MacLane spaces K(G,n) exist for every n
and every abelian group G, and when n = 1 for every group G. Furthermore,
by their construction in the proof of 7.18 they can be chosen to be CW
- complexes. In this section we prove their main property, i.e they classify
cohomology.

In order to state the classification theorem properly, we need to recall the
universal coefficient theorem, which says the following.

Theorem 7.22. (Universal Coefficient Theorem) Let G be an abelian group.
Then there is a split short exact sequence

0→ Ext(Hn−1(X);G)→ Hn(X;G)→ Hom(Hn(X), G)→ 0.

Corollary 7.23. If Y is (n− 1) - connected, and π = πn(Y ), then

Hn(Y ;π) ∼= Hom(π, π).

Proof. Since Y is (n−1) connected, Hn−1(Y ) = 0, so the universal coefficient
theorem says that Hn(Y ;π) ∼= Hom(Hn(Y ), π). But the Hurewicz theorem
says that the Hurewicz homomorphism h∗ : π = πn(Y ) → Hn(Y ) is an
isomorphism. The corollary follows by combining these two isomorphisms.

For an (n− 1) - connected space Y as above, let ι ∈ Hn(Y ;π) be the class
corresponding to the identity map id ∈ Hom(π, π) under the isomorphism in
this corollary. This is called the fundamental class. Given any other space X,
we therefore have a set map

φ : [X,Y ]→ Hn(X,π)

defined by φ([f ]) = f∗(ι) ∈ Hn(X;π). The classification theorem for Eilenberg
- MacLane spaces is the following.
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Theorem 7.24. For n ≥ 2 and Gπ any abelian group, let K(π, n) denote
an Eilenberg - MacLane space with πn(K(π, n)) = π, and all other homotopy
groups zero. Let ι ∈ Hn(K(π, n);π) be the fundamental class. Then for any
CW - complex X, the map

φ : [X,K(π, n)]→ Hn(X;π)

[f ]→ f∗(ι)

is a bijective correspondence.

We have the following immediate corollary, giving a uniqueness theorem
regarding Eilenberg - MacLane spaces.

Corollary 7.25. Let K(π, n)1 and K(π, n)2 be CW - complexes that are both
Eilenberg - MacLane spaces with the same homotopy groups. Then there is a
natural homotopy equivalence between K(π, n)1 and K(π, n)2.

Proof. Let f : K(π, n)1 → K(π, n)2 be a map whose homotopy class is the
inverse image of the fundamental class under the bijection

φ : [K(π, n)1,K(π, n)2]
∼=−−−−→ Hn(K(π, n)1;π) ∼= Hom(π, π).

This means that f : K(π, n)1 → K(π, n)2 induces the identity map in
Hom(π, π), and in particular induces an isomorphism on πn. Since all other
homotopy groups are zero in both of these complexes, f induces an isomor-
phism in homotopy groups in all dimensions. Therefore by the Whitehead
theorem 7.15, f is a homotopy equivalence.

We begin our proof of this classification theorem by proving a special
case, known as the Hopf - Whitney theorem. This predates knowledge of the
existence of Eilenberg - MacLane spaces.

Theorem 7.26. (Hopf-Whitney theorem) Let Y be any (n − 1) - connected
space with π = πn(Y ). Let X be any n - dimensional CW complex. Then the
map

φ : [X,Y ]→ Hn(X;π)

[f ]→ f∗(ι)

is a bijective correspondence.
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Remark. This theorem is most often used in the context of manifolds, where
it implies that if Mn is any closed, orientable manifold the correspondence

[Mn, Sn]→ Hn(Mn;Z) ∼= Z

is a bijection.

Exercise. Show that this correspondence can alternatively be described as
assigning to a smooth map f : Mn → Sn its degree, deg(f) ∈ Z.

Proof. (Hopf - Whitney theorem) We first set some notation. Let Y be (n−1)
- connected, and have basepoint y0 ∈ Y . Let X(m) denote the m - skeleton
of the n - dimensional complex X. Let Ck(X) = Hk(X(k), X(k−1)) be the
cellular k - chains in X. Alternatively, Ck(X) can be thought of as the free
abelian group on the k - dimensional cells in the CW - decomposition of X.
Let Zk(X) and Bk(X) denote the subgroups of cocycles and coboundaries
respectively. Let Jk be the indexing set for the set of k - cells in this CW -
structure. So that there are attaching maps

αk :
∨
j∈Jk

Skj → X(k)

so that the (k + 1) - skeleton X(k+1) is the mapping cone

X(k+1) = X(k) ∪αk
⋃
j∈Jk

Dk+1
j .

We prove this theorem in several steps, each translating between cellular
cochain complexes or cohomology on the one hand, and homotopy classes of
maps on the other hand. The following is the first step.

Step 1. There is a bijective correspondence between the following set of
homotopy classes of maps of pairs, and the cochain complex with values in π:

φ : [(X(n), X(n−1)), (Y, y0)]→ Cn(X;π).

Proof. A map of pairs f : (X(n), X(n−1)) → (Y, y0) is the same thing as a
basepoint preserving map from the quotient,

f : X(n)/X(n−1) =
∨
j∈Jn

Snj → Y.

So the homotopy class of f defines and is defined by an assignment to every
j ∈ Jn, an element [fj ] ∈ πn(Y ) = π. But by extending linearly, this is the
same as a homomorphism from the free abelian group generated by Jn, i.e
the chain group Cn(X), to π. That is, this is the same thing as a cochain
[f ] ∈ Cn(X;π).
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Step 2. The map φ : [X,Y ]→ Hn(X;π) is surjective.

Proof. . Notice that sinceX is an n - dimensional CW - complex, all n - dimen-
sional cochains are cocycles, Cn(X;π) = Zn(X;π). So in particular there is a
surjective homomorphism µ : Cn(X;π) = Zn(X;π)→ Zn(X;π)/Bn(X;π) =
Hn(X;π). A check of the definitions of the maps defined so far yields that the
following diagram commutes:

[(X(n), X(n−1)), (Y, y0)]
φ−−−−→∼= Cn(X;π)

ρ

y yµ
[X,Y ] −−−−→

φ
Hn(X;π)

where ρ is the obvious restriction map. By the commutativity of this diagram,
since µ is surjective and φ : [(X(n), X(n−1)), (Y, y0)] → Cn(X;π) is bijective,
then we must have that φ : [X,Y ]→ Hn(X;π) is surjective, as claimed.

In order to show that φ is injective, we will need to examine the coboundary
map

δ : Cn−1(X;π)→ Cn(X;π)

from a homotopy point of view. To do this, recall that the boundary map
on the chain level, ∂ : Ck(X) → Ck−1(X) is given by the connecting ho-
momorphism Hn(X(k), X(k−1))→ Hk−1(X(k−1), X(k−2)) from the long exact
sequence in homology of the triple, (X(k), X(k−1), X(k−2)). This boundary
map can be realized homotopically as follows. Let c(X(k−1)) be the cone on
the subcomplex X(k−1),

c(X(k−1)) = X(k−1) × I/(X(k−1) × {1} ∪ {x0} × I),

which is obviously a contractible space. Consider the mapping cone of the
inclusion X(k−1) ↪→ X(k), X(k) ∪ c(X(k−1). By projecting the cone to a point,
there is a projection map

pk : X(k) ∪ c(X(k−1))→ X(k)/X(k−1) =
∨
j∈Jk

Skj

which is a homotopy equivalence. (Note. The fact that this map induces an
isomorphism in homology is straight forward by computing the homology ex-
act sequence of the pair (X(k) ∪ c(X(k−1)), X(k)). The fact that this map is a
homotopy equivalence is a basic point set topological property of CW - com-
plexes coming from the so - called “Homotopy Extension Property”. However
it can be proved directly, by hand, in this case. We leave its verification to the
reader.) Let

uk : X(k) →
∨
j∈Jk

Skj
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be the composition

X(k) ↪→ X(k) ∪ c(X(k−1))
pk−−−−→ X(k)/X(k−1) =

∨
j∈Jk S

k
j .

Then the composition of uk with the attaching map

αk+1 :
∨

j∈Jk+1

Skj → X(k)

(whose mapping cone defines the (k+ 1) - skeleton X(k+1)), is a map between
wedges of k - spheres,

dk+1 :
∨
j∈Jk+1

Skj
αk+1−−−−→ X(k) uk−−−−→

∨
j∈Jk S

k
j .

The following is immediate from the definitions.

Step 3. The induced map in homology,

(dk+1)∗ : Hk(
∨

j∈Jk+1

Skj )→ Hk(
∨
j∈Jk

Skj )

Ck+1(X)→ Ck(X)

is the boundary homomorphism in the chain complex ∂k+1 : Ck+1(X) →
Ck(X).

Now consider the map

[(X(n), X(n−1)), (Y, y0)]
φ−−−−→∼= Cn(X;π) = Zn(X;π)

µ−−−−→ Hn(X;π).

We then have the following corollary.

Step 4. A map f : X(n)/X(n−1) =
∨
j∈Jn S

n
j → Y has the property that

µ ◦ φ([f ]) = 0 ∈ Hn(X;π)

if and only if there is a map

fn−1 :
∨

j∈J(n−1)

Snj → Y

so that f is homotopic to the composition∨
j∈Jn S

n
j

dn−−−−→
∨
j∈Jn−1

Snj
fn−1−−−−→ Y.

Proof. Since φ : [(X(n), X(n−1)), (Y, y0)] → Cn(X;π) = Zn(X;π) is a bijec-
tion, µ◦φ([f ]) = 0 if and only if φ([f ]) is in the image of the coboundary map.
The result then follows from step 3.
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Step 5. The composition

X(n) un−−−−→
∨
j∈Jn S

n
j

dn−−−−→
∨
j∈Jn−1

Snj

is null homotopic.

Proof. The map un was defined by the composition

X(n) ↪→ X(n) ∪ c(X(n−1)
pn−−−−→
'

∨
j∈Jn S

n
j .

But notice that if we take the quotient X(n) ∪ c(X(n−1)/X(n) we get the
suspension

X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1).

Furthermore, the map between the wedges of the spheres, dn :
∨
j∈Jn S

n
j →∨

j∈Jn−1
Snj is directly seen to be the composition

dn :
∨
j∈Jn S

n
j ' X(n) ∪ c(X(n−1)

proj.−−−−→ X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1) Σun−1−−−−→
∨
j∈Jn−1

Snj .

Thus the composition dn ◦ un : X(n) →
∨
j∈Jn S

n
j →

∨
j∈Jn−1

Snj factors as
the composition

X(n) ↪→ X(n) ∪ c(X(n−1)
proj.−−−−→ X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1) Σun−1−−−−→

∨
j∈Jn−1

Snj .

But the composite of the first two terms in this composition,

X(n) ↪→ X(n) ∪ c(X(n−1)
proj.−−−−→ X(n) ∪ c(X(n−1)/X(n)

is clearly null homotopic, and hence so is dn ◦ un.

We now complete the proof of the theorem by doing the following step.

Step. 6. The correspondence φ : [X,Y ]→ Hn(X;π) is injective.

Proof. Let f, g : X → Y be maps with φ([f ]) = φ([g]) ∈ Hn(X;π). Since Y -
is (n− 1) - connected, given any map h : X → Y , the restriction to its (n− 1)
- skeleton is null homotopic. (Exercise. Check this!) Null homotopies define
maps

f̃ , g̃ : X ∪ c(X(n−1))→ Y

given by f and g respectively on X, and by their respective null homotopies on
the cones, c(X(n−1)). Using the homotopy equivalence pn : X(n)∪c(X(n−1)) '
X(n)/X(n−1) =

∨
j∈Jn S

n
j , we then have maps

f̄ , ḡ : X(n)/X(n−1) → Y

which, when composed with the projection X = X(n) → X(n)/X(n−1) are
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homotopic to f and g respectively. Now by the commutativity of the diagram
in step 2, since φ([f ]) = φ([g]), then µ ◦ φ([f̄ ]) = µ ◦ φ([ḡ]). Or equivalently,

µ ◦ φ([f̄ ]− [ḡ]) = 0

where we are using the fact that

[(X(n), X(n−1)), Y ] = [
∨
j∈Jn

Snj , Y ] = ⊕j∈Jnπn(Y )

is a group, and maps to Cn(X;π) is a group isomorphism.
Let ψ : X(n)/X(n−1) → Y represent [f̄ ] − [ḡ] ∈ [

∨
j∈Jn S

n
j , Y ]. Then µ ◦

φ(ψ) = 0. Then by step 4, there is a map ψn−1 :
∨
j∈Jn−1

Snj → Y so that
ψn−1 ◦ dn is homotopic to ψ. Thus the composition

X
proj.−−−−→ X/X(n−1) ψ−−−−→ Y

is homotopic to the composition

X → X(n)/Xn−1 =
∨
j∈Jn S

n
j

dn−−−−→
∨
j∈Jn−1

Snj
ψn−1−−−−→ Y.

But by step 5, this compostion is null homotopic. Now since ψ represents
[f̄ ]− [ḡ], a null homotopy of the composition

X
proj.−−−−→ X/X(n−1) ψ−−−−→ Y

defines a homotopy between the compositions

X
proj.−−−−→ X/X(n−1) f̄−−−−→ Y and X

proj.−−−−→ X/X(n−1) ḡ−−−−→ Y.

The first of these maps is homotopic to f : X → Y , and the second is homo-
topic to g : X → Y . Hence f ' g, which proves that φ is injective.

We now know that the correspondence φ : [X,Y ]→ Hn(X;π) is surjective
(step 2) and injective (step 6). This completes the proof of this theorem.

We now proceed with the proof of the main classification theorem for
cohomology, using Eilenberg - MacLane spaces ( 7.24).

Proof. The Hopf Whitney theorem proves this theorem when X is an n -
dimensional CW - complex. We split the proof for general CW - complexes
into two cases.

Case 1. X is n+ 1 - dimensional.
Consider the following commutative diagram

[X,K(π, n)]
φ−−−−→ Hn(X;π)

ρ

y yρ
[X(n),K(π, n)]

φn−−−−→∼= Hn(X(n);π)

(7.1)
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where the vertical maps ρ denote the obvious restriction maps, and φn de-
notes the restriction of the correspondence φ to the n - skeleton, which is an
isomorphism by the Hopf - Whitney theorem.

Now by considering the exact sequence for cohomology of the pair
(X,X(n)) = (X(n+1), X(n)), one sees that the restriction map ρ : Hn(X,π)→
Hn(X(n), π) is injective. Using this together with the fact that φn is an iso-
morphism and the commutativity of this diagram, one sees that to show
that φ : [X,K(π, n)] → Hn(X;π) is surjective, it suffices to show that for
γ ∈ Hn(X,π) with ρ(γ) = φn([fn]), where fn : X(n) → K(π, n), then fn can
be extended to a map f : X → K(π, n).

Using the same notation as was used in the proof of the Hopf - Whitney
theorem, since X = X(n+1), we can write

X = X(n) ∪αn+1

⋃
j∈Jn+1

D(n+1)

where αn+1 :
∨
j∈Jn+1

Snj → X(n) is the attaching map. Thus the obstruction

to finding an extension f : X → K(π, n) of the map fn : X(n) → K(π, n), is
the compostion ∨

j∈Jn+1
Snj

αn+1−−−−→ X(n) fn−−−−→ K(π, n).

Now since
∨
j∈Jn+1

Snj is n - dimensional, the Hopf - Whitney theorem says
that this map is determined by its image under φ,

φ([fn ◦ αn+1]) ∈ Hn(
∨

j∈Jn+1

Snj ;π).

But this class is α∗n+1(φ([fn])), which by assumption is α∗n+1(ρ(γ)). But the
composition

Hn(X;π)
ρ−−−−→ Hn(X(n), π)

α∗n+1−−−−→ Hn(
∨
j∈Jn+1

Snj ;π)

are two successive terms in the long exact sequence in cohomology of the
pair (X(n+1), X(n)) and is therefore zero. Thus the obstruction to finding
the extension f : X → K(π, n) is zero. As observed above this proves that
φ : [X,K(π, n)]→ Hn(X;π) is surjective.

We now show that φ is injective. So suppose φ([f ]) = φ([g]) for f, g : X →
K(π, n). To prove that φ is injective we need to show that this implies that f
is homotopic to g. Let fn and gn be the restrictions of f and g to X(n). That
is,

fn = ρ([f ]) : X(n) → K(π, n) and gn = ρ([g]) : X(n) → K(π, n)

Now by the commutativity of diagram 7.1 and the fact that φn is an isomor-
phism, we have that fn and gn are homotopic maps. Let

Fn : X(n) × I → K(π, n)
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be a homotopy between them. That is, F0 = fn : X(n) × {0} → K(π, n) and
F1 = gn : X(n)×{1} → K(π, n). This homotopy defines a map on the (n+ 1)
-subcomplex of X × I defined to be

F̃ : (X × {0}) ∪ (X × {1}) ∪X(n) × I → K(π, n)

where F̃ is defined to be f and g on X ×{0} and X ×{1} respectively, and F
on X(n)×I. But since X is (n+1) - dimensional, X×I is (n+2) - dimensional,
and this subcomplex is its (n + 1) - skeleton. So X × I is the union of this
complex with (n + 2) - dimensional disks, attached via maps from a wedge
of (n + 1) - dimensional spheres. Hence the obstruction to extending F̃ to a
map F : X × I → K(π, n) is a cochain in Cn+2(X × I;πn+1(K(π, n)). But
this group is zero since πn+1(K(π, n)) = 0. Thus there is no obstruction to
extending F̃ to a map F : X × I → K(π, n), which is a homotopy between f
and g. As observed before this proves that φ is injective. This completes the
proof of the theorem in this case.

General Case. Since, by case 1, we know the theorem for (n + 1) -
dimensional CW - complexes, we assume that the dimension of X is ≥ n+ 2.
Now consider the following commutative diagram:

[X,K(π, n)]
φ−−−−→ Hn(X;π)

ρ

y yρ
[X(n+1),K(π, n)]

φn+1−−−−→∼= Hn(X(n+1);π)

where, as earlier, the maps ρ denote the obvious restriction maps, and φn+1

denotes the restriction of φ to the (n + 1) skeleton, which we know is an
isomorphism, by the result of case 1.

Now in this case the exact sequence for the cohomology of the pair
(X,X(n+1)) yields that the restriction map ρ : Hn(X;π) → Hn(X(n+1), π)
is an isomorphism. Therefore by the commutativity of this diagram, to prove
that φ : [X,K(π, n)] → Hn(X;π) is an isomorphism, it suffices to show that
the restriction map

ρ : [X,K(π, n)]→ [X(n+1),K(π, n)]

is a bijection. This is done by induction on the skeleta X(K) of X, with
K ≥ n + 1. To complete the inductive step, one needs to analyze the ob-
structions to extending maps X(K) → K(π, n) to X(K+1) or homotopies
X(K) × I → K(π, n) to X(K+1) × I, like what was done in the proof of case
1. However in these cases the obstructions will always lie is spaces of cochains
with coefficients in πq(K(π, n)) with q = K orK + 1, and so q ≥ n + 1. But
then πq(K(π, n)) = 0 and so these obstructions will always vanish. We leave
the details of carrying out this argument to the reader.
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7.5 Spectral Sequences

One of the great achievements of Algebraic Topology was the development of
spectral sequences. They were originally invented by Leray in the late 1940’s
and since that time have become fundamental calculational tools in many
areas of Geometry, Topology, and Algebra. One of the earliest and most im-
portant applications of spectral sequences was the work of Serre [53] for the
calculation of the homology of a fibration. We divide our discussion of spectral
sequences in these notes into three parts. In the first section we develop the
notion of a spectral sequence of a filtration. In the next section we discuss the
Leray - Serre spectral sequence for a fibration. In the final two sections we
discuss applications: we prove the Hurewicz theorem, calculate the cohomol-
ogy of the Lie groups U(n), and O(n), and of the loop spaces ΩSn, and we
discuss Spin and SpinC - structures on manifolds.

7.5.1 The spectral sequence of a filtration

A spectral sequence is the algebraic machinery for studying sequences of long
exact sequences that are interelated in a particular way. We begin by illus-
trating this with the example of a filtered complex.

Let C∗ be a chain complex, and let A∗ ⊂ C∗ be a subcomplex. The short
exact sequence of chain complexes

0 −→ A∗ ↪→ C∗ −→ C∗/A∗ −→ 0

leads to a long exact sequence in homology:

−→ · · · −→ Hq+1(C∗, A∗) −→ Hq(A∗) −→ Hq(C∗) −→ Hq(C∗, A∗) −→ Hq−1(A∗) −→ · · ·

This is useful in computing the homology of the big chain complex, H∗(C∗)
in terms of the homology of the subcomplex H∗(A∗) and the homology of the
quotient complex H∗(C∗, A∗). A spectral sequence is the machinery used to
study the more general situation when one has a filtration of a chain complex
C∗ by subcomplexes

0 = F0(C∗) ↪→ F1(C∗) ↪→ · · · ↪→ Fk(C∗) ↪→ Fk+1(C∗) ↪→ · · · ↪→ C∗ =
⋃
k

Fk(C∗).

Let Dk
∗ be the subquotient complex Dk

∗ = Fk(C∗)/Fk−1(C∗) and so for
each k there is a long exact sequence in homology

−→ Hq+1(Dk
∗) −→ Hq(Fk−1(C∗)) −→ Hq(Fk(C∗)) −→ Hq(D

k
∗) −→ · · ·

By putting these long exact sequences together, in principle one should
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be able to use information about ⊕kH∗(Dk
∗) in order to obtain information

about
H∗(C∗) = lim−→

k

H∗(Fk(C∗)).

A spectral sequence is the bookkeeping device that allows one to do this.
To be more specific, consider the following diagram.

0 0yi yi
Hq(F1(C∗)) Hq−1(F1(C∗))

=−−−−→ Hq−1(D1
∗)yi yi

...
...yi yi

Hq(Fk−p(C∗))
j−−−−→ Hq(D

k−p
∗ )

∂−−−−→ Hq−1(Fk−p−1(C∗))
j−−−−→ Hq−1(Dk−p−1

∗ )yi yi
... Hq−1(Fk−p(C∗))

j−−−−→ Hq−1(Dk−p
∗ )yi yi

...
...yi yi

Hq(Fk−2(C∗)) Hq−1(Fk−3(C∗))yi yi
Hq(Fk−1(C∗))

j−−−−→ Hq(D
k−1
∗ )

∂−−−−→ Hq−1(Fk−2(C∗))
j−−−−→ Hq−1(Dk−2

∗ ))yi yi
Hq(Fk(C∗))

j−−−−→ Hq(D
k
∗)

∂−−−−→ Hq−1(Fk−1(C∗))
j−−−−→ Hq−1(Dk−1

∗ ))yi yi
...

...yi yi
Hq(C∗) Hq−1(C∗)

(7.2)
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The columns represent the homology filtration of H∗(C∗) and the three
maps ∂, j, and i combine to give long exact seqences at every level.

Let α ∈ Hq(C∗). We say that α has algebraic filtration k, if α is in the
image of a class αk ∈ Hq(Fk(C∗)) but is not in the image of Hq(Fk−1(C∗)).
In such a case we say that the image j(αk) ∈ Hq(D

k
∗) is a representative of

α. Notice that this representative is not unique. In particular we can add any
class in the image of

d1 = j ◦ ∂ : Hq+1(Dk+1
∗ ) −→ Hq(D

k
∗)

to j(αk) and we would still have a representative of α ∈ Hq(C∗) under the
above definition.

Conversely, let us consider when an arbitrary class β ∈ Hq(D
k
∗) repre-

sents a class in Hq(C∗). By the exact sequence this occurs if and only if
the image ∂(β) = 0, for this is the obstruction to β being in the image of
j : Hq(Fk(C∗))→ Hq(D

k
∗) and if j(β̃) = β then β represents the image

i ◦ · · · ◦ i(β̃) ∈ Hq(C∗).

Now ∂(β) = 0 if and only if it lifts all the way up the second vertical tower in
diagram 7.2 The first obstruction to this lifting, (i.e the obstruction to lifting
∂(β) to Hq−1(Fk−2(C∗)) is that the composition

d1 = j ◦ ∂ : Hq(D
k) −→ Hq−1D

k−1
∗ )

maps β to zero. That is elements of Hq(C∗) are represented by elements in
the subquotient

ker(d1)/Im(d1)

of Hq(D
k
∗). We use the following notation to express this. We define

Er,s1 = Hr+s(D
r
∗)

and define
d1 = j ◦ ∂ : Er,s1 −→ Er−1,s

1 .

r is said to be the algebraic filtration of elements in Er,s1 and r + s is the
total degree of elements in Er,s1 . Since ∂ ◦ j = 0, we have that

d1 ◦ d1 = 0

and we let

Er,s2 = Ker(d1 : Er,s1 → Er−1,s
1 )/Im(d1 : Er+1,s

1 → Er,s1 )

be the resulting homology group. We can then say that the class α ∈ Hq(C∗)

has as its representative, the class αk ∈ Ek,q−k2 .
Now let us go back and consider further obstructions to an arbitrary class

β ∈ Ek,q−k2 representing a class in Hq(C∗). Represent β as a cycle in E1:
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β ∈ Ker(d1 = j ◦ ∂ ∈ Hq(D
k
∗)). Again, β represents a class in Hq(C∗) if and

only if ∂(β) = 0. Now since j ◦ ∂(β) = 0, ∂(β) ∈ Hq−1(Fk−1(C∗)) lifts to a

class, say β̃ ∈ Hq−1Fk−2(C∗). Remember that the goal was to lift ∂(β) all the
way up the vertical tower (so that it is zero). The obstruction to lifting it the
next stage, i.e to Hq−1(Fk−3(C∗)) is that j(β̃) ∈ Hq−1(Dk−2

∗ ) is zero. Now
the fact that a d1 cycle β has the property that ∂(β) lifts to Hq−1Fk−2(C∗))
allows to define a map

d2 : Ek,q−k2 −→ Ek−2,q−k+1
2

and more generally,
d2 : Er,s2 −→ Er−2,s+1

2

by composing this lifting with

j : Hs+r−1(Fr−2(C∗)) −→ Hs+r−1(Dr−2
∗ ).

That is, d2 = j ◦ i−1 ◦ ∂. It is straightforward to check that d2 : Er,s2 −→
Er−2,s+1

2 is well defined, and that elements of Hq(C∗) are actually represented
by elements in the subquotient homology groups of E∗,∗2 :

Er,s3 = Ker(d2 : Er,s2 → Er−2,s+1
2 )/Im(d2 : Er+2,s−1

2 → Er,s1 )

Inductively, assume the subquotient homology groups Er,sj have been de-
fined for j ≤ p− 1 and differentials

dj : Er,sj −→ Er−j,s+j−1
j

defined on representative classes in Hr+s(D
r
∗) to be the composition

dj = j ◦ (ij−1 = i ◦ · · · ◦ i)−1 ◦ ∂

so that E∗,∗j+1 is the homology Ker(dj)/Im(dj). We then define

Er,sp = Ker(dp−1 : Er,sp−1 → Er−p+1,s+p−2
p−1 )/Im(dp−1 : Er+p−1,s−p+2

p−1 → Er,sp−1).

Thus Ek,q−kp is a subquotient of Hq(D
k
∗), represented by elements β so that

∂(β) lifts to Hq(Fk−p(C∗)). That is, there is an element β̃ ∈ Hq(Fk−p(C∗)) so
that

ip−1(β̃) = ∂(β) ∈ Hq−1(Fk−1(C∗)).

The obstruction to β̃ lifting to Hq−1(Fk−p−1(C∗)) is j(β) ∈ Hq(D
k−p
∗ ). This

procedure yields a well defined map

dp : Er,sp −→ Er−p,s+p−1
p

given by j ◦ (ip−1)−1 ◦ ∂ on representative classes in Hq(D
k
∗). This completes

the inductive step. Notice that if we let

Er,s∞ = lim−→
p

Er,sp
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then Ek,q−k∞ is a subquotient of Hq(D
k
∗) consisting of precisely those classes

represented by elements β ∈ Hq(D
k
∗) so that ∂(β) lifts all the way up the

vertical tower i.e ∂(β) is in the image of ip for all p. This is equivalent to the
condition that ∂(β) = 0 which as observed above is precisely the condition
necessary for β to represent a class in Hq(C∗). These observations can be made
more precise as follows.

Theorem 7.27. Let Ir,s = Image(Hr+s(Fr(C∗)) −→ Hr+s(C∗)). Then Er,s∞
is isomorphic to the quotient group

Er,s∞
∼= Ir,s/Ir−1,s+1.

Thus the E∗,∗∞ determines H∗(C∗) up to extensions. In particular, if all ho-
mology groups are taken with field coefficients we have

Hq(C∗) ∼=
⊕
r+s=q

Er,s∞ .

In this case we say that {Er,sp , dp} is a spectral sequence starting at Er,s1 =
Hr+s(D

r
∗), and converging to Hr+s(C∗).

Often times a filtration of this type occurs when one has a topological
space X filtered by subspaces,

∗ = X0 ↪→ X1 ↪→ · · · ↪→ Xk ↪→ Xk+1 ↪→ · · · ↪→ X.

An important example is the filtration of a CW - complex X by its skeleta,
Xk = X(k). We get a spectral sequence as above by applying the homology of
the chain complexes to this topological filtration. This spectral sequence con-
verges to H∗(X) with E1 term Er,s1 = Hr+s(Xr, Xr−1). From the construction
of this spectral sequence one notices that chain complexes are irrelevant in this
case; indeed all one needs is the fact that each inclusion Xk−1 ↪→ Xk induces
a long exact sequence in homology.

Exercise. Show that in the case of the filtration of a CW - complex X by
its skeleta, that the E1 -term of the corresponding spectral sequence is the
cellular chain complex, and the E2 - term is the homology of X,

Er,s2 =

{
Hr(X), if s = 0

0 otherwise

Furthermore, show that this spectral sequence “collapses” at the E2 level, in
the sense that

Er,sp = Er,s2 for all p ≥ 2

and hence
Er,s∞ = Er,s2 .
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Now if h∗(−) is any generalized homology theory (that is, a functor that
obeys all the Eilenberg - Steenrod axioms but dimension) then the inclusions
of a filtration as above Xk−1 ↪→ Xk induce long exact sequences in h∗(−),
and one gets, by a procedure completely analogous to the above, a spectral
sequence converging to h∗(X) with E1 term

Er,s1 = hr+s(Xr, Xr−1).

Again, for the skeletal filtration of a CW complex, this spectral sequence is
called the Atiyah - Hirzebruch spectral sequence for the generalized homology
h∗.

Exercise. Show that the E2 -term of the Atiyah - Hirzebruch spectal
sequence for the generalized homology theory h∗ is

Er,s2 = hr+s(S
r)⊗Hr(X).

Particularly important examples of such generalized homology theories
include stable homotopy ( ∼= framed bordism ), other bordism theories, and
K - homology theory. Similar spectral sequences also exist for cohomology
theories. The reader is referred to [41] for a good general reference on spectral
sequences with many examples of those most relevant in Algebraic Topology.

7.5.2 The Leray - Serre spectral sequence for a fibration

The most important example of a spectral sequence from the point of view
of these notes is the Leray - Serre spectral sequence of a fibration. Given a
fibration F → E → B, the goal is to understand how the homology of the
three spaces (fiber, total space, base space) are related. In the case of a trivial
fibration, E = B×F → B, the answer to this question is given by the Kunneth
formula, which says, that when taken with field coefficients,

H∗(B × F ; k) ∼= H∗(B; k)⊗k H∗(F : k),

where k is the field.
When p : E → B is a nontrivial fibration, one needs a spectral sequence to

study the homology. The idea is to construct a filtration on a chain complex
C∗(E) for computing the homology of the total space E, in terms of the
skeletal filtration of a CW - decomposition of the base space B.

Assume for the moment that p : E → B is a fiber bundle with fiber F . For
the purposes of our discussion we will assume that the base space B is simply
connected. Let B(k) be the k - skeleton of B, and define

E(k) = p−1(B(k)) ⊂ E.
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We then have a filtration of the total space E by subspaces

∗ ↪→ E(0) ↪→ E(1) ↪→ · · · ↪→ E(k) ↪→ E(k + 1) ↪→ · · · ↪→ E.

To analyze the E1 - term of the associated homology spectral spectral sequence
we need to compute the E1 - term, Er,s1 = Hr+s(E(r), E(r − 1)). To do this,
write the skeleta of B in the form

B(r) = B(r−1) ∪
⋃
j∈Jr

Dr
j .

Now since each cell Dr is contractible, the restriction of the fibration E to the
cells is trivial, and so

E(r)− E(r − 1) ∼=
⋃
j∈Jr

Dr × F.

Moreover the attaching maps are via the maps

α̃r :
∨
j∈Jr

Sr−1
j × F → E(r − 1)

induced by the cellular attaching maps αk :
∨
j∈Jk S

k−1
j → B(k−1). Using the

Mayer - Vietoris sequence, one then computes that

Er,s1 = Hr+s(E(r), E(r − 1)) = Hr+s(
⋃
j∈Jr

Dr × F,
⋃
j∈Jr

Sr−1 × F )

= Hr+s(
∨
j∈Jr

Sr × F, F )

= Hr(
∨
j∈Jr

Sr)⊗Hs(F )

= Cr(B;Hs(F )).

These calculations indicate the following result, due to Serre in his thesis
[53]. We refer the reader to that paper for details. It is one of the great pieces
of mathematics literature in the last 50 years.

Theorem 7.28. Let p : E → B be a fibration with fiber F . Assume that F is
connected and B is simply connected. Then there are chain complexes C∗(E)
and C∗(B) computing the homology of E and B respectively, and a filtation of
C∗(E) leading to a spectral sequence converging to H∗(E) with the following
properties:

1. Er,s1 = Cr(B)⊗Hs(F )

2. Er,s2 = Hr(B;Hs(F ))
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3. The differential dj has bidegree (−j, j − 1) :

dj : Er,sj → Er−j,s+j−1
j .

4. The inclusion of the fiber into the total space induces a homomorphism

i∗ : Hn(F )→ Hn(E)

which can be computed as follows:

i∗ : Hn(F ) = E0,n
2 → E0,n

∞ ⊂ Hn(E)

where E0,n
2 → E0,n

∞ is the projection map which exists because all the dif-
ferentials dj are zero on E0,n

j .

5. The projection map induces a homomorphism

p∗ : Hn(E)→ Hn(B)

which can be computed as follows:

Hn(E)→ En,0∞ ⊂ En,02 = Hn(B)

where En,0∞ includes into En,02 as the subspace consisting of those classes
on which all differentials are zero. This is well defined because no class in
En,0j can be a boundary for any j.

Remark. The theorem holds when the base space is not simply con-
nected also. However in that case the E2 -term is homology with “twisted
coefficients”. This has important applications in many situations, however we
will not consider this issue in these notes. Again, we refer the reader to Serre’s
thesis [53] for details.

We will finish this chapter by describing several applications of this im-
portant spectal sequence. The first, due to Serre himself [53], is the use of
this spectral sequence to prove that even though fibrations do not, in general,
admit long exact sequences in homology, they do admit exact sequences in
homology through a range of dimensions depending on the connectivity of the
base space and fiber.

Theorem 7.29. Let p : E → B be a fibration with connected fiber F , where
B is simply connected and Hi(B) = 0 for 0 < i < n, and Hi(F ) = 0 for
i < i < m. Then there is an exact sequence

Hn+m−1(F )
i∗−−−−→ Hn+m−1(E)

p∗−−−−→ Hn+m−1(B)
τ−−−−→ Hn+m−2(F )→ · · · → H1(E)→ 0
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Proof. The E2 -term of the Serre spectral sequence is given by

Er,s2 = Hr(B;Hs(F ))

which, by hypothesis is zero for 0 < r < n or 0 < j < m. Let q < n + m.
Then this implies that the composition series for Hq(E), given by the filtration
defining the spectral sequence, reduces to the short exact sequence

0→ E0,q
∞ → Hq(E)→ Eq,0∞ → 0.

Now in general, for these “edge terms”, we have

Eq,0∞ = kernel{dq : Eq,0q → E0,q−1
q } and

E0,q
∞ = coker{dq : Eq,0q → E0,q−1

q }.

But when q < n + m, we have Eq,0q = Eq,02 = Hq(B) and E0,q−1
q = E0,q−1

2 =
Hq−1(F ) because there can be no other differentials in this range. Thus if we
define

τ : Hq(B)→ Hq−1(F )

to be dq : Eq,0q → E0,q−1
q , for q < n + m, we then have that p∗ : Hq(E) →

Hq(B) maps surjectively onto the kernel of τ , and if q < n+m− 1, then the
kernel of p∗ is the cokernel of τ : Hq+1(B) → Hq(F ). This establishes the
existence of the long exact sequence in homology in this range.

Remark. The homomorphism τ : Hq(B) → Hq−1(F ) for q < n + m in
the proof of this theorem is called the “transgression” homomorphism.

7.5.3 Applications I: The Hurewicz theorem

As promised earlier in this chapter, we now use the Serre spectral sequence
to prove the Hurewicz theorem. The general theorem is a theorem comparing
relative homotopy groups with relative homology groups. We begin by proving
the theorem comparing homotopy groups and homology of a single space.

Theorem 7.30. Let X be an n − 1 - connected space, n ≥ 2. That is, we
assume πq(X) = 0 for q ≤ n − 1. Then Hq(X) = 0 for q ≤ n − 1 and the
previously defined “Hurewicz homomorphism”

h : πn(X)→ Hn(X)

is an isomorphism.
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Proof. We assume the reader is familiar with the analogue of the theorem
when n = 1, which says that for X connected, the first homology group
H1(X) is given by the abelianization of the fundamental group

h : π1(X)/[π1, π1] ∼= H1(X)

where [π1, π1] ⊂ π1(X) is the commutator subgroup. We use this preliminary
result to begin an induction argument to prove this theorem. Namely we
assume that the theorem is true for n− 1 replacing n in the statement of the
theorem. We now complete the inductive step. By our inductive hypotheses,
Hi(X) = 0 for i ≤ n − 2 and πn−1(X) ∼= Hn−1(X). But we are assuming
that πn−1(X) = 0. Thus we need only show that h : πn(X) → Hn(X) is an
isomorphism.

Consider the path fibration p : PX → X with fiber the loop space ΩX.
Now πi(ΩX) ∼= πi+1(X), and so πi(ΩX) = 0 for i ≤ n − 2. So our inductive
assumption applied to the loop space says that

h : πn−1(ΩX)→ Hn−1(ΩX)

is an isomorphism. But πn−1(ΩX) = πn(X). Also, by the Serre exact sequence
applied to this fibration, using the facts that

1. the total space PX is contractible, and

2. the fiber ΩX is n−2 - connected and the base space X is (n−1) - connected

we then conclude that the transgression,

τ : Hn(X)→ Hn−1(ΩX)

is an isomorphism. Hence the Hurewicz map h : πn−1(ΩX) → Hn−1(ΩX) is
the same as the Hurewicz map h : πn(X) → Hn(X), which is therefore an
isomorphism.

We are now ready to prove the more general relative version of this theorem
7.20

Theorem 7.31. Let X be simply connected, and let A ⊂ X be a simply
connected subspace. Suppose that the pair (X,A) is (n − 1) - connected, for
n > 2. That is,

πk(X,A) = 0 if k ≤ n− 1.

Then the Hurewicz homomorphism h∗ : πn(X,A) → Hn(X,A) is an isomor-
phism.
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Proof. . Replace the inclusion

ι : A ↪→ X.

by a homotopy equivalent fibration ι̃ : Ã→ X as in 7.7. Let Fι be the fiber.
Then πi(Fι) ∼= πi+1(X,A), by comparing the long exact sequences of the
pair (X,A) to the long exact sequence in homotopy groups for the fibration
Ã→ X. So by the Hurewicz theorem 7.30 we know that πi(F ) = Hi(F ) = 0
for i ≤ n− 2 and

h : πn−1(F )→ Hn−1(F )

is an isomorphism. But as mentioned, πn−1(F ) ∼= πn(X,A) and by compar-
ing the homology long exact sequence of the pair (X,A) to the Serre exact
sequence for the fibration F → Ã → B, one has that Hn−1(F ) ∼= Hn(X,A).
The theorem follows.

As a corollary, we obtain the following strengthening of the Whitehead
theorem 7.15 which is quite useful in calculations.

Corollary 7.32. Suppose X and Y are simply connected CW - complexes
and f : X → Y a continuous map that induces an isomorphism in homology
groups,

f∗ : Hk(X)
∼=−−−−→ Hk(Y ) for all k ≥ 0

Then f : X → Y is a homotopy equivalence.

Proof. Replace f : X → Y by the inclusion into the mapping cylinder

f̄ : X ↪→ Ȳ

where Ȳ = Y ∪f X × I which is homotopy equivalent to Y , and f̄ includes X
into Ȳ as X × {1}.

Since X and Y are simply connected, we have that π2(X) ∼= H2(X) and
π2(Y ) ∼= H2(Y ). Thus f∗ : π2(X)→ π2(Y ) is an isomorphism. Again, since X
and Y are simply connected, this implies that πq(Ȳ , X) = 0 for q = 1, 2. Thus
we can apply the relative Hurewicz theorem. However since f∗ : Hk(X) ∼=
Hk(Y ) for all k ≥ 0, we have that Hk(Ȳ , X) = 0 for all k ≥ 0. But then the
Hurewicz theorem implies that πk(Ȳ , X) = 0 for all k, which in turn implies
that f∗ : πk(X) → πk(Y ) is an isomorphism for all k. The theorem follows
from the Whitehead theorem 7.15.
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7.5.4 Applications II: H∗(ΩS
n) and H∗(U(n))

In this section we will use the Serre spectral sequence to compute the homology
of the loop space ΩSn and the cohomology ring of the Lie groups, H∗(U(n)).

Theorem 7.33.

Hq(ΩS
n) =

{
Z if q is a multiple of n− 1, i.e q = k(n− 1)

0 otherwise

Proof. ΩSn is the fiber of the path fibration p : PSn → Sn. Since the total
space of this fibration is contractible, the Serre spectral sequence converges to
0 in positive dimensions. That is,

Er,s∞ = 0

for all r, s, except that E0,0
∞ = Z. Now since the base space, Sn has nonzero

homology only in dimensions 0 and n (when it is Z), then

Er,s2 = Hr(S
n;Hs(ΩS

n))

is zero unless r = 0 or n. In particular, since dq : Er,sq → Er−q,s+q−1
q , we must

have that for q < n, dq = 0. Thus Er,s2 = Er,sn and the only possible nonzero
differential dn occurs in dimensions

dn : En,sn → E0,s+n−1
n .

It is helpful to picture this spectral sequence as in the following diagram,
where a dot in the (r, s) - entry denotes a copy of the integers in Er,sn =
Hr(S

n;Hs(ΩS
n)).

Notice that if the generator σn,0 ∈ En,0n is in the kernel of dn, then it

would represent a nonzero class in En,0n+1. But dn+1 and all higher differentials

on En,0n+1 must be zero, for dimensional reasons. That is, En,0n+1 = En,0∞ . But we
saw that En,0∞ = 0. Thus we must conclude that dn(σn,0) 6= 0. For the same

reasoning, (i.e the fact that En,0n+1 = 0) we must have that dn(kσn,0) 6= 0 for
all integers k. This means that the image of

dn : En,0n → E0,n−1
n

is Z ⊂ E0,n−1
n = Hn−1(ΩSn). On the other hand, we claim that dn : En,0n →

E0,n−1
n must be surjective. For if α ∈ E0,n−1

n is not in the image of dn, then
it represents a nonzero class in E0,n−1

n+1 = E0,n−1
∞ . But as mentioned earlier

E0,n−1
∞ = 0. So dn is surjective as well. In fact we have proven that

dn : Z = Hn(Sn) = En,0n → E0,n−1
n = E0,n−1

2 = Hn−1(ΩSn)
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dn 
 

dn 
 

dn 
 

 

 n-1

2(n-1)

3(n-1)

r
 n

s
E

n
r,s

is an isomorphism. Hence Hn−1(ΩSn) ∼= Z, as claimed. Now notice this cal-
culation implies a calculation of En,n−1

2 , namely,

En,n−1
2 = Hn(Sn;Hn−1(ΩSn) = bz.

Repeating the above argument shows that En,n−1
2 = Enn, n− 1 and that

dn : En,n−1
n → E0,2(n−1)

n

must be an isomorphism. This yields that

Z = E
0,2(n−1)
2 = H2(n−1)(ΩS

n).

Repeating this argument shows that for every q, Z = E
n,q(n−1)
2 = E

n,q(n−1)
n

and that

dn : En,q(n−1)
n → En0, (q + 1)(n− 1) ∼= H(q+1)(n−1)(ΩS

n)

is an isomorphism. And so Hk(n−1)(ΩS
n) = Z for all k.

We can also conclude that in dimensions j not a multiple of n − 1, then
Hj(ΩS

n) must be zero. This is true by the following argument. Assume the
contrary, so that there is a smallest j > 0 not a multiple of n − 1 with
Hj(ΩS

n) = E0,j
2 6= 0. But for dimensional reasons, this group cannot be in the

image of any differential, because the only Er,sq that can be nonzero with r > 0

is when r = n. So the only possibility for a class α ∈ E0,j
2 to represent a class

which is in the image of a differential is dn : En,sn → E0,s+n−1
n . So j = s+n−1.
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But since j is the smallest positive integer not of the form a multiple of n− 1
with Hj(ΩS

n) nonzero, then for s < j, En,sn = Hn(Sn, Hs(ΩS
n)) = Hs(ΩS

n)
can only be nonzero if s is a multiple of (n−1), and therefore so is s+n−1 = j.
This contradiction implies that if j is not a multiple of n−1, then Hj((ΩS

n))
is zero. This completes our calculation ofH∗(ΩS

n).

We now use the cohomology version of the Serre spectral sequence to
compute the cohomology of the unitary groups. We first give the cohomological
analogue of 7.28. Again, the reader should consult [53] for details.

Theorem 7.34. Let p : E → B be a fibration with fiber F . Assume that F is
connected and B is simply connected. Then there is a cohomology spectral se-
quence converging to H∗(E), with Er,s2 = Hr(B;Hs(F )), having the following
properties.

1. The differential dj has bidegree (j,−j + 1) :

dj : Er,sj → Er+j,s−j+1
j .

2. For each j, E∗,∗j is a bigraded ring. The ring multiplication maps

Ep,qj ⊗ E
i,j
j → Ep+i,q+jj .

3. The differential dj : Er,sj → Er+j,s−j+1
j . is an antiderivation in the sense

that it satisfies the product rule:

dj(ab) = dj(a) · b+ (−1)u+va · dj(b)

where a ∈ Eu,vj .

4. The product in the ring Ej+1 is induced by the product in the ring Ej, and
the product in E∞ is induced by the cup product in H∗(E).

We apply this to the following calculation.

Theorem 7.35. There is an isomorphism of graded rings,

H∗(U(n)) ∼= Λ[σ1, σ3, · · · , σ2n−1],

the graded exterior algebra on one generator σ2k−1 in every odd dimension
2k − 1 for 1 ≤ k ≤ n.
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Proof. We prove this by induction on n. For n = 1, U(1) = S1 and we know
the assertion is correct. Now assume that H∗(U(n − 1)) ∼= Λ[σ1, · · ·σ2n−3].
Consider the Serre cohomology spectral sequence for the fibration

U(n− 1) ⊂ U(n)→ U(n)/U(n− 1) ∼= S2n−1.

Then the E2 - term is given by

E∗,∗2
∼= H∗(S2n−1;H∗(U(n− 1)) = H∗(S2n−1)⊗H∗(U(n− 1))

and this isomorphism is an isomorphism of graded rings. But by our inductive
assumption we have that

H∗(S2n−1)⊗H∗(U(n− 1)) ∼= Λ[σ2n−1]⊗ Λ[σ1, · · ·σ2n−3]
∼= Λ[σ1, σ3, · · · , σ2n−1].

Thus
E∗∗2
∼= Λ[σ1, σ3, · · · , σ2n−1]

as graded algebras. Now since all the nonzero classes in E∗,∗2 have odd total
degree (where the total degree of a class α ∈ Er,s2 is r+s), and all differentials
increase the total degree by one, we must have that all differentials in this
spectral sequence are zero. Thus

E∗,∗∞ = E∗,∗2
∼= Λ[σ1, σ3, · · · , σ2n−1].

We then conclude that H∗(U(n)) =∼= Λ[σ1, σ3, · · · , σ2n−1] which completes
the inductive step in our proof.

7.5.5 Applications III: Spin and SpinC structures

In this section we describe the notions of Spin and SpinC structures on vec-
tor bundles. We then use the Serre spectral sequence to identify characteristic
class conditions for the existence of these structures. These structures are par-
ticularly important in geometry, geometric analysis, and geometric topology.

Recall from chapter 2 that an n - dimensional vector bundle ζ over a space
X is orientable if and only if it has a SO(n) - structure, which exists if and only
if the classifying map fζ : X → BO(n) has a homotopy lifting to BSO(n). In
chapter 3 we proved the following property as well.

Proposition 7.36. The n - dimensional bundle ζ is orientable if and only if
its first Stiefel - Whitney class is zero,

w1(ζ) = 0 ∈ H1(X;Z2).
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A Spin structure on ζ is a refinement of an orientation. To define it we
need to further study the topology of SO(n).

The group O(n) has two path components, i.e π0(O(n)) ∼= Z2 and SO(n)
is the path component of the identity map. In particular SO(n) is connected,
so π0(SO(n)) = 0. We have the following information about π1(SO(n)).

Proposition 7.37. π1(SO(2)) = Z. For n ≥ 3, we have

π1(SO(n)) = Z2.

Proof. SO(2) is topologically a circle, so the first part of the theorem follows.
SO(3) is topologically the projective space

SO(3) ∼= RP3

which has a double cover Z2 → S3 → RP3. Since S3 is simply connected, this
is the universal cover of RP3 and hence Z2 = π1(RP3) = π1(SO(3)).

Now for n ≥ 3, consider the fiber bundle SO(n)→ SO(n+ 1)→ SO(n+
1)/SO(n) = Sn. By the long exact sequence in homotopy groups for this
fibration we see that π1(SO(n)) → π1(SO(n + 1)) is an isomorphism for
n ≥ 3. The result follows by induction on n.

Since π1(SO(n)) = Z2, the universal cover of SO(n) is a double covering.
The group Spin(n) is defined to be this universal double cover:

Z2 → Spin(n)→ SO(n).

Exercise. Show that Spin(n) is a group and that the projection map
p : Spin(n)→ SO(n) is a group homomorphism with kernel Z2.

Now the group Spin(n) has a natural Z2 action, since it is the double cover
of SO(n). Define the group SpinC(n) using this Z2 - action in the following
way.

Definition 7.6. The group SpinC(n) is defined to be

SpinC(n) = Spin(n)×Z2
U(1).

where Z2 acts on U(1) by z → −z for z ∈ U(1) ⊂ C.

Notice that there is a principal U(1) - bundle,

U(1)→ SpinC(n) = Spin(n)×Z2
U(1)→ Spin(n)/Z2 = SO(n).

SpinC - structures have been recently shown to be quite important in the
Seiberg - Witten theory approach to the study of smooth structures on four
dimensional manifolds [36].

The main theorem of this section is the following:
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Theorem 7.38. Let ζ be an oriented n - dimensional vector bundle over a
CW - complex X. Let w2(ζ) ∈ H2(X;Z2) be the second Stiefel - Whitney
class of ζ. Then

1. ζ has a Spin(n) structure if and only if w2(ζ) = 0.

2. ζ has a SpinC(n) - structure if and only if w2(ζ) ∈ H2(X;Z2) comes
from an integral cohomology class. That is, if and only if there is a class
c ∈ H2(X;Z) which maps to w2(ζ) under the projection map

H2(X;Z)→ H2(X;Z2).

Proof. The question of the existence of a Spin or SpinC structure is equivalent
to the existence of a homotopy lifting of the classifying map fζ : X → BSO(n)
to BSpin(n) or BSpinC(n). To examine the obstructions to obtaining such
liftings we first make some observations about the homotopy type of BSO(n).

We know that BSO(n) → BO(n) is a double covering (the orientation
double cover of the universal bundle). Furthermore π1(BO(n) = π0(O(n)) =
Z2, so this is the universal cover of BO(n). In particular this says that BSO(n)
is simply connected and

πi(BSO(n))→ πi(BO(n))

is an isomorphism for i ≥ 2.
Recall that for n odd, say n = 2m + 1, then there is an isomorphism of

groups
SO(2m+ 1)× Z2

∼= O(2m+ 1).

Exercise. Prove this!

This establishes a homotopy equivalence

BSO(2m+ 1)×BZ2
∼= BO(2m+ 1).

The following is then immediate from our knowledge of H∗(BO(2m+1);Z2) ∼=
Z2[w1, · · · , w2m+1] and H∗(BZ2;Z2) ∼= Z2[w1].

Lemma 7.39.

H∗(BSO(2m+ 1);Z2) ∼= Z2[w2, · · · , w2m+1]

where wi ∈ Hi(BSO(2m + 1);Z2) is the ith Stiefel - Whitney class of the
universal oriented (2m+1) - dimensional bundle classified by the natural map
BSO(2m+ 1)→ BO(2m+ 1).



Homotopy Theory of Fibrations 215

Corollary 7.40. For n ≥ 3, H2(BSO(n);Z2) ∼= Z2, with nonzero class w2.

Proof. This follows from the lemma and the fact that for n ≥ 3 the inclusion
BSO(n) → BSO(n + 1) induces an isomorphism in H2, which can be seen
by looking at the Serre exact sequence for the fibration Sn → BSO(n) →
BSO(n+ 1).

This allows us to prove the following.

Lemma 7.41. The classifying space BSpin(n) is homotopy equivalent to the
homotopy fiber Fw2

of the map

w2 : BSO(n)→ K(Z2, 2)

classifying the second Stiefel - Whitney class w2 ∈ H2(BSO(n);Z2).

Proof. The group Spin(n) is the universal cover of SO(n), and hence is simply
connected. This means that BSpin(n) is 2 - connected. By the Hurewicz
theorem this implies that H2(BSpin(n);Z2) = 0. Thus the composition

BSpin(n)
p−−−−→ BSO(n)

w2−−−−→ K(Z2, 2)

is null homotopic. Convert the map w2 to a homotopy equivalent fibration,
w̃2 : B̃SO(n) → K(Z2, 2). The map p defines a map (up to homotopy) p̃ :
BSpin(n)→ B̃SO(n), and the composition p̃◦w2 is still null homotopic. A null
homotopy Φ : BSpin(n)× I → K(Z2, 2) between p̃◦w2 and the constant map
at the basepoint, lifts, due to the homotopy lifting property, to a homotopy
Φ̃ : BSpin(n)×I → B̃SO(n) between p̃ and a map p̄ whose image lies entirely
in the fiber over the basepont, Fw2 ,

p̄ : BSpin(n)→ Fw2 .

We claim that p̄ induces an isomorphism in homotopy groups. To see this, ob-
serve that the homomorphism pq : πq(BSpin(n)) → πq(BSO(n)) is equal to
the homomorphism πq−1(Spin(n)) → πq−1(SO(n)) which is an isomorphism
for q ≥ 3 because Spin(n) → SO(n) is the universal cover. But similarly
πq(Fw2

) → πq(BSO(n)) is also an isomorphism for q ≥ 3 by the exact se-
quence in homotopy groups of the fibration Fw2

→ BSO(n)
w2−−−−→ K(Z2, 2),

since w2 induces an isomorphism on π2. BSpin(n) and Fw2 are also both 2 -
connected. Thus they have the same homotopy groups, and we have a com-
mutative square for q ≥ 3,

πq(BSpin(n))
p̄∗−−−−→ πq(Fw2

)

p

y∼= y∼=
πq(BSO(n)) −−−−→

=
πq(BSO(n)).
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Thus p̄ : BSpin(n)→ Fw2
induces an isomorphism in homotopy groups, and

by the Whitehead theorem is a homotopy equivalence.

Notice that we are now able to complete the proof of the first part of the
theorem. If ζ is any oriented, n - dimensional bundle with Spin(n) structure,
its classifying mapfζ : X → BSO(n) lifts to a map f̃ζ : X → BSpin(n),
and hence by this lemma, w2(ζ) = f∗ζ (w2) = f∗ζ ◦ p∗(w2) = 0. Conversely, if
w2(ζ) = 0, then the classifying map fζ : X → BSO(n) has the property that
f∗ζ (w2) = 0. This implies that the composition

X
fζ−−−−→ BSO(n)

w2−−−−→ K(Z2, 2)

is null homotopic. A null homotopy lifts to give a homotopy between fζ and a
map whose image lies in the homotopy fiber Fw2

, which, by the above lemma
is homotopy equivalent to BSpin(n). Thus fζ : X → BSO(n) has a homotopy

lift f̃ζ : X → BSpin(n), which implies that ζ has a Spin(n) - structure.

We now turn our attentiona to SpinC - structures.

Consider the projection map

p : SpinC(n) = Spin(n)×Z2 U(1)→ U(1)/Z2 = U(1).

p is a group homomorpism with kernel Spin(n). p therefore induces a map on
classifying spaces, which we call c,

c : BSpinC(n)→ BU(1) = K(Z, 2)

which has homotopy fiber BSpin(n). But clearly we have the following com-
mutative diagram

BSpin(n)
⊂−−−−→ B(Spin(n)×bz2 U(1))

=−−−−→ BSpinC(n)

=

y y yp
BSpin(n) −−−−→ B(Spin(n)/Z2) −−−−→

=
BSO(n)

Therefore we have the following diagram between homotopy fibrations

BSpin(n) −−−−→ BSpinC(n)
c−−−−→ K(Z, 2)

=

y y yp
BSpin(n) −−−−→ BSO(n)

w2−−−−→ K(Z2, 2)

where p : K(Z, 2) → K(Z2, 2) is induced by the projection Z → Z2. As
we’ve done before we can assume that p : K(Z, 2) → K(Z2, 2) and w2 :
BSO(n) → K(Z2, 2) have been modified to be fibrations. Then this means
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that BSpinC(n) is homotopy equivalent to the pull - back along w2 of the
fibration p : K(Z, 2)→ K(Z2, 2):

BSpinC(n) ' w∗2(K(Z, 2)).

But this implies that the map fζ : X → BSO(n) homotopy lifts to BSpinC(n)
if and only if there is a map u : X → K(Z, 2) such that p ◦ u : X → K(Z2, 2)
is homotopic to w2 ◦ fζ : X → K(Z2, 2). Interpreting these as cohomology
classes, this says that fζ lifts to BSpinC(n) (i.e ζ has a SpinC(n) - structure)
if and only if there is a class u ∈ H2(X;Z) so that the Z2 reduction of u, p∗(u)
is equal to w2(ζ) ∈ H2(X;Z2). This is the statement of the theorem.





8

Tubular Neighborhoods, more on
Transversality, and Intersection Theory

8.1 The tubular neighborhood theorem

We begin this chapter by proving another important, and basic result in dif-
ferential topology: the “Tubular Neighborhood Theorem”.

Theorem 8.1. Suppose Mn is an n-dimensional smooth manifold, and sup-
pose the Nk ⊂Mn is a k-dimensional submanifold. Then there exists an open
neighborhood η of Nk in Mn that satisfies the following properties:

1. There is a neighborhood deformation retract

p : η → Nk.

That is, p is a smooth map with the property that p ◦ ι = idNk and ι ◦ p :
η → η is homotopic to idη. Here ι : Nk ↪→Mn is the inclusion.

2. Let π : ν → Nk be the normal bundle of Nk in Mn. Then there is a
diffeomorphism Φ : η → ν making the following diagram commute:

η
Φ−−−−→ ν

p

y yπ
Nk −−−−→

=
Nk

Remark. The open set η in this theorem is referred to as a “tubular neigh-
borhood” because, as the theorem states, it is diffeomorphic to the total space
of a vector bundle, ν which locally looks like a “tube”, Nk × Rn−k.

Observe that the statement of this theorem can be made in another way,
which is often quite useful.

Theorem 8.2. (Tubular neighborhood theorem, equivalent formulation.) Sup-
pose e : Nk ↪→ Mn is an embedding of smooth manifolds with normal bun-
dle ν. Assume that Nk is closed. Consider the inclusion of the zero section,

219
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ζ : Nk ↪→ ν. Then the embedding e extends to an embedding ẽ : ν ↪→ Mn

which is a diffeomorphism onto an open subset of Mk. By ẽ “extending” e we
mean that the composition

Nk ζ−→ ν
ẽ−→Mn

is equal to the embedding e : Nk ↪→Mn.

We leave it to the reader to check that this formulation is indeed equivalent
to Theorem 8.1. We begin the proof of Theorem 8.1 by first proving it in the
case where the ambient manifold is Euclidean spaces.

Theorem 8.3. Let e : Nk ↪→ Rn be an embedding of a closed manifold Nk.
Then Nk has a “tubular neighborhood”.

Proof. Observe that it suffices to show that there is an open neighborhood V
of the zero section Nk ↪→ ν that supports an embedding into Rn that extends
e : Nk → Rn. This is because, by the vector bundle structure of nu there is
clearly an embedding of ν into any neighborhood of the zero section that fixes
the zero section.

Let m be the codimension, m = n − k. Consider the map to the Grass-
mannian,

g : Nk → Grm(Rn)

defined by g(x) = νx ⊂ Rn. That is, g(x) is the normal space to x in Rn. More
precisely,

νx =
(
Dxe(TxN

k)
)⊥
.

Notice that the normal bundle ν → Nk is the pullback, ν = g∗(γm), where
γm → Grm(Rn) is the canonical bundle. Specifically,

g∗(γm) = {(x, v) ∈ Nk × Rn : v ∈ νx}.

Define a map φ : ν → Rn by φ(x, v) = x + v ∈ Rn. As above, identify ν
with g∗(γm). Then notice that the tangent space to ν at (x, 0) is given by

T(x,0)ν = TxM ⊕ νx.

Furthermore, if one considers the derivative of φ at (x, 0),

D(x,0)φ : T(x,0)ν → TxRn

one has that it is the identity on on both TxM and on νx. Therefore Dφ has
rank n at all points on the zero section. It follows that φ is an immersion of
a neighborhood U of the zero section in ν. Since the restriction of φ to the
zero section itself is the given by the identity of Nk ⊂ Rn, it implies that the
restriction of φ to a perhaps smaller neighborhood V of the zero section in ν
is an embedding.
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We now proceed with the proof of Theorem 8.1.

Proof. By Whitney’s embedding theorem 6.1 we can assume that Mn ⊂ RN
for some sufficiently large N . Let W ⊂ RN be a tubular neighborhood of Mn,
and r : W → Mn a retraction. Give Mn a metric induced by the Euclidean
metric on Rn. Notice we have an inclusion of vector bundles over Nk,

ν ↪→ TMn
|
Nk

↪→ TRN|
Nk

= Nk × RN .

For x ∈ Nk, let Ux = {(x, v) ∈ νx : x+ v ∈W}. Then the set U =
⋃
x∈Nk Ux

can be viewed as a subset of Nk × RN and can then be given the subspace
topology. Notice that by definition, U ⊂ ν and is an open subspace, because
it is the inverse image of W under the map

ν → RN

(x, v)→ x+ v.

The map

φ : U →Mn

φ(x, v) = r(x+ v)

is then easily checked to be a tubular neighborhood of e : Nk ↪→Mn.

The tubular neighborhood theorem is extremely important in differential
topology, and is used quite often. For example, it is crucial in knot theory,
where one studies embeddings of S1 in R3 ⊂ S3. Let K be such a knot. That
is, it is the image of such an embedding. Let η(K) be a tubular neighborhood
of K in S3. Then the fundamental group of the complement, S3 − η(K) is
an extremely important invariant of the isotopy class of the knot, and is the
main tool in studying knot theory for a century. This group is most often
not abelian, but has abelianization = Z. This is seen using the fact that the
abelianiization of π1(S3−K) is equal to the first homology, H1((S3−K), and
then using Alexander duality.

8.2 The genericity of transversality

In the last chapter we discussed the notions of regular values and transver-
sality. In this section we will return to these notions and prove that they are
generic in a sense that we will make precise. We will be following the discus-
sion of these results given in Bredon’s book [7] which is a very good reference
for these concepts.

Recall that if φ : Mn → Nn is smooth, then p ∈M is a critical point of φ
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FIGURE 8.1
The trefoil knot

if the derivative Dpφ has rank strictly smaller than n. If p is critical, φ(p) ∈ N
is a critical value. If x ∈ N is not a critical value, it is called a regular value.
So in particular, x ∈ N is regular

• if m ≥ n and Dpφ is surjective for all p ∈M with φ(p) = x, or

• m < n and x is not in the image of φ.

The following theorem is well known in Analysis and Topology, and its
proof is given in many texts, including the appendix of Bredon’s book [7], as
well as in Hirsch’s book [30].

Theorem 8.4. (Sard’s theorem) If φ : Mm → Rn is C∞, then the set of
critical values has measure zero in Rn.

Before we state an important corollary to this theorem, which we will rely
on heavily, we recall some terms from measure theory.

Definition 8.1. A nowhere dense subspace of a topological space is one
whose set theoretic closure has empty interior. A subspace E ⊂ X is first
category if E is the countable union of subpaces that are nowhere dense. A
residual subspace iis the complement of a first category subspace. That is,
it’s complement is the countable union of nowhere dense subspaces. A residual
subspace is sometimes called “everywhere dense”.

Corollary 8.5. (A. B Brown’s theorem) If φ : Mm → Nn is a C∞ map, then
the set of regular values of φ is residual in Nn.

Proof. If C is the set of critical points of φ, and K ⊂ Mm is compact, then
φ(C ∩ K) is a compact subspace of Nn, and its interior is empty by Sard’s
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theorem. Therefore φ(C ∩ K) is nowhere dense. Since Mm is covered by a
countable union of such compace subspaces, φ(C) is first category and thus
it’s complement is residual.

We note that if m = 1, then Sard’s theorem says that there aren’t any
smooth, space-filling curves, unlike in the continuous setting.

We now apply Sard’s theorem to the setting of transversality theory. We
first show that zero sections of vector bundles can be perturbed to be trans-
verse to any map.

Theorem 8.6. Let ξ → Y be a smooth vector bundle over a smooth, compact
manifold. Let X be a smooth manifold and f : X → ξ a smooth map. Then
there is a smooth cross section s : Y → ξ as close to the zero section as
desired, so that f t s(Y ).

Proof. Since Y is compact, we know that there exists a smooth vector bundle
η → Y such that ξ ⊕ η is trivial. That is, there is an isomorphism of vector
bundles over Y ,

Ψ : ξ ⊕ η
∼=−→ Y × Rn.

Let p : ξ ⊕ η → Rn be the projection of Ψ onto the Rn factor. We then
have a commutative diagram

f∗(ξ ⊕ η)
f̄−−−−→ ξ ⊕ η

π′

y yπ
X −−−−→

f
ξ

Here π is the projection, and f̄ and π′ are the obvious maps induced by f and
π, respectively.

Let z ∈ Rn be a regular value of the composition

f∗(ξ ⊕ η)
f̄−→ ξ ⊕ η p−→ Rn.

By Sard’s theorem z can be chosen to be arbitrarily close to the origin. So the
composition of the derivatives

Dp ◦Df̄ : Tvf
∗(ξ ⊕ η)→ Rn

is surjective for any v ∈ f∗(ξ⊕η) such that p◦f̄(v) = z. Using the trivialization

Ψ : ξ ⊕ η
∼=−→ Y × Rn., we may conclude that the image of Df̄ must span the

complement of that tangent space to Y × {z} at (pY f̄(v), z), where pY is the
projection of the trivialization Ψ onto the Y factor. This means that f̄ is
transverse to the section s′ : Y → ξ ⊕ η given, in terms of the trivialization
Ψ, by s′(y) = (y, z). Define the section s : Y → ξ by s(y) = π(s′(y). Notice
that the following diagram commutes:
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f∗(ξ ⊕ η)
f̄−−−−→ ξ ⊕ η s′←−−−− Y

π′

y yπ y=

X −−−−→
f

ξ
s←−−−− Y

We claim that f is transverse to s(Y ). To see this, let x ∈ X, y ∈ Y be such
that f(x) = s(y). Then

π(s′(y)) = s(y) = f(x).

By the definition of the pullback bundle, (x, s′(y)) ∈ f∗(ξ ⊕ η) has
f̄(x, s′(y)) = s′(y). Since f̄ t s′(Y ), the images of D(x,s′(y))f̄ and Dys

′ span
Tf̄(x,s′(y))=s′(y)(ξ ⊕ η). Since π is a submersion, we may conclude that the
images of Dxf and Dys span Tf(x)=s(y)ξ. That is, f t s(Y ). Notice that the
section s may be taken to be arbitrarily close to the zero section by choosing
z ∈ Rn sufficiently close to the 0 ∈ Rn. Again, the reason one can do this is
Sard’s theorem.

Corollary 8.7. Let f : M →W be a smooth map between smooth manifolds.
Assume that M is compact. Let N be another compact, smooth manifold and
suppose g0 : N ↪→ W is a smooth embedding. Then there is an arbitrarily
small isotopy of g0 to a smooth embedding g1 : N ↪→W with the property that
f t g1(N).

Proof. Let ν → N be the normal bundle of the embedding g0 : N ↪→ W .
By the tubular neighborhood theorem (8.2) g0 extends to an embedding
g : ν ↪→ W which is a diffeomorphism onto an open subspace (the tubu-
lar neighborhood). Notice that if we define M ′ = f−1(g(ν)), then M ′ ⊂M is
an open submanifold. We now apply the Theorem 8.6 to the restriction of f ,
f|M′ : M ′ → ν.

We will actually need another version of this corollary that says that
transversal intersections are generic with respect to perturbations of the map
f . But first we need the following:

Lemma 8.8. Let N be a compact smooth submanifold of a smooth manifold
W . Let T be a tubular neighborhood of N . It is equipped with a retraction
p : T → N¿ If s : N → T is any section (i.e p ◦ s = id) then there is a
diffeomorphism h : T → T that preserves fibers, extends continuously to the
identity on the boundary ∂T , and takes s to the zero section. Moreover the
diffeomorphism h can be taken to be homotopic to the identity of T .
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Proof. By the tubular neighborhood theorem, it suffices to work in the vector
bundle setting. Let p : ν → N be the normal bundle of N in W . Let s : N → ν
be any section, and let z : N → ν be the zero section. Define

H : ν → ν

H(v) = v − s(p(v)).

Notice that H is a map of fiber bundles in that it preserves fibers (i.e p◦H(v) =
p(v)). But notice also that H is not a map of vector bundles since it is not
linear on each fiber. Rather, H is affine on each fiber. In any case, H is clearly
a diffeomorphism.

Notice that H ◦ s(x) = z(x). Moreover H is homotopic to the identity
through diffeomorphisms. To see this, define for t ∈ [0, 1] Ht(v) = v−ts(p(v)).
Notice that H0 is the identity, and H1 = H.

Corollary 8.9. Let M be a closed, smooth manifold and f0 : M → W a
smooth map between smooth manifolds. Let N ⊂ W be a smooth, closed sub-
manifold and let T be any tubular neighborhood of N . Then there is a smooth
map f1 : M →W with the following properties.

1. f1 t N ,

2. f1 = f0 outside of f−1(T ),

3. f1 is homotopic to f0 on all of M via a homotopy that is constant outside
of f−1

0 (T ).

Proof. By Theorem 8.6 we know there exists a section s of a tubular neighbor-
hood of N such that f0 t s(N). Composing f0 with the homotopy h described
in the above lemma defines f1. This f1 may not be smooth at the boundary
of the tubular neighborhood, but it can be smoothly approximated without
changing it near the intersection with N , where f1 is already smooth.

Remarks. 1. This corollary says that one can perturb any map f0 with as
small of a perturbation as one would like, to make it transverse to N .

2. There exist strengthenings of this result saying that the set {f : M →
W such that f t N} is “generic” (i.e a countable intersection of open, dense
subsets) in the space of all smooth maps C∞(M,W ). Hirsch’s book [30] gives
a good exposition of this. For our purposes we only need that the space of
transverse maps is dense in the space of all smooth maps, which is what the
above results show.
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8.3 Applications to intersection theory

One immediate application of transversality theory says that one can pull low
dimensional submanifolds of a large dimensional manifolds apart, so that the
do not interesect. More precisely, we have the following.

Proposition 8.10. Let P p and Qq be closed submanifolds of Mn where p+q <
n. Then one can perturb either P p or Qq by an arbitrarily small amount so
that they do not intersect.

More precisely, suppose Mn ⊂ RN . Let e : P p ↪→ Mn be an embedding
whose image is the submanifold in question. Then for any choice of ε > 0,
there exists another embedding ẽ : P p ↪→ Mn, isotopic to e, so that for any
x ∈ P p, ‖e(x)− ẽ(x)‖ < ε and ẽ(P p) ∩Qq = ∅.

Proof. This follows from Corollary 8.7 and the fact that from Theorem 3.7 we
see that the only transversal intersections of p-dimensional and q-dimensional
submanifolds of an n-dimensional manifold when p + q < n, is the empty
intersection.

Here is another easy consequence of transversality theory. It is a statement
about the homotopy groups of complements of submanifolds of Euclidean
space.

Proposition 8.11. Suppose Mm is a smooth, closed manifold, equipped with
an embedding e : Mm ↪→ Rn. Then any smooth map of a sphere to the com-
plement,

f : Sk → Rn −Mm

can be extended to a map of the closed disk, f̃ : Dk+1 → Rn −Mm if k <
n−m− 1.

Proof. f : Sk → Rn is null homotopic, since Rn is contractible. So there exists
an extension f̃0 : Dk+1 → Rn. Perturb f̃0 if necessary, to a map f̃1 : Dk+1 →
Rn that is homotopic to f̃0 relative to its boundary, and such that f̃1 tMm.
But since (k+ 1) +m < n, this means that f̃1(Dk+1)∩Mm = ∅. In particular
this means that the original map f : Sk → Rn −Mm is null homotopic, and
can therefore be extended to a map f̃ : Dk+1 → Rn −Mm.

Another important application of transversality to intersection theory is
when the sum of the dimensions of the submanifolds equals the dimension of
the ambient manifold. So let P p and Qq be closed submanifolds of Mn, where
n = p+q. Then basic transversality theory says that one can perturb either P p

or Qq so that they intersect transversally. (At this point the reader should be
able to make this statement precise.) In this setting the intersection P p ∩Qq
is a manifold of dimension p+ q − n = 0. By compactness P p ∩Qq is a finite
number of points. When P q, Qq, and Mn are all oriented, P p∩Qq will inherit
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an orientation, and so each of the points making it up will have an orientation.
This will just be a sign (±1) and so one can count these points according to
sign to obtain the “intersection” number. We now make this more precise.

Consider the following commutative diagram of embeddings:

P p
⊂−−−−→ Mn

∪
x x∪

P p ∩Qq −−−−→
⊂

Qq

When P p, Qq, and Mn are all oriented, the normal bundle of Qq ↪→Mn has
an induced orientation. Furthermore it restricts to give the (oriented) normal
bundle of P p ∩Qq ↪→ P p. Since P p ∩Qq is a finite set of points, {x1, · · · , xk},
its normal bundle in P p, being diffeomorphic to its tubular neighborhood,
is just a finite collection of disjoint disks, Di ⊂ P p, i = 1, · · · , k each of
which is oriented. In particular each tangent space TxiDi is oriented. But
notice that TxiDi = TxiP

p, which has an orientation coming from the original
orientation of P p. If these two orientations agree we say that sgn(xi) = +1. If
these orientations disagree we say that sgn(xi) = −1. We can now make the
following definition.

Definition 8.2. Define the intersection number

[P p ∩Qq] =

k∑
i=1

sgn(xi) ∈ Z

It is important to know that the intersection number is well defined. Of
course we had to choose orientations and that can affect the ultimate sign of
the intersection number. But it is important to also know that the intersection
number does not depend on the particular perturbation (small isotopy) used
in order to achieve transversal intersections. Once we know that we will be
able to conclude the following:

Proposition 8.12. Let P p and Qq be closed submanifolds of Mn, where n =
p+q. Suppose these manifolds are all oriented. Then if the intersection number
[P p ∩ Qq] 6= 0, the neither P p nor Qq can be isotoped so that the resulting
embeddings are disjoint. That is, P p and Qq cannot be “pulled off of each
other” in Mn.

To show that the intersection number is well defined, and to generalize it
to study more complicated intersections, we will employ the use of Poincaré
duality to develop the intersection theory homologically.





9

Poincaré Duality, Intersection theory, and
Linking numbers

Our goal in this chapter is to use Poincaré duality to do intersection theory
rigorously. A particular goal will be to prove that the intersection number of
two submanifolds, the sum of whose dimensions equals the dimension of the
ambient manifold, is well defined (see Definition 8.2). Along the way we relate
intersection theory with such constructions as the “shriek” or “umkehr” map,
the Pontrjagin-Thom “collapse map”, and the Thom isomorphism.

9.1 Poincaré Duality, the “shriek map”, and the Thom
isomorphism

Let Mm and Nn be closed, oriented manifolds of dimensions m and n re-
spectively. Their orientations determine (and are determined by) choices of
fundamental classes [Mm] ∈ Hm(Mm;Z) and [Nn] ∈ Hn(Nn;Z) that deter-
mine Poincaré duality isomorphisms

∩[Mm] : Hq(M ;Z)
∼=−→ Hm−q(M ;Z) and ∩[Nn] : Hq(N ;Z)

∼=−→ Hn−q(N ;Z)
(9.1)

We refer to their inverse isomorphisms as

DM : Hr(M ;Z)
∼=−→ Hm−r(M ;Z) and DN : Hr(N ;Z)

∼=−→ Hn−r(N ;Z).
(9.2)

Given a map f : Mm → Nn, we of course have the induced homomor-
phisms in both homology and cohomology, which would exist even if M and N
were replaced by any topological spaces. However, given that they are closed,
oriented manifolds, the existence of Poincaré duality allows one to define a
“shriek” or “umkehr” map.

Definition 9.1. Define the homomorphism f ! : Hq(Mm;Z)→ Hn−m+q(Nn;Z)
to be the unique map making the following diagram commute:

229
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Hq(Mm;Z)
f !

−−−−→ Hn−m+q(Nn;Z)

∩[Mm]

y∼= ∼=
y∩[Nn]

Hm−q(M ;Z) −−−−→
f∗

Hm−q(N ;Z)

Now suppose that Mm is a closed, oriented m-dimnesional manifold and
Nn is a compact, oriented, n-dimensional manifold with boundary. Then a
map f : M → N defines a shriek map with values in relative cohomology,

f ! : Hq(Mm;Z)→ Hn−m+q(Nn, ∂N ;Z). (9.3)

This is defined by using the relative version of Poincaré duality (”Poincaré -
Lefschetz duality”). We leave the details to the reader.

This relative version of the shriek map is important in many settings, but
particularly so when one has an oriented vector bundle over a closed, oriented
manifold

p : ξ →Mm.

Assume the fiber dimension of this vector bundle is k. Give ξ a Euclidean
structure, and as before, let D(ξ) and S(ξ) denote the associated unit disk
bundle and sphere bundle respectively. Notice that the orientation on ξ as
well as the orientation on the base manifold Mm gives D(ξ) the structure of
a compact m+ k-dimensional oriented manifold, whose boundary is ∂D(ξ) =
S(ξ).

Now let ζ : Mm → D(ξ) be the the zero section. Then as discussed above,
this defines a shriek map

ζ ! : Hq(Mn;Z)→ Hq+k(D(ξ), ∂D(ξ);Z)
=−→ Hq+k(D(ξ), S(ξ);Z)

= Hq+k(T (ξ);Z)

where T (ξ) is the Thom space of the bundle ξ.
The following result relates this shriek map, which is defined via Poincaré

duality, with the Thom isomorphism.

Proposition 9.1. Given an oriented, k-dimensional vector bundle over a
closed, oriented manifold, p : ξ →Mm the shriek map of the zero section

ζ ! : Hq(Mm;Z)→ Hq+k(D(ξ), ∂D(ξ);Z) = Hq+k(T (ξ);Z)

is equal to the Thom isomorphism

∪u : Hq(Mm;Z)
∼=−→ Hq+k(T (ξ);Z).

Here u ∈ Hk(T (ξ);Z) is the Thom class.
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Proof. The shriek map ζ ! is defined to be the composition,

ζ ! : Hq(Mn;Z)
∩[M ]−−−→ Hm−q(M

m;Z)
ζ∗−→ Hm−q(D(ξ);Z)

DD(ξ)−−−−→ Hk+q(D(ξ), ∂D(ξ)).

Here, as above, DD(ξ) is the inverse to the Poincaré duality isomorphism
given by capping with the fundamental class. Since ∩[M ] and DD(ξ) are
both isomorphisms, and because ζ∗ is an isomorphism since the zero sec-
tion ζ is a homotopy equivalence, we may conclude that the composition ζ !

is an isomorphism. Of course we know that cupping with the Thom class

∪u : Hq(Mm;Z)
∼=−→ Hq+k(T (ξ);Z). is also an isomorphism. So we need only

show that they are the same isomorphism.
Notice that when q = 0, Hq(Mm;Z) ∼= Z and so the two isomorphisms

ζ ! and ∪u must agree in this dimension, at least up to sign. We leave it to
the reader to check that the signs in fact agree given the compatibility of the
orientation of D(ξ) with the orientation of the bundle p : ξ → Mn and the
orientation of M .

In general dimensions, let β ∈ Hq(M). Since the zero section ζ is a homo-
topy equivalence we may write β = ζ∗(α) for a unique class α ∈ Hq(D(ξ);Z).

ζ !(β) = DD(ξ)(ζ∗(β ∩ [M ])

= DD(ξ)(ζ∗(ζ
∗(α) ∩ [M ])

= DD(ξ)(α ∩ ζ∗[M ]) by the naturality of the cap product.

(9.4)

Now the Thom isomorphism in homology is given by capping with

the Thom class ∩u : Hr(D(ξ), S(ξ))
∼=−→ Hr−k(M). In particular [M ] ∈

Hm(M ;Z) ∼= Z is equal to u ∩ [D(ξ), ∂D(ξ)] where [D(ξ), ∂D(ξ)] ∈
Hm+k(D(ξ), ∂D(ξ);Z is the (relative) fundamental class. Thus

ζ !(β) = DD(ξ)(α ∩ ζ∗[M ]) = DD(ξ)(α ∩ z∗(u ∩ [D(ξ), ∂D(ξ)])

= DD(ξ)((ζ
∗(α) ∪ u) ∩ [D(ξ), ∂D(ξ)])

= ζ∗(α) ∪ u since DD(ξ) is inverse to

capping with the fundamental class

= β ∪ u.

As a result of this proposition we will be able to prove a result relating the
shriek map to so-called “Thom collapse map”, which is crucial in intersection
theory.

The Thom collapse map can be described as follows. Let e : Nn ↪→Mm be
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a smooth embedding of closed, oriented, smooth manifolds. Let ν be tubular
neighborhood of e(Nn) in Mm. Notice that the quotient space, M/M − ν is
the one point compactification ν ∪∞, which is in turn homeomorphic to the
Thom space T (ν).

Definition 9.2. The “Thom collapse map” τ : Mm → T (ν) is the projection

τ : Mm →M/M − ν ∼= T (ν).

Theorem 9.2. As above let e : Nn ↪→Mm be a smooth embedding of closed,
oriented, smooth manifolds. Let ν be tubular neighborhood of e(Nn) in Mm.
Let k = m− n be the codimension of the embedding. Then the composition in
cohomology

Hq(N)
∪u−−−−→∼= Hq+k(T (ν))

τ∗−−−−→ Hq+k(M)

is equal to the shriek map e! : Hq(N)→ Hq+k(M). Here u ∈ Hk(T (ν)) is the
Thom class.

Proof. As earlier, let D(ν) and S(ν) denote the unit disk bundle and sphere
bundle, respectively. D(ν) is an oriented m = n+k-dimensional manifold with
boundary ∂D(ν) = S(ν). Let [D(ν), S(ν)] ∈ Hm(D(ν), S(ν)) = Hm(T (ν)) be
the fundamental class.

Observe first that τ∗[M ] = [D(ν), S(ν)] ∈ Hm(D(ν), S(ν)). This is because
the diagrams

Hm(M)
τ∗−−−−→ Hm(D(ν), S(ν))

∼=
y y∼=

Hm(M,M − x) −−−−→
=

Hm(D(ν), D(ν)− x)

commute for every x ∈ D(ν) ⊂M . Now the fundamental class [M ] ∈ Hm(M)
is the unique class that maps to the generator of Hm(M,M − x) ∼= Z de-
termined by the orientation. Therefore τ∗([M ]) ∈ Hm(D(ν), S(ν)) is a class
that maps to the generator of Hn(D(ν), D(ν) − x)) ∼= Z determined by the
orientation. But this property characterizes [D(ν), S(ν)] ∈ Hm(D(ν), S(ν)).

Secondly, observe that the following diagram commutes:

H̃∗(D(ν)/S(ν))
=←−−−− H∗(D(ν), S(ν))

∩[D(ν)/S(ν)]

y ∼=
y∩[D(ν),S(nu)]

H̃m−∗(D(ν)/S(ν)) ←−−−− Hm−∗(D(ν))

τ∗

x yẽ∗
Hm−∗(M) ←−−−−

=
Hm−∗(M).
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Here [D(ν)/S(ν)] is the image of the (relative) fundamental class [D(ν), S(ν)]

under the isomorphism Hm(D(ν), S(nu))
∼=−→ H̃m(D(ν)/S(ν)). ẽ : D(ν) ↪→M

is the extension of the embedding e to its tubular neighborhood.
By the naturality of the cap product this diagram expands to the following

commutative diagram.

H∗(D(ν), S(ν))
=−−−−→ H∗(D(ν), S(ν))

∩[D(ν),S(ν)]−−−−−−−−→∼=
Hm−∗(D(ν))

τ∗
y ∩[D(ν)/S(ν)]

y yẽ∗
H∗(M) Hm−∗(D(ν)/S(ν)) ←−−−−

τ∗
Hm−∗(M)

=

y y=

H∗(M) −−−−→
∩[M ]

Hm−∗(M)

By the above proposition we can now add to the exterior of this diagram:

H∗−k(N)
∩[N ]−−−−→∼= > Hm−∗(N)

∪u=ζ!

y yζ∗
Hr(D(ν), S(ν))

∩[D(ν),S(ν)]−−−−−−−−→∼=
Hm−∗(D(ν))

τ∗
y yẽ∗

H∗(M)
∼=−−−−→
∩[M ]

Hm−∗M

Thus τ∗ ◦ ∪u = DM ◦ ẽ∗ ◦ ζ∗ ◦ ∩[N ]. (Recall that the duality isomorphism
DM = (∩[M ])−1.) But ẽ ◦ ζ = e, so we have that

τ∗ ◦ ∪u = DM ◦ e∗ ◦ ∩[N ] = e!, by definition.

The following corollary gives a clear relation between the Thom collapse
map and Poincaré duality. In particular it says that the Thom class of a normal
bundle of an embedded submanifold is dual to the fundamental class of the
submanifold.

Corollary 9.3. Let M be a closed, oriented manifold, with oriented, closed
submanifold e : N ↪→M of codimension k. Let ν be a tubular neighborhood of
N , which we identify with the normal bundle. Let τ : M →M/M − ν ∼= T (ν)
be the Thom collapse map, and let u ∈ Hk(T (ν) be the Thom class. Then

τ∗(u) = D(N).

Said another way, τ∗(u) ∩ [M ] = [N ].
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Proof. By Theorem 9.2, τ∗(u) = e!(1). But recall that e! : H0(N) → Hk(M)
is defined to be the unique homomorphism that makes the following diagram
commute:

H0(N)
e!−−−−→ Hk(M)

∩[N ]

y∼= ∼=
y∩[M ]

Hn(M) −−−−→
e∗

Hn(M).

Thus τ∗(u) ∩ [M ] = e!(1) ∩ [M ] = e∗([N ]).

9.2 The intersection product

One can define the “intersection product” in the homology of a closed, oriented
manifold both geometrically, using transversality theory, and algebraically, us-
ing Poincaré duality and the cup product. Our goal in this section is to show
that these constructions define the same homological product. The intersec-
tion number, defined earlier (Definition 8.2), will be shown to be a special
example of this product, and the consequence of these results will show that
this number does not depend on the various geometric choices one makes in
defining it.

Definition 9.3. Let Mm be a closed, oriented m-dimensional manifold. The
intersection product is the pairing

Hp(M)×Hn(M)→ Hp+n−m(M)

α× β → α · β

is defined to be the unique homomorphism making the following diagram
commute:

Hp(M)×Hn(M)
·−−−−→ Hp+n−m(M)

∩[M ]×∩[M ]

x∼= ∼=
x∩[M ]

Hm−p(M)×Hm−n(M) −−−−→
∪

H2m−p−n(M).

That is, the intersection product is Poincaré dual to the cup product.

The following is the main result of this section.
Again, let Mm be a closed, oriented m-dimensional manifold. Suppose it

has two oriented, closed submanifolds P p of dimension p and Nn of dimen-
sion n that intersect transversally. (Otherwise perturb one of them so that the
interesection becomes transverse.) By abuse of notation we let [P ] ∈ Hp(M)
and [Nn] ∈ Hn(M) be the homology classes given by the images of the fun-
damental classes of these submanfolds under the homomorphisms induced by
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their embeddings. We say that these submanifolds represent these homology
classes.

Theorem 9.4. Under these assumptions the homology class represented by
the intersection

[P ∩N ] ∈ Hp+n−m(M)

represents the intersection product of the classes represented by the submani-
folds P p and Nn:

[P p] · [Nn] = [P ∩N ].

This theorem actually has a generalization, whose proof requires only small
adjustments to the proof of Theorem . We leave the details to the reader.

Theorem 9.5. Let Mn, P p, and Nn be closed, oriented manifolds. Let f :
P p →Mn be a smooth map and g : Nn ↪→Mn a smooth embedding. Assume
that f t g(Nn). That is for every x ∈ P and y ∈ N with f(x) = g(y) = z ∈M ,
then Dfx(TxP )⊕Dgy(TyN) = TzM . Consider the submanifold f−1(g(N)) ⊂
P . Then this is a closed, oriented submanifold of dimension p+n−m and the
image of its fundamental class in homology f∗[f

−1(g(N))] ∈ Hp+n−m(M) is
Poincaré dual to the cup product DM (f∗[P ]) ∪DM (g∗([N ]) ∈ H2m−p−n(M).

Before we prove Theorem 9.4 we make a couple remarks:

Remarks.

• Let’s generalize our notion of “representing” a homology class in closed
oriented manifold by a submanifold, to a homology class α ∈ Hq(M) being
represented by a manifold if there exists a closed, oriented manifold Qq and
a map φ : Q→M with φ∗([Q]) = α. Then we will see in Chapter 12 below,
that not every integral homology class is represented by such a manifold.
However, as we will see below, a consequence of Thom’s calculation of
the unoriented cobordism ring is that in homology with Z/2-coefficients,
indeed every homology class is represented by a manifold. In the presence
of such representations, (in integral or Z/2 homology), this theorem says
that the Poincaré dual of the cup product is represented by (transver-
sal) intersections of manifolds. This gives a rather remarkable geometric
interpretation of the cup product.

• Historically, there is reason to believe that the development of cohomology
and the cup product was motivated by goal of representing intersections
of submanifolds. S. Lefshetz, who did seminal work in the development
of intersection theory in both algebraic geometry and algebraic topology,
was instrumental in developing the cup product in singular cohomology.

Proof of Theorem 9.4.
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Proof. Consider the following commutative diagram, where the maps are all
embeddings:

N
eN−−−−→
⊂

M

∪
xeP∩N,N ∪

xeP
P ∩N ⊂−−−−−→

eP∩N,P
P

By examining this diagram one sees that when one restricts the normal bundle
of N in M to P ∩N , one gets the normal bundle of P ∩N in P :

(νeN )|P∩N = νeP∩N,P .

Equivalently, the intersection of a tubular neighborhood of eN with P is a
tubular neighborhood of eP∩N,P . We represent these tubular neighborhoods
by η’s. We therefore have a commutative diagram involving Thom collapse
maps:

M
τN−−−−→ M/(M − ηN ) ∼= T (νeN )

eP

x xT (eP )

P −−−−−→
τP∩N,P

P/(P − ηP∩N,P ) = T (νeP∩N,P ).

Here T (ν) denotes the Thom space of the corresponding normal bundle, and
T (eP ) denotes the map of Thom spaces induced by the embedding eP .

In particular this means that on the level of Thom classes,

T (eP )∗(uN ) = uP∩N,P ∈ Hm−n(T (νeP∩N,P )).

Now by Corollary 9.3

τ∗P∩N,P (uP∩N,P ) ∩ [P ] = [P ∩N ] ∈ Hp+n−m(P ).

So therefore

τ∗P∩N,P (T (eP )∗(uN )) ∩ [P ] = [P ∩N ] ∈ Hp+n−m(P ),

and by the commutativity of the above diagram, this means

e∗P (τ∗N (uN )) ∩ [P ] = [P ∩N ] ∈ Hp+n−m(P ).

So we may conclude that

(eP )∗(e
∗
P (τ∗N (uN )) ∩ [P ]) = (eP )∗[P ∩N ] ∈ Hp+n−m(M).

By the definition of the intersection product, this says that

[P ] · [N ] = [P ∩N ] ∈ Hp+n−m(M).
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An immediate consequence of this theorem is that the (homological) in-
tersection pairing gives an obstruction to separating two submanifolds. By
“separating”, we mean that there is an isotopy of one or both of the em-
beddings of the two submanifolds, so that the resulting submanifolds do not
intersect. That is, we have the following immediate corollary.

Corollary 9.6. Let Mm be a closed, oriented m-dimensional manifold. Sup-
pose it has two oriented, closed submanifolds P p of dimension p and Nn of
dimension n, such that the intersection product, [P ] · [N ] ∈ Hp+n−m(M) is
nonzero. Then P and N cannot be separated in M .

9.2.1 Intersection theory via Differential Forms

We end this section by pointing out how to compute the intersection number
of two submanifolds of complementary dimension using differential forms.

Let Mm be a closed oriented manifold, with submanifolds Qq of dimen-
sion q and P p of dimension p where p + q = m. Let ηQ and ηP be tubular
neighborhoods of these submanifolds. These can be viewed as open manifolds
of dimension n. The (DeRham) cohomology with compact supports, H∗cpt(ηQ)
is equal to the cohomology of the one-point compactification, which is homeo-
morphic to the Thom space of the normal bundle. Therefore there is a Thom
class uQ ∈ Hp

cpt(ηQ), and similarly uP ∈ Hq
cpt(ηP ). The Thom collapse map

gives classes νQ ∈ Hp(M) and νP ∈ Hq(M). By abuse of notation we let νQ
and νP denote differential forms onM of dimension q and p respectively that
represent these cohomology classes.

These “Thom forms” can be viewed a differential forms on M whose sup-
port lies in the relevant tubular neighborhood which yield the orientation
forms of the corresponding normal bundles.

The following is a reinterpretation of Theorem 9.2 in this setting, using
the DeRham theorem. We leave the job of filling in the details of its proof as
an exercise to the reader,

Theorem 9.7. In the setting described above,

[Q] · [P ] =

∫
M

νQ ∧ νP

= 〈uQ ∪ uP ; [M ]〉

=

∫
P

νQ = ±
∫
Q

νP .
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9.3 Degrees, Euler numbers, and Linking numbers

In this section we will discuss interesting applications of the results about
intersection theory developed in the last section.

9.3.1 The Degree of a map

Let f : Nn → Mn be a smooth map between closed, oriented, connected
smooth manifolds of the same dimension (= n). The degree of f is an oriented
(signed) count of the number of elements in the preimage of a generic point.
More specifically we make the following definition:

Definition 9.4. The degree of f , written Deg(f) is defined to be the inter-
section number of f : Nn → Mn and a regular value x ∈ Mn, viewed as a
zero-dimensional submanifold. That is, Deg(f) = f∗[N

n] · [x] ∈ Z.

.
Notice that the intersection number, as defined in Definition 8.2, in this

setting is given by

f∗[N ] · [x] =

k∑
i=1

sgn(xi) ∈ Z, where the sum is taken over all points in f−1(x) ∈ N

= [f−1(x)] ∈ H0(Nn) = Z by Theorem 9.5.

Now by Theorem 9.5,

f−1(x)] = f∗[N ] · [x] = f∗(DM [x]) ∩ [N ]

= DM [x] ∩ f∗[N ].

Since the fundamental class [M ] ∈ Hn(M) ∼= Z is a generator, we may inter-
pret this as the following corollary to Theorem 9.5

Corollary 9.8. Write f∗[N ] = d[M ] ∈ Hn(M). Then d = Deg(f).

This corollary allows for easier calcuations of degree, and also shows that
the notion of degree does not depend on the choice of regular value x ∈ M .
Moreover it allows the extension of the notion of degree to any continuous
(not necessarily smooth) map.
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9.3.2 The Euler class and self intersections

Recall from Definition 5.5 that if ξ → N is an oriented vector bundle of fiber
dimension k, the Euler class

χ(ξ) ∈ Hk(N)

is defined to be the image of the Thom class under the composition

Hk(T (ξ)) = Hk(D(ξ), S(ξ))→ Hk(D(ξ))
ζ∗−→ Hk(N)

where ζ : N → D(ξ) ⊂ ξ is the zero section.
In the setting when N is a n-dimensional, closed, oriented manifold, we

can relate the Euler class to the self intersection of the zero section.
First, we explain what we mean by “self intersection”. If e : Nn ↪→Mm is

an embedding of N into a compact, connected, oriented manifold Mn (with or
without boundary), then we can perturb (i.e find an isotopy) of the embedding
e to an embedding ẽ : Nn ↪→Mm so that e(N) t ẽ(N). By Theorem 9.2, the
resulting intersection, e(N)∩ ẽ(N) represents the class [N ] · [N ] ∈ H2n−m(M).
This class is called the “self intersection class”. In particular, if m = 2n, this is
a zero dimensional homology class, and therefore an integer, which represents
a (signed) count of the number of points in the intersection e(N) ∩ ẽ(N) .

In the setting of a k-dimensional, oriented, smooth vector bundle p : ξ →
Nn we may view the disk bundle D(ξ) as an (n + k)-dimensional, oriented,
compact manifold with boundary, and the zero section ζ : N ↪→ D(ξ) as an
embedding. We then have the following result.

Theorem 9.9. The self intersection class of the zero section

[ζ(N)] · [ζ(N)] ∈ Hn−k(D(ζ)) ∼= Hn−k(N)

is Poincaré dual to the Euler class. That is,

χ(ξ) ∩ [N ] = [ζ(N)] · [ζ(N)].

In particular, when k = n, the evaluation of the Euler class on the fundamental
class 〈χ(ξ); [N ]〉 is equal to the self intersection number of the zero section.

Before we prove this theorem we observe the following corollary.

Corollary 9.10. If a smooth vector bundle p : ξ → Nn over a closed, oriented
manifold has a nowhere zero section, then the Euler class χ(ξ) is zero.

Proof. Notice that any section σ : N → ξ is a homotopy equivalence, and is
homotopic, as a map of spaces, to the zero section ζ. Such a homotopy can be
taken to be (x, t) → (1 − t)σ(x). Therefore the homology classes represented
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by these sections, [σ(N)] and [ζ(n)] are equal. If σ(x) is never zero, then
σ(N) ∩ ζ(N) = ∅. Therefore by Theorem 9.2

0 = [ζ(n)] · [σ(N)] = [ζ(n)] · [ζ(n)].

By Theorem 9.9, the Euler class χ(ξ) = 0.

We now prove Theorem 9.9.

Proof. By Proposition 9.1 the following diagram commutes:

Hq(N)
∪u−−−−→∼= Hq+k(D(ξ), S(ξ))

∩[N ]

y∼= ∼=
y∩[D(ξ),S(ξ)]

Hn−q(N)
∼=−−−−→
ζ∗

Hn−q(D(ξ)).

We now insert this into a larger diagram:

Hk(D(ξ), S(ξ))×Hk(D(ξ), S(ξ))
∪−−−−→ H2k(D(ξ), S(ξ))

∪u←−−−−∼= Hk(N)

∩[D(ξ),S(ξ)]×∩[D(ξ),S(ξ)]

y∼= ∼=
y∩[D(ξ),S(ξ)] ∼=

y∩[N ]

Hn(D(ξ))×Hn(D(ξ)) −−−−→
·

Hn−k(D(ξ))
∼=←−−−−
ζ∗

Hn−k(N)

Notice that the left hand square defines the intersection product in
H∗(D(ξ)). Now by Theorem 9.9, the product of the Thom classes u×u in the
upper left corner of this diagram, maps to ζ∗([N ])× ζ∗([N ]) in the lower left
corner. But this class in turn maps to the intersection product ζ∗([N ])·ζ∗([N ])
in the lower middle of the diagram (Hn−k(D(ξ))).

Furthermore, by definition, the Euler class χ(ξ) ∈ Hk(N) in the upper
right corner of the diagram, maps to u ∪ u ∈ H2k(D(ξ), S(ξ)), and so

(χ(ξ) ∪ u) ∩ [D(ξ), S(ξ)] = ζ∗([N ]) · ζ∗([N ]) ∈ Hn−k(D(ξ)).

By the commutativity of the right hand square we conclude that

ζ∗(χ(ξ) ∩ [N ]) = ζ∗([N ]) · ζ∗([N ]) ∈ Hn−k(D(ξ)).

This is the statement of the theorem.

We now turn our attention to the case when the bundle we are considering
is the tangent bundle, p : TN → N . A section of the tangent bundle is a vector
field on N . Applying Corollary 9.10 to this situation gives us the following:
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Proposition 9.11. If a smooth, closed, orientable manifold N has a nowhere
zero vector field, then the Euler class of its tangent bundle, χ(TN), which we
denote by χ(N), is zero.

We end this subsection with a well known result which relates the Euler
class of a manifold (i.e of its tangent bundle), with its Euler characteristic.

Theorem 9.12. Let N be a closed, oriented, n-dimensional smooth manifold.
Then the evaluation of its Euler class on the fundamental class is the Euler
characteristic of the manifold:

〈χ(N), [N ]〉 =

n∑
i=0

(−1)irankHi(N).

Proof. The proof of this theorem involves a few steps. First, consider the
diagonal embedding,

∆ : N → N ×N.

We first observe that the normal bundle ν(∆) of this embedding is the tangent
bundle TN . We leave the verification of this fact to the reader. In order not
to confuse notation we now adopt the “exponential” notation for the Thom
space of a bundle. That is if ξ → X is a vector bundle, we now use the notation
Xξ to denote its Thom space.

Let τ : N×N → Nν(∆) = NTN be the Thom collapse map. We now com-
pute this Thom collapse map in cohomology. To do this, notice that Poincaré
duality defines a nonsingular pairing

〈 , 〉 : H∗(N ; k)×H∗(N ; k)→ k

〈α, β〉 = (α ∪ β)([N ])

Let {αi} be a basis for H∗(N ; k). Since this pairing is nondegenerate, there
is a corresponding dual basis {α∗i }. That is, (α∗i ∪ αj)([N ]) = δi,j , the Kro-
necker delta. In particular notice that if αi ∈ Hq(N ; k), then α∗i ∈ Hn−q(N ; k).

Lemma 9.13. Let u ∈ Hn(NTN ; k) be the Thom class of the Tangent bundle.
Then

τ∗(u) =
∑
i

(−1)|αi|α∗i × αi ∈ Hn(N ×N ; k),

where |αi| denotes the degree of αi.

Proof. We take the following computation from Bredon [7], proof of Theorem
12.4.

By the Kunneth theorem we can write

τ∗(u) =
∑
i,j

ci,j α
∗
i × αj
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for some coefficients ci,j . Notice that we need only add over those terms where
|α∗i |+ |αj | = n. Since |α∗i | = n− |αi|, we assume |αj | = |αi|. For the following
calculation take basis elements αi and αj of degree p. We compute ((αi×α∗j )∪
τ∗(u))([N ×N ]) in two different ways.

((αi × α∗j ) ∪ τ∗(u))([N ×N ]) = (αi × α∗j )(τ ∩ [N ×N ])

= (αi × α∗j )(∆∗([N ]), by Corollary 9.3

= ∆∗(αi × α∗j )([N ])

= (αi ∪ α∗j )([N ])

= (−1)p(n−p)(α∗j ∪ αi)([N ])

= (−1)p(n−p)δi,j

On the other hand

((αi × α∗j ) ∪ τ∗(u))([N ×N ])

= ((αi × α∗j ) ∪ (
∑
r,s

cr,s α
∗
r × αs))([N ×N ])

= (−1)n−pci,j((αi ∪ α∗i )× (α∗j ∪ αj)([N ]× [N ])

since one gets zero for αi, αj 6= αr, αs, all of degree p

= (−1)n−p+p(n−p)+nci,j((αi ∪ α∗i )([N ]))((α∗j ∪ αj)([N ]))

= (−1)p(n−p)−pci,j .

So we conclude that ci,j = (−1)pδi,j .

To complete the proof of Theorem 9.12, we make the following observation
about the relation of the Thom collapse map and the Euler class. Let e : N ↪→
M be a codimension k embedding of oriented manifolds, with normal bundle
νe, and let τ : M → Nνe is the Thom collapse map. The following comes from
a quick check of definitions, which we leave for the reader.

Lemma 9.14. If u ∈ Hk(Nνe) be the Thom class. Then the Euler class of
the normal bundle νe can be described by

χ(νe) = e∗τ∗(u) ∈ Hk(N).

Applying this lemma to the diagonal embedding ∆ : N → N ×N , we have
that ∆∗(τ∗(u)) = χ(N). Applying Lemma 9.3.2 with rational coefficients we
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have that

χ(N)([N ]) = ∆∗(τ∗(u))([N ]) =
∑
i

(−1)|αi|(α∗i ∪ αi)([N ])

=
∑
i

(−1)|αi|〈α∗i , αi〉

=
∑
i

(−1)|αi|

= Euler characteristic of N

Notice that as an application of this theorem and of Proposition 9.11 we
get the following classical result:

Proposition 9.15. If a closed, oriented manifold N has nonzero Euler char-
acteristic, then every vector field on N must contain a zero.

In particular every vector field on an even dimensional sphere must contain
a zero. This famous result, when applied to S2 is often referred to as the “Hairy
billiard ball” theorem.

9.3.3 Linking Numbers

We now discuss one more application of intersection theory. This is the clas-
sical notion of linking numbers.

In the general setting, suppose we have embeddings of closed, oriented
manifolds in Euclidean space,

Mm K1−−−−→
⊂

Rn+m+1

∪
xK2

Nn.

We will assume that these manifolds intersect transversally, which in these
dimensions means that they have disjoint images. Consider the composition

ΨM,N :Mm ×Nn → Rn+m+1 − {0} → Sn+m

(x, y) −→ (K1(x)−K2(y)) −→ K1(x)−K2(y)

|K1(x)−K2(y)|

Giving Sn+m the orientation coming from viewing it as the boundary of
the ball Dn+m+1 inside Rn+m+1, we can make the following definition.
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Definition 9.5. Define the linking number, Lk(K1,K2) to be the degree

Lk(K1,K2) = Deg(ΨM,N ).

This is an algebraic-topological definition based on the homological prop-
erties of the map ΨM,N . However this notion has important geometric signifi-
cance as well, as we will see in considering the classical case when we have the
link of two disjointly embedded circles in S3. We have the following diagram
of embeddings:

S1 K1−−−−→
⊂

R3

∪
xK2

S1.

For p ∈ S2, let

I(p) = {(q1, q2) ∈ K1 ×K2 : q2 − q1 = λp, whereλ > 0}.

Notice that for p ∈ S2, I(p) = Ψ−1
K1,K2

(p).

Observation. Assume that p = (0, 0, 1) is a regular value of ΨK1,K2 . (If it is
not, compose ΨK1,K2 with a rotation of S2 so that this condition is satisfied.)
Project K1 ∪K2 onto R2 = (x1, x2)− plane in R3, keeping track of the over
and under-crossings:

 

We claim that there is one element of I(p) for every place that K2 crosses
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over K1. To see this, observe that if (q1, q2) ∈ K1 × K2 is in I(p), then the
projections of q1 and q2 on R2 agree. This means that the first two coordinates
of q1 and of q2 agree. Now since q2 − q2 = λp = (0, 0, λ) with λ > 0, we must
have that the third coordinate (the “z-coordinate”) of q2 is larger than the
third coordinate of z1. That is, K2 crosses over K1 at this point.

By Definition 9.5 of the linking number as the degree of ΨK1,K2
, we can

calculate this invariant either homologically, or, as seen after the discussion
of the definition of degree (Definition 9.4) as the signed count of the points in
the preimage of a regular value of ΨK1,K2 . That is, it is a signed count of the
points of I(0, 01). If (q1, q2) ∈ I(0, 0, 1), then the sign sgn(q1, q2) is determined
by comparing the orientations of the curves, and the standard orientation of
the plane. In the above example of the Hopf link, I(0, 0, 1) consists of a single
point, and the local orientations of the curves K1 an K2 at this point looks
like the following. Therefore the linking number of the Hopf link is

Lk(K1,K2) = −1.

 

Ku
A
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We now turn our attention to the following, more complicated link:

 

Notice that there are two places where K2 crosses over K1, and thus
I(0, 0, 1) has consists of two points.
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it

The crossing on the left has sgn = −1 and the crossing on the right has
sgn = +1. This means that the linking number,

Lk(K1,K2) = 0,

even though evidently the two embedded circles cannot be unlinked. This
shows that while the linking number is a useful, computable invariant, it is
not a complete invariant of a link of two embedded circles in R3.
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Classical Morse Theory

In this chapter we discuss the traditional, “classical” approach to Morse the-
ory. An approach based on moduli spaces of flows will be discussed in the
next chapter. The best reference to this classical approach is Milnor’s well
known book [43]. We encourage the reader to study that book, not only for
the details of the foundations of the subject, but also for applications that are
still quite relevant more than 50 years after its publication.

11.1 The Hessian and the index of a critical point

Let M be a manifold, and f : M −→ R a C2 function. As explained earlier, a
point p ∈M is called a critical point of f if dfp = 0.

Let (U, φ : U −→ Rn) be a coordinate chart around p, so that φ(p) = 0.
Write φ as (x1, . . . , xn). Write tangent vectors v and w in TpM as (v1, . . . , vn)
and (w1, . . . , wn), respectively (specifically, dφp(v) = (v1, . . . , vn) and similarly
for w).

Definition 11.1. Using the coordinate chart (U, φ), The Hessian of f at p,
is defined by the formula

Hessp(f)(v, w) =

n∑
i,j=1

∂2f

∂xi∂xj
viwj

Since f is C2, this is notion of Hessian is defined and symmetric in v and
w. It is also bilinear in v and w.

Proposition 11.1. When p is a critical point for f : M −→ R, the Hessian
at p is independent of the coordinate chart.

Proof. Suppose we had a different coordinate chart around p, (V, ψ : V −→
Rn), with ψ(p) = 0. Write ψ as (y1, . . . , yn). Then Q = ψ ◦φ−1 : Rn −→ Rn is
a diffeomorphism, and dQ(ei) =

∑n
j=1

∂xi
∂yj

ej (where e1, . . . , en is the standard

251
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basis in Rn), then the Hessian defined for this new coordinate chart is

Hessp(f)(v, w) =

n∑
i,j=1

∂

∂yi

(
∂

∂yj
(f)

)
viwj

=

n∑
i,j=1

∂xk
∂yi

∂

∂xk

(
∂xm
∂yj

∂

∂xm
(f)

)
viwj

=

n∑
i,j=1

∂xk
∂yi

∂

∂xk

(
∂xm
∂yj

)
∂

∂xm
(f)viwj +

n∑
i,j=1

∂xk
∂yi

∂xm
∂yj

∂2

∂xk∂xm
(f)viwj

=

n∑
i,j=1

∂xk
∂yi

∂

∂xk

(
∂xm
∂yj

)
∂

∂xm
(f)viwj +

n∑
i,j=1

∂2

∂xk∂xm
(f)dQ(v)kdQ(w)m

Now note that the first term is zero when p is a critical point, so as a bilinear
form on TpM , the Hessian is well-defined.

Remark. If p is not a critical point of f , then the Hessian at p is not well-
defined, in that using the above notation, it would depend on the coordinate
chart. There are ways to extend the Hessian to all of M : by patching together
coordinate charts and using partitions of unity; by choosing a metric on M ,
then using the Levi–Civita connection corresponding to this metric to take
the covariant derivative of df at p, and so on. But these approaches all require
extra data. In this book we will only be concerned with the Hessian at critical
points.

11.2 Morse Functions

Definition 11.2. If p ∈M is a critical point for a C2 function f : M −→ R,
then we call p nondegenerate if Hessp(f) is nondegenerate as a bilinear form.
If all critical points of M are nondegenerate, we say that f is Morse.

Remark. Recall that a bilinear formB(v, w) : V×V −→ R is nondegenerate if
for every non-zero v ∈ V , there exists a w so that B(v, w) 6= 0. Equivalently, if
V is finite dimensional, we can choose any basis for V and write B as a matrix
M using this basis, as B(v, w) = vTMw . Then B is nondegenerate if and
only if det(M) 6= 0. Also, since B is symmetric, we can choose a basis in which
the matrix M is diagonal, and then the criterion that B is non-degenerate is
equivalent to the statement that M has no zero eigenvalues. These facts can
be found in any linear algebra text.

We will show in Section 11.5 that every manifold M admits a Morse func-
tion, and in fact the set of Morse functions is dense in the set of smooth
functions.
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FIGURE 11.1
f is the ”height function” given by projecting the torus onto the vertical line.
This is probably the archetypical example of a Morse function.

An important property of Morse functions on closed, Riemannian mani-
folds, is that they lead to a CW complex description of the manifold, with
with a cell of dimension λ for each critical point of index λ of f . In this section,
we prove this statement up to homotopy. That is, we construct a homotopy
equivalence of the manifold to a CW complex of the kind just described. We
follow the approach of Milnor [43] in this chapter.

Throughout this chapter, we will assume M is a closed manifold and f :
M −→ R is a smooth Morse function. We will also consider the following
manifolds (with boundary):

Ma = f−1(−∞, a] = {x ∈M | f(x) ≤ a}.

where a is any real number. If a is less than the minimum value of f , then
Ma is the empty set. If a is larger than the maximum value of f , then Ma

is M . The values of a in between will provide, up to homotopy, the necessary
cell decomposition.

There are a number of technical details, but the intuition is simple: Let M
be a surface embedded in R3, and f be the vertical coordinate z. We initially
let a be less than the minimum value of f so that Ma = ∅, and gradually
increase a (see Figure 11.2). This is analogous to gradually filling the surface
with water, so that Ma is the part of the surface that is under water. Now if
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FIGURE 11.2
Ma for different values of a

a increases from a1 to a2 without passing through critical values, then Ma1

and Ma2 are diffeomorphic.
But if, by increasing from a1 to a2, we pass through one critical point, then

at that point the water may do something more interesting. Up to homotopy,
this turns out to be an attaching of a cell of dimension λ, where λ is the index
of the critical point (see Figure 11.4).

So as we pass critical points one by one, the manifold is created by suc-
cessively attaching cells (up to homotopy type). This demonstrates that the
manifold is homotopy equivalent to a CW complex of the type described
above.

In this chapter we prove the details of the above intuition. First we prove
that nothing happens to the homotopy type (and even to the diffeomorphism
type) if there is no critical point between two levels, using the results of gra-
dient flow lines from chapter 11.1. Then we show that if there is one critical
point between the two levels, the homotopy type changes by adding a cell. We
prove this via the Morse Lemma (Theorem 11.4), which studies the behavior
of f near a critical point. We conclude by producing the homotopy equiva-
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FIGURE 11.3
Ma1 and Ma2 are diffeomorphic if there are no critical values between a1 and
a2.

lence between the manifold and the CW complex, and giving some interesting
applications to topology.

Exercise:
Let M be a manifold and let f : M −→ R be a Morse function. Prove that

f−1({a}), the boundary of Ma, is a manifold if a is a regular value of f .
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homote valence

FIGURE 11.4
When there is one critical value between a1 and a2, Ma2 is homotopy equiv-
alent to Ma1 with a cell attached.

11.3 The Regular Interval Theorem

We first show that if we increase Ma from Ma1 to Ma2 , and there are no
critical values between a1 and a2, then Ma1 and Ma2 are diffeomorphic.

The main point is the following theorem:

Theorem 11.2 (Regular interval theorem). Let f : M −→ [a, b] be a smooth
map on a compact Riemannian manifold with boundary. Suppose that f has
no critical points and that f(∂M) = {a, b}. Then there is a diffeomorphism

F : f−1(a)× [a, b] −→M

making the following diagram commute:
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f−1(a)× [a, b]
F−−−−→ M

proj.

y yf
[a, b] −−−−→

=
[a, b].

In particular all the level surfaces are diffeomorphic.

Proof. Since f has no critical points we may consider the vector field

X(x) =
∇x(f)

|∇x(f)|2
.

defined in Lemma 12.3. Let ηx(t) be a curve through x satisfying

d

dt
ηx(t) = X(ηx(t))

and f(ηx(t)) = t.
Let I be a maximal interval on which ηx is defined. We wish to show that

I = [a, b]. First, since M is compact, f(ηx(I)) = I is bounded.
Let d = sup(I). Then by the compactness of M , there is a point x ∈ M

that is a limit point of ηx(d − 1/n). Since η′x(t) = X(ηx(t)) is bounded, this
limit point is unique, and limt→d− ηx(t) = x. We can extend ηx to d by making
ηx(d) = x.

Now limt→d η
′
x(t) = limt→dX(ηx(t)) → X(ηx(d)), and let v be this limit.

We will now show that η′x(d) = v. In particular, we will show that for every
ε > 0, there exists a δ > 0 so that for all h with 0 < h < δ,∣∣∣∣ηx(d)− ηx(d− h)

h
− v
∣∣∣∣ < ε.

Note that a coordinate chart is chosen near ηx(d) to allow the subtraction
here.

So let ε > 0 be given. By the definition of v, there exists a δ1 so that for
all w with 0 < h < δ1,

|η′x(d− h)− v| < ε
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By the fundamental theorem of calculus,

ηx(d− h)− ηx(d) =

∫ d

d−h
η′x(t) dt

ηx(d− h)− ηx(d) + vh =

∫ d

d−h
(η′x(t)− v) dt

|ηx(d− h)− ηx(d) + vh| ≤
∫ d

d−h
|η′x(t)− v| dt

≤
∫ d

d−h
ε dt

≤ εh∣∣∣∣ηx(d− h)− ηx(d)

h
+ v

∣∣∣∣ ≤ ε∣∣∣∣ηx(d− h)− ηx(d)

−h
− v
∣∣∣∣ ≤ ε

Therefore η′x(d) = v, and since v = X(ηx(d)), the flow equation is satisfied by
ηx at d.

By maximality of I, d ∈ I. Similarly with c = inf(I), we see that c ∈ I.
Therefore I is closed.

If ηx(s) 6∈ ∂M , then by the existence of solutions of ODEs, there is an
interval (s − ε, s + ε) around s on which ηx satisfies the differential equation
η′x(t) = X(ηx(t)). Therefore ηx(c) and ηx(d) are in ∂M . Thus c = f(ηx(c))
and d = f(ηx(d)) may be either a or b. Since the derivative of f ◦ ηx is one,
we see that c = a and d = b. Therefore I = [a, b].

Since x ∈ M was arbitrary, and a ≤ f(x) ≤ b, we see that f(M) = [a, b].
Furthermore, if x 6∈ ∂M , then by the existence of solutions to ODEs, as above,
we have ηx defined in a small neighborhood of t = f(x), so that a < f(x) < b.
Therefore f−1(a) and f−1(b) are unions of boundary components.

Define a map
F : f−1(a)× [a, b] −→M

by the formula
F (x, t) = ηx(t).

The differentiability of F follows from the same argument as in Theorem 12.2
to prove the differentiability of T , but with ηx instead of γx.

Define
G : M −→ f−1(a)× [a, b]

as
G(x) = (ηx(a), f(x)).

The differentiability of G follows in the same way as the differentiability of
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F . We claim that F and G are inverses. To prove this, note that the integral
curves through x and ηx(t) are the same, that f(ηx(t)) = t and by uniqueness
of solutions to ODEs, we have F (G(x)) = x and G(F (x, t)) = (x, t). This
proves that F is a diffeomorphism.

Corollary 11.3. Let M be a compact manifold, and f : M −→ R a smooth
Morse function. Let a < b and suppose that f−1[a, b] ⊂M contains no critical
points. Then Ma is diffeomorphic to M b. Furthermore, Ma is a deformation
retract of M b.

Proof. First we prove that Ma is a deformation retract of M b. By the regular
interval theorem (Theorem 11.2), there is a natural diffeomorphism F from
f−1([a, b]) to f−1(a) × [a, b]. Since f−1(a) × {a} is a deformation retract of
f−1(a)× [a, b], we see that f−1(a) is a deformation retract of f−1([a, b]). We
can now paste this deformation retraction with the identity on Ma to obtain
the deformation retracton from Mb to Ma.

To prove that Ma is diffeomorphic to M b we apply the same principle,
but we need to be more careful to preserve smoothness during the patching
process.

Since the set of critical points of f is a closed subset of the compact set M
(and hence is compact), the set of critical values of f is compact. Therefore
there are real numbers c and d with c < d < a so that there are no critical
values in [c, b].

By Theorem 11.2 there is a natural diffeomorphism F from f−1([c, b]) to
f−1(c) × [c, b], that maps f−1([c, a]) diffeomorphically onto f−1(c) × [c, a].
There is also a diffeomorphism H : f−1(c)× [c, b] −→ f−1(c)× [c, a], and we
can insist that it be the identity on f−1(c)× [c, d] (finding this function is an
easy exercise in one-variable analysis, and in case you are interested, is listed
as an exercise below). Thus

F−1 ◦H ◦ F : f−1([c, b]) −→ f−1([c, a])

is a diffeomorphism that is the identity on f−1([c, d]), and thus we can patch
it together with the identity on Md to create a diffeomorphism from Mb to
Ma.

This corollary says that the topology of the submanifolds Ma does not
change with a ∈ R so long as a does not pass through a critical value.

Exercise Fill in the detail of the proof of Corollary 11.3 that finds a dif-
feomorphism H : f−1(c) × [c, b] −→ f−1(c) × [c, a] that is the identity on
f−1(c)× [c, d].
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11.4 Passing through a critical value

We now examine what happens to the topology of these submanifolds when
one does pass through a critical value. For this, we will need to understand
the function f in the neighborhood of a critical point. This is what the Morse
lemma provides us:

Theorem 11.4 (Morse Lemma). Let p be a nondegenerate critical point of
index λ of a smooth function f : M −→ R, where M is an n-dimensional man-
ifold. Then there is a local coordinate system (x1, . . . , xn) in a neighborhood
U of p with xi(p) = 0 with respect to which

f(x1, . . . , xn) = f(p)−
λ∑
i=1

x2
i +

n∑
j=λ+1

x2
j .

The proof given here is essentially that in Milnor’s famous book on Morse
theory [43].

Proof. Since this is a local theorem we might as well assume that f : Rn −→ R
with a critical point at the origin, p = 0. We may also assume without loss of
generality that f(0) = 0. Given any coordinate system for Rn we can therefore
write

f(x1, . . . , xn) =

n∑
j=1

xjgj(x1, . . . , xn)

for (x1, . . . , xn) in a neighborhood of the origin. In this expression we have

gj(x1, . . . , xn) =

∫ 1

0

∂f

∂xj
(tx1, . . . , txn)dt.

Now since 0 is a critical point of f , each gj(0) = 0, and hence we may
write it in the form

gj(x1, . . . , xn) =

n∑
i=0

xihi,j(x1, . . . , xn).

Let φi,j = (hi,j + hj,i)/2. Hence we can combine these equations and write

f(x1, . . . , xn) =

n∑
i,j=1

xixjφi,j(x1, . . . , xn)

where (φi,j) is a symmetric matrix of functions. By doing a straightforward
calculation one sees furthermore that the matrix

(φi,j(0)) =

(
1

2

∂2f

∂xi∂xj
(0)

)
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and hence by the nondegeneracy assumption is nonsingular. From linear alge-
bra we know that symmetric matrices can be diagonalized. The Morse lemma
will be proved by going through the diagonalization process with the repre-
sentation of f as

∑
xixjφi,j .

Assume inductively that there is a neighborhood Uk of the origin and
coordinates {u1, . . . , un} with respect to which

f = ±(u1)2 ± · · · ± (uk)2 +
∑

i,j≥k+1

uiujψi,j(u1, . . . , un)

where (ψi,j) is a symmetric, n−k×n−k matrix of functions. By a linear change
in the last n−k coordinates if necessary, we may assume that ψk+1,k+1(0) 6= 0.

Let

σ(u1, . . . , un) =
√
|ψk+1,k+1(u1, . . . , un)|

in perhaps a smaller neighborhood V ⊂ Uk of the origin. Now define new
coordinates

vi = ui for i 6= k + 1

and

vk+1(u1, . . . un) = σ(u1, . . . , un)

[
uk+1 +

n∑
i=k+2

ui
ψi,k+1(u1, . . . , un)

ψk+1,k+1(u1, . . . , un)

]
.

The vi’s give a coordinate system in a sufficiently small neighborhood Uk+1 of
the origin. Furthermore a direct calculation verifies that with respect to this
coordinate system

f =

k+1∑
i=1

±(vi)
2 +

n∑
i,j=k+2

vivjθi,j(v1, . . . , vn)

where (θi,j) is a symmetric matrix of functions. This completes the inductive
step. The only remaining point in the theorem is to observe that the number
of negative signs occuring in the expression for f as a sum and difference of
squares is equal to the number of negative eigenvalues (counted with multiplic-
ity) of Hess0(f) which does not depend on the particular coordinate system
used.

Remark. The Morse Lemma describes the behavior of the function
f near a critical point, but it does not describe the behavior of
the gradient flow lines. The reason for this is that the gradient
depends on the Riemannian metric, and if we use the coordinate
system given by the Morse Lemma, we do not know how this metric
behaves.

Corollary 11.5. If M is a manifold and f : M −→ R is Morse, then the set
of critical points of f is a discrete subset of M .
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Proof. Suppose there were a sequence of critical points xn converging to some
point a ∈ M . Since df is a continuous one-form on M , we know that a is a
critical point of f . Then apply the Morse Lemma above to a, which gives a
formula for f in a neighborhood of a. But there are no critical points in this
neighborhood as can be seen directly by calculating df in these coordinates.
This is a contradiction.

Exercise.
Prove the converse of Exercise 11.2; that is, if M is a compact manifold

and f : M −→ R is a Morse function, and if a is not a regular value of f , then
f−1({a}) is not a manifold.

Definition 11.3. Let f : M −→ [a, b] be a Morse function on a compact
manifold. We say that f is admissible if ∂M = f−1(a)∪ f−1(b), where a and
b are regular values. This implies that each of f−1(a) and f−1(b) are unions
of connected components of ∂M .

Theorem 11.6. Let f : M −→ R be an admissible Morse function on a
compact manifold. Suppose f has a unique critical point z of index λ. Say
f(z) = c. Then there exists a λ - dimensional cell Dλ in the interior of M
with Dλ ∩ f−1(c) = ∂Dλ, and there is a deformation retraction of M onto
f−1(c) ∪Dλ.

Proof, following [30], with a few errors corrected. By replacing f by f(x)− c
we can assume that f(z) = 0. Notice that by the regular interval theorem
Theorem 11.2 it is sufficient to prove the theorem for the restriction of f to
the inverse image of any closed subinterval of [a, b] around c = 0.

Let (φ,U) be an chart around z with respect to which the Morse lemma is
satisfied. Write Rn = RΛ × Rn−Λ. φ maps U diffeomorphically onto an open
set V ⊂ RΛ × Rn−Λ, and

f ◦ φ−1(x, y) = −|x|2 + |y|2.

Notice that φ(z) = (0, 0). Put g(x, y) = −|x|2 + |y|2.
We will use gradient flows, which depend on the metric on M . We choose

a metric for M by pulling back the flat metric on Rn by φ, and extending the
metric arbitrarily to the rest of M . In this way, φ will be a local isometry, and

Dφ(u)(∇u(f)) = ∇v(g),

for any u ∈ U such that φ(u) = v ∈ V .
Let 0 < δ < 1 be such that V contains Λ = BΛ(δ)×Bn−Λ(δ) where

Bi(δ) = {x ∈ Ri |
n∑
j=1

x2
j ≤ δ

is the closed coordinate ball around the origin of radius δ.



Classical Morse Theory 263

Let ε > 0 be small enough that
√

4ε < δ, and let

cΛ = BΛ
(√
ε
)
× {0} ⊂ V

and we define
DΛ = φ−1(cΛ) ⊂M.

A deformation of f−1[−ε, ε] to f−1(ε) ∪DΛ is made by patching together
two deformations. First consider the set

Λ1 = BΛ
(√
ε
)
×Bn−Λ

(√
2ε
)
.

Consider the following figure for the case Λ = 1, n = 2.

158 6. Morse Theory 

A deformation of f-1[ -t:,t:] to f-1(-t:) u ek IS made by patching 
together two deformations. First consider the set 

T1 = D\J2i) x Dn - k(J2i). 

See Figure 6-4 for the case k = 1, n = 2. In T1 n g-l[ -t:,t:] a deformation 

T1 
Figure 6-4. 

is obtained by moving (x,y) at constant speed along the interval joining 
(x,y) to the point (x,sy) E g-l( - t:) U B\ S E IR where 

{o if Ixl2 < t: 
S = s(x,y) = if 

Note that these intervals are closures of solution curves of the vector field 
X(x,y) = (O,-2y). This deformation is transported to <p-1(T1) via conjuga-
tion by <po 

Outside the set 

the deformation moves each point at constant speed along the flow line 
of the vector field - grad g so that it reaches g-l( - t:) U Bk in unit time. 
(The speed of each point is the length of its path under the deformation.) 
See Figure 6-5. This deformation is transported to U - <p - l(T 2) by <p; 
it is then extended over M - <p -l(T 2) by following flow lines of - grad f. 
Each such flow line must eventually reach f - 1( - t:), for it can never enter 
T 2 because Ixl increases and I yl decreases along flow lines, and Igrad fl 

 f

f f

A f
Note that inside Λ1, f(x, y) = −|x|2 + |y|2 > −ε+ |y|2 > −ε. Furthermore,

since x ∈ BΛ (
√
ε), we have that (x, 0) ∈ cΛ.

In Λ1 ∩ g−1[ε, ε] a deformation is obtained by moving (x, y) at constant
speed along the interval joining (x, y) to the point (x, 0) ∈ g−1(−ε) ∪ BΛ, by
(x, (1− t)y). This deformation then induces a deformation of φ−1(Λ1).

Outside the set
Λ2 = BΛ(

√
2ε)×Bn−Λ(

√
3ε)

the deformation moves each point along the vector field −∇(g) so that it
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reaches g−1(−ε) in unit time. (The speed of each point is chosen to equal
the length of its path under the deformation.) See the following figure for a
pictorial description of this deformation.3. Passing Critical Levels and Attaching Cells 

Figure 6-5. 

has a positive lower bound in the compact set 

f-l[ -8,8] - Int cp- 1r2. 

159 

To extend the deformation to points of r 2 - r 1 it suffices to find a 
vector field on r which agrees with X in r 1 and with - grad g in r - r 2' 

Such a field is 

Y(x,y) = 2(/1(x,y)x, - y) 

where the C'X) map W [Rk X [Rn-k ---+ [0,1] vanishes in r 1 and equals 1 
outside r 2' It is easy to see that each flow line of Y which starts at a point of 

(r 2 - r 1) n g-l[ -8,8] 

must reach g-l( - 8) because Ixi is non-decreasing along flow lines. 
The global deformation of f - 1 [ - 8,8] into f -l( - 8) U ek is obtained 

by moving each point of r at constant speed along the flow line of Y until 
it reaches g-l( - 8) U Bk in unit time and transporting this motion to M 
via cp; while each point of M - cp -l(r) moves at constant speed along the 
flow line of - grad f until it reaches! -l( - 8) in unit time. Of course points 
on f -l( - t;) u ek stay fixed. 

QED 

 

A
A

This deformation is transported to U−φ−1(Λ2) by φ, and is then extended
over M − φ−1(Λ2) by following the gradient flow lines of f .

Now if such a flow enters V , we now show it may not enter Λ2: Suppose we
have a flow that enters V from the outside at time t. Then since the closure of
Λ2 is in V , there is a time arbitrarily close to t where the point is (x, y) which
is not in Λ2. Then at this time either |x|2 > 2ε or |y|2 > 3ε. But if |y|2 > 3ε
then because forg−1([−ε, ε]), we have ε > −|x|2 + |y|2 > −|x|2 + 3ε so that
|x|2 > 2ε. Therefore, either way, |x|2 > 2ε. But for x non-zero, |x| increases
along flow lines. Therefore (x, y) will not be in Λ2 for any later time until it
leaves V (and by repeating the argument for future visits to V , it never enters
Λ2).

In f−1([−ε, ε]) − φ−1(Λ2), then, the downward gradient flow is defined,
and since we assume there are no other critical points than z, the methods of
the proof of Theorem 11.2 show that the flows defined there flow downward
to f−1(−ε).

On f−1([−ε, ε]) − φ−1(Λ2), then, we can define the deformation to flow
along the gradient flow with constant speed, with speed equal to the length of
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the flow line from the point to its destination on f−1(−ε). In this way, after
unit time, everything in f−1([−ε, ε])− φ−1(Λ2) is deformed into f−1(−ε).

To extend the deformation to points of Λ2 −Λ1 it suffices to find a vector
field on Λ which agrees with X in Λ1 and with −∇(g) in Λ−Λ2. Such a vector
field is

Y (x, y) = 2(µ(x, y)x,−y)

where the map µ : RΛ × Rn−Λ −→ [0, 1] vanishes in Λ1 and equals 1 outside
Λ2. The fact that each integral curve of Y which starts at a point of

(Λ2 − Λ1) ∩ g−1[−ε, ε]

must reach g−1(−ε) because |x| is nondecreasing along integral curves.
The global deformation of f−1[−ε, ε] into f−1(−ε) ∪ DΛ is obtained by

moving each point of Λ at constant speed along the flow line of Y until it
reaches g−1(−ε) ∪BΛ in unit time and transporting this motion to M via φ;
while each point of M − φ−1(Λ) moves at constant speed along the flow line
of ∇(f) until it reaches f−1(−ε) in unit time. Points on f−1(−ε) ∪ DΛ stay
fixed.

11.5 Homotopy equivalence to a CW complex and the
Morse inequalities

Theorem 11.7. Let M be a closed manifold, and f : M −→ R a Morse
function on M . Then M has the homotopy type of a CW complex, with one
cell of dimension Λ for each critical point of index Λ.

Proof. Without loss of generality, the critical points of f all have different
values under f (if f(p) = f(q) and p and q are critical points, then let B1 ⊂ B2

be balls around q small enough that in B2 −B1, we have |∇f | bounded away
from zero by some ε, and add a small bump function to f supported in B2

and constant in B1 whose gradient is bounded above by ε, and which does not
raise the value of f(q) high enough to reach another critical value of f).

Now let a0 < · · · < ak be a sequence of real numbers so that a0 is less
than the minimum value of f , ak is greater than the maximum value of f , and
between ai and ai+1 there is exactly one critical point. By Theorem 11.6 we
have a homotopy equivalence hi between Mai+1 and Mai ∪ Dλi (where the
union is an attaching map as in a CW complex). By composing the hi’s, we
obtain a homotopy equivalence from M = Mak to a union of disks attached
by CW attaching maps.
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Corollary 11.8. Given f : M −→ R as above there is a chain complex
referred to as the Morse–Smale complex

. . . −→ CΛ
∂Λ−−−−→ CΛ−1 −→ . . .

∂1−−−−→ C0
(11.1)

whose homology is H∗(M ;Z), where CΛ is the free abelian group generated by
the critical points of f of index Λ.

Proof. This is the cellular chain complex coming from the CW complex in
Theorem 11.7.

We can now prove some of the results promised in the introduction, that
relate the topology of M to the numbers of critical points of f :

Corollary 11.9 (Morse’s Theorem). Let f : M −→ R be a C∞ function so
that all of its critical points are nondegenerate. Then the Euler characteristic
χ(M) can be computed by the following formula:

χ(M) =
∑

(−1)ici(f)

where ci(f) is the number of critical points of f having index i.

Proof. The Euler characteristic χ(M) can be computed as the alternating sum
of the ranks of the chain groups of any CW decomposition of M .

Corollary 11.10 (Weak Morse Inequalities). Let cp be the number of critical
points of index p and let βp be the rank of the homology group Hp(M). Then

βp ≤ cp.

Proof. The chain group Cp ⊗ R generated by the cp cells of dimension p is a
vector space of dimension cp. The group of cycles is of dimension at most cp.
After quotienting by the boundaries, we see that Hp(M ;R) is a vector space
of dimension at most cp.

Corollary 11.11 (Strong Morse Inequalities). Let M , f , ci(f), and bi(M)
be as above. Then for all natural numbers i,

i∑
k=0

(−1)i−kci(f) ≥
i∑

k=0

(−1)i−kbi(M).

Proof. The proof is similar except we take a closer look at the boundaries.
Tensoring the chains with R, so that we write Vk = Ck ⊗ R, we get the
following chain complex of vector spaces:

. . . −→ Vi
∂i−−−−→ Vi−1 −→ . . .

∂1−−−−→ V0
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We write Vk as Im(∂k+1)⊕Hk(M ;R)⊕ (Vk/ ker(∂k)) and note that Im(∂k+1)
is of the same dimension as Vk+1/ ker(∂k+1). Thus if we define dk to be the
dimension of Vk/ ker(∂k), we have

ck = dk+1 + bk + dk

and applying the alternating sum above we get

i∑
k=0

(−1)i−kci(f) = di+1 +

i∑
k=0

(−1)i−kbi(M)

(where here we need that d0 = 0). This proves the strong Morse inequalities.

To see that the strong Morse inequalities prove the weak Morse inequali-
ties, write down the strong Morse inequality for i and for i+ 1, and subtract
the two inequalities. To see that the strong Morse inequalities imply Morse’s
theorem, apply the strong Morse inequality for i and for i + 1 for i larger
than the dimension of the manifold M , noting that cj = 0 and bj = 0 for all
j > dim(M).

It is instructive to work out the following:

Exercise
Show that the strong Morse inequalities is “strictly stronger” than the

weak Morse inequalities together with Morse’s theorem. What I mean is: given
the n+1-tuple of natural numbers (b0, . . . , bn), we can find another n+1-tuple
of natural numbers (c0, . . . , cn) so that these numbers satisfy the weak Morse
inequality and the Morse theorem but not the strong Morse inequalties.

A typical application of these result is to use homology calculations to
deduce critical point data. For example we have the following.

Application
Every Morse function on the complex projective space

f : CPn −→ R

has at least one critical point in every even dimension ≤ 2n.

The following is a historically important application of Morse theory, due
to Reeb, that follows from the techniques we have mentioned so far.

Application
Let Mn be a closed manifold admitting a Morse function

f : M −→ R

with only two critical points. Then M is homeomorphic to the sphere Sn.

Remark This theorem does not imply that M is diffeomorphic to Sn. In
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[46] Milnor found an example of a manifold that is homeomorphic, but not
diffeomorphic to S7. Indeed he proved that there are 28 distinct differentiable
structures on S7! Milnor actually used this fact to prove that the manifolds
he constructed were homeomorphic to S7.

Proof of Theorem 11.5. Let S and N be the critical points. By the compact-
ness of M we may assume that S is a minimum and N is a maximum. (Think
of them as the eventual south and north poles of the sphere.) Let f(S) = t0
and f(N) = t1. By the Morse lemma there are coordinates (x1, . . . , xn) in a
neighborhood U+ of N with respect to which f has the form

−x2
1 + · · ·+−x2

n + t1.

Therefore there is a b < t1 so that if we let D+ = f−1[b, t1] then there is a
diffeomorphism

D+
∼= Dn

with ∂D+ = f−1(b) ∼= Sn−1. Repeating this process with the minimum point
P we obtain a point a > t0 and a diffeomorphism of the space D− = f−1[t1, a],

D− ∼= Dn

with ∂D− = f−1(a) ∼= Sn−1. By Theorem 11.2 we have that

f−1[a, b] ∼= f−1(a)× [a, b] ∼= Sn−1 × [a, b].

Hence we have a decomposition of the manifold

M = f−1[t0, t1] = f−1[t0, a] ∪ f−1[a, b] ∪ f−1[b, t1]

∼= Dn ∪ Sn−1 × [a, b] ∪Dn

where the attaching maps are along homeomorphisms of Sn−1. We leave it as
an exercise to now construct a homeomorphism from this manifold to Sn.

Exercise
Finish the proof of Theorem 11.5 by showing that the resulting space

Dn ∪ Sn−1 × [a, b] ∪Dn

is homeomorphic to Sn. Hint: Start by embedding one Dn into Sn, then embed
Sn−1 × [a, b] into Sn to match the first embedding, then to put the last Dn

in, you must think of Dn as the cone on Sn−1. This last part is why the proof
does not prove that this is diffeomorphic to Sn.

In general, there are many applications of this work to the problem of
classifying manifolds of dimensions 5 and higher, leading to the h-cobordism
theorem and the s-cobordism theorem, and surgery theory. There are many
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books that describe these developments of the 1960s and 1970s, the old classics
being Milnor’s book on the h-cobordism theorem, [44], Wall’s book on surgery
theory [61], and Browder’s book [6].

We now show that the set of Morse functions is open and dense in the set
of smooth functions. In particular, every manifold M admits a Morse function
f : M −→ R. In the proof, we will use the transversality theorem, done in
Chapter 8.

Theorem 11.12. Let M be a compact n-manifold. Let r ≥ 2. The set of Cr

Morse functions from M to R is dense in Cr(M,R).

Proof. Let ζ ⊂ T ∗M be the zero section of T ∗M . We first show that f is Morse
if and only if df : M → T ∗M is transverse to ζ, that is, df ∈ trr(M,T ∗M ; ζ).

In a coordinate chart with coordinates (x1, . . . , xn), df is

df(p) =
∑
i

∂f

∂xi
dxi.

Fix a point p ∈ M . The linearization of df at p is a linear map Lp :
TpM −→ T(p,df(p))(T

∗M) = TpM ⊕ T ∗pM . In coordinates,

L(v1, . . . , vn) =
∑
ij

∂

∂xj

∂f

∂xi

∣∣∣∣
p

dxivj +
∂f

∂xi

∣∣∣∣
p

vi.

Note that when df(p) = 0, the image of Lp is a subspace of T ∗pM . At such a
point the image of Lp is equal to T ∗pM precisely when the Hessian of f at p
is non-degenerate.

On the other hand, df is transverse to ζ if and only if whenever p ∈ M
with df(p) ∈ ζ, then Im(Lp) + Tdf(p)ζ = T(p,0)(T ∗M) = TpM ⊕ T ∗pM . Now
Tdf(p)ζ = TpM , and Im(Lp) ⊂ T ∗pM . So df is transverse to ζ at p with
df(p) ∈ ζ if and only if the Hessian of f at p is non-degenerate.

Therefore, the set of Morse functions is simply trr(M,T ∗M ; ζ). By the
Transversality theorem ( Corollary 8.9), this set is dense in the set of
Cr(M,T ∗M).
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Spaces of Gradient Flows

12.1 The gradient flow equation

Let M be a manifold, g a Riemannian metric on M , and f : M −→ R be a
Morse function. As explained in the introductory chapter, a (gradient) flow
line is a curve

γ : (a, b) −→M

that satisfies the differential equation

dγ

dt
+∇γ(f) = 0. (12.1)

If we imagine a particle that travels along γ, with t describing time, the particle
travels in the path of steepest descent, with velocity given by the gradient. If
we imagine f to be “height”, the particle could be a “sticky” ball that travels
down along the surface but has too much friction with the surface to build up
very much speed.1

Note also that the gradient flow equation depends on the Riemannian
metric g, since∇γ(f) depends on the metric in the following way: g(v,∇(f)) =
df(v). The typical gradient seen in undergraduate calculus classes occurs on
Rn with the standard flat metric.
Exercise Verify that if f : Rn −→ R is a differentiable function on Rn, and
if we use the flat metric on Rn, then

∇(f) =
∂f

∂x1
e1 + · · ·+ ∂f

∂xn
en.

Exercise Let f be as in the previous exercise, but suppose the metric is given
by an arbitrary symmetric matrix g (that is, g(ei, ej) = gij). Find the formula
for ∇(f) in terms of f and g.
Remark Now note that the property of p ∈M being a critical point of f does
not depend on the metric. As a bilinear form, the Hessian does not depend on
the metric either, and therefore so is the property of p being a non-degenerate
critical point, and the index of the critical point.

1These equations do not correspond exactly to such a physical system, but it is a good
visual aid.

271
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Example If a is a critical point of f , then the constant curve γ(t) = a satisfies
the flow equations, so γ is a flow line. Note that by the uniqueness of solutions
of ODEs, if any flow line contains a critical point, it must be the constant one.

Example Let M = R2 with the flat metric, and let f(x, y) = x2 + y2. Then
we can solve the gradient flow equations:

ẋ = −2x

ẏ = −2y

and therefore the gradient flow lines are (x, y) = (ae−2t, be−2t) for some fixed
a and b. For any such line, y/x is a constant, so each lies in a line. In fact, it
is the open radial ray from the origin. See figure 12.1.

 

FIGURE 12.1
Flow lines for f(x, y) = x2 + y2

Example Let M = R2 with the flat metric, and let f(x, y) = x2−y2. Then it
turns out that the gradient flow lines are (x, y) = (ae2t, be−2t) for some fixed
a and b. For any such line, xy is a constant, so the gradient flow lines are
hyperbolas of the form xy = c. See figure 12.1.
Example Let M = S2 ⊂ R3 with the standard round metric, and let
f(x, y, z) = z (the so-called “height function” defined by the embedding of
S2 into R3). Then there are two critical points: one minimum at (0, 0,−1),
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it

FIGURE 12.2
Flow lines for f(x, y) = x2 − y2

and one maximum at (0, 0, 1). The flow lines are “lines of longitude”. See
figure 12.1.
Example Let T 2 be the torus in R3, embedded as follows:

(θ, φ) −→ (b cos(φ), (a+ b sin(φ)) cos(θ), (a+ b sin(φ)) sin(θ)

where 0 < b < a. The picture looks like a donut standing on its edge, as in fig-
ure 12.4. Again, take for f the “height function” z. Then there are four critical
points: (θ, φ) = (±π/2,±π/2), as you can check. The index for (π/2, π/2) is 2,
the index for (π/2,−π/2) and (−π/2, π/2) is 1, and the index for (−π/2,−π/2)
is 0.

There are two natural choices for a metric on T 2: either the metric induced
from the embedding from R3, or the flat metric defined by ds2 = dθ2 + dφ2.
Although pictorially it may help to ponder the resulting gradient flow lines
from the metric induced by R3 (these are the actual flows of steepest descent
on a physical donut), it is easier to calculate the flow lines when the flat metric
is used. The flow lines can be described explicitly, or else you can verify that
there are flows with θ = ±π/2 for which θ is constant, and flows with φ = ±π/2
for which φ is constant. These flows give rise to two flows from the index 2
critical point to one of the index 1 critical points, two flows from one index 1
critical point to the other, and two flows from the lower index 1 critical point
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FIGURE 12.3
Flow lines for the height function on S2
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FIGURE 12.4
Flow lines for the height function on the torus

to the index 0 critical point. The other flows are in a one-parameter family of
flows which go from the index 2 critical point to the index 0 critical point.

Exercise Work out the details of the above examples. Find the closed form
solutions to the gradient flow equations and find which critical points they
connect to.

Lemma 12.1. The function f : M −→ R is nonincreasing along flow lines.
f is strictly decreasing along any flow line which does not contain a critical
point.

Proof. Let γ : (a, b) −→ M be a flow line. Consider the composition f ◦ γ :
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(a, b) −→ R. Its derivative is given by

d

dt
f(γ(t)) = 〈∇γ(t)(f),

dγ(t)

dt
〉

= 〈∇γ(t)(f),−∇γ(t)(f)〉

= −
∣∣∇γ(t)(f)

∣∣2 ≤ 0.

The only way this can be zero is if γ(t) is on a critical point of f . In
particular, if γ(t) does not contain in its image a critical point of f , then
f(γ(t)) is strictly decreasing.

Remark In the above proof, we showed

d

dt
f(γ(t)) = −

∣∣∇γ(t)(f)
∣∣2 .

We can also show

d

dt
f(γ(t)) = 〈∇γ(t)(f),

dγ(t)

dt
〉

= 〈−dγ(t)

dt
,
dγ(t)

dt
〉

= −
∣∣∣∣dγ(t)

dt

∣∣∣∣2 ≤ 0.

and this would also prove that f(γ(t)) is nonincreasing.

Remark Now if γ(t) does contain a critical point p, then by example 12.1 the
flow must be a constant flow, and f(γ(t)) is constant on this flow.

Thus there are two kinds of flow lines: constant flows that stay at a critical
point, and flows that descend for all t, and do not contain a critical point.

Theorem 12.2. Suppose that M is a closed manifold. Then given any x ∈M
there is a unique flow line defined on entire real line

γx : R −→M

that satisfies the initial condition

γx(0) = x.

Furthermore the limits

lim
t→−∞

γx(t) and lim
t→+∞

γx(t)

converge to critical points of f . These are referred to as the starting and ending
points of the flow γx.

The flow map
T : M × R −→M

defined by T (x, t) = γx(t) is smooth.
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Proof. Let x ∈ M . By the existence and uniqueness of solutions to ordinary
differential equations, there is an ε > 0 and a unique path

γx : (−ε, ε) −→M

satisfying the flow equation

dγx(t)

dt
+∇γx(t)(f) = 0

for all |t| < ε, and the initial condition γx(0) = x. By the compactness of M
we can choose a uniform ε for all x ∈ M . Notice therefore that for |t| < ε we
can define a self map of M ,

γt : M −→M

by the formula γt(x) = γx(t). Notice that γ0 = id, the identity map. By
uniqueness it is clear that

γt+s = γt ◦ γs
providing that |t|, |s|, |t + s| < ε. Among other things this implies that each
γt is a diffeomorphism of M because γ−1

t = γ−t.
Now suppose that |t| ≥ ε. Write t = k(ε/2) + r where k ∈ Z and |r| < ε/2.

If k ≥ 0 we define
γt = γ ε

2
◦ γ ε

2
◦ . . . γ ε

2
◦ γr

where the map γ ε
2

is repeated k times. If k < 0 then replace γ ε
2

by γ−ε
2

. Thus

for every t ∈ R we have a map γt : M −→ M satisfying γt ◦ γs = γt+s, and
hence each γt is a diffeomorphism.

The curves
γx : R −→M

defined by γx(t) = γt(x) clearly satisfy the flow equations and the initial
condition γx(0) = x. This means that the gradient flow equations can be
solved for all t ∈ R, and in particular, we will from now on require that
gradient flow lines be defined as functions γ : R −→ M instead of being
defined only on an open interval.

Now let γ be a flow line. Consider the composition f ◦γ : R −→ R. By the
Fundamental Theorem of Calculus, if a < b, then

(f ◦ γ)(b)− (f ◦ γ)(a) =

∫ b

a

d

dt
(f ◦ γ)(t) dt.

Since M is compact f ◦ γ has bounded image, so the left side is bounded. By
Lemma 12.1, d

dt (f ◦ γ) < 0. Therefore

lim
t→±∞

d

dt
(f ◦ γ)(t) = 0.
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By the proof of Lemma 12.1 we know that

0 = lim
t→±∞

d

dt
f(γ(t)) = lim

t→±∞
−
∣∣∇γ(t)(f)

∣∣2 .
Let U be any union of small disjoint open balls around the critical points. By
the compactness of M , M − U is compact, so |∇x(f)|2 has a minimum value
on M −U . Since M −U has no critical points, this minimum value is strictly
positive. But since the above limit is zero, we know that for sufficiently large
|t|, γ(t) ∈ U . Since the balls are disjoint and γ(t) is continuous, there is a
critical point p so that for any open ball around p, γ(t) is in that ball for
sufficiently large t. Therefore limt→∞ γ(t) exists and is equal to p; similarly,
limt→−∞ γ(t) exists and is equal to a critical point.

The differentiability of the flow map T (x, t) = γx(t) with respect to t fol-
lows because γx(t) satisfies the differential equation. The differentiability of
T with respect to x follows from Peano’s theorem (the differentiable depen-
dence of solutions to ODEs with respect to initial conditions). This is proved
in Hartman’s book on ODEs [26] in chapter V, Theorem 3.1.

Let γ(t) be a non-constant gradient flow line from p to q. Then by
Lemma 12.1, we know that h(t) = f(γ(t)) is strictly decreasing, and in par-
ticular, is a diffeomorphism from R to the open interval (f(q), f(p)). We can
therefore consider the smooth curve η(t) = γ(h−1(t)) from (f(q), f(p)) to M .
Then it is easy to check that f(η(t)) = t. So γ and η have the same image,
but the parameter in η represents height (that is, the value of f).

Exercise Prove that f(η(t)) = t as claimed above.
We can also extend η to a continuous map from the closed interval

[f(q), f(p)] to M by defining η(f(q)) = q and η(f(p)) = p.
Exercise Prove that the extension of η to the closed interval [f(q), f(p)] is
continuous.

Definition 12.1. If γ(t) is a non-constant gradient flow line for f , and h(t) =
f(γ(t)), then

η(t) = γ(h−1(t)) : [f(q), f(p)] −→ R
is the height-reparameterization of γ, and such a curve is a height-
parameterized gradient flow of f .

Remark This reparameterization of γ is a direction-reversing one, since h
is strictly decreasing. This is to be expected since f(γ(t)) is decreasing but
f(η(t) = t is increasing.

We now differentiate η.

Exercise Prove
d

dt
η(t) =

∇η(t)(f)∣∣∇η(t)(f)
∣∣2

Therefore, η(t) is the solution to another differential equation which may
be described as follows:
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Lemma 12.3. Away from the critical points of f , we may consider the vector
field

X(x) =
∇x(f)

|∇x(f)|2
.

Then we define curves ζ : (s1, s2) −→M that satisfy

d

dt
ζ(t) = X(ζ(t))

Then ζ is a height-reparameterized flow line.

Proof. We insist that (s1, s2) be maximal. We then can show that d
dtf(ζ(t)) =

1 as usual (do this now if you wish). Pick a number s ∈ (s1, s2), and con-
sider the gradient flow line γ(t) so that γ(0) = ζ(s). We do the height-
reparameterization to γ to get a height-reparameterized curve η. Now η satis-
fies the same differential equation as ζ, and η(f(ζ(s))) = ζ(s), so we translate
the domain as follows: η0(t) = η(t+ f(ζ(s))− s) satisfies the same differential
equation as ζ and η0(s) = ζ(s) so by the uniqueness of solutions to ODEs,
η0 = ζ.

Therefore solutions to d
dtζ(t) = X(ζ(t)) are precisely those that are height-

parameterized flows.

Therefore X(x) and ∇(f(x)) have the same integral curves, although with
different parameterizations.

12.2 Stable and unstable manifolds

As before, for any point x ∈ M , let γx(t) be the flow line through x, i.e. it
satisfies the differential equation

d

dt
γ = −∇γ(f)

with the initial condition γ(0) = x. We know by Theorem 12.2 that γx(t)
tends to critical points of f as t → ±∞. So for any critical point a of f we
define the stable manifold W s(a) and the unstable manifold Wu(a) as follows:

Definition 12.2. Let M be a manifold, and f a smooth function on M . Let
a be a critical point for f . We define the two subsets of M :

W s(a) = {x ∈M : lim
t→+∞

γx(t) = a}

Wu(a) = {x ∈M : lim
t→−∞

γx(t) = a}.

and call W s(a) the stable manifold of a and Wu(a) the unstable manifold of
a.
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In other words, W s(a) is the set of points on M that flow down to a,
and Wu(a) is the set of points on M flow out from a. The use of the term
“manifold” is justified by the stable manifold theorem:

Theorem 12.4 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, and f : M −→ R a Morse function. Let a be a critical point of f of index
Λ. Then Wu(a) and W s(a) are smooth submanifolds diffeomorphic to the open
disks DΛ and Dn−Λ, respectively.

This will be proved in Section 12.2 below for a large class of metrics (though
it is in general true for all metrics).

Proposition 12.5. If M is a compact manifold with Riemannian metric g,
and f : M −→ R is a Morse function, then

M =
⋃
a

Wu(a)

is a partition of M into disjoint sets, where the union is taken over all critical
points a of f .

Proof. The fact that the union of the Wu(a) is M comes from the fact that
every point of M lies on a flow line γ, and we can always find limt→−∞ γ(t).

The fact that the Wu(a) and Wu(b) are disjoint when a 6= b is due to the
fact that γ is unique.

Exercise Find the unstable manifolds for each critical point in Example ??.

Exercise Find the unstable manifolds for each critical point in Example ??.

From these exercises you can see that this decomposition of M makes M
look like a CW complex, with one cell of dimension λ for each critical point
of index λ. The torus example is problematic because an edge gets attached
to the middle of another edge, but consider the following fix:

Consider the torus in R3 as before, but with a slight perturbation. That
is, tilt the torus by pulling it down so it is not quite vertical. Then consider
the height function f(x, y, z) = z. The following is a picture of the resulting
flow lines.

The point is that with this example, we have a decomposition of M into
cells, with a cell of dimension λ for each critical point of index λ. These are
essentially the cells Dλ in Theorem 11.6.

The disks appearing in this result and those appearing in Theorem 11.6
are related in the following way. Suppose that [t0, t1] ⊂ R has the property
that f−1([t0, t1]) ⊂ M has precisely one critical point a of index Λ with
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FIGURE 12.5
Flow lines for the height function on the “tilted torus”
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f(a) = c ∈ (t0, t1). Then by Theorem 11.6 there is a disk DΛ ⊂ M t1 and a
homotopy equivalence

M t1 'M t0 ∪DΛ.

Now note that Wu(a) ∩ f−1([t0, t1]) is, under a Euclidean metric defined
by the Morse coordinate chart, equal to the DΛ mentioned in the proof of
Theorem 11.6.

This strengthening of Theorem 11.7 makes it intuitively clear why the
Morse equality (Theorem 11.9) and the Weak Morse inequalities (Corol-
lary 11.10) hold. In addition, the Strong Morse inequalities (Corollary 11.11)
also follow quickly.

There are several problems: first, we need to prove the Stable manifold
theorem. Next, we need to prove that this decomposition into open cells is
actually a CW complex. Now, a CW complex is described as a collection of
closed disks, where the boundaries of these closed disks are identified with
points that lie in other disks, via functions called attaching maps. So we need
to turn the open disks Wu(a) into closed disks, and describe how they are
attached.

As we saw in the first torus exercise above, it does not actually always
work. There is a condition (called the Morse–Smale condition) under which
this program works. We will describe this condition later. Under this condition,
we will also see how to view M as a CW complex.

At this stage, we should view this as roughly a CW complex decomposi-
tion, but with open disks instead of closed disks. These disks and other related
spaces will play a major role in the next several chapters.

We will then study the attaching maps for the CW complex decomposition
in some detail, using framed cobordism. This allows us to find more topological
information about M than is given in the Morse inequalities. For instance, it
allows us to compute the homology of M explicitly.

In Chapter 11, we proved the Morse Lemma (Theorem 11.4), which says
that locally, around any nondegenerate critical point, we can choose a coordi-
nate chart so that

f(x1, . . . , xn) = f(p)−
λ∑
i=1

x2
i +

n∑
j=λ+1

x2
j . (12.2)

In other words, we have a local explicit formula for f around a critical point,
no matter what f is, as long as the critical point is non-degenerate.

What does the gradient vector field look like around such a critical point?

Based on the above equation (12.2), you might expect the gradient to be
this:

∇(f) = (−2x1, . . . ,−2xΛ, 2xΛ+1, . . . , 2xn) (12.3)

But because the metric is not described, it is possible (even likely) that the
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gradient vector field is not this at all. Recall that the gradient is obtained
by g(v,∇(f)) = df(v) (see the discussion at the beginning of chapter 11.1,
especially Exercises 12.1 and 12.1).

Since we are dealing with gradient vector fields, and their corresponding
flow lines, it would make sense for us to want to choose coordinates to stan-
dardize the gradient vector field so that equation (12.3) is true, rather than
equation (12.2). This is especially the case, since if equation (12.3) is true,
then the gradient flow equation

d

dt
γ(t) = −∇γ(t)(f)

would take the form (if we write γ(t) = (x1(t), . . . , xn(t))):

ẋ1 = 2x1

...

ẋΛ = 2xΛ

ẋΛ+1 = −2xΛ+1

...

ẋn = −2xn

which is easily solved since each equation only deals with one variable.
If the metric is anything else, we might still hope to diagonalize this

system of differential equations, choosing coordinates (x1, . . . , xn) so that
γ̇(t) = −∇γ(t)(f) looks like

ẋi = cixi (12.4)

for some non-zero real constants c1, . . . , cn. Then the ci would be negatives of
the eigenvalues of the Hessian of f at the critical point, and the corresponding
eigenvectors would be the standard basis vectors ∂/∂xi in this coordinate
chart.

Unfortunately, it is in general impossible to choose coordinates so that
(12.4) holds, as the following exercises show:

Exercise Solve the system of differential equations (12.4).

Exercise Solve the system of differential equations

ẋ = 2x (12.5)

ẏ = −y (12.6)

ż = z + xy (12.7)

(12.8)

and show that there is no change of coordinates that transform it into the
form (12.4).
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Exercise Let f(x, y, z) = x2−y2 + z2. Find a metric g(x, y, z) on a neighbor-
hood of (0, 0, 0) ∈ R3 so that the gradient flow equations near the origin are
as in equation (12.8). Hence prove that it is in general impossible to choose
coordinates so that the gradient flow equations look like equation (12.4) in a
neighborhood of the critical point. Note that the metric must be symmetric
and positive definite in the neighborhood.

Note that in this exercise, what goes wrong is a kind of “resonance” phe-
nomenon that occurs in ordinary differential equations when two eigenvalues
are the same. By analogy, we would expect this kind of problem to be rare,
and we might hope that for most situations, we can choose coordinates to put
the gradient flow equations in the standard form of equation (12.4), but to
address this will take us rather far afield (see [26]).

Instead, we choose to follow Hutchings [35] to modify the metric to the
standard metric so that equation (12.2) gives rise to the gradient in equation
(12.3), which in turn gives rise to the gradient flow equations in equation
(12.4).

This motivates the following definition, due to Hutchings [35]:

Definition 12.3. Let M be a manifold and f be a Morse function. A metric
is said to be nice if there exist coordinate neighborhoods around each critical
point of f so that for each such neighborhood there are non-zero real numbers
c1, . . . , cn so that the gradient flow equations are

ẋi = cixi,

as in (12.4).

Proposition 12.6. Let M be a compact manifold and f a Morse function.
There exists a nice metric on (M,f). In fact, these are dense in the L2 space
of metrics.

Proof. Let g0 be any smooth metric on M . Consider the set of critical points
of f . Apply the Morse lemma (Lemma 11.4), to find nonoverlapping coordi-
nate neighborhoods of each critical point of f in M , each with coordinates
x1, . . . , xn so that the Morse function in each neighborhood is

f(x1, . . . , xn) = f(p)−
λ∑
i=1

x2
i +

n∑
j=λ+1

x2
j .

For each critical point a of f , let Ua be the coordinate neighborhood given
by the Morse lemma, let B1 be a coordinate ball around a that is completely
inside Ua, and let B2 be another coordinate ball around a of smaller radius
than B1. (By coordinate ball I mean the set whose coordinates (x1, . . . , xn)
satisfy x2

1 + · · ·+ x2
n < r for some r.)

Let φ : Ua −→ R be a smooth function so that φ is 1 on B2 and 0 outside
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B1. Let gE be the standard Euclidean metric with respect to thex1, . . . , xn
coordinates. Define g to be

g = g0(x)(1− φ(x)) + gE(x)φ(x).

Since the set of symmetric positive definite bilinear forms is a convex set, this
convex linear combination of the two metrics will be a metric on Ua. Extend
g by setting it equal to g0 on the rest of M . Then g is a metric for which a is
nice.

Now proceed inductively through the other critical points of M . This cre-
ates a metric g so that there is a coordinate neighborhood metric ball B around
each critical point where both f and the metric are in a standard form. Then
the gradient flow equation

dγ

dt
= ∇γ(f)

looks like equation (12.4).
By taking B2 smaller and smaller, we see that the difference between g

and g0 is supported on an arbitrarily small set, and by the boundedness of
the metric on M , we know that this difference is arbitrarily small in L2.

We now prove the Stable manifold theorem for nice metrics:

Theorem 12.7 (Stable Manifold Theorem). Let M be an n-dimensional man-
ifold, with nice metric g, and f : M −→ R a Morse function. Let a be a critical
point of f of index Λ. Then Wu(a) and W s(a) are smooth submanifolds dif-
feomorphic to the open disks DΛ and Dn−Λ, respectively.

Remark This theorem is still true if the metric g is not nice, but to prove this
would take too long and we don’t need it in this generality. Curious readers
can see [26] for the proof.

Proof of the Stable Manifold Theorem. If g is a nice metric, then there is a
coordinate neighborhood B around each critical point where the gradient flow
equations are

dγi
dt

= ciγi(t)

where γi(t) is the i-th coordinate of γ. Note that the ci are the negatives
of eigenvalues of the Hessian, corresponding to the directions given by the
standard basis in the coordinate chart. Reorder the coordinates so that the
first λ eigenvalues are the negative ones (so that the first λ values of ci are
positive).

Then explicitly,

γi(t) =

{
γi(0)e|ci|t, i ≤ Λ

γi(0)e−|ci|t, i > Λ
(12.9)

inside B.
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We prove the theorem forW s(a). The proof forWu(a) is exactly analogous,
and besides, it follows from the W s(a) case, applied to the function −f . We
will first prove that W s(a) is smooth in a small neighborhood of a.

Let W0 be the subset of B consisting of those points where x1 = x2 = · · · =
xλ = 0. Then from the explicit solution (12.9), we see that W0 ⊂W s(a).

Now W0 is an open disk of dimension n− λ centered on a, and hence is a
manifold, and is furthermore a submanifold of M .

Recall from Theorem 12.2 that the flow map defined as

T : M × R −→M

T (x, t) = γx(t)

is smooth. Apply this flow backward in time by some time t: define Wt =
T (W0,−t). This will be diffeomorphic to W0 and a subset of W s(a). As t goes
to infinity, we span a larger and larger subset of W s(a).

Let x ∈W s(a), and γ the corresponding gradient flow line with γ(0) = x.
Since limt→∞ γ(t) = a, we know that for some t0 > 0, γ(t) ∈ B for all t ≥ t0.
I will now show that γ(t0) ∈W0.

Suppose γ(t0) 6∈W0. The translated flow η(t) = γ(t+ t0) is a gradient flow
line, with the property that η(0) 6∈ W0, and η(t) ∈ B for all t > 0. Then for
some coordinate i > Λ, ηi(0) 6= 0. By the explicit solution (12.9), ηi(t) will
grow indefinitely, so that eventually η (and hence γ) leaves the coordinate ball
B. This is a contradiction. Therefore, γ(t0) ∈W0.

Since every element of W s(a), when flowed forward, eventually is in W0,
we know that ∪tWt = W s(a).

Let ψ : [0, 1) −→ R be a smooth monotonic function with ψ(0) = 0 and
limt→1 ψ(t) = +∞. Using |x| as

√
x2

1 + · · ·+ x2
n, and r0 as the radius of the

coordinate ball B, we see that T (x, ψ(|x|/r0)) maps W0 diffeomorphically onto
W s(a). Recall that W0 is a submanifold of M which is a disk of dimension
n− Λ. Therefore, W s(a) is a submanifold of M and diffeomorphic to Dn−λ.

Exercise Prove the Stable Manifold Theorem (Theorem 12.7) for the unsta-
ble manifold Wu(a), without applying the theorem to stable manifolds of −f .
Instead, carefully go through the proof for W s(a) and write out the corre-
sponding proof that would work for Wu(a).

Proposition 12.8. The tangent space of W s(a) at a is the positive eigenspace
of the Hessian of f at a. Similarly, the tangent space of Wu(a) at a is the
negative eigenspace of the Hessian of f at a.

Proof. Again, we are assuming the metric is nice, but this is unnecessary.
Now W s(a) is a smooth submanifold of M , so its tangent space at a is

well-defined. Define W0 as in the previous proof, as

{(x1, . . . , xn) | x1 = · · · = xΛ = 0}.
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The tangent space to W0 is therefore the span of ∂/∂xi for i = Λ + 1 to n.
This is the positive eigenspace of the Hessian.

On the other hand W0 ⊂W s(a), and since they are of the same dimension,
W0 is an open neighborhood of a in W s(a). Therefore W0 and W s(a) have
the same tangent space at a.

The proof for Wu(a) can be done similarly, or if you wish, you may use
the result for W s(a) on −f .

Let a be a critical point of f . Let us consider the function f restricted to
Wu(a). Since Wu(a) is defined to be the set of points which in some sense
lie “below” a on gradient flow lines, we expect a to be a maximum of f on
Wu(a), and level sets to be spheres around a.

Theorem 12.9. Let (M, g) be a Riemannian manifold and f : M −→ R a
Morse function. Let a be a critical point of f . Let h : Wu(a) −→ R be the
restriction of f to Wu(a). Then a is the unique critical point of h, and it is
the absolute maximum. If ε > 0 is small enough, and f(a) − ε < c < f(a),
then h−1(c) is diffeomorphic to a λ− 1 dimensional sphere in Wu(a) around
a.

Similarly, let j : W s(a) −→ R be the restriction of f to W s(a). Then a is
the unique critical point of j, and it is the absolute minimum. If ε > 0 is small
enough, and f(a) < c < f(a) + ε, then j−1(c) is diffeomorphic to a n− λ− 1
dimensional sphere in W s(a) around a.

Proof. We will prove this for Wu(a), and the result for W s(a) is the same
using −f instead of f .

Let x ∈Wu(a), and x 6= a. Let γ(t) be the unique gradient flow line with
γ(0) = x. Since x ∈Wu(a), we have that limt→−∞ γ(t) = a.

According to Lemma 12.1, f(γ(t)) is strictly decreasing. By the continuity
of f , limt→−∞ f(γ(t)) = f(a). So f(a) > f(x). Therefore, a is the absolute
maximum of h.

Now, γ(t) ∈ Wu(a) for all t, so γ′(0) ∈ TxWu(a). Since f(γ(t)) is strictly
decreasing, γ′(0) 6= 0 (if it were, d

dtf(γ(t)) = ∇(f) · γ′(0) would be zero). By
the gradient flow equation γ′(t) = −∇γ(t)(f), the −∇x(f) 6= 0. Therefore, x
is not a critical point of h. Since x was arbitrary, except for not equalling a,
there are no critical points of h except for a.

Now we consider the Hessian of h at a. Find a coordinate chart of M
around a so that Wu(a) is given by the equations xλ+1 = · · · = xn = 0. By
the invariance of the Hessian under coordinate change (Proposition 11.1), the
Hessian of f can be computed in such a coordinate chart. Since TaW

u(a) is
the negative eigenspace of the Hessian of f (Proposition 12.8) we conclude
that the matrix (

∂2f

∂xi∂xj

)
ij
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is negative definite. Since Wu(a) is given by setting xλ+1, . . . , xn to be con-
stant (in fact, zero), we see that for i, j ≤ λ, this matrix is the same as(

∂2h

∂xi∂xj

)
ij

.

Therefore the Hessian of h at a is negative definite. In particular, a is a non-
degenerate critical point of h, and h is Morse.

We now consider the preimages h−1(c).
For this, we use the Morse Lemma (Theorem 11.4) applied to h on the

manifold Wu(a). The Morse Lemma states that there exist a coordinate neigh-
borhood U around a with coordinates x1, . . . , xλ on Wu(a) so that

h(x1, . . . , xλ) = f(a)− x2
1 − · · · − x2

λ.

Let ε > 0 be given so that the ball

B = {(x1, . . . , xλ)|x2
1 + · · ·+ x2

λ < ε}

is contained in U . Within this ball it is clear that the preimages h−1(c) (when
f(a)− ε < c < f(a)) are coordinate spheres around a. We will now verify that
there are no other parts to h−1(c) which are outside B.

Suppose x ∈ Wu(a), and x 6∈ B. As earlier in the proof, let γ(t) be the
gradient flow with γ(0) = x. As before, limt→−∞ γ(t) = a. But B is an open
set around U . Therefore, for some t < 0, γ(t) ∈ B. Since x = γ(0) is not in B,
the generalized Jordan curve theorem says that there exists some T < 0 for
which γ(T ) is on the boundary of B. Since f(γ(t)) is strictly decreasing,

f(x) = f(γ(0)) < f(γ(T )) = f(a)− ε.

So f(x) < f(a)− ε. Therefore, if f(a)− ε < c < f(a), then h−1(c) is a susbet
of B, and is therefore the coordinate spheres we found earlier.

12.3 The Morse–Smale condition

Consider Exercise ??. One of the edges did not attach to vertices, but to the
midpoint of another edge. In Exercise ??, a perturbation of this situation, this
problem is fixed, and both edges end at the bottom vertex. This indicates that
it is not enough that f be Morse for the unstable manifold picture to work
well. We need a further transversality condition, which we define now.

Definition 12.4. Suppose f : M −→ R is a Morse function that satisfies the
extra condition that for any two critical points a and b the unstable and stable
manifolds Wu(a) and W s(b) intersect transversally. This is the Morse–Smale
condition, and if f satisfies this condition, we call f a Morse–Smale function.
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Smale [55] showed that Morse–Smale functions exist. More specifically,
given a metric g and function f : M −→ R, there exists another metric g′

and another function f ′ : M −→ R so that f ′ is Morse–Smale with respect
to g′. His proof also demonstrates that f and f ′ and g and g′ can be made
arbitrarily close to each other. Hence the set of configurations of functions and
metrics so that the functions are Morse–Smale with respect to that metric is
dense.

Actually, more is true: if f is Morse, then for an open, dense set of metrics
g, f is Morse–Smale. This can be proved using the same techniques that are
used in the proofs in Smale’s paper. We will sketch out a proof at the end of
this chapter that the set of such metrics is dense. In the meantime we will
first study some properties of Morse–Smale functions.

Exercise Show that the example in Exercise ?? is Morse–Smale, and the
example in Exercise 12.1 is not.

Exercise Suppose f is Morse (not necessarily Morse–Smale) and suppose b
is a critical point of f . Do Wu(b) and W s(b) always intersect transversally?

The main purpose of the Morse–Smale condition is that it allows us to see
how stable and unstable manifolds of different critical points intersect. For
every pair of critical points a and b, let

W (a, b) = Wu(a) ∩W s(b).

W (a, b) is the space of all points in M that lie on flow lines starting from a
and ending at b.

Proposition 12.10. Let (M, g) be a Riemannian manifold of dimension n,
let f : M −→ R be Morse–Smale, and a and b be two critical points of f .
Then W (a, b) is a smooth manifold of dimension index(a)− index(b).

Proof. If f is Morse–Smale, then Wu(a) and W s(b) intersect transversally.
Therefore the intersection Wu(a)∩W s(b) = W (a, b) is a manifold of dimension
dim(Wu(a)) + dim(W s(b))−n = index(a) + (n− index(b))−n = index(a)−
index(b).

Corollary 12.11. Let f : M −→ R be a Morse–Smale function, and let a and
b be two distinct critical points of f . If index(a) ≤ index(b), then W (a, b) = ∅.

Proof. If index(a) < index(b), then the previous proposition shows that
W (a, b) is a manifold of negative dimension, so it must be empty.

If index(a) = index(b), then similarly W (a, b) must be a manifold of di-
mension 0, but since the gradient flow acts freely on elements of W (a, b), the
dimension of W (a, b) must be at least one. Therefore it must be empty.
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Definition 12.5. We refer to the number

index(a)− index(b)

as the relative index of a and b.

Exercise Find W (a, b) for each pair of critical points a and b for Exercise ??.
Exercise Suppose a and b are critical points of f and a 6= b. Are a and b in
W (a, b)? If there are other critical points of f , is it possible that these are in
W (a, b)? Now consider the case a = b. What is W (a, b)?

The fundamental object of study will not usually be W (a, b), but a particu-
lar “horizontal” slice. If we view the gradient flow as an action of R on W (a, b),
then we can study the orbit space (called the Moduli space) W (a, b)/R. For
good intuition and for practical considerations it is useful to instead pick out
a representative of each R orbit in W (a, b). One way to do this is to select a
real number t between a and b and pick out the representative in f−1(t). This
is the approach used in our first definition of the moduli space (there will be
other equivalent definitions soon).

Definition 12.6. Pick a value t ∈ R between f(a) and f(b), and let W (a, b)t

to be the set W (a, b) ∩ f−1(t).

Proposition 12.12. If a and b are distinct critical points of f , then W (a, b)t

is a smooth submanifold of M .

Proof. First, we see that f |W (a,b) : W (a, b) −→ R is transverse to the point
{t} ⊂ R. This is because for any point x ∈W (a, b) so that f(x) = t, ∇x(f) is
not zero, and so neither is dfx(∇x(f)) = ‖∇x(f)‖2. Therefore f |W (a,b) tr{t}.

Therefore, we may apply Theorem ??, and get that
(
f |W (a,b)

)−1
({t}) =

W (a, b)t is a submanifold of W (a, b) of codimension one.

Proposition 12.13. Let a and b be distinct critical points of f . The function

φ : W (a, b)t × R −→W (a, b)

defined by
φ(p, s) = Ts(p)

is a diffeomorphism.

Proof. We begin by proving φ is onto. Let x ∈W (a, b). Let γ be the flow line
that has γ(0) = x. Since limt→∞ f(γ(t)) = f(b) and limt→−∞ f(γ(t)) = f(a),
by continuity we have that for some s, f(γ(−s)) = t. Then γ(−s) = p and
Ts(p) = x.

Now to show φ is one-to-one, suppose x = φ(p1, s1) = φ(p2, s2). Then
T−s1(x) = p1 and T−s2(x) = p2, meaning that the unique flow line γ with
γ(0) = x also has γ(s1) = p1 and γ(s2) = p2. Since f(p1) = t = f(p2), and
d
dsf(γ(s)) < 0, it must be that s1 = s2 and therefore p1 = p2.
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Therefore φ−1 is defined as a set map. To show that φ−1 is continuous, it is
necessary to show that if U is an open neighborhood of (p, s) ∈W (a, b)t ×R,
then there exists an open neighborhood of φ(p, s) in W (a, b) that is a subset
of φ(U). It suffices to show this for open neighborhoods U of the form Bp(ε)×
(s − ε, s + ε). Since T−s is a diffeomorphism of M that maps neighborhoods
of φ(p, s) to neighborhoods of φ(p, 0), it suffices to prove this for s = 0.

So what we need to show is if ε > 0 is sufficiently small, and p ∈W (a, b)t,
then there exists a δ so that whenever d(p, y) < δ, then writing y = φ(q, r)
gives us |r| < ε and d(p, q) < ε.

Since p is not a critical point, there is a δ1 so that Bp(2δ1) does not contain
critical points. In this ball, m = inf |∇f |2 is strictly greater than zero and
sup |∇f | is finite. If sup |∇f | > 1, then let M = sup |∇f |, but otherwise let
M = 1. By continuity of f there is a δ2 so that |f(p)− f(Bp(δ2))| < mε/2M .
Choose δ to be smaller than min(δ1, δ2, ε/2).

Now in the proof of Lemma 12.1, we saw that

d

dt
f(γ(t)) = − |∇(f)|2 .

Integrating and using the fundamental theorem of calculus, we get

|f(γ(−r))− f(γ(0))| ≥ |r| inf |∇f |2

which leaves us with

|r|m = |r| inf |∇f |2 ≤ |f(p)− f(y)| < mε/2M

so that |r| < ε/2M < ε.
Now,

d(q, y) ≤
∫
|γ′(t)| dt

=

∫
|∇(f)| dt

≤Mr < ε/2.

So by the Triangle inequality, d(p, q) ≤ d(p, y) + d(q, y) < δ + ε/2 < ε.
Therefore φ−1 is continuous.

To prove φ−1 is smooth, we estimate dφ and show it is non-degenerate.
Let (p, s) ∈W (a, b)t×R and let v1, . . . , vk be a basis for the tangent space of
W (a, b)t at p, and let ∂/∂t be the tangent vector to R. Now if dφ is degenerate
at (p, s), then dφ(v1), . . . , dφ(vk), dφ(∂/∂t) would be linearly dependent. Now
since φ|W (a,b)t×{s} is just the flow map Ts, and this flow map is a diffeomor-
phism, we know that dφ(v1), . . . , dφ(vk) are linearly independent. Therefore
any linear dependence would involve dφ(∂/∂t), so that

dφ(∂/∂t) =
∑

ckdφ(vk)
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for some real numbers ck.
Now since φ(p, s) = Ts(p), dφ(∂/∂t) at (p, s) is ∂

∂sTs(p) = γ′(s), where γ
is the flow with γ(0) = p. Then if we compose with T−s,

dT−sdφ(∂/∂t) =
∑

ckdT−sdφ(vk)

dT−sγ
′(s) =

∑
ckvk

γ′(0) =
∑

ckvk.

But we know γ′(0) is transverse to TW (a, b)t, which is a level set of f . There-
fore, we have a contradiction, and dφ is non-degenerate. Therefore φ−1 is
smooth.

If we use the notation +a to denote the function +a : R −→ R with
+a(x) = x+ a, then the following diagram commutes:

W (a, b)t × R φ−−−−→ W (a, b)

(1,+s)

y Ts

y
W (a, b)t × R φ−−−−→ W (a, b)

We now sketch a proof that the set of metrics for which a Morse function
is Morse–Smale is dense.

Theorem 12.14. Let M be a manifold. Let f : M −→ R be a Morse function.
For a dense set of metrics g, f is Morse–Smale.

Proof. (Sketch of proof) We suppose a Riemannian metric g is given, and
show that there exists a Riemannian metric g′ arbitrarily close to g so that f
is Morse–Smale with respect to g′. For the purposes of this proof ∇g refers to
the gradient using the metric g.

We start by finding a vector field X close to∇gf that agrees with∇gf near
the critical points of f but so that the ascending and descending manifolds
are transverse (step 1). We then show that for some metric g′ close to g,
X = ∇g′(f) (step 2).

Step 1: finding the vector field X
The details of this step are found in Smale’s proof of Theorem A in the

work just cited above ([?]).
Let the critical values of f be c1 < · · · < ck. Choose ε > 0 arbitrary, but

small enough so that for each i, ci+1 > ci + 4ε, and in fact, small enough so
that for each critical point p, Theorem 12.9 gives us that W s(p)∩f−1((−∞, c])
is a ball for all f(p) < c < f(p) + 4ε.

We first let X = ∇g. Then we proceed by induction on i, starting at c1
and ending at ck, at each stage altering X in f−1(ci + ε, ci + 3ε).
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At stage i in the induction, we consider each critical point p so that f(p) =
ci. In a neighborhood of p, we consider

Q = f−1(ci + 2ε) ∩W s(p).

Since −∇(f) is transverse to level sets of f , the gradient flow can be integrated
in a small neighborhood of Q so that there is a coordinate z with −m ≤ z ≤ m
so that ∂/∂z is −∇(f) and z = 0 coinciding with Q. Here m is chosen so that
this keeps us in f−1(ci + ε, ci + 3ε). By the coordinate structure of f near
p, a tubular neighborhood U of Q is a trivial λ-disk bundle. So if P is a λ
dimensional disk of radius 1, then there is a diffeomorphism sending [−m,m]×
P ×Q onto this tubular neighborhood of Q, so that the first coordinate is the
coordinate z, and 0 × 0 × Q is mapped to Q by the identity function. From
now on, we will identify U with [−m,m]× P ×Q in our notation.

Consider all critical points q with f(q) > ci. Let

S = ∪q,f(q)>ci,∇q(f)=0(0× P ×Q) ∩W s(q)

and let g : S −→ P be the restriction of πP : [−m,m]× P ×Q −→ 0× P × 0
to S. By Sard’s theorem there exist v ∈ P arbitrarily close to zero so that 2v
is a regular value of g.

Now construct β : [−m,m] −→ R so that β(z) ≥ 0, β(z) = 0 in a neigh-

borhood of ∂[−m,m], and
∫ ±m

0
β(z) dz = ±|v|. If v was chosen small enough,

β(z) and |β′(z)| can be kept smaller than ε.
Let P0 ⊂ P be a λ-dimensional disk of radius 1/3.
We also construct a smooth γ : P −→ R so that 0 ≤ γ ≤ 1, γ = 0 in a

neighborhood of P , γ = 1 on P0, and |∂γ/∂xi| ≤ 2.
Let X ′ be the vector field on M that equals X outside U , and on [−m,m]×

P ×Q let X ′ be given by

X ′ = − ∂

∂z
− β(z)γ(x)

v

|v|
.

We use the bounds on β and γ to ensure that df(X ′) > 0.
To see that the new stable and unstable manifolds W ′s(p) and W ′u(q)

intersect transversally, we examine any point of intersection, and flow by X ′

until it is in f−1(ci + 2ε). It will then be at a point {0}×P ×Q ⊂ [−m,m]×
P × Q. The flow X ′ for time ±m carries (0, x, y) ∈ [−m,m] × P × Q to
(±m,x± v, y), as can be seen by explicitly integrating out X ′.

If q is any critical point with f(q) > ci, then consider the new stable
manifold W ′s(q) of q under X ′. It agrees with the old stable manifold W s(q)
on (m, 0, y), and after flowing by −m we get to (0,−v, y).

Also, the new unstable manifold W ′u(p) agrees with the old unstable man-
ifold Wu(p) for z = −m, and flowing by X ′ for time m from here shows that
W ′u(p) ∩ (0× P ×Q) is

{(0, x+ v, y)|(0, x, y) ∈Wu(p)}.



294 Bundles, Homotopy, and Manifolds

So their intersection is the set

{(0,−v, y)|(0, 2v, y) ∈Wu(p)}

and since 2v is a regular value of g, this intersection is transverse.
We do this for all the critical points with critical value ci, and these do not

interfere with each other as long as ε is small enough that the neighborhoods
U do not intersect.

We then proceed with larger and larger i, until we have constructed a new
X ′.

Step 2: finding the metric g′

Note that X is unchanged (it still equals ∇gf) near critical points of f . So
near critical points of f we define g′ to equal g. Outside these neighborhoods
we define, at each point x ∈ M , a linear transformation Ax on TxM that is
the identity on the kernel of df , and sends X to√

df(X)

‖df‖g
∇g(f).

Since df(X) > 0, this is invertible, and if X is close to ∇g(f), then Ax is close
to the identity. Let g′(v, w) = g(Av,Aw). Then g′ is close to g.

Now if we write an arbitrary vector w ∈ Tx(M) as w = w0 + aX where
df(w0) = 0, then it is a matter of computation to verify that g′(X,w) = df(w).
By definition of gradient, this means X = ∇g′(f).

Corollary 12.15. Given a Morse function f : M −→ R, there exists a metric
g so that f is Morse–Smale.

12.4 The moduli space of gradient flowsM(a, b), its com-
pactification, and the flow category of a Morse func-
tion

Throughout this section we assume that M is a C∞ closed, Riemannian metric
and that f : M → R is a Morse function satisfying the Morse-Smale condition.
As seen above, the Morse-Smale condition is generic.

12.4.1 The moduli space M(a, b)

By Proposition 12.13 above, there is a diffeomorphism W (a, b) ∼= W t(a, b)×R,
and so in particular W (a, b) has a free R-action. This action can be described
as follows. Let x ∈ W (a, b), and let γx : R → M be the unique flow line
satisfying γx(0) = x. (Such a flow γx by the existence and uniqueness of
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solutions of ordinary differential equations.) Then for t ∈ R, let t · x = γx(t).
In other words, t ∈ R acts by “flowing from x for time t”. Since any to points
on the the same orbit of this R-action lie in the same flow line, if we define
M(a, b) be the orbit space

M(a, b) = W (a, b)/R (12.10)

then M(a, b) can be viewed as the (moduli) space of gradient flow lines of
f with “starting critical point” a, and “ending critical point” b. Notice that
M(a, b) is homeomorphic to W t(a, b), and is therefore a smooth manifold of
dimension ind(a) − ind(b) − 1. (Recall we are assuming that f : M → R
satisfies the Morse-Smale condition.)

Of course the gradient flow lines in M(a, b) don’t really “start” at a or
“end” at b, but rather they satisfy the initial conditions limt→−∞ γ(t) = a and
limt→+∞ γ(t) = b. This is a rather clumsy arrangement, especially if we want
to “glue” flow lines. That is, if α ∈ M(a, b) and β ∈ M(b, c), then we should
be able to describe a (“piecewise”) flow α ◦ β which should “start” at a and
“‘end” at c. This is most easily done if we reparameterize these curves so that
they be “height parameterized gradient flow lines”, as defined in Definition
12.1.

12.4.2 The compactified moduli space of flows and the flow
category

As above let M be a closed Riemannian manifold and let f : M → R be a
Morse function satisfying the Morse-Smale condition. Let∇(f) be the gradient
vector field of f . Consider a flow lines of f which is a curve γ : R → M
satisfying the differential equation

dγ

dt
= −∇(f).

If γ is a flow-line then γ(t) converges to critical points of f as t → ±∞ and
we define

s(γ) = lim
t→−∞

γ(t), e(γ) = lim
t→∞

γ(t).

Since f is strictly decreasing along flow lines it defines a diffeomorphism
of the flow line γ(t) with the open interval (f(b), f(a)) where s(γ) = a and
e(γ) = b. This reparameterises the flow-line as a smooth function

ω : (f(b), f(a))→M

such that
f(ω(t)) = t.

We can extend ω to a smooth function defined on [f(b), f(a)] by setting
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ω(f(b)) = b and ω(f(a)) = a. Then as seen above, this extended function
satisfies the differential equation

dω

dt
= − ∇(f)

‖∇(f)‖2
(12.11)

with boundary conditions

ω(f(b)) = b, ω(f(a)) = a. (12.12)

It is a “height-parameterized” flow line.

We define M̄(a, b) to be the space of all continuous curves in M which
are smooth on the complement of the critical points of f and satisfy the
differential equation (12.11) and boundary condition (12.12). Here, of course,
we understand that ω satisfies (12.11) on the complement of the set of critical
points of f . This space M̄(a, b) is topologized as a subspace of the space
Map([f(b), f(a)],M), of all continuous maps with the compact open topology.
Note that if ω is any solution of (12.11) and (12.12) then if we remove the
points where ω(t) is a critical point of f each component of ω is geometrically
a flow-line but it is parameterized so that f(ω(t)) = t. Therefore by an abuse
of terminology we refer to a curve in M̄(a, b) as a piecewise flow-line from
a to b.

It is straightforward to check that M̄(a, b) is a compact space and it clearly
contains M̄(a, b). It is possible to show that since f is Morse-Smale, then
M̄(a, b) is open and dense in M̄(a, b) and so M̄(a, b) is a “ compactification”
of the moduli space of flow lines M̄(a, b).

There is an obvious associative, continuous composition law

M̄(a, b)× M̄(b, c)→ M̄(a, c)

which is denoted by γ1 ◦ γ2.
We are now ready to define the “flow category” of f , Cf :

Definition 12.7. We define the flow category Cf as follows:

• The objects of Cf : The objects of Cf are the critical points of f .

• The morphisms of Cf : If a and b are distinct critical points of f then
the morphisms from a to b are defined to be

Cf (a, b) = M̄(a, b).

The only morphism from a to itself is the identity.

• The composition law: The composition law is defined by

M̄(a, b)× M̄(b, c) −→ M̄(a, c)

(γ1, γ2) −→ γ1 ◦ γ2. (12.13)
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In fact Cf is a topological category in the sense that each of the sets Cf (a, b)
comes equipped with a natural topology and the composition law

M̄(a, b)× M̄(b, c) −→ M̄(a, c)

is continuous. The topological category Cf has a simplicial classifying space
BCf . The main result of [14] is the following:

Theorem 12.16. If M is a closed Riemannian manifold and f : M → R
is a Morse function satisfying the Morse-Smale condition, then there is a
homeomorphism

M
∼=−→ BCf .

Moreover, even if f does not satisfy the Morse-Smale condition (but is still
a Morse function), there is a homotopy equivalence, M ' BCf .

We now illustrate this theorem by considering the example of the height
function on the “tilted torus”. Recall that for this we view the torus as em-
bedded in ordinary three-space, standing on one of its ends with the hole
facing the reader, but tilted slightly toward the reader. We let f be the height
function.
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There are four critical points; a has index 2, b and c have index 1, and d has
index 0. As the figure depicts, the moduli spaces M(a, b), M(a, c), M(b, d),
and M(c, d) are all spaces consisting of two distinct points each. We will
denote these flows by αi, βi, γi, and δi respectively. All points on the torus
not lying on any of these flows is on a flow in M(a, d). This moduli space
is one dimensional, and indeed is the disjoint union of four open intervals.
Furthermore the compactification M̄(a, d) is the disjoint union of four closed
intervals.

Now consider the simplicial description in the classifying space BCf . The
vertices correspond to the objects of the category Cf , that is the critical points.

Thus there are four vertices. There is one one simplex (interval) for each
morphism (flow line), glued to the vertices corresponding to the starting and
endpoints of the flows. Notice that the points in M̄(a, d) index a one pa-
rameter family of one simplices attached to the vertices labelled by a and d.
Finally observe that there is a two-simplex for every pair of composable flows.
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FIGURE 12.6
Simplicial decomposition of BCf , where f is the height function on the tilted
torus
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There are eight such pairs (coming from the four points in each of the prod-
uct moduli spaces M(a, b)×M(b, d) and M(a, c)×M(c, d).) A two-simplex
labelled by a pair of flows, say (α, β) will have its three faces identified with
the one simplices labelled by α, β, and α ◦1 β respectively. Notice that all
higher dimensional simplices in the nerve N (Cf ) are degenerate and so do
not contribute to the geometric realization. The figure depicts the resulting
simplicial structure of the classifying space and illustrates Theorem 12.16 that
this space is homeomorphic to the underlying manifold.

Remark. The manuscript [14] was never published, primarily because the
proof of the main theorem relied on knowing that, assuming f : M → R
satisfies the Morse-Smale condition, then the compactified moduli spaces,
M̄(a, b) are manifolds with corners and that the corner structure is appro-
priately preserved under the composition of piecewise flow lines. At the time
that manuscript was written, the authors thought that this was a ”folk the-
orem”. However upon further inspection, the authors realized that although
experts in the community believed that this was true, there was no proof in
the literature, and that the issues involved in proving this result were more
complicated than the authors originally imagined. Therefore the manuscript
was never submitted for publication. In any case, the required manifold with
corners properties were eventually proved [50] [62], and the proof of Theorem
12.16 can now be completed using these results. A discussion of manifolds
with corners and a sketch of such a proof will be given in an appendix.
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