COCYCLES FOR KOTTWITZ COHOMOLOGY

JACK SEMPLINER AND RICHARD TAYLOR

With great fondness and gratitude, we dedicate this paper to the memory of John Coates.

1. INTRODUCTION

Kottwitz [K] introduced certain extensions of local and global Galois groups and
considered their ‘algebraic’ cohomology with coefficients in an algebraic group. How-
ever his extensions are only canonical up to conjugation. This is enough to make their
cohomology canonical, but their spaces of cocyles are not canonical. The purpose of
this paper is to explain how one can work with such cocyles. This will play a crucial
role in our work on the formalism of Shimura varieties [ST].

If E/F is a finite Galois extension of local or global fields Kottwitz considers certain
extensions £(E/F) of Gal(E/F) by certain abelian groups £(E/F)°. The most
familiar examples are the local and global Weil groups Wg,p: extensions of Gal (E/F)
by E* in the local case and by Aj/E* in the global case. These extensions are
defined in terms of a canonical class [ap/r] € H*(Gal(E/F),E(E/F)"), but not
by a canonical cocycle. It turns out (because H'(Gal (E/F),E(E/F)%) = (0)) that
E(E/F) is unique up to an isomorphism, which is itself unique up to composition
with conjugation by an element of £(E/F)°.

Having defined these extensions £(FE/F') we will, following Kottwitz, consider what
we call the algebraic (non-abelian) cohomology H,,, (E(E/F), G), where G is a group
(often the E or Ag points of an algebraic group) with an action of Gal (E/F). To
define this cohomology we consider only the set Z! (£(E/F),G) c ZY E(E/F),Q)

al
of cocycles whose restriction to £(E/F)° lie in some gchosen class of homomorphisms,
usually a class of homomorphisms coming from certain morphisms of algebraic groups.
These ‘algebraic’ cocycles will be preserved by the usual equivalence relation and
hence give rise to a cohomology group H;lg(é' (E/F),G). It is easy to verify that
despite the ambiguity in the definition of £(E/F), the pointed set Hy,(E(E/F),G)
is well defined up to unique isomorphism. However Z,, (€(E/F),G) is not.

If F is a local field there will be only one such extension of interest to us: E(E/F) =
Wi/ r - the Weil group defined by the usual canonical class (g p] € H*(Gal (E/F), EX).
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In this case, if G/F is an algebraic group with centre Z(G), then Z,, (Wg/p, G(E))
(resp. Zy,(Weyp, G(E))basic) will denote those cocycles which are given on E* by an
algebraic character v : G,, — G (resp. v : G,, — Z(G)). These are sometimes called
‘algebraic cocycles’ (resp. ‘basic algebraic cocycles’).

However, when F'is a global field, will need to consider several examples of these

groups E(E/F'), which we will now describe.

(1) We define £°(E/F)° = [],ev, Eu, where Vi denotes the set of all places of
E. There is a unique class [ozlg‘/fF] € H*(Gal (E/F), [ ey, Fw) whose image
in H*(Gal(E,/Fy,), EY) equals [ap,/r,] for all w € Vi, We let E°(E/F)
denote the corresponding extension of Gal (E/F) by [[ ey, Fu-

For an algebraic group G/F, basic algebraic cohomology of G(Ag) will be
defined in terms of those cocycles whose restriction to £°¢(E/F)° are of the
form [, vw, where v, : G, = Z(G)/p, is an algebraic character, non-trivial
for only finitely many w.

(2) We define T5 g/F to be the protorus with character group Z[Vg], the free
abelian group with basis the set Vg of places of E with the natural action
of Gal (E/F). Then we set &(FE/F)° = T, p(Ag) and define &(FE/F) as the
pushout of £°¢(E/F) along the embedding [[, EX — [[,Axr = Tor(Ag),
where we identify £ inside inside the copy of A7, indexed by w.

In this case, for an algebraic group G/F', basic algebraic cohomology of
G(Ag) will be defined in terms of those cocycles whose restriction to Ey(E/F)°
come from an algebraic character v : T5 p — Z(G);p. Thus there are natural
restriction maps Z3,(E2(E/F), G(Ap))vasic = Zag(E°°(E/F), G(AER))pasic-

(3) Wg/r will denote the global Weil group, i.e. the extension of Gal (E/F) by
A} /E* coming from the usual canonical class [ag/p| € H*(Gal (E/F), A5 /E*).

(4) We will write £81°P(E/F)? for the subgroup of elements of Ts (A x) whose im-
age in A5 /FE* under any of the characters m,, corresponding to w € Vg is inde-
pendent of w. It turns out (as observed by Nakayama and Tate), that there is
a unique class [a%k/’g] € H*(Gal (E/F), &8 (E/F)®) which pushes forward to
lag r) € H*(Gal (E/F),A}/E*) and to [ozljng] € H*(Gal (E/F), Ty g(Ag)).
We write £8°P(E/F) for the corresponding extension of Gal (E/F) by £8°°(E /F)°.

In this case, for an algebraic group G/F, basic algebraic cohomology of
G(Ag) will be defined in terms of those cocycles whose restriction to Ey(E/F)°
come from an algebraic character v : To p — Z(G)/p.

There are embeddings of extensions loc, : E8°P(E/F) — &(E/F) giving
rise to isomorphisms

locg = (lock) ™t : Z;lg(SgIOb(E/F), G(AE))basic — Zallg(é}g(E/F), G(AE))basic-

The map of extensions is only defined up to composition with conjugation by
an element of 7o p(Ag); and the map of cocycles is canonically defined only
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up to composition with the map from Z, (E2(E/F), G(AEg))basic to itself given
by ¢ +— *®¢ for some t € Ty p(Ap).

(5) Finally we will write T3 g for the protorus over F' with character group Z[Vg]o,
the subabelian group of Z[Vg] consisting of elements » . m,,w for which > m,, =
0. We will write £3(E/F) for the pushout of £8°°(E/F) along £8P (E/F)? —
T55(E).

In this case, for an algebraic group G/F, basic algebraic cohomology of
G(FE) will be defined in terms of those cocycles whose restriction to 13 g(E)
come from an algebraic character v : T, p — Z(G),p. Thus there is a natural
morphism Z}, (E3(E/F), G(E))basic = Zig(E8(E/F), G(AE))basic.

alg
We have a diagram of morphisms of extensions:
E(E/F) « EEN(E/F) - Wgr
loc, |
El(E/F) —  &(F/F)

We,p, «— E°(E/F)|Ga(s/F).

for any places w|v of E and F. A key observation is that, although individually the
extensions £(F/F) we consider here have automorphisms, the diagram as a whole
does not. Thus if we fix such a diagram it makes sense to consider algebraic cocycles
and not just algebraic cohomology classes.

However we have not specified such a diagram uniquely. There are many choices for
the localization map loc,. To the best of our knowledge there is no preferred choice.
The various choices form a set which we will denote H(FE/F'), which comes with a
transitive action of 75 g(Ag). It seems to us that choosing one element of H(E/F) is
a bit like choosing one place of E above a given place of E: there are many choices,
but for most purposes the choice is irrelevant. We will decorate the various extensions
E'(E/F) with a subscript a to indicate it is the one uniquely determined up to unique
isomorphism by a. If a,a’ € H(E/F) and o = "a for some t € Ty p(Ag), then we get
isomorphisms

20 ZL(ENE/F)., G(Ag)) = Z!

alg ag(E(B/F)a, G(AR)),

where Ag denotes E or Ag. There may not be a unique choice of ¢t and the isomor-
phism may depend on the ¢ chosen. However, after one passes to cohomology groups,
it will no longer depend on the choice of ¢.

Given a choice a € H(E/F) we have maps
10Cq : Zpyy(E3(E/F)a, G(E))basic — Z,

alg

(E°(E/F)a; G(AE) )basic
and

res . Z;lg(gloc(E/F)aaG(AE>>basic — H Zilg(WEw(U)/Fw,uu G(Ew))basim

vEVER
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where for each v € Vr we choose a place w(v) of E above it. These induce maps in
cohomology

loc : H:

alg

(53(E/F), G(E))basm — Hahg(‘cf‘loc(E/F)’ G(AE))basic
and
res : H;lg<gloc(E/F), (AE))basu: — H alg WEw/Fw7G<Ew))basica

weVg

which are canonically independent of a. Moreover if E'/F’ is an extension of local
fields isomorphic (but not canonically so) to E,,/F,, then there is a well defined map

respr/pr alg(gloc<E/F> (AE>>bas1c — Halg(WE’/F’; G<E/))basic-

If Fislocal and ¢ € Z,,(Wg/pa, G(E) )basic or if Fis global and ¢ € Z,,(Es(E/F ),
then ad ¢ € Z'(Gal (E/F),(G/Z(G))(FE)) and we get an inner form, referred to as an
‘extended pure inner form’, ?G of G over F. If Z(G) is a torus then Kottwitz showed
that

Hayy(Wiyr, G(E))pasic — H'(Gal (E/F), (G/Z(G))(E))
and
Hy,(E3(E/F), G(E))vasic — H'(Gal (E/F), (G/Z(G))(E))
are surjective.
We recall that when G is connected reductive, Kottwitz defined important maps

: Hyo(E°°(E/F), G(AE) Jbasic — (Z[VE] @ Ac)cal (2/F)
and
K Hyg(E3(E/F), G(E))basic — (Z[Vilo © Aa)Gal (/1)
where Ag denotes the algebraic fundamental group of G. They are compatible in that

r o loc equals x composed with the obvious map (Z[Vg]o ® Ag)cai(e/r) — (Z[VE] ®
AG)cal (2/r)- We will also write

g Hy(E°°(E/F),G(Ap)) — Agcal(z/r)

for the composition of k with the map
Z[VE] (29 AG — AG
Yo LW > Y T
It turns out it is useful to fix slightly more than a € H(E/F). Although the Weil

group Wg,p is only determined up to inner automorphism by an element of Ay /E*,
the absolute Weil group W5, is much more rigid. It is determined up to conjugatlon

by an element of ker(W#,p — Gal (F/F)). The extra data we will add is roughly
speaking a collection of isomorphisms between W, /W%, 5, W, 5] and Wg/p. One

might wonder why one works with Wg/r at all, and not Wz, /W, 5, Wg,/p| di-
rectly. The answer seems to be that, when D D E D F, the way we compare

(E))basim



COCYCLES FOR KOTTWITZ COHOMOLOGY 5

Zallg(S?(E/F), G(AE))pasic and Zallg(é'?(D/F), G(Ap))pasic is not compatible with the
natural map

WF/F/[WF/Da Wf/D] - f/F/[WF/E7 WF/E]-
More precisely by complete rigidification data for a € H(E/F) we will mean the
choice for each place v of F' and each F-linear embedding p : £ — F, (giving rise
to a place w(p) of E) a E -conjugacy class [I', ;] of isomorphisms of extensions

(0) — Gal(E*/E) — Gal (E*/F) — Gal(E/F) — (0)
ArtETz Pfu,p\LZ ||
(0) — AR/(EX)E* — Wgpa/(EX)E* — Gal(E/F) — (0)
such that

(1) I, , lifts to an isomorphism of extensions

Lyp: WF/F/[WF/E WF/E] — We/Fa

whose composition with the natural map

Op : W, 15,/ W oy WE 10mym) — WEp/ IWE/5: W]
is equal to the composition of a canonical map
Lo * Wi/ Foa — WE/Fa

with some isomorphism of extensions

O Wr, 15,/ WE, oy r, W oy p,) — Wy /o

2) and if o € Gal (E??/F) then |I voo| 18 determined in an explicit way by |I,
P p y DY 0
and o.

We will denote by H(E/F)* the set pairs (a,{[[',,]}), where {[[', ]} is complete
rigidification data for a. The action of Ty g(Ag) on H(E/F) lifts to a transitive action
on H(E/F)". One consequence of the choice of a* € H(E/F)" is that if T/F is a
torus split by E, if u € X,(T)(F,) and if 7 € Aut (F,/F), then we can associate an
important element

bat wpr € T(AR)/T(F)T (Fo)°T(E)T(E,).

In the case of the Serre torus, these elements are closely related to the structure of
the Taniyama group.They are also crucial to the explicit description of the action of
Galois on canonical models the Shimura varieties associated to tori. Hence in [ST]

they play a key role in fixing the action of Aut (C) on Shimura varieties.
We have

_ — -1
bta*,v,,u,,’r - ba*,v,,u,ﬂ- H(p ,LL) (tw(p) /tw(rp))y

p

where p runs over F-linear embeddings £ — F,.
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Finally when D D E D F and aj, € H(E/F)" and af, € H(D/F)" we need to com-
pare the sets Z;lg(g?(E/F)aE, G(AER))basic with the sets Zallg(é'?(D/F)aD, G(AD))basic;
and the elements Ba}v,u,f and Z;ajg - 1t turns out that a}, and a}, can be related by
certain elements t € Ty g(Ap) and the choice of such an element both gives rise to
maps

iy Zatg(E (B/F)ap, G(AR)) — Zay(E'(D/F)ay, G(Ap))
and to equalities

=l

abvpr T bag,v,u,T H(p 1'u> (tw(/’)/tw(ﬂ)))?
P
where again p runs over F-linear embeddings F < F,,.

This paper contains no major theorem, but we hope that the formalism we develop,
which we found rather difficult to uncover, may prove useful in other settings besides
[STY.

In section 2 we will give a more complete summary of our results. In section 3
we will recall algebraic facts, particularly concerning extensions and concerning Weil
groups. In section 4 we discuss ‘algebraic cohomology’, axiomatically in a general
setting. In section 5 we discuss local Weil groups and local algebraic cohomology. In
section 6 we discuss the various extensions of global Galois groups which we will need
to consider, before discussing global algebraic cohomology in section 7. In section 8
we discuss how these extensions of section 6 compare to Weil groups, and how this
leads to the construction of the important special elements 5a+7v%7. Finally in section
9 we recall Langlands’ construction of the Taniyama group and discuss its relationship

to our special elements Butv,;m- We will also prove some additional results which we
will need in [ST].
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2. SUMMARY OF RESULTS

Because our paper contains no ‘main theorem’ but rather a framework, which we
hope will be useful, we begin by summarizing the results, which we will establish.

2.1. Some extensions of global Galois groups. If F'is an algebraic extension of
Q, we will write Vg for the set of its places. We will also write F# for the maximal
abelian extension of F inside a fixed algebraic closure F' of F.

If E/F is a finite Galois extension of number fields we will write 75 g (resp. T3 )
for the protorus over F' with cocharacter group Z[Vg| (resp. Z[Vg]o) with its natural
action of Gal (E/F). Here Z[Vg] denotes the free abelian group with basis the set,
Vi, of places of E, and Z[Vg]o denotes the subgroup of elements ;. m,w where
> wMw = 0. Thus there is a natural short exact sequence

(0) — G, — To g — T 5 — (0).

We will denote by m, : T g — G, the character corresponding to w € Vg. Now
suppose that D D FE D F are number fields Galois over F'. Then we have

I 7o Tee(an) = ] A%
weVE weVE

but with Galois action given by

0((Ty)w) = (0Z5-14)w-

We have
HY(Gal(D/F), Ty 5(Ap) = (0)
and
H'(Gal (D/F), T3 (D) = (0).
The map

YoM > Y myulg

gives rise to a commutative diagram

0) — G, — Thrg — Tze — (0)

| the Vipe

0) — G, — Thwp — T3p — (0);

and the map
YowMuww = Y [Dy o By lmy,u

gives rise to a commutative diagram

0) — G — Thyp — Tzp — (0)
[D:E]] 770D/E \: 4 UOD/E
0) — Gm — Thy — T35 — (0),
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and
nOD/E © LOD/E =[D: EJ.
Note that

0,%

tpe * ZVplca (p/E) — Z[Vg).

In fact we also have
L%jE : Z[VD]O,Gal (D/E) — Z[VE]O-

Continue to suppose that D D E D F' are finite Galois extensions of a number field
F. We will set

E(E/F)}, = [] Di € Top(Ap)

weVE

(with D thought of inside the w-copy of A})) and
EFP(E/F)Y) = {(zy) € Top(Ap) : z, mod D* is independent of w} C Ty p(Ap).
These are preserved by Gal (D/F). There are exact sequences
(2.1) (0) — AF — EEY(E/F)Y, — T3 p(D) — (0),
and
(22) (O) — ggIOb(E/F>OD — TQVE(AD) X AB/DX — T27E(AD)/T2,E(D) — (0)
and
(2.3) (0) — Ty p(D) — EE(E/F)}, — AJ/D* — (0).
We have
H'(Gal (D/F),E°(E/F)}) = (0)
and
H'(Gal(D/F),E8"(E/F)p) = (0).
We will be most interested in the case D = FE, in which case we will drop it from
the notation, writing for instance £°¢(E/F)? = £°°(E/F)% and E8°P(E/F)° =
Eeb (B F)Y..
If C D DD FE D F are finite Galois extensions of a number field F', then
Npyp : €°(D/F)g — E(E/F)¢
and
Nyt E8P(D/F)e — EXC(E/F)e.
The diagrams

ge(D/F)y 2 go(B/F),
1 1
(Z4) ufw — Hu|w ILDu:Fw}
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and
geb(D/F)Y, 25 geob(B/F)Y,
1 1
azjox PE e
commute.

In section we will define abelian groups Z(E/F)p D B(E/F)p with com-
patible actions of T, g(Ap) such that Th g(Ap) acts transitively on the quotient
H(E/F)p = Z(E/F)p/B(E/F)p. The stabilizer in T5 p(Ap) of any element of
H(E/F)p is EX°(E/F)LEP(E/F)S Ty g(Ar). To an element a € H(E/F)p we
associate (uniquely up to unique isomorphism):

(1) Extensions
(0) — EY(E/F)}) — £°°(E/F)p. — Gal (D/F) — (0)
and
(0) — ESP(E/F)Y, — E8°P(E/F)py — Gal (D/F) — (0).

(2) Writing &(E/F)p, for the pushout of £°¢(F/F)p, along E°¢(E/F)Y, —
T g(Ap), a canonical map of extensions

locg : EEP(E/F)pa — E(E/F)pa.
(3) An extension
(0) — T3 p(D) — &E(E/F)po. — Gal(D/F) — (0)

defined as the pushout of E8°P(E/F)p 4 along E8°°(E/F)%, — T3 g(D).
(4) An extension

(0) — A} /D* — Wg/ppa — Gal(D/F) — (0)

defined as the pushout of £8°°(E/F)p, along E8°P(E/F)% — AY/D*. The
extension Wg/ppq is isomorphic to the pushout Wga pp of the pullback
Wigab jp|cai(pyry of Weil group Wgas/p from Gal (E/F) to Gal (D/F) along
AL/E* — A5 /D*, ie.

ESPE/F)pa/Toz(D) = Wga e = (A /D* X (Wgab X Gal (/) Gal (D/F))) /(AR EX).

This isomorphism is not canonical: it is only defined up to composition with
conjugation by an element of A};/D*. (The global Weil group

Wi e = Wep/ W5 W/l

is defined up to an isomorphism that is only unique up to composition with
an element of EX(EX)0/E*.)
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(5) If w|v are places of E and F', an extension
(0) — Dy — Wg, k. pa — Gal (D/F),, — (0)

defined as the pushout of £°(E/F)p a|cal(p/F), along E°(E/F)}, — Dy.
(Here Gal (D/F),, denotes the stabilizer of w in Gal (D/F).) If p: E < F,
gives rise to w then there is an isomorphism of extensions

W, kD0 = Wip(E)F,)e/Fy 0D

where we define

Wi r)w Eyp0 = (Do X (Wiymyr,)oo/p, Xcal (B/F), Gal(D/F)y))/Ey

where:
® Wi, (p)r,)»/r, denotes the local Weil group.

® Wi gyr,)»/p, — Gal (E/F), is the composition of W, g, )a0/m, — Gal ((p(E)F,)/F,)

with the inverse of the isomorphism Gal (E/F), — Gal ((p(E)F,)/F,)
induced by p.
® Wi ey, p, XGal(B/F), Gal(D/F), acts on D} via its projection to
Gal (D / F)u.
e The map Ej; — D % (Wi,g)p,)/F, Xcal(8/F), Gal (D/F),) sends a to
(@™, (ryiye. (p(a)). 1))
The isomorphism Wg, /r, Do & W(,E)R,)™/F, p,p 18 not canonical, but only
defined up to composition with conJuga‘mon by an element of D.. (In this case
the group W(p( B)F,)2/F,p,p 18 defined up to unique 1somorphlsm IfD=F
then W, U)ab/Fm%D is simply the local Weil group W,g)r, /5, -)
(6) If u|w|v are places of D, E and F' an extension

(0) — D; — Wg,/F, Dy, — Gal(D/F), — (0)

defined as the pushout of Wg,/r, polcai(p/r), along Dy — D. The ex-
tension Wg, /F, b, 18 isomorphic to the pushout Wgabr, p, of the pullback
Wigab sk, |Gal (D, /F,) Of local Weil group Wgan , from Gal (E,,/F,) to Gal (D, /F,)
along £ — Dy, i.e

Wey/FyDua = Weav /g, p, = (D X (Wb /g, XGal (B,/F,) Gal (Du/F,)))/Ey .

This isomorphism is not canonical: it is only defined up to composition with
conjugation by an element of D).
(7) If w|v are places of F and F' a map of extensions

Ly WEg,/F,.D.a = WE/FD.a
compatible with D) < A% /D*.
If p: E* — F, then there is a map of extensions (the ‘decomposition
group’)
(9,) : W(p(E)Fv)ab/Fv — WEab/Fy
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which is well defined up to composition with conjugation by an element of
EX(EX)?/E*. It induces a map of extensions

ep . W(p(E)Fv)ab/Fu,p,D — WEab/F,D

sending [(a, (¢, 7))] to [(a, (8,(c),7))]. Then 6, and ¢, will differ (after making
the above identifications) by composition with conjugation by an element of
A% /D* (of course depending on p).

(Thus, in the case D = FE, the choice of a € H(E/F) inter alia gives rise to a preferred

decomposition group in Gal (E2?/F) above each place w of E. We think of the choice

of a as being analogous to the choice of such decomposition groups.)
Diagramatically we have (for w € V3):

E(E/F)pg ¢+——— E¥Y(E/F)py ——— Wg/rpa

lloccl

510C<E/F)D7a < > 82(E/F)D,a

] .

EY(E/F)palca(p/Fy, ——— Wey/Fy.Da

J J

EY(E/F)palcaip/Fy. — WEy/F,.D.alGal(D/F). — Wy F)Dy

Our principal interest will be in E8°°(E/F), and Wg, /r, ., which is significantly
simpler. Here the diagram becomes

gg(E/F)a ‘&« ggIOb(E/F)u —> WE/F,a

llocu

EXYE/F)y ————— E(E/F), .

J

EYY(E/F)alcaB/F), — Wew/Foa

with Wg/r non-canonically isomorphic to Wgan/p and Wg, r, o non-canonically iso-
morphic to Wgas /. However the more general extensions with a D will be required
to compare the theory for different extensions E/F and D/F.

The choice of a ‘cocycle’ av € a gives rise to distinguished lifts e8°° (o) € E8°P(E/F)p,
and €X¢(c) € E°(E/F)p, of o € Gal (D/F).

If t € T, p(Ap) there are canonical isomorphisms

5 E(B)F)py — E(E/F)pia

for each of the extensions considered above. They commute with all the arrows in
the above diagram, except for the arrows that go between the first row and one of
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the other rows. For these we have
3t o locy = conj, o locty 0 34

and
coniy, 030015, = 1503
The stabilizer of any element of H(E/F)p is E°(E/F)LESP(E/F)LTo p(Ar).
Thus the choice of ¢ taking one element of H(E/F)p to another is not unique.

If BDC > D D> FE D F are finite Galois extensions of a number field F', then
there are maps

inf : Z(E/F)p — Z(E/F)c

and
"D/Ex - Z(D/F)C — Z(E/F)C7
which induce maps

g/llfj :H(E/F)p — H(E/F)c

and
Np/eqx: H(D/F)e — H(E/F)c.
They satisfy:
infp,coinfo/p = infp/p.
ND/Ex © NC/D,x = TC/E -

infB/C O77D/E,* = 77D/E,* e} infB/C : H(D/F)C — H(E/F)B

infc/D tg =1 infc/D a.

nD/E,*ta e nD/E(t)T/D/E,*(a)

There is a canonical identification of E'(E/F)c it ,pa With the pushout of

5?(E/F)D,a’Gal(C/D) = €?<E/F>D,a X Gal (D/F) Gal (C/F)

along
ENE/F)p — ENE/F)e

for each of the extensions considered above. (In the case Wg, /r, .po We use
Wg./Fy,D.alGal (¢/F).-) These identifications commute with the maps loc,, ¢,
and 3;.

e There is a canonical identification of E*(E/F)cy, /.0 With the pushout of

E'(D/F)c, along
npe € (DJF)g — E(E/F)¢

for each of the extensions considered above, except for the case Wp, /r, ca-
These identifications commute with the maps loc, and 3;. The case of Wp, /F, c.a
and ¢ are more complicated and described in lemma in the case C' = D.
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2.2. Algebraic cocycles. We define the following pointed sets of algebraic cocycles:

(1)

If G/F is a linear algebraic group, we define Z,(€3(E/F)pq, G(D)) to be
the set of 1-cocycles ¢ : E3(E/F)p . — G(D) such that there is a, necessarily
unique, algebraic homomorphism v, : T3 5 — G over D with ¢|p, ,(py = vs.
We also define Z;lg(c‘fg(E/F)D,a, G(D))pasic to be the subset on which v, factors
through the centre Z(G) of G, in which case v is defined over F. Both these
pointed sets of cocyles have natural actions of G(D) via the usual coboundary
map.

If G/Ap is a linear algebraic group, we define Z},(E8°°(E/F)p.., G(Ap)) to
be the set of 1-cocycles ¢ : EBP(E/F)p, — G(Ap) such that there is a,
necessarily unique, algebraic homomorphism vy : Ty p — G over Ap, which
is G(Ap)-conjugate to one defined over D, with ¢|gsov(p/pyp = V4. We also
define Z,,(E8°P(E/F)p.a, G(AD))pasic to be the subset on which v, factors
through Z(G), in which case v, is defined over F. Both these pointed sets of
cocyles have natural actions of G(Ap) via the usual coboundary map.

If G/Ap is a linear algebraic group, we define Z,,,(E2(E/F)p.., G(Ap)) to
be the set of 1-cocycles ¢ : E(E/F)p. — G(Ap) such that there is a, nec-
essarily unique, algebraic homomorphism vy : T 5 — G over Ap, which is
G (Ap)-conjugate to one defined over D, with ¢|r, ,a,) = V. We also define
Zmg(E(E/F)pa; G(AD))pasic to be the subset on which vy factors through
Z(G), in which case v is defined over F. Both these pointed sets of cocyles
have natural actions of G(Ap) via the usual coboundary map.

If G/F, is a linear algebraic group, we define Z},,(Wg, /r, D0, G(Du)) to be
the set of 1-cocycles ¢ : Wg, /p, p.,a = G(D,) such that there is a necessarily
unique, algebraic homomorphisms v, : G,, — G over D, with ¢| px = Vo
We also define Z;lg(WEw /Fy,Dusas G(Du) Jbasic to be the subset on which each v
factors through Z(G), in which case v is defined over F,. Both these pointed
sets of cocyles have natural actions of G(D,) via the usual coboundary map.

In each case we will write

and

Hl

alg

(E'(E/F)pa G(Ap)) = G(Ap)\Zuy(€'(E/F)pa, G(Ap))

Hilg(g?(E/F)D,uv G(AD))basic = G(AD)\Zilg(g?(E/F)Qm G(AD))basim

for each of the groups £'(E/F)p, discussed above, with Ap equal to D, Ap, Ap, D,
respectively.
There are equivariant maps natural maps
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(&3(E/F)p.a, G(D)) —— Zy,(E¥°P(E/F)p,a, G(AD))

:100m NT
Z o (E°(E/F)p.alcal(p/F).» G(Du)) N Z 3 (E°(E/F)p.a; G(Ap)) +—— Z}\,(E2(E/F)p.a; G(AD))

Zallg(WEw/Fv7Du,a’ G(Du))

which preserve the basic subsets, are functorial in G, and pass to cohomology. This
induces maps

ZL(E(B/F) T G(D,) — 24 (W, k. pue G(DW))

alg

taking basic elements to basic elements (where u|w|v are any choices of places of
D D E D F above v), and isomorphisms

a]g<510C<E/F>D ayG(AD N H alg EIOC(E/F)VF {v} G( ))
vEVER
and
alg(gloc(E/F)D a G(AD))basu: — H alg SIOC(E/F)VF v} G( ))basic
veVR

where the products are restricted with respect to the subsets Z'(Gal (D/F), G(Op.,)).
This in turn induces isomorphisms

HY (E°(B/F) Y G(D,) 5 HY, (W, /5, Do G(Du))

alg
and
alg(gloC(E/F)VF Y G(D,))basic — H. ais Wy /5y, Dusas G(Du))basic
and
alg(gloc(E/F)DmG(AD)) -~ HUEVF alg(gmc(E/F)Vp {v} ,G(D,))
— HUEVF Halg(WEw/Fv,Du,aa G(Du))
and

oc ~ oc Vi v
Hy(E°(E/F)p e, G(AD) )basic — [Toev, Ha(E°(E/F) 5y Y G(D,))basic
— HUGVF Halg<WEw/Fu,Du,a7 G(Du))basm
where the products are restricted with respect to the subsets H'(Gal (D/F), G(Op.))

(resp. H'(Gal(D,/F,),G(Op.))). If G is a connected linear algebraic group, then
we even get

alg<£10C<E/F)D 07G(AD))baSiC % @’UGVF alg(510C<E/F)VF {v} G( ))basic
— @UGVF Halg(WEw/Fv,Du,aa G(Du))basm
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and

H;lg<gloc(E/F)D,ﬂ7 G(AD))baSiC ;> @UEVF,Hélg(510C<E/F>gjc;{v}7 G(D'U))basic

;> @vGVF/Halng<WEw/Fu,Du,av G(Du))basic

If EY/F, is a finite Galois extension and G/F, is an algebraic group, we de-
fine Z},(Wigoya,r,, G(E,)) (vesp.  Zy,(Wigoyw/p,, G(EY))basic) to be the subset of
ZH(Wgoyan 1, G(EY)) consisting of cocycles ¢ whose restriction to Wgoyb g are

of the form vy o Art y for some v, € X,(G)(EY) (resp. X.(Z(G))(F,)). The
pointed sets Z;lg(W(Eg)az/Fv, G(EY)) and Z,(Wgoya 5, , G(E}))basic are preserved by
the coboundary action of G(E}) and we denote the quotients Hy, (Wgoy,p,, G(E))
and Hy, (W gy p, , G(EY) )vasic respectively. If £/Q is a finite Galois extension and
w|v is a place of E such that E, = E? over F,, then the choice of an isomorphism of

extensions Wgoyav /g, = W, /F, o gives rise to bijections

ZneWigoyaop, G(E))) = Zy, (W, /5,0, G(Ew))

alg
and
Hae W0y, G(EY)) = Hy(Wa, /5, G(Ey))

identifying basic subsets. The latter is independent of the choices of isomorphisms
E? >~ E, and W0y, = Wg,/F,,a- The composite of this map with res,, gives a
map

tespya, : Hiy(E°(E/F). G(hg)) — Hhy(Wiggy/ . G(ED)
which takes basic elements to basic elements and which is independent of all choices,
including the choice of w.

If F is a number field and E/F is Galois will write ker'(Gal (E/F), G(E)) for the

kernel

ker(H'(Gal (E/F),G(E)) — H HY(Gal (E,/F,),G(E,))).

veEVR

We will sometimes write ker' (F, G) for ker' (Gal (F/F),G(F)). If G is reductive then
ker'(Gal (E/F),G(E)) is finite. It vanishes if G is semi-simple and either adjoint or
simply connected. If now D D E D F' are finite Galois extensions of a number field
F, then the kernel of

loc : H!

alg

is exactly ker' (Gal (D/F),G(D)).
If G* = G/Z(G), then there is a natural map

ZE(E(E)F)pa, G(Ap))basic — Z1(Gal (D/F), G (Ap)).

alg

(In the fifth case we of course have to replace Gal (D/F') with Gal(D,/F),).) Thus
if 9 € Z (E'(E/F)p.a, G(Ap))pasic there is a canonically defined inner form ¢G

alg
of G over Ap, together with an isomorphism ¢, : G x Ap = ®G x Ap such that
o1y(9) = ts((ad ¢(0))(og)) forallo € E(E/F)pq and g € G(Ap). If h € G(Ap) then

(&(E/F)p, G(D)) — H,

alg

(E°(E/F)p, G(Ap)



16 JACK SEMPLINER AND RICHARD TAYLOR

there is a unique isomorphism ¢, : °G = "¢G over F such that 1, 0 15 = thy o conjy. If
) € Z;lg(é'?(E/F)D,a, (?G)(Ap)), then ¢ € Z;lg(é'?(E/F)DJ, G(Ap)) and this gives
a bijection of sets

Zallg(g?(E/F>D,a7 ((bG)(AD)) ;> Zl

alg

(EX(B/F)pa, G(Ap)),

but this map does not preserve neutral elements. This product induces an isomor-
phism of basic subsets, is functorial in G and commutes with all the maps in the
above diagram comparing the different cohomology theories we are considering. The
composite

Ly © Lgl o lel . ¢(¢G) AN TZ@G
is defined over F. We have (99))¢ = 9(¢¢) and so we get a bijection
Hoo(E¥(E/F)p,a, (°G)(Ap)) = Hyy(E'(E/F)pa, G(Ap)).

alg alg
Moreover (i, 0 19)?¢ = 9(¢p¢), and if we use ¢, to identify G and *°G then the map
induced in cohomology by ¢ only depends on [¢] € H,,, (€ (E/F)p.a G(AD))basic- We
also have v,y = vyvy.
If t € T, p(Ap) then 3; ' induces maps
(E(E/F)pa, G(Ap)) — Z!

alg

2 Z

alg

(E'(E/F)p,, G(Ap))

which preserve basic subsets, are functorial in GG, and are equivariant for the G(Ap)-
action, so that they pass to cohomology. We have v o z; = v and 244, = 2, © 2,
and z;(v¥¢) = z(¥)z(¢). The maps z; commute with all the arrows in the above
commutative diagram, except those between the top row and the second row. In that
case one has

(loctq 0 2)(¢) = ¥*® (2, 0 locy)(¢).

The maps the 2 induce in cohomology are independent of ¢, and so H},(£'(E/F)p.., G(Ap))
and H ;1g(5 (E/F)p.a, G(Ap))basic are canonically independent of a. Thus we will de-
note them simply H;lg(é’?(E/F)D, G(Ap)) and Hallg(é’?(E/F)D, G(AD))basic-
Now suppose that C' > D D E D F are finite Galois extensions of a number field
F'. We obtain maps

iIlfC/D . Zallg((c;?(E’/F‘)D,Cl7 G(AD)> — Z;1g<g?(E/F)D,a|Gal(C/F)a G(Ac)>
— Zp(E'(B/F)ca, G(Ac))

and
(EX(D/F)cq G(Ac)).

These maps preserve basic subsets, are functorial in G, and are G(Ap)-equivariant so
that they pass to cohomology. They are compatible with products and all the maps in
the above commutative diagram. We have voinfc,p = v and (vony, ) (¢) = vsonp e

and z o infe/p = infeo/p oz and z o0 nE/E = nE/E O Znp 5(1)-

Mpse * Zag(E (E/F)cup,p.0: G(Ac)) — Zy

alg
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Ifap € H(D/F) and ag € H(E/F) the we can find at € Ty g(Ap) with np/p.ap =
Yinfp,p ap. Then we set

2 infp/ g °
st 28 (€ () Flaps G(AR) 25 Z8, (€ (B/F)pintyypans G(Ap))
= Zy(E(E/F)panpp..an G(AD))
n*D E 2
5 Zh,(E1(D/F)ay, G(Ap)).

This map is functorial in G, preserves basic subsets, commutes with products, and
passes to cohomology, where it is independent of ap, ag and ¢t so we will denote it
simply infp,gr. These maps are all injective even on the level of cohomology. They
commute with all the maps in the above commutative diagram, except those between
the top and second rows. We have

loca, (nf (9)) = inf (locs,0).

Note that infp/p, = 2 and Vint, 0 = Vg onpe. 1f a € T p(Ap) and b €
EEP(E/F)Y and ¢ € E8°P(E/F)Y), then
inf (¢) =" inf (¢)

D/E,abct D/Et

if ¢ € Z3,(Es(E/F)ap, G(E)) or Zy,(E¥(E/F)ay, G(Ag)), while
. _ vl
/B o/ ?)
if ¢ is in any of the other groups of cocycles ZY,(E'(E/F)a,, G(Ag)). If C' D D is
another finite Galois extension of F' and if ac € H(C/F) and if ¢’ € T p(A¢) with
Nc/Dx0C = t/ infC/D ap, then

inf o inf = inf .
C/D7t/ D/Evt C/EvtnD/E(t,)

Following Kottwitz, we define

B(F,G) = lim H!
—.E

alg

(E(E/F), G(E))

and

BY(F,G) = lim H}, (€**(E/F), G(Ap))

and
B(F,,G) = lim H},(Wg,/r,, G(Ey)),
*)7E’LU

a.

and similarly B(F, G)pasic, B(F, G)pasic and B(F,, G)pasic-
If T/F is a torus split by £ and if &« € a € H(E/F') we get correstriction maps

cor & : Z[Vilo @ X,.(T) = Hom (T3, T) — Z1(E3(E/F)a, T(E))

alg
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and
cor 3¢ : Z|Vi] ® X.(T) = Hom (To p, T) — Zy (E°(E/F)a, T(Ag)),
defined by
cor§®(x)(o) = H 0~ x (8" (n)oed ™ (no) ™)
ne€Gal (E/F)
and
cor 5°(x)(0) = H N~ x (et (n)oeg(no) ™).
neGal (E/F)

They induce maps

cor 8 : (Z[Vglo ® X (T))Gal (r/r) — Hag(E3(E/F),T(E))

alg
and
cor ' : (Z[Vi] @ X (T))qa1 (5/r) — H_

alg

(E°(E/F), T(AR)),
which are independent of @ and a and, which Kottwitz showed, are isomorphisms.
They satisfy loc, o cor8°? = cor!°c. (However it is not true that loc, o cor 8°° = cor 19¢
on the level of cocycles.)

Suppose that F is totally complex and that G/F' is a reductive group which con-
tains a maximal torus (over F'), which splits over E. Write Ag for the arithmetic
fundamental group of GG. Then Kottwitz also showed that there are unique maps

k0 Hyo(E3(E/F),G(E)) — (Z[Vilo ©z M) car (5/F)
and

K Hy (E°°(E/F),G(Ag)) — (Z[VE] @ Ag)gal (5/F)
with the following properties:

(1) They are functorial in G.
(2) If G =T is a torus then they equal cor ~'.
(3) koinfp gk equals the composite of the natural isomorphisms

(Z|Vplo ®z Ac)cal (p/r) — (Z]VE)o ®2 Ac)Gal (B/F)
or
(Z[Vp) ® Ac)cai(pyr) — (Z]VE] @ Ac)cal(B/P)
(induced by the maps Z[Vp| — Z[VEg| sending u +— u|g) with &.
(4) ko loc equals the composition of the natural map (Z[Vg]o ® Ag)gai(g/r) —
(Z[VE] X AG)Gal(E/F) with k.
We will denote by & the composite
Hy (E°°(E/F)s, G(Ag)) = (Z[VE] ® Ag)cal(5/r) = Ae,cal (&/F)

induced by ) w® z, — >, 2,. Note that & oloc = 0. We warn the reader that
our k has a different meaning from Kottwitz’s use of the same symbol.
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Kottwitz proves that there is a cartesian square

@y|ooresvoloc

B(F, G)basic Hv\oo B(Fm G)basic
K Hv\oo K
(ZVEglo ® Ac)gal () F) — [Tojo0 Ac,Gal (577,
Do W Ay — (D eal (B5/F0\Gal (B/F) TAc=15)vloo;

where E/F is a sufficiently large finite Galois extension and where v|v is a place of
E. In particular the fibres of k : B(F, G)vasic = (Z[VE]o ® Ag)cal(/r) are finite.
The map
loc : B(F, G)pasic — ker & C B°(F, G)pasic
is surjective with finite fibres.

If S is a finite set of places of F', we will write B(F, G)gpasic for the inverse image in
B(F, G)basic under x of the image of Z[VE,S]O Rz AG in (Z[VE]O Rz AG)Gal (E/F)- (ThlS
is independent of E/F.) Given such a finite set .S, there is a finite Galois extension
D/F such that B(F,G)spasic is contained in the image of Hy,(E3(D/F), G(D))pasic-

2.3. Rigidification. There is a second set H(E/F)j, with a transitive action of
T p(Ap) which comes with an equivariant surjection

H(E/F): — H(E/F)p.

If p: E < F, is F-linear we will write w(p) for the place of E above v induced by

p-
An element of H(E/F)}, is a pair (a,{[T,]}), where a € H(E/F) and where for

each place v of F' and each F-linear embedding p : E®*D — F,, the set [[',] is a
D:}(p)—conjugacy class of isomorphisms

r,: WEab/FVD/EX(Ego)O — WE/F,D,a/EX (BX)°

such that

e There is an isomorphism of extensions

LUp:Wgavpp — WE/F D,

which lifts I',, and an isomorphism of extensions

@ : W(EFv)ab/F?Hp’D WEw(p)/Fvaaa

such that
Lgu(p) 0O =TI,00,.

o If 0 € Gal (E**D/F), then [I

where

po) = [[9] for some (and hence any) o € a,

oo . . .
e = COnj,. (elec (o~ )loca(eBP(o—1)~1)) © CORJ glob ;1) © I’y o conj,
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We call {[T',]} complete rigidification data for the image a of a® in H(E/F)p.
If F is totally imaginary, the stabilizer in Ty (Ap) of any element of H(E/F)}, is

E°(E/F)pE8(E/F))pTor(Ar) [ BX(BL).
weVg
If B>C>D > FE D F are finite Galois extensions of a number field F' then there
are maps

inf H(E/F)}, — H(E/F)§

and
/Bt H(D/F)s — H(E/F)

compatible with the corresponding maps for without complete rigidification data.
Moreover these have the following properties:

o infc/D bt = tinfC/D at.
Np/ptat =100, 5 at
infB/C @) infc/D = iIlfB/D.
ND/Ex © Neypy = Neyex - H(C/F)E — H(E/F)E.
np/Ex©infpc = infg/conp/p.: H(D/F)5 — H(E/F)E.
Suppose that af, € H(C/F)* and af, € H(D/F)" and af;, € H(E/F)" satisfy
Tlc/D7*Clg = infc/D ClE and T]D/E‘7*CLJDr = tinD/E aJEr with ¢/ S TQ’D(AC) and
t e T2,E(AD)' Then

Neypxal = 10Ed) Inf aj.

Now suppose that a* € H(E/F)}, that T/F is a torus split by E, that v is a place
of F, that 7 € Aut(F,/F,) is a field theoretic automorphism of F, fixing F (but
not necessarily continuous), and that p € X.(7')(F,). Then there is a well defined
element

bt wpur € T(Ap)/T(D)T(Dy)T(F)T(Fx)o
with the following properties:
e If D= F and «x € a, the image of a® in H(E/F), then thereis alift b € T'(Ap)
of I_)a+ﬂ)%7 such that

o -1 oc -1
locacorg b((p 1) © (Ww(p)/ﬂw(m))) = bcorla (" wo (Ww(p)/ﬁw(m)))-
i Ba“’,v,u,ﬁ'rz = Ba+,v,72u,'r1l_7at,v,u,'rz~
e If 7 is continuous, then bg+, ,, = 1.
o If if p: B — F, is F-linear, if 7 fixes the image of E in F,, and if a, € A
with po Art g(a,) = 7 o p, then

Baﬂv,u,f = H U(p_lﬂ) (aﬁ)_l'

neGal (E/F)

There elements enjoy the following functorialities.
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e Ifat € H(FE/F)} and x : T — T’ is a morphism of algebraic groups over F,
then Euﬂv,xou,r = X(5a+7v,u,'r)'

o If at € H(E/F)}, then bing,, ot wur = bt o

o If at € H(D/F){, then by, . ot v pur = bat e

o Ifat € H(E/F)} and t € Ty z(Ap), then

Eta*,v,,u,’r - ?a*,v,p,,T Hp(piiu) o (ﬂ-w(p)/ﬂ-w(Tp))(t)
- ba"‘,v,,u,r Hp(p (/J“/T:U’))(tw(l?))
where p runs over F-linear embeddings p : E < F,,.

e Suppose that a, € H(E/F)" and af, € H(D/F)*. Then we can find a
t € To g(Ap) such that 'infp/g af, = np/p.a}, € H(E/F)}, in which case

Batomr = ?C‘E:U:Mﬂ'Hp(p:lﬂ)(tw(fﬁ’)/tw(ﬂ)))
= baE,v,u,T Hp(p (T“/M)(tw(p)))a

where p runs over F-linear embeddings E — F,,.

These elements are closely connected to, and generalize the cocycles that define the
Taniyama group, which we will now explain.

Write C*# for the algebraic closure of Q in C. If E/Q is a finite Galois extension
we will write £ N C for its image under any embedding into C. Then there is a torus
Sec/Q, called the Serre torus, with cocharacter group

X*(Sg) = {(p,w) € Map (Gal (ENC)/Q),Z)xXZ : @(cct)+p(oT) = w Yo, 7 € Gal (ENC)/Q)},
with a left action of Gal (C*8/Q) given by
o(p,w) = (1 @la™'7),w).
The torus Sg ¢ has an action of Gal (E'NC/Q) defined over Q and characterized by
X ([ (e, w) = (7= (7771, w).
There is also a canonical cocharacter " € X, (Sg,c)(C) defined by
X (™) g w) = ¢(1) € 2= X (G).

Importantly Sgc(Q) is a discrete subgroup of Sgc(A>).
Langlands defined a pro-algebraic group Sgc, the Taniyama group, which is an
extension of Gal (E** N C/Q) by Sg.c, where the induced action is via 7 — [7]:

(0) — Spc — Spc — Gal (B> N C/Q) — (0).
It comes with a canonical section
sp : Gal (E* N C/Q) — Spc(A%).

It has the properties that gE,c(E) surjects onto Gal (F**NC/Q), and that §E7C | Gal (Eab A/ ENC)
is abelian. We have the following equality:



22

JACK SEMPLINER AND RICHARD TAYLOR

e If o € Spc(E) and 7 € Aut (C/Q) have the same image in Gal (E** N C/Q)
and if a € H(E/Q), then
a_lsp(T) € SE7c(E)SE7(c(AOO) C SEy((j(AOEO)
lifts

ba+ oo peon » € Spc(AF)/Sec(E).
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3. ALGEBRAIC BACKGROUND

3.1. Notations. For simplicity we will assume all fields we consider in this paper
will be assumed to be perfect unless we specifically say otherwise.

If Fis a field we will write F for an algebraic closure of F' and F?" for the maximal
abelian Galois extension of F in F. If E/F is a Galois extension and L/F any field
extension, then we will write £ N L (resp. EL) for p(E) N L (resp. p(E)L) for any
F-linear embedding p : E < L. The field E N L (resp. EL) is a subfield of L (resp.
L) independent of the choice of p, but the identification of £ N L with a subfield
of E depends on p. If L is any field of characteristic 0, we will write L& for the
subfield consisting of elements algebraic over Q. If L/K is any extension of fields we
will write Aut (L/K) for the group of field theoretic automorphisms of L which fix
K pointwise. If L has characteristic 0 (resp. p > 0) will write Aut (L) for Aut (L/Q)
(resp. Aut (L/F,)). If L/K is Galois we will write Gal (L/K) for Aut (L/K). If E is
a subfield of C*# then

(CAUt (C/E) _ E.

If I is a local field of characteristic 0 we will write Art p : F'* — Gal (F#/F) for
the Artin map. (Normalized to take uniformizers to geometric Frobenius elements.)

If F'is an algebraic extension of Q we will write Vi for the set of places of F' and
Ay for the ring of adeles of F. (In the case that F' is an infinite extension of Q then
Ap =lim_,p Ap, where E runs over subfields of F' finite over Q.) If v is a place of F’
then by F, we will mean lim_,g F, as E runs over subextensions of F'/Q which are
finite over Q. (So F, may not be complete, but it is algebraic over Q,.) If F'is a
number field will write Art 7 : A} /F>*(FX)? = Gal (F**/F) for the Artin map.

If E/F is an algebraic extension of fields with ' a number field and if S C Vp we
will write Vi ¢ for the set of places of I above a place in S, and Ag g for the ring of
adeles of E supported at the primes in S. (If £ is also a number field then Ag g is
the restricted product [T, wipes Eu-) Moreover A% =Apv,_s.

We will write Z[Vgs] for the free ablelian group on Vgg and Z[Vgglo for the
subabelian group consisting of elements » © m,w with > m,, = 0. If E/F is Galois,
both groups have a natural action of Gal (E/F) via o), m,w = Y my(ow) =
Y M1 W.

If F is an algebraic extension of Q and K is a local field and p : F < K, then
we will write v(p) = v(F, p) or w(p) = w(F,p) or u(p) = u(F,p) for the place of F
induced by p. (We will tend to use v(p) when the field is denoted F', w(p) when it
is denoted E and u(p) otherwise.) If moreover F//Q is Galois and 7 € Aut (K), then
we will write 77 for the element of Gal (F//Q) satisfying p o 77 = 7p.

If E/F is a Galois extension with ' a number field, and if v is a real place of F' we
will write [¢,] for the conjugacy class in Gal (E/F') consisting of complex conjugations
at places above v. If FF'= Q and v = oo we will simply write [¢].



24 JACK SEMPLINER AND RICHARD TAYLOR

If G is an (algebraic) group then Z(G) will denote its centre and G®! will denote
G/Z(@). Moreover G will denote its commutator subgroup and C(G) = G* will
denote it co-center/abelianization G/G. If H C G is a subgroup we will write
N¢(H) for its normalizer and Zg(H) its centralizer. If H has finite index, we will
also write tr /g : G* — H?" for the transfer map. If H is normal in G, then the
image of tr g,y is contained in (H**)¢/. If G acts on X we will write [z]¢ for the
G orbit of x € X and Zg(z) or G, for the stabilizer of z in G. If G is an algebraic
group acting on a variety X over a field F' and x € X (F), then [z]g is a variety, and
[7]a(F) D [x]ar), but these two sets may not be equal.

If G is an affine algebraic group over F' then there a scheme X,(G), smooth and
separated over F, and a homomorphism p™V : G,, xr X.(G) — G xp X.(G), such
that if S is any F-scheme and p : G, s — Gg is a homomorphism, then there is a
unique morphism S — X, (G) under which "™ pulls back to p. Moreover

G x X.(G) — X.(G)x X.(G)
(9;n) = (conj, o p,p)

is smooth; and

X (G)p = IT ¢z
(M €GP\ X4 (G)(F)
(See sections 4 and 5 of exposé XI in [SGA3].)

We will require all our reductive groups to be geometrically connected, i.e. by the
term ‘reductive group’ we will mean what is often referred to as ‘connected reductive
group’. We will write G5¢ for the simply connected semi-simple cover of G4, If T is
a maximal torus of G we will write 7 for the image of T in G*! (a maximal torus
in G*) and T4 = (G4 NT) (which is a maximal torus in G, see remark 3.5 of
[Ca]) and T5€ for the preimage of T'in G5¢ (which is a maximal torus in G5¢, see for
instance proposition 4.1 of [Co]). We have T' = Z5(T"). We will also write Wy for the
Weyl group Ng(T')/T, which we think of a finite algebraic group. It acts faithfully
on 7. We will also write Wy g for Ng(T)(F)/T(F) C Wp(F).

We remark that if 77 C G is a maximal torus and py, pus € X, (T') are conjugate
under G(F) then they are conjugate under Wy (F). (This is probably well known, but
as we don’t know a reference we will sketch the proof. Let H denote the connected
component of the identity of the centralizer of p;(G,,) in G. It is reductive. (See
theorem 2.1 of [Ca].) Suppose that gy = guag™t. Then py(G,,) C gTg~! so that T
and gTg~! are both maximal tori in H. Hence we have gT'g~' = hTh™! for some
h € H. Then h™'g € Ng(T) and p; = h™'guag~'h, as desired.)

We will let Ag denote the algebraic fundamental group of G, i.e. X,(T)/X.(T5°)
for any maximal torus 7" of G. Note that the Weyl group Wy acts trivially on
X.(T)/X.(T5¢). Any two maximal tori T and T" defined over F are conjugate over
the separable closure F of F by g € G(F) with gNg(T) uniquely defined. Then
conj, induces an isomorphism X, (T)/X,(T5%) = X, (T")/X.(T"*°). If we alter g by
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an element h € Ng(T)(F) then this isomorphism changes by an element of Wy (F),
i.e. is in fact unchanged. Thus Ag is canonically defined independent of the choice
of T. In particular it has a canonical action of Gal (F/F). (If T" = conj,T and
o € Gal (F/F), then goconj, = conj,oooconj,, on X,(T) for some w, € Wr(F), and
so goconj, = conj, oo on Ar.) If [u] is a conjugacy class of cocharacters i : G,, — G,
then [u] gives rise to well defined element Ag([u]) € Ag. If 0 € Gal(F/F) then

Aa(%lp]) = 7Aa([p])-

If G/F is an algebraic group and E/F is a Galois extension then we will write
H'(Gal (E/F),G(FE)) for the first Galois cohomology. More precisely, by a 1 cocycle
of Gal(E/F) we will mean a locally constant map ¢ : Gal(E/F) — G(E) such
that ¢(c102) = ¢(01)7 ¢(02). We denote the set of 1 cocycles Z'(Gal (E/F), G(E)).
If € Z'(Gal (E/F),G(E)) and g € G(E) we define 9¢ € Z'(Gal (E/F),G(E)) by
(99)(0) = go(o)°g~t. We call two cocycles ¢; and ¢, equivalent if there is a g € G(F)
such that ¢y = 9¢;. Then H'(Gal (E/F),G(E)) is the set of equivalence classes of
cocycles. It is a pointed set with neutral element represented by the trivial cocycle
(identically 1). If G is abelian then H'(Gal (E/F),G(F)) is an abelian group. We
will sometimes write H'(F, G) for H'(Gal (F/F), G(F)).

If p € Z(Gal (E/F),G*(E)) then there is a canonically defined algebraic group
®G/F together with an isomorphism ¢4 : G x E = °G x FE such that oi4(g) =
ts((ad @(0))(cg)) for all o € Gal(E/F) and g € G(E). If h € G*(E) then there
is a unique isomorphism ¢, : *°G' 5 "G over F such that ¢, o Ly = tngoad(h). If
Y € ZYGal (E/F),*G*™(E)), then v¢ € Z'(Gal (E/F),G*(E)) and this gives a
bijection of sets

ZHGal(E/F),°G*(E)) — Z'(Gal (E/F),G* (E)),
but this map does not preserve neutral elements. The composite
Ly © Lgl o lel . 7/1(¢G) AN 7/1¢G

is defined over F'.

If F is a number field and E/F is Galois we will write ker' (Gal (E/F),G(E)) for
the kernel

ker(H'(Gal (B/F),G(E)) = [ H'(Gal(Ey/F,) G(Euw))).

veVER

where for v € Ve we use w(v) to denote a choice of place of E above v. If G is
reductive then ker'(Gal (E/F), G(E)) is finite. It vanishes if G is semi-simple and
either adjoint or simply connected. (See for instance theorems 6.6, 6.15 and 6.22 of
[PR].) We will sometimes write ker!(F, G) for ker' (Gal (F/F),G(F)).

3.2. Group extensions. We recall some of the general theory of group extensions.
Suppose that A is an abelian group and G is a finite group that acts on A. A 2-cocyle
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a € Z*(G, A) is a function G x G — A satisfying the relation

a2, g3)u(g1, 9293) = a(g192, g3) (g1, g2).-
(We record that this implies that a(1,g9) = «(1,1) and a(g,1) = 9a(1,1).) If ais a
2-cocycle and 8 : G — A is any function then

Yalg1, 92) = alg1, 92)B(9192) B(g1) " B(g2)
is another 2-cocycle. If « is a 2-cocycle we obtain an extension

0 — A — &, — G — 0
a — aa(l, 1) te,(1)
aea(Q) L ga

where &, is the group with elements ae,(g) with a € A and g € G with the multipli-
cation rule
areq(g1)aseq(g2) = ar1? aza(gu, g2)ea(g192)-

There is an isomorphism of extensions

iﬁ . ga L> gﬁa

aeq(g) — af(g)esa(y)
for any map 8 : G — A. Thus the isomorphism class of the extension &, only depends
on [a] € H*(G, A), but not canonically. If a € A we set (°“8)(g) = B(g)a/%a, and we
have

iaﬁ = COHja o iﬁ.

Any element 3 € Z'(G, A) gives rise to an automorphism of extensions ig : £, —
&., and in fact this establishes an isomorphism between Z!(G, A) and the group of
automorphisms of the extension &,. The automorphism arises as conjugation by an
element of A if and only if 38 is a coboundary. Thus, if H'(G, A) = (0), then every
automorphism of the extension &, arises by conjugation by an element of A. Every

extension of G by A arises from some o € Z%(G, A).
Ifh:G— G and f: A— A’ are morphisms such that

fPa) =" f(a)
and if « € Z%(G, A) and o/ € Z*(G', A') satisfy

flalgr, 92)) = &/ (h(g1), h(g2))
then there is a morphism

(fih): & — Ew
aea(g) — fla)ea(h(g))

such that
0O — A — E, — G — 0

i (f,h) 1 hl

0o — A — E — G — 0
commutes.
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If h: G — G and &€ is an extension of G by A, then we can form a pull-back
extension
Ela=Elgn=E xen G ={(e,¢') : e and ¢ have the same image in G} C £ x G
of G' by A. If £ arises from a € Z*(G, A) then &|q ), arises from h*a = a o h.
Similarly if f: A — A’ is a map of G-modules we can form a push-out extension
HLE=(AxE)/A

of A’ by GG. Here £ acts on A’ via its projection to G and we embed A as a normal
subgroup of A’ x & via a +— (f(a)™',a). If £ arises from o € Z%(G, A) then f.€ arises
from f,a = foa.

If

[N RN e,
and

ALy ar
then

(A7 50 (A % Ela)/AN|an) AT > (A" 1 E|n) /A
[(a”, ([(a", (e, 9"))), g"))] +— [(a"['(d"), (e, 9"))].
If H<G are finite groups, if s : G/H — G is a set theoretic section to the projection
map, and if A is a G-module, then there is a homomorphism

nak, : Z*(G, A) — Z*(G/H, A™)
defined by
(naksa) (g1, 92)
= Tlhen (b, 5(91)5(9,)5(9:92) 1) (s(91), 5(92)) /" (5(91)5(52)5(9192) " 5(4192))-
It induces a homomorphism
nakg , : H(G,A) — H*(G/H, A")

which is independent of the choice of s. If

0)—A—E—G—(0)
is an extension with class [a] € H*(G, A), then the extension

(0) — A" — trep,/a.(E/[Elm, ElR]) — G/H — (0)

has class nakg, o] € H*(G/H, A"). Here

trep a: Eln/Elm, Eln) — AY
is the transfer map. We have

infg/H o nakg/H = Ny.: H* G, A) — H*(G, A™)

and

inf¢ ;; onakg ; = #H : H (G, A) — H*(G, A)
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(the Akizuki-Witt theorem). Here
Ny:A — AH
a — [lhey"a
Lemma 3.1. Suppose that m : G — H is a surjective group homomorphism, and that

A< G and B<1H are normal subgroups with mA C B. Then there is an isomorphism

of groups
(B b G)/A ;> H XH/B G/A

[(b,9)] = (bm(g),gA).

A — BxG
a — (m(a)™a).

Here

Proof: The map
¢:BxG — HxypG/A
(b,g) — (b7(g),94)
is easily checked to be a group homomorphism. We have (b, g) € ker ¢ if and only
if g€ Aand b = w(g)7", i.e. (b,g) is in the image of A. It remains to check
that ¢ is surjective. Suppose (h,gA) € H Xp/p G/A. Then hr(g)~' € B and
é(hm(g)™, g) = (h, g), as desired.[]

3.3. Local Weil Groups. We recall the theory of Weil groups for p-adic fields. See
[T1].

First suppose that F is a p-adic field and that F is an algebraic closure. If k denotes
the residue field of F', there is an exact sequence

(0) — Ip — Gal (F/F) — Gal (k/k) — (0).
We denote by Wz, the preimage of FrobZ C Gal (k/k) and endow it with a topology
decreeing that I should be an open subgroup with its usual topology. If o : F' = 7

is a continuous automorphism with o F' = F”, then there is a canonical isomorphism

conj, : Wg/p — Wf’/F/
T — o710 L.

Note that there is a canonical map ¢z : Wz, — Gal (F/F) with dense image.
go%}FGal (F/E).
For E/F finite, we will write E? for the (unique) maximal Galois extension of E in
F with Gal (E*"/E) abelian. Then

W p = W%};E = Wf/F/[WF/Ev WF/E]-

If E is an intermediate field between F and F we will write W /B =

There are canonical isomorphisms

rg: BX = W%];E
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with the following properties:
[ ] QOF/F OTrg = Art E-
o If 0 € Gal (F'/F), then conj, org =regoo.
o If £/ C FE then tr W)/ o rg equals rg composed with the inclusion
(E")* — E*.
o Wg p = lime g Wga /p as topological groups.

WF/E

These properties imply that
o If £/ C E then rp o Ng/p equals rg followed by the map W%?E — W%';E,
induced by the inclusion Wg, 5 C W/
There are no non-identity automorphisms of W, compatible with ¢z 5.

It F* = C as topological fields we set Wg p = F*. If F' = R as topological fields

and F is an algebraic closure we set Wg)p = (F*.j: j2=—1, jzj ' =c2). If
F =R or C there is a natural map

PF/F - WF/F — Gal (F/F)

with kernel F . If F is an intermediate field between F and F we will write W/ g =
80%} ~Gal (F/E). For E/F finite, there are canonical isomorphisms

rg: B — W%};E

which are the identity if £ = C and, if £ = R, are induced by —1 — j and = — /x
for x > 0. These structures share the properties itemized above for p-adic fields.
Again these constructions are functorial in the pair F/F. In the case F = C the
group W, has no automorphisms compatible with 7p. On the other hand, if FF = R
then W5, does have automorphisms compatible with ¢z and rp and rg, namely

the inner automorphisms conj, for z € F”. However the only ones compatible with
the functoriality W, — W5/ p induced by ¢ : F' — F are the identity and conj, .

If F is either a p-adic field or isomorphic to R or C, and if F is an algebraic closure
of I and if F is an intermediate field finite and Galois over F', then there is a short
exact sequence

(0) — EX =5 Wgayp — Gal (E/F) — (0)
which determines a class
lag/r] € H*(Gal (E/F), E™),
called the canonical class. It depends only on E /F,ie. noton F. If DD E D F are
finite extensions (inside F') with D/F Galois then
o resco (p) [0/ r] = ap/p] € H*(Gal (D/E), D¥),
e and cor ¢y (p) 1) [anye] = [E : Fllap)r] € H3(Gal(D/F), D*).
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If in addition E/F is Galois then

o infey () lagp] = [D : Ellap,r] € H*(Gal (D/F), D¥),

o and nakgy () [ r] = lagyr] € H¥(Gal (E/F), EX),
(For the first three see for instance section XI.3 of [Se]. For the final assertion use
the injectivity of the map

infeo(p/p) « H*(Gal (E/F), E*) — H*(Gal (D/F), D*)

and the Akizuki-Witt theorem.) Hence
o infeo (o) los/#) = Npypalap/r] € HX(Gal (D/F), EX).
We will write
Gal (D/F)
[aE/F,D] mfGal E/F)[aE/F] [D E][O./D/F] & H (Gal(D/F) )

If C DD > F DF are finite Galois extensions of F' then

Gal (C/F
[ag/pcl = infcy, D//F)) [ag/F.p]

and
[D : Ellapsre] = [oe/rol-
If DD E D F are finite Galois extensions of F in F then there is an obvious map
WDab/F - WEab/F
which fits into a commutative diagram
0) — D* — Wpwyp — Gal(D/F) — (0)
Np/e d \ \
0) — £ — Wgayp — Gal(E/F) — (0).
We will denote this map o — o|gab.
If we map
D* — E*x WD"‘b/F
a — (Npsp(a)™,rp(a)),
then we see that there is an isomorphism of extensions
(EX X Wpap)/D* = Wgabp|ca (n/r) = Wgab/r Xcal(g/r) Gal (D/F)
[(a,7)] > (re(a)T|g>,T|D).
(Note that rp(b)|gs» = re(Np/(b)) and recall lemma [3.1}) We see that we have

maps of extensions

(0) — D~ — Wpab /g — Gal(D/F) — (0)
Np/g 4 ¢ |

(O) — .EHX — WEab/F|Gal(D/F) — Gal(D/F) — (0)
! \

0) — FE* — Wgab ) p — Gal(E/F) — (0),
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whose composite is the natural surjection Wpav,p — Wgan/p, and where the middle
row can either be obtained as a pushout from the top row or a pullback from the
bottom row. Moreover the maps

Gal(D/E) — Wgab/plcal(p/F)
o — (1,0)

and
Gal(D/E) — (E* NWDab/F>/DX
o +— [(rg'(@]gs)"1,0)],

where & € Wpan 5 is any lift of o, are identified. (The latter map is easily checked to
be well defined, i.e. independent of the choice of lift 7.)

Continue to suppose that D D E D F are finite Galois extensions of F'. We define
a pushout

WEab/F,D = (D>< X WEab/F|Ga1(D/F))/EX,

where

EX — DX x WEab/F|Gal(D/F)
a — (a7', (rp(a),1)).

It comes with a natural section

From the above discussion we see that this has a second description as

Gal(D/E) = (D* x Wpap)/D*
o > [(r5' (@lg) )],

where 0 € Wpas g is any lift of o and

D* — D> x WDab/F
a +—— ((Npspa)~',rp(a)).

The map is

(D* % Wpayp)/D* == (D* x Wga p|cai(n/r))/ E
[(a,0)] +— [(a,(o]ga»,0]D))]-

The extension corresponds to the class

inf o) [ r) = Nojp.alopr] € H(Gal (D/F), D¥).
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We have a commutative diagram of extensions

0) — EX — Wigab /p — Gal(E/F) — (0)
| 1 T

(O) — E* — WEab/F|Ga1(D/F) — QGal (D/F) — (0)
N |

0) — D* — Wgab k. p — Gal(D/F) — (0)
Np/e 1 T I

0) — D* — Wpab — Gal(D/F) — (0).

3.4. Global Weil groups. We now recall the theory of Weil groups for number fields
fields. See [T1]. B
Now suppose that F'is a number field and that F' is an algebraic closure of F'. One
can associate to F'/F a topological group W, together with:
e A map pp/p : Wgp — Gal (F/F). If E is an intermediate field we set
W/ p = @%}FGal (F/E).
e For each intermediate field finite over ' a map

g A/ EX T Wi,

such that ¢z, orp = Art .
These maps also satisfy:
o If 0 € Wg/p, then conj, o 7p = I o) © o7 /r(0).
e If £/ C FE then tr W s
AL /(B > AL/E”.
o Wi p 2 lime g W, p/[Wg g, W/ 5] as topological groups.

\/Wg,p © TE/ equals g composed with the inclusion

These properties imply that

o If £/ C E then rg o Ng/p equals rg followed by the map W%k/’E — W%';E,

induced by the inclusion Wg,p C Wg /5.
® Wga/p =W/ p/Wg/p, W 5]
The only automorphisms of W, compatible with ¢p,p and the rg are the inner
automorphisms conj, for o € W 5. The structure (Wg,p, 7/, {r£}) is unique up
to isomorphism. However we do not know how to make the isomorphism canonical.
(If it can be made canonical.)

The image of Wz in Wga/p is EX(E})?/E* = ker Art . We will denote it Ap.

~

Lemma 3.2. (1) Fori > 0 there is an isomorphism H'(Gal (E/F), [l £) —
H (Gal (E/F),Ag). Moreover

H'(Gal (E/F),Ag) = H'(Gal (E/F), [ EX) = [ H(Gal (E/F)uw), (),

w(v
v|oo v
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where v runs over real places of F' which do not split completely in E, and
w(v) is a choice of place of E above v.

(3) HY(Gal (E/F), Ag) = (0).

(4) If E is totally imaginary, then Agal (/) FXEX/F*. In particular if F is
totally imaginary then Agal (EF) = Ap.

(5) Art g : AY/F* — Gal (E*P/E)Gal(B/F),

(6) If S is a finite set of finite places of F, then Ap N [],cq F.S = {1} C AL/F*.

veS t v

Proof: The first four parts are proved in section III of [W]. The fifth part follows
from the third. The sixth part follows from the congruence subgroup property for the
group of S-units Op[1/S]* of F. (See [Ch].)

More precisely if a € [],.qF, maps to the identity in Aj/F*Ap then we can
find a; € F* with a; — a € (A¥)*. Then for i sufficiently large we have a; €

Op[1/S]*. For any m € Z~o we can find an open subgroup U,, C (A}iu{vloo})x such

that U,,,NOp[1/S]* C (Op[1/S]*)™. (Combine Dirichlet’s and Chevalley’s theorems.)
Then for i sufficiently large a; € U,,NOp[1/S]* so that a; is an m™ power in Op[1/5]*
and hence a; 5 is an m" power in [, ¢ F¥. Thus a € (,,o0(I,cs F)™ = {1}, and
the sixth part follows. [J

If u is a place of F then there is a continuous homomorphism
such that
® o7, po0, equals the composite of ¢ /p with the inverse of the canonical map
Gal (F/F), = Gal(F,/F,);

e and, for F a finite intermediate field, §, o rg, equals the composite of rg with
the canonical map E — Ay /E*.

The map 0, is determined up to conjugation by an element of W# /7~ The images
of conj, o 0, for any a € W /7, are referred to as decomposition groups for u. The

closure of the image under ¢p 5 of any decomposition group for u is Gal (F/F),. If
o € Wg,p, then

9¢f/F(J)u o conjwf/F(J) = conj, o 6,
up to conjugation by an element_ of VV_F /-
If v is a place of F' and if p : F' — F,, is F-linear, then we define

Op = Oup) 00" Wryp, — Wayp
(where p* : W/, = qu(?p) /r,)- Up to conjugation by an element of Wg %

(1) f o € W), then 6,, = conj,-1 06, up to conjugation by an element of W .
(2) If 7 € Gal(F,/F,), then 6,, =0, 0 conj, .
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(3) If E is an intermediate field finite over F', then 6,0 r,g)r, equals the compo-

sition of rp with (p(E)F,)* = Ej, — Aj/E, where the first map is the

inverse of the continuous extension of p.
We get an induced map
Qp . W(p(E)Fv)ab/Fv — WEab/F7

defined up to conjugation by an element of Ag. Up to this ambiguity, it only depends

plian.
If F/ is an intermediate field, finite and Galois over F', the short exact sequence

(0) — AR/E™ =5 Wi p — Gal (E/F) — (0)
which determines a class
[ p] € H?(Gal (E/F), A} /E™)

called the canonical class. This class depends only on E/F. If v, : EY — AL/E*,
then we have

res[a}g/F] = |, /F,] € H*(Gal (E/F)y,, AS/EX).
(See formula (12) in [T2].) B
If DD E D F are finite extensions (inside F) with D/F Galois then
Gal (D
o 105611 () (01 p] = [} ] € HP(Gal (D/E), A} /D),
Ga
o and cor gy (o)) [0 5] = [+ Fllo ] € H%(Gal (D/F), Aj/D*).
If in addition E/F is Galois then
. eGal
o infoy (o) [0 ] = [D : El[aly ;] € HX(Gal(D/F), A, /D),
Gal (E/F
o and nakg (o) [0} p] = [0} ] € H?(Gal (E/F), AL/E*).
(For the first and third assertions see for instance [T1]. The second follows from the
first and the fourth from the third.) Hence
Gal (
o il m 0 Fe] = Nojpolofp] € H(Gal (D/F), A5/ EX).
We will write
Gal (D
[0F)r.0) = G () [0k 6] = [D + Ellays] € H*(Gal (D/F), A}/ D%).
Note that if u|w|v are places of D D E D F, then
res|agpp| = (D E)/[Du: Eu))lag,r,p.] € H*(Gal(D/F)y, Ap/D%).

If C DD D> FE D F are finite Galois extensions of F' then

[O‘]‘g/F,C] = Ml (p/F)
and
[D: E] [@D/FC] [aE/FC’]
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Continue to suppose that D D E O F are finite Galois extensions of F' in F. We
have a natural map
WDab/F — WEab/F
which we will denote o +— o|gar. Lemma [3.1] tells us there is an isomorphism
(AE/EX X WDab/F)/(AB/DX) ;> WEab/FlGal(D/F) = WEab/F X Gal (E/F) Gal (D/F)
[(a,7)] — (re(a)7|g=,7|p),
where
AL/D* — AR /E* X Wpa p
a — (Npsg(a)™,rp(a)).
It is compatible with the maps
Gal (D/E) — WEab/F|Gal (D/F)
o — (1,0)
and
Gal(D/E) — (Ag/E* x Wpaw,p)/(AS/D>)
o+ [(rg' (@lp)"",5)]
for any lift ¢ € Wpas,p of 0. this latter map is well defined, i.e. independent of the
choice of lift . We see that we have maps of extensions

(0) — A5/D* — Wpav — Gal(D/F) — (0)
Np/g 4 ¢ I

0) — Ap/E* — Wgaplaary — Gal(D/F) — (0)
| ! !

(0) — AL/EX — Wigab /p — Gal(E/F) — (0),

whose composite is the natural surjection Wpa»/p — Wgas/p, and where the middle
row can either be obtained as a push-out from the top row or a pullback from the
bottom row.

We define a pushout

Wigab/pp = (AL /D™ X Wgas plaa(p/r))/(Ag/E™),
where
Ag/E* — AL/D* X Wgavplca (p/r)

a — (G_I’<TE(G)71))7
together with a splitting

Gal(D/E) — Wgapp

o — [(1,(1,0))].

The extension Wgab/pp corresponds to the class [ay,p ] € H*(Gal (D/F), A} /D).
Note that if C' > D D E D F are finite Galois extensions of F', then

(AL/C* X Wgpplcac/m)/(AS/D*) — Wgire
(b, ([(a, (o, 7))],m)] = [(ba, (o,7))].
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Also note that there is a natural embedding
Gal (EabD/F) — WEab/F,D/AE'
o [(17(U|Eab70|D>>]=

—_~—

where o|gan is any lift of o|gas to Wigan /.
From the above discussion we see that Wgas pp has a second description as
(AE/DX X WDab/F)/AB
where
AL /D* = AS/D* x Wpap
a — ((Npypa)~t,rp(a)).
The map is given by
(AS/D* x Wpw ) /(A /D*)  — (Ap/E* 3 W plcain/r))/(Ap/EX)
[(a,7)] — [(a, (7|g=, 7|D))].
In the reverse direction
Wiab plgai(p/e) — (Af)l/Di 8 Wpsao )/ (Ap/ D)
(0.7) — |(rg (071 ga), T,
where 7 € Wb is any lift of 7.
We have a commutative diagram of extensions

(0) — AL/EX — Wgab ) p — Gal(E/F) — (0)
| 1 0

(O) — AE(/]EX — WEab/F‘Gal(D/F) — Gal(llﬁ/p) — (O)

(0) — A5/D* — Wgab kD — Gal(D/F) — (0)
Np/ep 1 T |

(0) — Aj/D* —» Wpab /e — Gal(D/F) — (0).
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4. GENERALITIES ON ALGEBRAIC COHOMOLOGY

We will need a modification of the Galois cohomology of reductive group, which is
described in section 12 of [K]. Suppose that we are given the following data:

(1) An extension
0) — & — & —T —(0)
where £° is an abelian group and I is a group. Note that £° has a I'-action
by conjugation.
(2) A group G with an action of I". Note that the conjugation action of G and
the I'-action on G, piece together to give a G x I' action on GG. This, together
with the I' action on £°, gives a G x I'-action on Hom (€Y, G).
(3) A set N with an action of G x T.
(4) A G x I'-equivariant map
N — Hom (£° Q)
v —— U,
such that if e € £° and v € N, then
)y =y,
We will refer to N as an pre-algebraicity condition. In most cases we will have
N C Hom (€°, G).
We define pointed sets

ZE,G)={(v,¢) e N x ZYE,GQ) : ¢leo =7 and YO 'v = “u Ve € ).
We refer to elements of this pointed set as algebraic cocycles. We write
v: Z}\/(E, G)— N

for the map (v, ¢) — v. In cases where A is contained Hom (€%, G) we will often use
¢ to denote a cocycle (v, @) (as v = @|go). The group G acts on Z\(€,G) by

‘v, 0) = ("v,79).
We define Hj (€, G) to be the quotient of Z)(£,G) by G. We refer to this as the

algebraic cohomology.
There is a left exact sequence (of pointed sets)

(0) — HYI,G) — HYE,G) 5 (G\N)F
o) +—
If I' = {1}, then
Z(E,G) = N
and
H\(E,G) — G\N.
These sets of cocycles and cohomology sets satisfy various natural functorialities,

which are a bit tedious to spell out:
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(A) Suppose first that we have a [-equivariant map h : G; — G, pre-algebraicity
conditions N; for (£, G;) and a I'-equivariant map n : Nj — N3 such that

n(v) = h(g)n(y)
and
n(v) =hov
for all v € N and g € G;. Then we obtain a natural map
he = (h,n). : Zj, (E,G1) — Z)\,(E,G>)
(v,0) — (n(v),ho9),

which induces a map
h, = (h,n)* : kal (5,G1) — H./l\/'g(87 GQ)
(B) Second suppose that we have maps of extensions

0 — & — & — It — (0

{ i i

0) — & — & — Ty — (0),

a group homomorphism h : Gy — G1, pre-algebraicity conditions N; for (&;, G;)
and a map n : Ny — N such that

o h(/@a) = 7h(a),

o n(%v) = "9n(v),

o n(/@y) = 7n(v)

e and n(v) =hovo f.
Then we obtain a natural map

f* = (f7 h7n)* : Zjl\fg(gQ’GQ) —
(v,0) — (n(v),hogof),

which induces a map
f* = (fa h7 n)* : Hjl\[2(827 G2> — H}\/’l (51, Gl)

(This is a minor generalization of Kottwitz’s map W(n, f), which he defines in
the special case G; = G5 and h = Idg. In the special case f = Id we recover the
map in part [A])

(If we take & = & and G} = G9 and N} = N, and also take f = conj, and
h=e'and n=e! with e € £; then

conji(v,¢) =" *“(v,¢).

In particular conj; is the identity on Hy, (&1, Gh1).)
We have (f1, h1,11)" o (fa, ha,n2)* = (f2 0 fi,h1 0 ha,ny 0ng)*.
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(C) Thirdly suppose that we have maps of extensions

0) — & — & — T — (0)
1 fl |

0) — & — & — T — (0),

and a [-equivariant group homomorphism h : G; — G5 and pre-algebraicity
conditions N; for (&;, G;) and a map n : N7 — N3 such that

o n(v) =9n(v),

e n(7v) ="n(v),

e and how =n(v)o f.
Then we obtain a natural map

f* = (f,h,?’L)* : Zjl\f1 (51, Gl) — Zjl\/'2(€27G2)
(v, 0) — (n(v),9),

where ¢ is defined by ¢(tf(e)) = n(v)(t)(h o ¢(e)) for any t € £ and e € &;.
This induces

fo=(f,h,n).: Hy, (&,G) — Hy, (E,G).

(Kottwitz denotes this map ®(h,n, f). The map in part |A|is a special case of
this map in which f is the identity.)
We see that (f1, hi,n1)« 0 (fo, ho,n2). = (f1 0 fa, h1 0 ho, 1y 0 Ng),.

Suppose that we are given commutative diagrams

& &

fal 1A

g < g
and

G, 5 G

ha | 1

a M
and

Ny 2 N

ny 1m

Ny S M

such that (f, h,n) and (f’, ', n’) are as in part[B| while (f1, h1,n1) and (fa, ha, n2)
are as in this part. Then
,hon)*
74 (£,Gy) YT Z1 (&, Gy)
(f27h27n2)*\l/ \l/ (f17h17n1>*
Zy(&c) VBT Z e oy
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commutes.
Suppose that A C I' is a subgroup. If X is a set with an action of A we will
write Ind \ X for the set of functions ¢ : I' — X satisfying

p(ro) = T¢(0)
for all 7 € A and o € I'. It has an action of I' via
(0p)(0') = p(d'o).
If X is a group and A acts via group automorphisms, then Ind ZX is a group via
(09')(0) = p(o)¢' (o),
and its [' action is via group automorphisms. The map
e:Ind\X —» X
p — (1)
is A-equivariant.
Suppose we have an extension
0) — & — & — A —(0)
and a group G with a A-action and a set N with a G x A-action, together with

a G x A-invariant map - : N — Hom (£°, G) such that )y = v for all e € £°
and v € N. Suppose moreover that we are given a second extension

(0) — Ind K& — € — T — (0)
such that if £ |a denotes the preimage of A in £ , then there is a map of extensions
0) — IndL&® — Ela — A — (0)
] el i

0 — & — & — A — (0.

We will write 7 for the natural inclusion & A — £. Note that if we think of A as
a pre-algebraicity condition for (g |a, G) with the new 7 equal to voe for v € N,
then
& Z0(Ela, G) = Z(E,G)
and
& HY(Ela, G) = H(E,Q),
with inverse €.
Note that Ind x A/ has an action of (Ind yG) x I, where

(Pv)(o) = #(v(0))

for o € Ind \G and v € Ind\N. If v € Ind \ N we define 7 € Hom (Ind 1 €%, Ind 1 G)

by
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It is easy to check that this makes Ind\ N a pre-algebraicity condition for

(€, IndYG). Combining lemma 12.10 of [K] with the observation of the last
paragraph we get the following result.

Lemma 4.1. In the above situation the composite
HY o (€ d5G) "8 HY(E]a, G) = HL(E,6)
18 an isomorphism.

It will be convenient for us to work with pre-algebraicity conditions N with slightly
more structure. Namely we will assume that A/ is endowed with a subset Mpasie C N,
an abelian group structure on My and an action of M. on N extending the action
of Mpasic on itself by translation; such that the following properties hold:

e I" preserves My and acts on it via group automorphisms.

e The action of GxT" on N commutes with the action of My, 1.6. 9(vp) = v9u

and 7(vp) = v for all v € Myasic, p €N, g € G and o € T.

o If v € Myasic, then 7 factors through Z(G).

o UL =TV/.
We will refer to this additional data as an algebraicity condition. Note that in this case
both A and Myasic are pre-algebraicity conditions. We will often write Z3/(€, G)pasic
and Hj (€, G)vasic, instead of Zy. (€,G) and Hy,  (£,G). We refer to these as the
set of basic algebraic cocycles and the basic algebraic cohomology.

If G is abelian then Z3 (€, G)pasic and Hj (€, G)pasic are naturally abelian groups.

There is a natural map

ad : Z3 (€, Gpasic — ZH1(T, G™)

which induces a map in cohomology. If (v, () € Z\, (£, Z(G)) and (1, ¢) € Zj(€,G)
then (vu,ng) € Z5(€,G). This induces maps

(¥,Q) : Zy(E, Gvasic — Zir(E, G)pasic
and

(v,¢) : Hy(€,G) — Hy(E,G)

and

(v, €) : Hy (€, Gvasic — Hyr(€, Gpasic-
This gives actions of Zi. (€, Z(G)) on Z\r(€, G) and Z3¢(€, G)pasic; and of Hy: (€, Z(G))
on H\(E,G) and Hp (€, G)pasic: The map H\(E,G) — Hp(E,G*) is constant on
Hy. (€, Z(G))-orbits.

We have the following additions to our various functorialities:

(A) In the situation of [A]if n(MN pasic) C Napasic then (h,n),. takes basic cocycles or
cohomology classes to basic ones.

(B) In the situation of if n(N2pasic) C M opasic then (f, h,n)* takes basic cocycles
or cohomology classes to basic ones.
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In the situation of [C| if n(N] pasic) C Napasic then (f, h,n). takes basic cocycles
or cohomology classes to basic ones.
In the situation of @ if (N, Nbasm) is an algebraicity condition for (£,G), then

(Ind A\, Ind \ Myasic) is one for (8 Ind @), and lemma is also true for the
basic algebraic cohomology.
Suppose that G is abelian and that A C I' is a subgroup of finite index. Let
R C & be a set of representatives for £|a\E. Then we obtain a natural map
COrp : Zjl\/'(g|A7 )basm — Z/\/(g G)basm
.6) — (Lex” .9);
where

ole) = [ (sres™)
reR
with each s € R chosen such that res™ € £|a. It induces a map

r : Hjl\/(f/"A, G)basic — Hjl\/(€7 G)basic

which is independent of the choice of R.
If &€ =&, with a € Z*T,E%) and A = {1}, then we may take R = R, =
{ea(0) : 0 €'} and we will write

1
cor o = cor g, : Mpasic —> Zp(Ea, G)basic-

(cor 4v) Hn 7(«

nel’

Note that

If:T — E%and if ig : &, — Es, is the canonical isomorphism sending e, (o) to
B(o)es,(0) then it is easily verified that

Zz<cor ﬁal/) — Hr]EF nilp(ﬁ(n))ilcoralj'

(Indeed, both sides are of the form (][], .. "v, ¢) for some ¢. Moreover

(i5cor sa(v))(eal0))
= COrBa(V)(B(O')Gﬁa(O'))
= [ler 7(B(0) [Ler 1~ '7(Pa(n, 0))
= [L,er"(B(0) [Ler ™7 (a(n, 0)B(no)B(n) " "B8(0) ™)
= [L,er "w(B(0))cor o (v (a(ffl))Hnepﬁ '7(B(no))
Hnerﬁ T(B(n)” Her;] v(B(o)) "

= coro(V)(€a(0))0 [Ter 7 Z(B)/ [Ter 0~ 2(B(n)).)

Now consider the case that I' = Gal (E/F) and G = H(Ag), where

e F/F is a finite Galois extension of fields;
e H/F is an algebraic group;
e and Ap = A ®p E for some F-algebra A.
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If (v, ¢) € Z}(E,G(AE))basic then we define G/A to be the etale descent of G x Ag
to G x A via the action

o— conj¢(e) oo,
where e € £ is any lift of 0. Thus G x4, Ap = G xp Ap. If g € G(Ag) then

conj,, : °G = 70G.
Thus ?G depends only on [(v, ¢)] up to an isomorphism that is unique up to composi-
tion conjugation by an element of (°G)(A). (Note that we have *G(A) here and not
9G4 (A). This is an important point.) When we are only concerned with properties
of ®G for which this ambiguity does not matter, we may write [»?IG. There is a
bijection
Zy(€,°G(Ap)) — Zx (€, G(AR))
(1, 0) > (1, 99)
which takes basic subset to basic subset, and induces isomorphisms in cohomology.
Note that
(1) (v, 0)) = conjy (" (1, ¥))? (v, ).
If ¢ € H}\/(g, G(AE))basic then

{¢ €y (6, 2(G)(AR)) : (o = @} = ker(Hy;, (€, 2(G)(Ap)) = Hy(E,°G(Ap)))
is a subgroup of Hy. (€, Z(G)(Ag)).
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5. KOTTWITZ COHOMOLOGY: THE LOCAL CASE

5.1. Kottwitz cohomology for local Weil groups. Suppose that F'is a local field
of charcateristic 0 and D D E D F are finite Galois extensions. If o € [aE/F,D] C
Z%*(Gal (D/F), D*), then we get a well defined extension

0 — D* — Wg/ppo — Gal(D/F) — 0.

In the case D = E we will write simply Wg/po. As H'(Gal(D/F),D*) = (0) the
only automorphisms of this extension are conjugation by an element of D*. If o/ is
a second element of [ag /F, pl, then there is an isomorphism of extensions

0 — D* — Wgppa — Gal(D/F) — 0

| 12 |
0 — D* — Wgppow — Gal(D/F) — 0.

However it is only unique up to composition with conjugation by an element of D*. In
particular, if F is an algebraic closure of F' containing D, then the extension W /F.D,a
is isomorphic to Wgas /i p, but this isomorphism is only unique up to composition with
conjugation by an element of E*.

Let G/F denote an algebraic group. We will consider the algebraicity conditions
N = X, (G)(D) and Nyasic = X (Z(G))(D). We will denote the corresponding alge-
braic cocycles, basic cocycles, cohomology and basic cohomology as Z;lg(WE /E.D.as G(D)),
Z;1g<WE/F,D,omG(D))basim H;1g<WE/F,DaG(D))7 and Hilg(WE/F,D>G(D))basic respec-
tively. As the notation suggest the two cohomology groups are canonically indepen-
dent of the choice of a € [ag/rp).

We will call ¢ € Hilg(WE/F,D; G(D))pasic compact if *G*(F) is compact, and we
will write HY, (Wg/pp, G (D))iomPae for the set of compact elements in H, e We/p.D, G(D))basic-

Choose representatives ap/p € [ag/p] and ap/p € [ap/r] and yp/g : Gal (D/F) —
D* such that WD/EQ%D/? = infp/pap/p € Z*(Gal (D/F), D*). Then there is a com-
mutative diagram

0) — D> — Wp/Fap,r — Gal(D/F) — (0)
[D : E] \ "ID/Enp, s 1 H

0) — D* — Wg/rpintp papr — Gal (D/F) — (0)
T 1 |

0) — EX — Wg/Fagplcaopy — Gal(D/F) — (0)
| }

0) — E* — We/Fag,r — Gal(E/F) — (0).
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Using successively functorialities (B) then (C) then (B) again from the end of section
[], we obtain a map

it/ - Zallg(WE/FvaE/F’G(E)) — Zallg(WE/F,aE/F|Ga1(D/F),G(D))
ZagWE/EDint 5 g rr G(D))
— Zallg(WD/F,aD/F, G(D))

(Where we use the algebraicity conditions N' = X, (G)(D) and Mysic = X (Z(G))(D)
for the second set of cocycles.) All these maps are functorial in G, take basic ele-
ments to basic elements and commute with products. The composite sends (v, ¢) to

(VIP:E] 5), where, if np g, (€) = de’ with d € D* and €' € Wg)pap, p|cal (p/F) then

¢(e) = v(d)p ()
where € denotes the image of ¢’ in Wg/pq,, .- This composite is injective. The map
ve/p can only be replaced by

d"}/D/E 10— ’}/D/E(O')d/ad,
for some d € D*. (As H'(Gal (D/F), D*) = (0).) We have

nD/E,de/E = Coan71 o nD/E,’YD/E7
and so the induced map

infD/E"YD/E : H;Ig(WE/Fv G(E)) — H,

alg

(Wpyr,G(D))
is independent of the choice of vp /g and so we will denote it simply infp,z. The maps

infp/p ¢ Hyy(We/pagr G(E) — Huyy(We/ragplca/r), G(D))
— Hailg(WE/FaDvinfD/E ap/Fs G(D))
— Halg(WD/F,OéD/F7 G(D))

are all injective. (The first because the usual inflation map is injective on H', and
the second and third immediately from the definitions.)

Kottwitz defines
B(F,G) = lim H}
—F

alg

(Weyp, G(E))

and
B(F, G)basic = E\IE Hilg(WE/F7 G(E))basic~

If ¢y, ¢y € H,,(Wgyp, G(E)) have the same image in H'(Wg/p, G* (E)), then we
can find a finite extension D/E Galois over F' such that inf ¢; € H, (Wpr,G(D))
can be represented by cocycles ¢; with ad¢; = ad ¢o. (If @) is a representative of
¢; and if ¢ € G*(F) with 9%ad ¢} = ad ¢}, then we may choose such a field D
and a § € G(D) lifting g. Then 9inf ¢, and inf ¢}, will do.) Thus inf ¢,,inf ¢, €
H),(Wpr,G(D)) differ by an element of Hy,(Wp/r, Z(G)(D)).

alg alg
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5.2. Reductive groups. If T/F is a torus split by a finite Galois extension F/F,
then Kottwitz (see formula (9.1) of [K]) shows that

cor : Xu(T)gal(5/r) — Hpy(Wpr, T).

alg
Moreover if GG is any reductive group which splits over F, then Kottwitz constructs a
map
K+ Hye(Weyp, G(E)) — Mg cal(z/F)

with the following properties

e it is functorial in G;

e if G =T is a torus, then x = cor ! is an isomorphism;

e if D/FE is a finite extension Galois over F', then

H§1g(WE/FvG(E)) — AG,Gal (F/F)
infp/p | K/
Ho(Wpyr, G(D))

alg
commutes.
(See sections 9 and 11 of [K].) In the limit Kottwitz obtains a map

ki B(F,G) — A gai 7/
Lemma 5.1. If ¢ € Hallg(WE/F, G)basic and P € H;]g(WE/Fa ¢G) then
(@) = K(1)k().

Proof: This follows easily from the construction of x in section 9.3 of [K]: If G is
a torus it simply expresses the fact that cor is an abelian group homomorphism in
this case. If G4 is simply connected it follows for the corresponding fact for C'(G).
In the general case it follows from the corresponding fact for a suitable z-extension

of G. O

If T C G is a maximal torus then we define H;lg(WE/F,T(E))G_baSiC to be those
elements [(v, ¢)] where v factors through Z(G). If F' = R suppose that 7" is funda-
mental, while if F' is p-adic assume that 7" is elliptic. (Recall that in the case F' =R
‘fundamental’ means that its split rank is minimal among those of all maximal tori
defined over R. All fundamental maximal tori are G(R)-conjugate - see [BW] section

[.7.1.) If E splits T' then
Hallg(WE/Fa T(E))Gfbasic - Hallg(WE/Fa G(E))basic'
(See proposition 13.1 and lemma 13.2 of [K].) We deduce that if £ splits an elliptic

(in the p-adic case) or fundamental (in the real case) torus, then

Hl (WE/Fa G(E))basic :> B<F7 G)basic-

alg

We further deduce that for F sufficiently large the quotient of H;lg(WE /7, G(E))basic
by its action of HY,(Wg/r, Z(G)(E)) embeds into HY,(Wg/r, G* (E))pasic. (First

alg alg
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choose Ey such that Hy,(Wg/r, G(E))basic = B(F, G)pasic for any E D Ej, and then

E D Ej such that every element of G* (Ep) has a lift in G(E).)
If F is a p-adic field then x is in fact a bijection
K+ B(F, G)vasic — Mg cal (F/p)-

and so B(F,G)pasic becomes an abelian group. (See proposition 13.1 of [K].) We
deduce that if E splits some maximal torus of GG defined over F', then

K : Hllg(WE/F, G(E))basic — AG,Gal(F/F)'

a

In particular if G is semi-simple, simply connected, then Hy,(Wg/r, G(E))basic = {1}
If G is semisimple then

K Hl(F, G) — B(F7 G)basic — AG’,Gal(f/F)'

If F = C then Wgyc = C*, H(C,G) = (0) and B(C, G)pasic = X«(Z(G)) and
k2 B(C, G)pase = Xo(Z(G)) = Ac

5.3. The real case. Now suppose that F' = R. Choose a representative O‘?c /R for
[oe/r] defined by
—1 ifoy=09=c
0 _ 1 2
og/r(01,02) = { 1 otherwise.
Then

VV(C/R,O(0 = <(C><7j : j2 = —1 and ij_l = Cz>,

C/R
with e(1) = 1 and e(c) = j. Thus an element of Z} (WC/RQ%/R, G(C)) is a pair (v, J)

alg
where v € X, (G) and J € G(C) satisfy

v=JvJ!
and
JJ =v(-1).
Moreover [(v,J)] = [(/, J')] € Hy,(We/r, G(C)) if there exists g € G(C) such that
vV =guvg™!
and
J =gJ9 "

If p € X.(G) and the image of p commutes with that of “u, then we obtain an
element A\g(p) € Zallg(W(C/Rag/R, G(C)) defined by

Ac(p) = (up, p(=1)).
Note that /@(/):G(u)) equals the image of p in Ag cai(c/r)- (To see this note that it

suffices to treat the case that G = T is a torus, in which case Ag(u) = cor g pu.)

/R
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If pcy factors through Z(G), then Ag(y) € ZsWerao, , G(C))pasie: This induces

0 Y
C/R
maps
¢ G(R)\{x € X.(G) : the images of p and “u commute} — Hy, (Weyr, G(C))
and

Ao GR\{p € Xu(G): ‘p=p"eX. (G} - Hy,(Weyr, G(C))basic-

(To see the latter map is surjective choose a fundamental torus 7' C G. Given a class
in Hy,(We/r, G(C))pasic it will be the image of a class in H,y,(We/r, T(C))a—basic,

alg
which in turn is of the form cor a2 1 for p € X.(T). Then the class is represented

by (e, p(—1)) and pcp is valued in Z(G).) The image Ag(y) depends only on the
G(R)-conjugacy class of y, so we will sometimes write Aq([1]cr))-
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6. SOME EXTENSIONS OF GLOBAL (GALOIS GROUPS

In the case of global Kottwitz cohomology we will need to consider various different
extensions of a global Galois group Gal (E/F') and the relationships between them.
For now consider D D F D F with D and E Galois over F'. We will be primarily
interested in the case D = FE, but we will need the more general case to allow
comparisons as the extension E varies. When we drop D from the notation we imply
that we are in the case D = E.

6.1. Some pro-tori and related groups. Suppose that D D E D F are number
fields with D and E Galois over F. If t € Ty p(Ap) then for each place u of D we
have t, € (AF)%(P/Me and t,, = ot,. Moreover if w is the place of E below u then

UD/E(t)w = Hu’|w HUEGal(D/E)u/ Tt

= HTEGal (D/E)/Gal (D/E)y HaGGal (D/E)y A 7
= 7€Gal (D/E)/Gal (D/E)y 1 locGal (D/E)., "ty

Lemma 6.1. Suppose that D D E D F are number fields with D and E Galois over
F. For each place v of F' choose places u(v)|w(v)|v of D and E respectively.
(1) Hi(Gal (D/F), T, 5(D)) =11 H(Gal (D/F )y, D*) and
HY(Gal (D/F), Top(D)) = (0).
(2) HZ(Gal(D/F)aTz £(Ap)) = [1,ey, H'(Gal (D/F)uw), AL) and
H'(Gal(D/F), Ty p(Ap)) = (0). ,
(3) Z(Gal(D/F) T5,5(Ap)[Top(D)) = ey, H(Gal (D/F)uw), Ap/D*) and
HY(Gal (D/F), Ty p(Ap)/To,e(D)) = (0).
(4) H{(Gal(D/F), T3 5(D)) = (0).

Proof: The first part is an application of Shapiro’s lemma

H'(Gal(D/F), T, z(D)) = [[ H(Gal(D/F), [ D)= [] H'(Gal(D/F)u), D)

veVR wEVE v veEVE

veEVER

combined with Hilbert’s theorem 90. The second and third parts are proved similarly
using the vanishing of H'(Gal (D/E)y ), A}) and H'(Gal (D/E)y(), Af/D*).

Consider the fourth part. As D splits 75 g there is an exact sequence

(0) — D* — Ty g(D) — T3 5(D) — (0),

and so it suffices to show that

H?*(Gal (D/F),D*) — H*(Gal(D/F), Ty (D)) = H H?*(Gal(D/F )y, D*)

vEVR
is injective. In fact it suffices to show that the composite with the map
[[ #*(Gal(D/F)uq), D*) — ] H*(Gal(D/F)uw), D)

veVER veVp
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is injective. However this injectivity follows from the fact that the Brauer group of F’
(of which H*(Gal (D/F), D*) is a subgroup) injects into the product of the Brauer
groups of all completions of F. [

Lemma 6.2. If D D E D F are finite Galois extensions of F' and if A is any finitely
generated ablelian group (with a trivial action of Gal (D/FE)), then

'p + (Z[VD) ®z A)ga (pym) — Z[Vi] ®7 A
and

L%?E : (Z[VD]O X7z, A)Gal(D/E) = Z[VE]O ®qz A.

Proof: The first assertion is clear. For the second use the long exact sequence
associated to
and the surjectivity of @, ¢y, Gal (Dyww)/Ew)™ @z A — Gal (D/E)™ ®z A, where
for each w € Vg we choose a place u(w) of D above it. [J

If DD F D F are finite Galos extensions of F' and if S is a set of places of F', then
we will write

(c/vloc(E/F)OD’S — H D;; C TQ,E(AD)a

wGVE75

where we consider D% C A} inside the w'-factor. If C' D D is also finite Galois over
F then E°¢(E/F)c,s is preserved by Gal (C'/F) and

(£ (B/ F)y)% €17 = £9(E/F)} .
The map 77%/13 : Ty p — T g sends
Mpyp : ED/F)gs — E(E/F)gs
Dy :Eyw
(:CU)UGVD,S — (Hu|w %L ]>w€VE,S'
We also define

gglOb<E/F)OD = T27E(AD) X Ty 5(Ap)/Te, 5 (D) AE/DX
= {a€Tyg(Ap): my(a) mod E* is independent of w}
- T27E(AD).

It is preserved by Gal (D/F) and
(gglob(Ev/F)OD)Gal (D/E) _ gglob(E/F)%
which we are denoting simply £8°P(E/F)?). Moreover we have short exact sequences
(6.1) (0) — A, — EEY(E/F)Y — Ty p(D) — (0),
and

(6.2) (0) — EEP(E/F)Y, — Ty p(Ap) x A /D* — Ty g(Ap)/To.x(D) — (0)
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and

(6.3) (0) — Ty p(D) — EE*(E/F)}, — A} /D* — (0)

Moreover, if C' D D in another finite Galois extension of F', then
e : E8°(D/F)g — EF(E/F)L.

This is compatible with the [D : E]-power map A% /D> to itself.

Lemma 6.3. Suppose that D D E D F are finite Galos extensions of F' and that S
is a set of places of F. For each place v of F' choose places u(v)|w(v)|v of D and E
respectively.

(1) Hi(Gal (D/F), €°(E/F)} ) = [Tycs H/(Gal (D/ F)uy, D).

(2) H'(Gal(D/F),&(E/F)ps) = (0).

(3) There is a unique class [alEO;FDS] € H*(Gal(D/F),E°(E/F)Y}, g) which re-
stricts to (g, /7,.D,.,] € H*(Gal (D/F)yw), Dy,y) for allv € S. This class
does not depend on the choices of the w(v) and u( ) If S” C S then the image
of [alEO;F,D,S] in H?(Gal (D/F)aEIOC(E/F)%,S) equals [QIE;F,D,S’]'

(4) H'(Gal(D/F),£8°*(E/F)p) = (0) and H'(Gal (D/E), &8 (E/F)},) = (0).

(5) There is a left exact sequence

(0) — H%(Gal (D/F), 40 (E/F)%) — H2(Gal (D/F), Ty.p(Ap)) & H?(Gal (D/F), AB/DX)

— HUEVF H?*(Gal (D/F) (), A

and a unique class [agE?;D] € H*(Gal (D/F), £8P (E/F)Y)) which maps to
Gal (D/F),u(s
€ ([Tyev, H*(Gal(D/F)yw),A})) & H*(Gal (D/E), A}/ D).
This class does not depend on the choices of the w(v) and u(v).
Moreover [04113?1: pl and [agEl‘/)%D] have the same image in H*(Gal (D/F), To.z(Ap)),
which we will denote (s g/pp).
(6) If C D D D E D F are finite Galois extensions of F', then

loc

ND/E,* [aD/F C, sl = [aE/F C, s)
and
lob
D/ E [aD/F ol = [O‘%E/F cl

(7) If C D D D E D F are finite Galois extensions of F, then

f loc
éf/lD[aE/F D s] [aE/F c, s

and

. lob lob
g/ljg [agE(/)F pl = [agE(/)F o)
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Proof: The first part is an application of Shapiro’s lemma. The second and third
parts follow easily. The fourth part follows from part {4} of lemma and the long
exact sequence associated to (6.1)).

The left exact sequence in part five comes from the long exact sequence associated
to (6.2) and part |3| of lemma. The existence of [agElc/’; p) follows because

Gal (D/F)yw)
cor ga} Eg;?;u(v) Z’u,(v),* [&Ew(v)/Fvau(v)]
a w(v) . w
COL Gal (D/F) () [Dugw) : Ew(v)][O‘D/DGaMD/F)u(U)]
[DGal (D/F)u<v> . DGal (D/F)w(v)][D

= [D . E] [ag//DGal(D/F)w(v)]
Gal(D/F
= [D: Elresg, ED?F;M)(U) [a}/‘)//F]
Gal (D/F)
resGZl (D/F) (o) [a}g/RD]'

uw : Buwllal) jenwre,)]

The images of [alon #.pl and [ai}(/’; plin

H*(Gal(D/F), To,p(Ap)) = || H*(Gal(D/F)u), AT)

veEVER
are

( i Do = (cor Gar [ )
Zw(v)v*corGal(D/F)u<v> aEw(v)/Fvau(v) v CorGal(D/F)u(v) Zu(v)7* aEw(v)/FvaDu(v) v

For the sixth part note that, if ¢(v) is a place of C' above u(v), then

(@B, 0y /P ] = [Cutw) + Bullacy, /7] = [Dug) = Bww) @D,y /700100 )
and
[O‘J‘:EV/F,C] =[D: E] [OZEJV/F,C]-
For the seventh part note that

Gal (C/F) (o) Gal (Q/F)u<u) Gal (C/F)y(v)

l"eSGal (C/F)t(v) Gal (EI}:E_,)”(U) [aEw(v)/Fv7Du(v)] — Gal (EI}EF)“(U) [aEw(v)/Fv7Du(v)] - [aEw(U)/FU7Ct(’U>]
and

: w w

inf |« = |« .
U

We will write az g/pp for the image of agEl’j;D in H*(Gal (D/F), T3 g(D)).
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6.2. Some extensions. We will write Z(E/F)p for the group of 3-tuples
a = (o’ ) € [agippl x [0y p]x CH(Gal (D/F), Tr,p(Ap)) xC' (Gal (D/ E), £8°* (E/ F)})
such that

Faloc = P ¢ 72(Gal (D/F), Ty, p(Ap)).

We will also write B(E/F)p for the abelian group consisting of pairs v = (781°" v
where v8°P : Gal (D/F) — EP(E/F)% and 4% : Gal (D/F) — E(E/F); with
pointwise multiplication. Then B(E/F)p acts on Z(E/F)p via

(—yglob7,yloc)(ag]ob’ OélOC, /8) _ (’YglObaglob7'yl°Caloc’ ,ygIOb/B(,leC)—l).

We write H(E/F)p for the set of orbits of B(E/F)p on Z(E/F)p. We will call two
elements of Z(E/F)p in the same orbit equivalent.
Moreover Ts g(Ap) acts on Z(E/F)p via
t(ag10b7 Oéloc, 6) — (aglob’ aloc’tﬁ).

This action commutes with the action of B(E/F)p, and the induced action of B(E/F')p
Ty p(Ag)p is transitive (because H(Gal (D/F),T> p(Ap)) = (0)). The stabilizer in
B(E/F)p x Ty g(Ap) of any a is the group of

((“1,°1), be/a)
with a € EEP(E/F)Y and b € E°(E/F)% and ¢ € Ty p(Ar). (This is because
H'(Gal (D/F), 9 (E/F)%) = (0) and H'(Gal (D/F), E2°(E/F)) = (0).)

100)

Lemma 6.4. (1) If wy # wy are places of E, then the intersection of the images
of DY, and D}, in A}/ D* is trivial. Thus E8°°(E/F)},NE(E/F)}, = {1}.
(2) If t € EFP(E/F)Y and s € E°(E/F)Y and st € Typ(Ar), then s and

t e T2,E(AF)-

Proof: For the first part, if ¢; € D have the same image in A}, /D> fori = 1,2, then
ti/to € D* N Dy DY = {1} and so t; =ty = 1. Then E&*(E/F)}, NE(E/F)}, =
Typ(D)NEY(E/F)Y, = {1}.

For the second part, write t = (¢,,) and s = (s,,) as w runs over places of E. Also
write ¢ for the common image of the ¢,, in Af/D*. We see that for all o € Gal (D/F)
we have

Oty-14 = t, mod D).

From the first part of the lemma we see that 7¢/f = 1, and so
e (AB/DX)Gal(D/F) — A;/FX

Thus we may write ¢, = tot,, with t, € A} independent of w and ¢, € D*. If
o € Gal(D/F), then

7(t)/(t) = (s2)/7(s0) € [T D*n ] D < [T A
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from which we can conclude that 7(¢))) = (¢,)) and ?(s,) = (Sy). The lemma follows.
0

Corollary 6.5. If a and oy € Z(E/F)p are equivalent, then there is a unique
v = (&P yloc) € B(E/F)p with
o ="
Proof: Any other such triple must be of the form (¢y8°P, °41°¢) with a € £81°P(E/F)Y,
and b € E°(E/F)Y and a/b € Ty g(Ar). Thus, by the lemma, a,b € Ty g(Ar) so
that a,yglob — ,yglob and b,yloc — 7106‘ O

Corollary 6.6. The stabilizer in Ty g(Ap) of a class a € H(E/F)p is
EX(B/F) 8 (B/F)pTo p(AF).
Proof: Suppose a = (a8 o!°¢ 3) € a. If ta = a, then
( aglob7 aloc7 t ﬁ) _ (yglob aglob’ ~loc aloc7 ,yglob 3 ( ryloc)—l)

for some v = (18P 41°¢) € B(E/F)p. Then 8" = 1 for some a € E8°P(E/F
(because H'(Gal (D/F),E8°P(E/F)%) = (0)) and ¢ = 1 for some b € E°°(E/F
(because H'(Gal (D/F),&°(E/F)Y,) = (0)) and 8 = %/*3, so that tb/a € Ty p(Ar)
and t € E°°(E/F)%LE8P(E/F)L Ty p(Ar). The converse is easier. [J
If C DD D FE D F are finite Galois extensions of F', then there are maps
il’lfc/D : B(E/F)D — B(E/F)C
(78°0,4°¢) +— (infepy#°, infeypy

)b
)b

loc)

and
infC’/D : Z(E/F)D — Z(E/F)C

(OéglOb, Oéloc, 5) — (infc/D OéglOb, il’lfc/D CYIOC, infc/D B),

which induce a map
infc/D : H(E/F)D — H(E/F)C

These maps are compatible with the map 75 p(Ap) < To g(A¢) and the actions of
these groups. There are also maps

D/Ex B(D/F)C — B(E/F)C

(v&°P,41°) +— (npyE © V¥, DB © )

and
npjesx: Z2(D/F)e — Z(E/F)c
(aglob loc’ 5) (77D/E o a%lob) Np/E © O./IOC, ND/E © 6)’
which induce a map
77D/E,* : H(D/F)C — H(E/F)C
These maps are compatible with the map np,p : To,p(Ac) — Top(Ac) and the
actions of these groups.
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If BDC D> D DE D F are finite Galois extensions of F', then
il’lfB/C @) infc/D = infB/D
and
Np/Ex CNc/Dx = NC/E,x
and
infB/C ONp/Ex = ND/Ex © infB/C : H(D/F)C — H(E/F)B
The following lemma follows immediately:

Lemma 6.7. Suppose that C D D D E D F are finite Galois extensions of F.

Suppose also that aoc € Z(C/F) and ap € Z(D/F) and ag € Z(E/F) satisfy

Ne/paOc = ¢ info/p ap and np/p.ap = tinfppag with t' € Top(Ap) and t €
TQ,E(AD)- Then

Ne/B O = tnp/E(t') g/lg ag.

To an element a = (a8'°?, !°°, ) we can associate extensions, and maps between
them as follows:

o EENE/F)p o = EP(E/F)p auev the extension of Gal (D/F) by £8°(E/F)Y,

arising from a#'°P,

® Wg/rp.« an extension of Gal (D/F) by Aj;/D* obtained as the pushout of
EEP(E/F)p o along EEP(E/F)Y, — A% /D*.

o &(E/F)p.o an extension of Gal (D/F) by T5 g(D) obtained as the pushout
of E8°P(E/F)p o along E8°P(E/F)%, — T g(D).

o E°YE/F)pa = EY(E/F)p qoc the extension of Gal (D/F) by E°°(E/F)Y,
arising from o!°c.

o £9°(E/F)psa an extension of Gal (D/F) by E°°(E/F)}, 4 obtained as the
pushout of £°¢(E/F)}, — EY(E/F)} 5.

o &(E/F)p o an extension of Gal (D/F) by T5 g(Ap) obtained as the pushout
of SIOC(E/F) — 15 E(AD)

o If uw|v are places of D, E and F respectively, then we obtain an extension
Wg,/p,,D,a of Gal (D/F) by D} as the pushout of EIOC(E/F)DQ|Ga1(D/F)w
along £'°°(E/F)%, — DJ; and an extension W, /5, p,.a of Gal (D/F), by D}
as the pushout of Eloc(E/F)D,a|Gal (p/F), along EY(E/F)Y}, — DJ.

e A map of extensions

locq = locg =ig-1: E¥P(E/F)pa —> E(E/F)pa
Cozion (0) > B(0) tegoc(0)
extending E8°P(E/F)%Y — Ty g(Ap).

e A map of extensions

& Wey/pypa — Wg/pD.alcal(D/F).
ea&w (O’) — (7Tw e} 5) (U)eaglob ((7)
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extending D) — A} /D*.
We will write £'(E/F)p for any of the above extensions and £ (E/F)Y, for the kernel
of &(E/F)p — Gal (D/F).

If [a] = [@] € H(E/F)p then we get a unique v = (y8°°,4) € B(E/F)p
with @1 = Ya. In this case iy = i,z00 gives canonical isomorphisms of extensions
from E8°P(E/F)p o to E¥P(E/F)p.a,, and from Wg/pp o t0 Wg/pp.a,. and from
E3(E/F)p,a to E(E/F)p.a,. Moreover i, = i1 gives canonical isomorphisms of ex-
tensions from E°(E/F)p g t0 E°(E/F)p s.a,, and from Wg, /5, p.o 10 We, /5, D.on s
and from WEw/Fv,DU7a to WEw/Fv,Du,ap and from 82(E/F)D’a to gg(E/F>D7al. We
have i, 0 locq = locy, 0y and iy 0 1& = 12 04,. Thus to a € H(E/F)p we can
canonically associate a well defined diagram of extensions:

E(E/F)pa « EENE/F)p. — Wg/ppa
locg |
SIOC(E/F)D’S’Q “«— EIOC<E/F>D,Q — SQ(E/F)D’Q

U
Wey/Fona  “ E°(E/F)palcal(D/F)e
U

Wew/FoDua  “ E°(E/F)palcal(p/F).:
together with maps
Lty WEgy/FyDa — WE/F,D,a-
If a = (a8, 0, 3) € a € H(E/F)p, we will sometimes write
eil()b(o_) — eaglob (0) E 83(E/F)D,Cl

and
() = equoc(0) € EY(E/F)pa.

[0
Note that there is an isomorphism of extensions Wg/rpa & Wgas/pp which is
unique up to composition with conjugation by an element of A% /D*. Moreover there
is an isomorphism of extensions Wg,/r, p,a & Wgab/p, p, Which is unique up to
composition with conjugation by an element of D.*.
Any map of extensions

0) — EXY — WEy /Py — Gal(E,/F,) — (0)
! il |
(0) — AE/EX — WE/F,u|Gal(E/F)w — QGal (E/F)w — (0)
must be of the form conj, 0.2 for some a € A5 /E*. (As H(Gal (E,/F,),A}/E*) =
(0).) If ¢ : Wgpa — Wganyp and @y : We, /5,0 — Wgab/p, are isomorphisms of
extensions, and if u is a place of E*" above w, then we conclude that ¢ o (% =

conj, o 0, o p,, for some a € A%/E*. Thus conj,’ o ¢ 0% and 6, have the same
image. In particular the image of @ o is the decomposition group for some place of
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E* above w. This suggests that the choice of a is not dissimilar from the choice of
a place of E®" above each place of E.

If t € Ty 5(Ap) then
ESNE/F)pa = EHP(E/F)pasor = EEY(E/F)p ta
and
EY(E/F)pa=E(E/F)paoe = E(E/F)pta-
Thus we get identifications
5 E(E/F)pa — E(E/F)pia

for all the extensions considered above. They commute with all the ‘unnamed’ maps,
but satisfy
3t o locq = conj, olocty 0 3¢
and
conj, 03 0Ly = L:UO‘ 0 3.

Moreover 3 o i, = i~ © 3;, and so the maps 3; descend to well-defined maps
3:E(E/F)po — E(E/F)pta

for all the extensions considered above, which satisfy the same compatibilities. We
have dtita = dt1 © dta-

If a € E°(E/F)Y and b € E8°P(E/F)% and ¢ € Ty g(Ar) then ®a = a. More-
over 3ape : E(E/F)po = E'(E/F)p,q equals conj, ' for E'(E/F)p, = E¥P(E/F)p,
or &(E/F)pa or Wgyppa; and 3qe. = conj, for ENE/F)ps = E°(E/F)p.sa or
E(E/F)pq or Wg,/Fy0.a 0r WE,/F, D, a-

Lemma 6.8. If 7 € Gal (D/F) and a = (a#°®,a!°¢, B) € a , then CONjloc(
an isomorphism W, /r, p.o — We,/Fupa- Moreover

) mduces

T

o : . . o
Lz © CONJeloc(7) = CONJg(ry O CONJgiob ) O Ly, * W, F, Do — WE/FD,a-

Proof: Both maps send x € D); to "z € D7,.
If o € Gal (D/F),, then conj, | (y(eqoc(0)) is the image of

ealoc (T)ealoc (U)ealoc <7‘)71
- ealoc (T)ealoc (U)ealoc (7__1) (ealoc (T)ealoc (7—_1))
= a(1,0)a° (10, 77 )eqoe (Tor71) (¢ (7, 771)al¢(1, 1)) 7}

-1

and so
conj, 1C)C(T)(eam(a)) = e (%1, 0) (70, 7"1)/7‘”_1(0410‘3(7, 77 a1, 1)) equec (o).
Thus

(e2, 0 conje . (r) )(eqioc ()
— WTw(alOC(T, O')Oéloc(TO', ,7_71)6(7_0.7.71)/7-07-—1 (OélOC(T, Tfl)aloc(l’ 1)))6aglob (7_0.7.71).
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On the other hand

(conj, . (- © conj, b )Ol,uw)<€aloc(0'))

= Tru(B(r)) M (B(0))easion (T)eason () aston (7)™ 1 (6 (T))_1

= Tru(B(r)7B(0) /77 B(T))eqsion(T)eqsion (0)equan ()

= Trw(B(r)TB() /77 B(T))easin (T)eqsion () eqsion (T71) (Eqaan (7)eqsion (771)) 7!

= (B B(0)a (7,0)08 (7, 71) 77 B(r) o (a7 )y (@890 (7, 7)1, 1)) 1
Thus to prove the lemma it suffices to check that
O{IOC(T7 O.)aloc(,ro.’ 7_71)/8(7_0.7_71)/70'7_1 (O{10C<7., ,7_71)0410(3(]_7 1))
= B(r) B(0)a(r. o) (ro, 71) /77 (B(r)a 0 (r, 7 )aBh(1,1))
or equivalently that
Bror)
= B(r)"B(0)B(ro)B(ror 1) (B(r)" BT )B(1)*)/B(7) B(0)B(ra) ™ B(r—1)" " (B()B(1)%),
which is clear. [J
We have an identification of g?(E/F)CJnfC/D o with the pushout of £ (E/F)p.a|cal (C/D)
alon
) ENE/F)p — E(B/F)

for each of the extensions considered above. (In the case W, /5, p.o we use Wg, /5, p.alGal (¢/F).;
and in the case Wg, /5, p,.« We use W, /5, D,.alcai(c/F),-) These identifications com-
mute with the maps loc,, ¢ and 3;.
We also have an identification of €' (E/F)cy,, , .« With the pushout of £'(D/F)¢,q
along

npse - € (D/F)e — E(E/F)¢

for each of the extensions considered above, except for the case Wp,/r, c.. These
identifications commute with the maps loc, and ;.

The case of Wp, /, .« is much more complicated, and will be discussed in the next
section.

Lemma 6.9. If wy,wy are places of E above a place v of F, then

(T /Ty ) (B(0102)) = (T /Ty ) (B(00)) 7 (T, /T 100, ) (B(072)) mOd D* DY

Moreover
(T, /7w, )(B(1)) = 1 mod D* Dy

Proof: For the first part we have

(T /Tu,) (B(01)7 B(02)/ B(0109)) = (T, /7w, ) (2 (01, ) [ (01, 09) € D DY,
The second part follows from the first and 12 = 1. O
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6.3. The extension Wg,  r, pq. Our first aim is to find a more canonical version of
this group which does not depend on the choice of a in the same way that Wga 5, p,
is a more canonical group isomorphic to Wg, /r, D, a-

Fix an F-linear embedding p : E < F,. We define

W(EFv)ab/meD = (D:](p) b (W(EFv)ab/Fv X Gal (E/F) Gal (D/F)))/E;;(p)
where:
o Wigp,m/r, — Gal (E/F)y() is the composition of W gg, yas 5, — Gal (EF,/F,)

with the inverse of the isomorphism Gal (E/F ), — Gal ((EF,)/F,) induced

by p.
® Wigr,yw/F, XGal(E/F),, Gal (D/F)y(,) acts on D:)(p) via its projection to

Gal (D/F)u C Gal(D/F).
e The map Eg(p) — Di(p) X (Wigp,)m)p, X Gal (B/F),,, Gal (D/F)uw(p)) sends a to

(@, (rer,(p(a)), 1)).
It fits into an exact sequence
(O) — Dg(p) — W(E'Fv)ab/Fv,p,D — Gal (D/F)w(p) — (0),
which has class
for any place u of D above w(p). If 0 € Gal (D/F) then we get an isomorphism
Ox - W(EFv)ab/Fv,p,D — W(EFv)ab/Fv,po—l,D
[(a, (11, 72))] — [(o(a), (11,0m07H))].
Now suppose that p: D < F, is F-linear. Then we define

Wier,)»/p,05 = <D$(m a (W(DFv)ab/Fu X Gal (B/F) Gal (D/F)))/W(DFu)ab/(EFv)

where:

e w(p) is the place of E induced by p|g.

® Wipr,)e/p, Xaal (5/F)Gal (D/ F) acts on Di(,}) via projection to Gal (D/F') ;) C
Gal (D/F).

e The map W(DFv)ab/(EFv) — D;;(,B’) X (W(DFU)‘"‘b/FU X Gal (E/F) Gal (D/F)) is given
by

o —> (ﬁ—lré;v <U’(_Eva)ab)’ (0,1)).

We leave it to the reader to check that the image of this map is a normal
subgroup.

Again it fits into an exact sequence

(O) — Di(m — W(E'Fv)ab/Fv,D,ﬁ — Gal (D/F)w(ﬁ) — (0),
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which has class
[Dup) : Bw@)lan,/r) € H(Gal(D/F)ug), Dy;) = H (Gal (D/F)u), Do)

If o € Gal (D/F) then we get an isomorphism

Oy . W(EFU)ab/Fv,D,ﬁ ; W(E'Fv)ab/Fv,D,ﬁU_l

[(a, (11, 7))] > [(o(a), (11, 0m0™))].
Moreover there are natural isomorphisms of extensions
Werybr.05 — WER)®/FpeD
[(a, (T, 72))] — [(a, (11|(BR,)m, 72))]

compatible with the actions of Gal (D/F). (We leave the verification of this to the
reader.) o
If p: E*» < F, is F-linear, then there is a natural map

0o : WiEr,y /P, plp,p — Weayrp = (Ap/D* X Weaplcan/m)/ (Ap/EX)
[(CL, (Th 7—2))] — [(a’ (QP(Tl)v 7_2))]’
which is canonical up to composition with conjugation with an element of Ag. If
0 € Wgab/p|gal (p/F), then

6

po—1 0 0|ps = conj, 06,

up to composition with conjugation by an element of Ag.
If C 2D > FE D F are finite Galois extensions of F' then
Wigr,)r, .0 = (Copy X Wier,)m 50,0681/ F)ui) /Dy
Moreover
Op : Wigr,yv/yplp.0c — Weabyro
is identified with

(Coip) X Wisr,yaE, 15,0l Gal (€/F) i)/ Py — (AG/C™ X Wia g plcaic/r))/ (Ap/D*)
[(a7 (Jv T))] L [(CL, (09(0)7 T))]

If p: D* < F, is F-linear, then there is a natural map

O - Wipm)r ) m0pn, — Weebyrp = (Ap/D* X W) [(Ap /DY)
[(a, (r, 7)) — [(arg ((05(T1)72 ) |av), T2)],

where 7, € Wpab /g is any lift of 7. This map in fact only depends on p|gasp, so we
will sometimes write 65 for p: E**D — F,. This map is canonical up to composition
with conjugation with an element of A = Np,gA. If 0 € Wpav ), then

0-

1 o0 = conj. o 05
pJ|EabD |D7* Jo P
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up to composition with conjugation by an element of Agx. Moreover

~

Weryw/r 05,  —  WiEr)»/F 60
05 L
WEab/F,D
commutes. We also leave these verifications to the reader.
We see that there is an isomorphism of extensions

~Y
WEw(p)/FUvaa - WEu}(p)/FU7P7D7

which is unique up to composition with conjugation by an element of D;)(p). If

¢ : We/ppa — Wga pp and @y, WE,y/FoD.a = WE,,y/Fop.p are isomorphisms
of extensions then ¢ o Lar(p) and 0, o ¢, differ by composition with conjugation by
an element of AX/D*.

Lemma 6.10. Suppose that D D E D F are finite Galois extensions of a number
field F' and that u|w|v are places of these fields. Suppose also that oo € Z(D/F).
Then there is an isomorphism

JD/Ea (D~ (WDu/Fv,a X a1 (5/F)Gal (D/F)))/WDU/Fv,a|Ga1 (D/E)y, — WEw/Fv,D,nD/E,*aa
where

WDu/Fv,a|Gal(D/E)u — D x (WDu/Fv,a X Gal (E/F) Gal(D/F))
— (e(0)7!,(0,1)),
and

¢ =ep/r: Wp,/r.alca(o/e), — Ey,

X
w’

-1
o—> H S0 Sy
neGal (Du/Ew)

which we embed diagonally in D), is the homomorphism sending

for any section s : Gal (D, /E,) — Wp.)FyalGal(D/E). - The isomorphism is given by
ip/pal(a, (beg(0), 7)) =a [[ ()", 0)/a(r,7700)) lpuers . ol7),
neGal (D/E)

where if ¢ € [, DS we write c|, € [[, DY for the element that is c, at v and 1
elsewhere. We also have

inD/Ev*"/ © jD/E’O‘ - COHanEGal(D/E) ~oe (1) yu © jD/EJID/E,*a © (1 X 1y X 1)-
Moreover the map
v (D (W, /5y X cal (/) Gal (D) F))) /W, 5, alca (p/5), — (A5/D*xWpp)/(A}/D*)

sends

[(a, (1, 1)] — [(a, D)]
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fora e Dy, and
(L (D = comiy s TT eE(rno™ i (0)el™ ()7 e ()7 e (7))
neGal (D/E)

for (o,7) € Wp,/F,.a Xcal(z/r) Gal (D/F).

Proof: The map ¢ is independent of the choice of section s, it is a Wp,/F, a-
equivariant homomorphism and it is valued in E;; C D). The map

WDu/Fv,a|Gal (D/E)y — Df; X (WDu/Fv,a X Gal (E/F) Gal(D/F))

is therefore a homomorphism with normal image.
There is an exact sequence

(0) — D,E; e (D$ N(WDu/Fv,aXGal (E/F)Gal (D/F)))/WDM/FU,QMM (D/E)., — Gal (D/F)w — (0)
The given map
Jp/Bet (D X (Wp, /By e XGal(B/F), Gal(D/F)w)) — We,/F, Diap ..ex

is compatible with the inclusion of D} and the projection to Gal (D/F),. Thus to
prove the first assertion of the lemma it suffices to show that jp,g o is a homomor-
phism that is trivial when restricted to Wp, /r, «|cal (D/E).-

Thus to prove the lemma it suffices to check that:

o If (0,7) € Gal (D/F)y Xgal(r/r) Gal (D/F) and b € £°¢(D/F)°, then

T H N0)|nu | = H 1(70) |-

neGal (D/E) neGal (D/E)
o If (0'1,7'1) and (0'2,7'2) S Gal(D/F)u xGal(E/F) Gal (D/F) then
HneGal(D/E) (O*/IOCO% 01)/aloc<7-17 7-1_17701)) |77u

o HneGal(D/E) (Cvl"c(??, 02)/01106(7%72_17702)) ‘nu) nD/E,*(aloc)('rl?TZ)

[T ccarp/m) (1(0°(01,02))a' (1, 0102) /0’ (1172, 75 17 170102)) [

If o € Gal(D/E), and b € D}, then

cbes (@)™ TI  ®)a(.0)/a(1,10)) ey, aoe(1) = 1.
neGal (D/E)
If (0,7) € Gal (D/F)y XGal(5/r) Gal (D/F) then

oc oc loc loc loc Joc — T oc —
I L ccar /s (Y0 ()" (7 (0) ) @ (n, ) /7 (7, 7700)) ™ (V1 (0) | )
= (np/Eo 7)) HneGal (D/E)(O‘IOC(% 0)/a(1,77'00)) |-
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o If be D then

C IT 2@ 1= [T B Ombluea™ )™ | ea(1)1P#), e (1)

n€Gal (D/E) n€Gal (D/E)

o If (0,7) € Gal (D/F)y Xgal(g/r) Gal (D/F) then

e (HneGal(D/E) 5(”)%) I cca (/5 €8 (071 )B(0)|ues (0)ea™ (n) " ed™ (1)
= L ccao/m) (@.0)/a°(1,77100)) yu(05/58) (T) |-
The first assertion is equivalent to
H (7—77071>(ab)’7'n0—1u = H (7)1,
neGal (D/E) neGal (D/E)

which is clear on changing variables in the product.
The second assertion is equivalent to

HnEGal(D/E) (aloc(naal) (7'117 73) /0 (Tlanlngl)) i
L ccan/m) (aloc(n, 02) /0l (72, 7y 02)) ’Tmaflu
[Lccar )z ("0 (01, 09)a (0, 0102) /@ (Ty 79, 75 ' 10102))

or
[T cca /) (@ (a'°(n, 01)a’® (71, 7)o (1 tay, o) /@O (T, T o ) A (Ty, T T 00102)) g
[T ccar )z ("0 (a1, 02) (1, 0109) /& (1173, T3 71 ' 10102)) [
or
HneGal(D/E) ( aloc(Tflﬂgh02)/(1106(7177{17701)) |nu
necal (/) (10 (a1,02)a 106(77,0102)/04100(77701)) |
neGal (o) (1 (T2, 73 b o ag) [l (T, 7 b on02) (11, 7)) Lgu
or

HneGal(D/E) (aloc(ﬁah 02)/04106(7177f1770102)) |nu
= [Lcca e (@ Ma1, 02) /(11,77 '00103)) |y,

which is clear.
For the third assertion note that for b € D) and o € Gal (D, /E,,) we have

)= J[ 20
n€Gal(D/E)

and
e(eloc(a)) = Ocloc(n, o)l.€ Ey CDJ.
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If R € Gal(D/F) is a set of representatives for Gal (D/FE)/Gal (D/FE),, the latter is
equivalent to

e(eg’c(a)) = ngRHneGal D/E)u(ca

“(1,0))lcu
D/E)u( 1°°(C 7)ol (¢, m)/a*(¢, 1))l cu

(
CeR 11neGal(
= CeER HneGal (D/E)y & (C o) lenu
HCER HneGal (D/E), & (Ca mleu/
CER HneGal (D/E)y & (Ca no) ’Cu
= HneGal (D/E) ¥ (1, )
€ ol
Thus the third assertion is equivalent to
e @)= TI (0 m.0)/a1.10)) [y | (0m.a™)(L, Dl
n€Gal (D/E)
i.e. to
loc _ loc loc 1.1 loc 1
a®*(n,0)|pu = (a**(n,0)a**(1,1)/a’*(1,10)) |,
neGal (D/E) neGal (D/E)

which is true.
The fourth assertion is equivalent to

I ccar (/i) (7°(0)" vl"cl( o)y (na )y () 1y (o) T A (o) O (1) T T (T e ) ) [
T ~loc
HnGGal (D/E)( ;y (77)) 7'770'71’111
HneGal (p/E) (7)lus
ie. to
IIT o) =TI V0l us
neGal (D/E) neGal (D/E)
which follows immediately on changing variables.
The fifth assertion is immediate. The sixth assertion is equivalent to

=) (HneGal(D/E) 5(”)%)

ILccai /ey (7 B(0))lrno—1ua®(Tno =", 0)eq (Tn) e (1) 15" (1)~

[Lcca(n/m) (@@°(n,0)B(n)"8(0)B(1)B(no) [ B(no)a > (r, 77 na) B(7)" B(r™'10)) |yus
i.e. to

HneGal (D/E) ((B)"B(o) /(T BM))7nu) HneGal (D/E)(agbb(TnU_l, )/ (1, 1))

(
- HneGaI (D/E) (Oégk)b(na U)/aglob<77 7'_1770))

Hne(}al (D/E) (B(m)"B(0)) lnu/ HneGal (D/E) ("B |7

which is seen to be true, by change of variable. [
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6.4. Explicit cocycles. For comparison with some constructions of Langlands in
[L], it will be useful to us to have a more explicit form for some elements of Z(E/F).

Fix the following data

: !
« representing [agE(;l;,] ,

a place w = w(v) above each place v of F,
v, representing [, /5] for each such w,
a section s, : Gal (E/F)/Gal (E,/F,) — Gal (E/F) with image H,, for each
such w,
and, for each such w, a function =, : Gal (E,/F,) — A} such that " (m, o
@) |Gal (Bu/Fy) = twtw € Z2(Gal (E,/F,),A%). (This is possible as « is equiva-
lent to some a!°® in Z2(Gal (E/F), Ty.g(Ag)).)
Also set §,(0) = o7 1s,(0).

Then

a'*(0y,09) = H H Su (1) (50 (1)~ 0150(071), 507 '0) " o5 (05 Ty 1))
veVE neGal (E/F)/Gal (Ew/Fy)

is a representative of [alon p). (If one restricts the class to Gal (E,,/F,) and projects
to EJ one certainly recovers a,,, so the only thing to check is that a(o1,09) is a
2-cocycle. Writing out the cocycle relation and changing the variable from 7 to o1n
in one of the terms, what we need to check is that

1 1

<sw<n>*1msw(afln>l)aw(sw(o—;n)*ozsw(ogqulq),siu(ag or'n)ogse(os oy tor ')
(50w (n) " torsw(or n), sw(oy 1) oaoss, (03 oy lor ')
= ay(sw(n)ro10254 (05 07'n), sw(05 o7 ') oS, (05 oy

o (50(7) 1018w (07 0), Sw (07 1) " Loasw (a5 o),

which is just the cocycle relation for «,.)
Define

o))

B:Gal(E/F) — Ty p(Ag)
by
anﬁ(d) = an(a(sw(n% Sw(n)_lasw(fl??))/a(@ 3w<0_177>))sw(n
We claim that (o, !¢, 8) € Z(E/F), i.e. that
Baloc

Y(sw(n) " osw(o™n))

= a.
Our verification is a rather ugly cocyle computation. We need to check that
B(o102)B(01) 7 B(02) ' a!*(01, 02) = a(01, 02)

or, after projecting under m,,,, that

T (01, 02)

Tyw(B(0102) B(01) )71, (B(02)) 7

1
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The right hand side equals

T (a(80(1), Sw(n) TLo10280 (05 o7 0) ) a0, $w(07'n)))

T ((50(0), 50(10) o150 (07 7)) (0102, 50 (05 "oy ')
N 1 (02, 50 (05 o7 ') [(sw (07 '), Sw(aflﬁ)_lazsw(ailaflﬁ)))
(g (Sw(n)*lalsw(afln)asw(ﬁ ) tozsw(oy oy ')
0 (3 (800 (M)~ o180 (07 0))/ (Y (5 () " 1025005 o7 ')
o1sw(or )’Yw(sw(al 77) 1U2Sw(02 o 77))
T ((50(0), 50(0) Fo10280 (05 o7 ') a0, su(or'n)))
T (8w (1), Sw (1)~ lalsw(af n))a(o102, sw(oy 'y 'n)))
("la(@,sw(@ o 77))/"1 (sw(or'n), sw(or'n) Loasw(os oy 'n)))
oy (50 (1) 2 018(07 1), 807 1) 0280y L7 ),

which in turn equals ,,, of

w=1

-1 1

a(sw(n), sw(n) o125, (05 o1 n))a(o1, sw(or 'n))/a(sw(n), sw (77) o15u(07'n))
a(0102, su(03 '07'n)) a0z, sw(og o7 ') /(T alsw(or '), sw(or ' n) " toesw(oy oy ')
wa(s, () o15w(07 '), sw(or ') oasw(og oy '),

We can rewrite this

a(s(n), 50(n) " o10280 (05 o7 ') )01, s (07 7))
(5w (1), 50(0) " o150 (07 '0))(0102, 50(05 07 'n)))
(01, 0980 (05 Loy ) a(0102, 50(05 07 ') (o1, 02))

(ao1su (o1 n), sw(or ' n)  oasu(oy oy 'n))a(or, sw(or n))a(or, 0asu(05 o1 'n)))
&(0150(07 1) 50(07 1) T250(3 07 1)) (50(1)s 50 (n) 1507 1))

(5w (1), () 010280 (03 o7 ') 7!

in which almost everything cancels leaving just a(oy, 02). The claim follows.
Let us be still more explicit in a special case. Assume that F' = QQ and that E is
totally imaginary. We may and will assume that
e o(1,1) =1,
o a,(1,1) =1 for all w,
e 1 H, for all w,

—1 if 01 = 09 = Cyo
aw(oo)(glaUQ):{ 1 ] 2 (c0)

-1

-1

¢ 1 otherwise,
® V(o) = 17
o and a(0, Cy()) = 1 if 0 € Hy.

(To achieve the last of these we replace a by 7ar where (1) = y(Cw()) = 1 and
”y(acw(oo)) = a(0, Cu(oo))(0) if 0 € Hy.) Then

a(o, ) = Oé(l o) =1;
(Cw )w( ) — _1w(oo);
(07 Cw (00) ) (0) — _1Uw(oo) if o g Hooa



COCYCLES FOR KOTTWITZ COHOMOLOGY 67

_10' oaw(oco if 500(0-2) 7& 500(0102)
° a(01702cw(oo))0102w(oo) = &(01;02)010211)(00) { 1 1o2w(o0) if 500(0_2) _ 5oo<0102)-
(For the penultimate of these note that a0, cy(o0)) = 7(Cu(o0)s Cu(oo) ) (T, 1) /(T Cuy(00)s Cusoo))
and for the ultimate one use the cocycle relation.) Thus

Tnw(e)B(0) = Tyuw(oo) ((1050(1), 00 () 0 (07n)) /(0,0 Ndse (07 '7))))

_ _ _ —1w(co if(sooo_ln #1
= an(OO)(CY(U7U 177)) ! 1 (o) if 50050_177321

for all n € Hy, and o € Gal (E/Q).

Although this doesn’t fix a uniquely, we will use agy to denote the element of
Z(E/Q) arising from such a choice. Also choose py : Ey(s0) 5 C. Then we get a
canonical identification _

@0 : W((:/R L> WEw(oo)/QooJlO'
Moreover

Lg?oo)(egc(cw(@)) = 42 (Cu(o0))-
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7. KOTTWITZ COHOMOLOGY: THE GLOBAL CASE
7.1. Algebraic cohomology. We will be concerned with the following algebraicity
conditions:
(1) For the algebraic cohomology of £'°¢(E/F)p s, we will use the algebraicity
conditions
Ns = {(Vw)wesy : Vw € X«(G)(D,) and v, = 1 for all but finitely many w}
and
Nspasic = {(vw) € N : v, factors through Z(G) Yw € Sg}.
(2) For the algebraic cohomology of &(E/F)p . we will use the algebraicity con-
ditions
N ={v € Hom (T g, G)(Ap) : v is G(Ap)—conjugate to an element of Hom (7%, G)(D)}
and
Nbasic = Hom (T2,E7 Z(G))(D)
(3) For the algebraic cohomology of W, r, p,« we will use the algebraicity con-
ditions
Ns = X.(G)(D,)
and
NS,basic = X*(Z(G))(Du)
(4) For the algebraic cohomology of E8°°(E/F)p, we will use the algebraicity
conditions
N ={v € Hom (T2, 5, G)(Ap) : v is G(Ap)—conjugate to an element of Hom (75 g, G)(D)}
and
Nbasic = Hom (TQ,E7 Z(G))(D)
(5) For the algebraic cohomology of &(E/F)p . we will use the algebraicity con-
ditions
N = Hom (T37E, G)(D)
and
Nbasic = Hom (T3,E7 Z(G))(D)
We will denote the corresponding pointed sets of cycles and cohomology classes

Zag(E'(E/F)pa, G(Ap)) and Z,,, (E"(E/F) p,a; G(Ap) basic and Hy, (€' (E/F)p, G(Ap))
and H;lg(é'?(E/F)D,G(AD))basiC, where

) For &(E/F)p. we will use Ap = Ap.

) For Wg,/p,.p,a we will use Ap = D,,.

) For E8°P(E/F)p . we will use Ap = Ap.
) For &(E/F)p . we will use Ap = D.
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We have a canonical isomorphism
Hallg(WEw/FvaDu7a7 G(‘Du)) = H;lg(WEw/Fvau7 G(Du))

preserving basic subsets and products.
Lemma 7.1. In each case v is determined by v.

Proof: In all cases except case [4] this follows because the the rational points in a split
torus are Zariski dense. In case[d]suppose that 7" is a split torus over a number field D
and that vy, 15 : T'— G are homomorphisms, deﬁned over D, to an algebraic group G.
Suppose moreover that g1, go € G(Ap) with giv1g; " = gorngy ' on T(D). We need to
prove that giv1g; " = garag; *. We immediately reduce to the case T = G,, in which
case it suffices to show that D* is Zariski dense in G, s, i.e. that if f € Ap[X, X~!]
and f vanishes on D*, then f = 0. As D is infinite, this follows easily by using
Vandermonde determinants.[]

The map loc, induces an isomorphism
locy : Zyy(E2(E/F)pa, G(Ap)) — Z,

alg

(E5P(E/F)pa G(Ap))

which is functorial in G and preserves basic subsets and passes to cohomology. We
will denote its inverse simply

locq : Zyyy (€8 (E/F)pa, G(Ap)) = Zyyy(E2(E/F)pa, G(Ap)).
We will also denote by loc, the composite map
loc, : aLlg(<€’3(E/F)Da,G(AD)) — Z} (SgIOb(E/F)D,a,G(AD))
— Zalg((g?(E/F)DJU G(AD))7

which is again functorial in G and preserves basic subsets and passes to cohomology.

We have locy(¢1¢2) = locg(¢1)locy(¢2).
If S’ 5 S then there are natural maps
Zh(E°(E/F)psa, G(Aps) — Zy,(E°(E/F)p.sa G(Aps))
=% Z3,(E°(E/F)psa G(Ap,s))

with composite the identity. The first arises from functoriality [B] of section [ and
the natural maps E°(E/F)p g o - E°(E/F)pse and G(Aps) — G(Aps) and
Ns — Ng. The second arises from functoriality [C] of section [4] and the maps
EIOC(E/F)D,SIJ - SIOC(E/F)D’S’Q and G(ADﬁl) - G(AD“S') and NS/ - Ns. These
maps are functorial in GG, preserve basic subsets, commute with products and pass to
cohomology. They give rise to isomorphisms

Zg(E°°(E/F)p 50, G(Aps)) — H (£ (E/F)p vy, G(Dy))
vES
and
alg(gloc(E/F)DSCU G(ADS _> H alg SIOC<E/F)D {v}, 97G(D ))

veS
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where the product is restricted with respect to the subsets (defined for almost all
v) Z1(Gal (D/F),G(Op,)) and H'(Gal (D/F),G(Op.,)) respectively. These isomor-
phisms preserve basic subsets. If G is connected, the right hand side of the second
of these isomorphisms becomes simply @,es alg(c‘,’loc(E/F)D (w}a G(Dy)). (See the
corollary to theorem 6.8 of [PR].)

If u|w|v € S are place of D, E and F' respectively, then we get a map

vesy : Za,(E°(E/F)p,sa, G(Aps)) — Zl( (51°C(E/F)DSa|Ga1(D/Fu,G(ADs))
— Zalg(WEw/Fv,Du,mG(Du))a

the first map coming from functoriality [B] and the second functoriality [C| of section
[ This map is functorial in G, preserves basic subsets, commutes with products and
passes to cohomology. It follows from lemma [4.1] that

Tesy - alg(gloc(E/F)D {v},as G(D ) —> Halg<WEw/Fv,Du,ﬂ7 G(DU))7

and similarly for basic subsets.

Note that res,, = o, o res,. We deduce that if D?/E°/F, are finite extensions
abstractly isomorphic to D, /E,,/F, for any, and hence all, u|w|v € S, then we obtain
a natural map

respo/, © Hay(E°°(E/F)p,s,G(Aps)) — H.

alg

(Wgo/k, .. G(DY)),

defined as 7, ores, for any u|w|v and any 7 : D,, — DY over F,. (The point being that
respo/r, does not depend on the choice of w or 7.) This is functorial in G, preserves
basic subsets, commutes with products and is an isomorphism if S = {v}. If G is
connected, then

alg(glOC(E/F)D S7G(ADS —> @ alg WEg/Fu,ngG(D3>)'
vES

The composite

(&(E/F),G(E)) — H,

alg

(Weo/r, G(E))

coincides with the localization map defined by Kottwitz in [K].
Ifa,0/ € H(E/F)p and if t € Ty g(Ag) with o’ = *a, then we get isomorphisms

= ()™ Zoy(E'(E/F)p.a, G(Ap)) — Za(E(E/F)pw,G(Ap))

which preserve basic subsets. These are functorial in GG, commute with taking prod-
ucts and pass to cohomology (as 9z;(¢) = 2z:(%¢)). Moreover z; commutes with the
maps resg and res,,, while

resgo/p, © loc : alg

locraze (@) = Wz, (loced).
If a € Top(Ar) and b € EFP(E/F)Y and ¢ € E8°P(E/F)Y, then

Zabct(¢) - u¢(b)zt(¢)
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it ¢ € 21, (E3(E/F)pa, G(D)) or ZL (E8(E/F)p, G(Ap)), while

zaper (9) = ¥4 2(6)
if ¢ is in any of the other groups of cocycles Z,,(€*(E/F)p,a, G(Ap)). Thus on the

level of cohomology z; is independent of ¢ and only depends on a and a’. In par-
ticular HY (E(E/F)p.., G(Ap)) and HY, (E'(E/F)p.a G(AD))pasic are canonically

alg alg
independent of a, so we will drop the a in the notation and denote them simply

H;lg(é’?(E/F)D, G(Ap)) and Hallg(éf?(E/F)D, G(AD))pasic: Moreover the map
locy : HYy(E3(E/F)p. G(D)) — Hhy(E:(E/F)p, G(hp))
is independent of a so we will denote it simply loc. The same is true for resg and
res,.
Now suppose that C' D D D E D F are finite Galois extensions of F. We have
maps

info)p : Zh,(E(E/F)pa, G(Ap)) — Zy,(E'(E/F)p.alcac/r), G(Ac))
— Zallg<g?(E/F)C7infC/D a G(AC))

where the first map arises from functoriality [B| (and the map E'(E/F)pq|ca(c/r) —
E'(E/F)p,) and the second from functoriality |C|of section (and the map E'(E/F)p.a|cai (c/r) —
EYE/F )Cinf P ). These maps are functorial in G, preserve basic subsets, commute

with products, and pass to cohomology. We also have

iIlfC/D o IOCa = lOCinfc/D a© infc/D
and info,p also commutes with resg, res, and z,. We also have maps
Moy Zag(E(E/F) o 5.0 G(A0)) — Z(E'(D/F)cq, G(Ac))

induced by functorialityof section (and the map E°(D/F)c,o — 5?(E/F)C,nD/E,*u)-
These maps are functorial in G, preserve basic subsets, commute with products, and
pass to cohomology. We also have

* *
Npye ©10Cy, ;.o = loca 01
and
"p/E © “np,st) = ~t ° D /E-
Moreover 77, commutes with resg and res,.

Ifap € H(D/F) and ag € H(E/F) the we can find at € Ty g(Ap) with np/p.ap =
"infp,pap. Then we set

(E(B/F)ap, G(AR)) 25 21 (E'(E/F)pinty,n e G(AD))
- Z;lg(g?(E/F)DWD/E,*aD7 G(AD))
(€'(D/F)ay, G(Ap)).

3 .71
me/E’t . Zalg

Mh/E
Zl

alg
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this map is functorial in G, preserves basic subsets, commutes with products, and
passes to cohomology, where it is independent of ap, ag and ¢t so we will denote it
simply infp,p. These maps are all injective even on the level of cohomology. (The
first map because it is inflation, the second because it is an isomorphism, and the
third from its definition.) If a € Ty g(Ar) and b € E8°P(E/F)% and ¢ € E8°P(E/F)Y,,
then

inf (¢) =" inf (¢)

D/E,abct D/Et
if ¢ € Z;lg<g3<E/F)aE7 G<E>> or Zallg(gglOb(E/F)aEa G(AE)>7 while

inf (¢) ="+ inf (¢)

D/E,abct D/Et

if ¢ is in any of the other groups of cocycles Z. (£*(E/F),,,G(Ag)). Note that

alg

infE/E,t = Z
and

locay, (infpg+(0)) = *Winfp /5 +(10ca, 0)
and
Vinfp) o = V¢ D /E-
If C D D is another finite Galois extension of F' and if ac € H(C/F) and if ¢’ €
T, p(Ac) with ne/pac = ¢ info/p ap, then
info/pyoinfp/p;, = infC/E,tnD/E(t/).
We define

B(F,G) H,,(&(E/F),G(E))

= lim
—,E/F
and
B“(F,G)s = lim H,,(£°(E/F)s,G(Aps)),
—,E/F

and similarly for the basic subsets. We have maps
loc : B(F,G) — B“(F,QG)
and
resg : BY°(F,G) — B“(F,G)g

and, for v € S,
res, : B°(F,G)s — B(F,,G)

for any place v of F'. These maps preserve the basic subsets. Note that
res, : B'°(F,G) gy — B(F,,G)

and /
B (F,G)s = [[ B(F..G),

veS
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where the product is restricted with respect to {H'(Gal (F/F,), G(Opn))}, where
F}" denotes the maximal unramified extension of F),. If GG is connected, then

B“(F,G)s — @) B*“(F,,G)..
vES

These all preserve basic subsets.

7.2. The algebraic cohomology of reductive groups. Now suppose that G is
reductive.
If a = (a# a¢ B) € a € H(E/F) and T over F is a torus split over £ then

cor 8P = cor yaor 1 Z[Vg]o @ X, (T) = Hom (T3, T) — Z1 (E3(E/F)o, T(E))

alg
and
cor ¢ = cor e : Z[Vg] ® X, (T) — Z4 (E°(E/F)a, T(Ag))

(07

induce bijections

cor : (Z[Vplo ® Xu(T))cal(e/r) — Hag(E3(E/F), T(E))
and

cor : (Z[VE] ® Xu(T))cal (5/r) — Halulg(gloc(E/F)aT<AE))

which are independent of a.. (Note that cor,, depends on e and not just its image in
H(E/F).) (For the global case see formula (9.1) of [K]. The local case follows from
the corresponding result for local fields.)

We have the following special case of the general observation made in item [E| of
section 4

Lemma 7.2. Suppose that o = (a8 !¢ 3) € a € H(E/F). Suppose also that
T/F is a torus split by E and that x : Ts5 g — T is a homomorphism (which must
then be defined over E). Set

b= [ n'xBm)™"
neGal (E/F)

Then
10C4COT o () = Pcor goc ().

Suppose also that

e (G contains a maximal torus (defined over F') which splits over E,
e and F is totally complex.

Then there are maps

ko Hoy(E°(E/F)s,G(Ap,s)) — (Z[VE,s] ® Ac)cal(e/r)

and
K Hy,(E3(E/F),G(E)) — (Z|VE]o ®z Ac)ca (5/F)
with the following properties:
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(1) They are functorial in G.

(2) If G =T is a torus then they equal cor ~'.

(3) koresg equals the composition of the natural map (Z[Vg s] ® A¢)gal (5/r) —
(Z|VE,s'] ® Ac)gal (/F) With k.

(4) K oresgo/p, equals the composition of the natural map

(Z[VEg,s] ® Ac)cai(e/p) — (Z[VE (o)) @ Ac)cal(B/F) — NG,Gal (B9/Fy)

with k.
(5) koinfp/p equals the composite of the natural isomorphisms

(Z[Vp,s) ® Ac)cai(pyr)y — (Z]VE,s] ® Ac)cal £/
or
(Z[Vplo ®z Ac)Gal(p/F) — (Z|VE]o ®z Ac)ca (E/F)
(induced by the maps Z[Vp] — Z[Vg] sending u — u|g) with x.
(6) x oloc equals the composition of the natural map (Z[Vg]o ® Ag)gai(g/r) —
(Z[VE] X AG)Gal(E/F) with k.
We will denote by K¢ the composite

Hao(E°(E/F)s,G(Ap,s)) — (Z[Vi,s] ® Ac)cal (5/F) = Mc.cal (5/F)

induced by Y w ® z,, — Y, x,. Note that g oloc = 0. (In the local case we
construct x from the corresponding maps for local fields using the decompositions

Y (E°(B/F)s, Glhns)) = @D Ha (Wi . G(EY))
veS
and
(Z|VE,s] ® Aq)cai (B/F) = @ AG,Gal (B9 F)-
veS
Then all the above properties, and the construction of x in the global case, can be
found in [K], particularly sections 9 and 11. We warn the reader that our % has a
different meaning from Kottwitz’s use of the same symbol.)
Note that we obtain a commutative square:

B(F, G) — (Z[VF]O ® AG)Gal (F/F)
loc | b
BIOC(Fa G) — (Z[Vf] ® AG)Gal (F/F)"

If E/F splits G then Kottwitz proves that there is a cartesian square
B(F, G)basic Hv\oo B(Fvv G)basic
K Hv\oo K

(Z[VElo ® Ac)gal () F) — [Tjoo Ac,Gal (Bu/Fy)
Do WO Ay — (> oeca (Ez/F,)\Gal (E/F) 0 Ao=15)u]oo;

By|ooresvoloc
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where v|v. (See proposition 15.1 of [K].) In particular the fibres of k : B(F, G)pasic —
(Z[VEglo ® A¢)gal (/) are finite.

Lemma 7.3. loc : B(F,G)pasic — kerE C BY(F, Q)pasic s surjective with finite
fibres.

Proof: For the surjectivity, if (1)) = 1, then we may then lift k(¢0) € (Ag ®
Z|VE])Gcai (g/F) to an element A € (Ag®Z[VE|o)cai (g/r). The image of A in HU‘OO A Gal (B5/F)
equals the image of k(¢)) and hence the image of res,,ip. Thus we can find ¢ €
B(F, G)pasic with resslocg = res,tp and k() = X. This implies that xres™®loc¢) =
kres™e), so that res®loce = kres™1. Thus loce = 1.

If ¢,¢ € B(F,G)pasic have the same image in B'(F, G)pasic, then @' €
B(F,?G)pasic has vyy1 =1 and so ¢'¢p~" € HY(Gal (F/F),*G). In fact ¢'¢p~" €
ker' (Gal (F/F),®G), which is finite.[]

If S is a finite set of places of F', we will write B(F, G)gpasic for the inverse image in
B(F, G)basic under x of the image of Z[VEﬁ]o K7z, AG n (Z[VE]O K7z AG)Gal (E/F)- (Here
E/F is any finite Galois extension that splits G. To see that the definition does not
depend on the choice of E, use lemma[6.2])

Lemma 7.4. If S is a finite set of places of I, then there is a finite Galois extension
D/F such that B(F,G)spasic s contained in the image of HY,(E3(D/F), G(D))pasic-

alg

Proof: Let E/F be a finite Galois extension which splits G. Note that Ag/X.(Z(G)°)
is finite and hence (Z[VE,S]O K7z AG)Gal (E/F)/(Z[VE',S]O Kz AZ(G)O)Gal (E/F) is finite. We
conclude that B(F, Z(G)%)s has only finitely many orbits on B(F, G)spasic. Moreover
B(F, Z(G)°)s is finitely generated (being isomorphic to the image of Z[Vg 5] ® Az
in (Z[Ve]o®zAz(cy0)cal (g/r)y). Thus there is a finite Galois extension D/F containing
E such that B(F,G)spasic is contained in the image of H;lg(Sg)(D/F), G(D)).O

Kottwitz also shows that there is a commutative diagram with exact rows
(0) — kerl(ﬁ*—', G) — B(F> g)basic — BIOC(TFv G) - <AG)(;iTI(F/F)

0) — ker'(F,G) — HYF,G) — @, H'(F,G) =5 (Ac)gu@/r):
(See proposition 15.6 of [K].)
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8. RIGIDIFICATION DATA.

8.1. Technical lemmas. Suppose that D D E D F are finite Galois extensions of a
number field F, that u is a place of D and that a = (a8, o°¢, 8) € Z(D/F). We
define

7E,u,a:WD/F,a — AE/DX
acq™(0) > (Npsp(a)/a” ") I, ccu pym) (@ (0, 0)B(0)u) /(02 (0, 1)7 (B(1)5a)
= Ilcca /s &) (acg(0)eg(no) 1)/ ((aeg™(0))e& (n)eg™ (on) ")
(=) (HneGal (D/E) B(U)W) :

Lemma 8.1. With the above notation and assumptions we have:
(1) If a € A}/D* then v ua(a) = Np/p(a)/alPE),

(2) '7E,u,a(0102) = VE’“’O‘(Ul)UZVE,u,a(Uz); ie. VB ue € Zl(WE/F,a;AE/DX).
(8) VBua descends to a map Y, o Wpipa/Ap — AL/ D*Ap.

(4) fYE,u,a(COHja(O')) = <ND/E(CL/”a)/(a/Ua)[D:E]g’VE,u,a( ) fO’l" a € AX /DX
(5) “VBua(T) = VEua(e8°P(0)Te8 (0)™1) ™7 Dyp o (e5°P(0)).

(6) ’YE,Uu,a — HneGal(D/E)(B(U)nou/ﬂ(n)nu)nyywa

(7) Ve iz (7)) = T5aa(@) ™ (T ecar o 7 D)
(8) YEuta © 3t = [lecai (p/E) t"“/n(t“)VE,u,a.
Proof: For the first part note that
rYE,u,a(a) = (ND/E(a’aglOb(]w 1)71)/(aaglob(1’ 1)71)[D:E]) HUEGal (D/E) agbb(n7 1)/aglob(1, 77)
= ND/E(G)/CL[D:E} .
For the second part set
Vealaed™ (o)) = (Npp(a)/a”") T o#"(,0)/a®"(0,n)
neGal (D/E)
so that
VBuo = [Teca (D/E)ﬁ(n)nuny’a

It suffices to check that vz o is a 1-cocycle. However

)

VE o (aleglob (al)ageglob(a

2
= Vp.al0171a208 (01, 05)e5 (0102))
= (Np/g(ar? 1a2)/(a1"1a2)[D DT cca (pym) "0 (01, 02)aBP (1), 0102) [ aBP (01, 02) aB'P (010, 1)
= (Np/p(ar™az) /(a1 az)P*)) neGal(D/E)ag P(no1, 02)a® (n, 01) /71 (02, n)aB (01, 0a1)
= (Np/p(a1”taz)/(ar” 1a2)[DE})Hn€Gal(D/E) AP (a1, 09) B (1), 1) /71 @B (2, ) B (01, 1107s)
(

(Np/(a1)™ Npyp(a2)) /(a7 a2)P P [T, cqa ) TP (0, 02)a8 (1, 01) /7 2P (0, ) 0P (o1, 1)
VE,a(a168°°(01)) " V8,0 (025" (02)).
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Parts (3), (4) and (5) follow easily from the first two parts. For the fifth we have

"1pwa() = VEua(€A(0)) Vb ua(ed 0 (0)7) 1
= Ia(87(0) a4 (0) T8N (9) )7 s a(e4(0))
e o o o —
T Y g (€57 (0)) VB ua (€5 (0) TR (0) 7).

The final three parts are straightforward, and we leave their verification to the
reader. [J

8.2. Rigidification data. We have seen that Wg/r p o is isomorphic as an extension
to Wgab/p p, and so there exists an isomorphism of extensions

0) — A}/D*Ap 2 Wgapp/Ap — Gal(D/F) — (0)

I Il |
(0) — AB/DXAE — WE/F,D,a/AE — Gal(D/F) — (0)

Such an isomorphism will be called a Galois rigidification of a if it lifts to an isomor-
phism of extensions

I': WEab/F,D ;> WE/F,D,cv
Because H'(Gal (D/F),A}/D*) = (0) we see that all Galois rigidifcations differ by
composition with conjugation by an element of A};/D* — A},/D*Ap. Note however
that H'(Gal (D/F),A},/D*Ag) may not vanish.

Moreover if t € AY/D* and conj, o’ =T then t = rs withr € AZ/F* and s € Ap
with 7s/s € Ag for all 0 € Gal (D/F). (To see this note that “t/t € Ay C Ap for
all o € Gal (D/F). As H'(Gal (D/F),Ap) = (0) we deduce that there is an s € Ap
with 7t/t = ?s/s for all 0 € Gal (D/F). Thus t/s € A} /F* and the claim follows.)

We say that a Galois rigidification I' is adapted to an F-linear embedding p :
E*D < [, if

Lo ep\Eab = [’?u(p) 00 : W(p(E)Fv)ab/Fv,p,D — WEg/ED,a

for some isomorphism of extensions
@ : W(EFU)ab/szp’D WEw(p)/FU7D7a7
some lifting I' : Wigav /g p S Wg /F,p,a Of I and some choice of 0, . .

Lemma 8.2. Suppose that p : E**D — F, is F-linear.

(1) A Galois rigidification adapted to p exists.

(2) Any two Galois rigidifications adapted to p differ by composition with conju-
gation by an element of (A} E*)Ga(E/Fu) Dy

(3) Ifo € Gal (E**D/F), if T is a Galois rigidification of a adapted to p : E**D —
F, and if a = (a#°?,a!°°, B) € a then

[ = conj g o Conjeilob(o_lgl) oI oconj,

JlE)l)w(po))
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is a Galois rigidification of a adapted to poo. (In the last term we think of
o € Gal (E**D/F) < Gal (E*/F) XGai(r/r) Gal (D/F) < Wga 5 p/Ap.)
If v = (98P y1l°¢) € B(E/F)p, then we have

o,

%7 = conj} ol
J,Yloc(a-fl)w(po)

(4) (Foha)oz,a = Conjaloc(o-gl70;1)w(p0102) 1) F0'10'2,a'

(5) If ' is a Galois rigidification of a adapted to p and ift € To g(Ap), then
T = conjtw(p) o3 0l

is a Galois rigidification of 'a adapted to p. Moreover
1 (tQF) — hta

(6) If t € Ty g(Ap) fizes a, then t = abc with a € EY°(E/F)Y, b € E8°°(E/F)Y,
and ¢ € Ty p(Ap) and

th .
I'= Con‘]aw(P)Cw(p)

Moreover if I' and T are two Galois rigidifications of a adapted to p then
we can find t € E°(E/F)Y Ty g(Ap) with T =T".

(7) (tr)a‘, [o 2 t(Fa,a)'

(8) Suppose that C' > D D E D F are finite Galois extensions of F, that a €
H(E/F)p and that p : E?*C — F, is F-linear. If T is a Galois rigidification
for a adapted to p|gavp, then the map infe)pI' from

((AG/C"Ap) x (Wgw pp/AE)|cac/r))/(Ap/ D™ Ag)
to
(AG/C™Ag) X (Weyrpo/Ap)|caic/rm)/(Ap /D™ Ag)
given by
infc/pI" : [(a, (0,7))] — [(a, (I'(0), 7))]
is a Galois rigidification for info/p a adapted to p.

(9) (infe/p D)7™Merp® = info p(T0leep®) and infe,p'T = ‘(infe,pl). If B D
C DD D FEDF are finite Galois extensions of F', then infp,coinfe/p =
il’lfB/D.

(10) Suppose that o € a € H(D/F) and that p : D*® < F, is F-linear. If T is a
Galois rigidification for a adapted to p, then the map
Np/Eepsl : Weapp/Ar — We/ED gy 5.0/ AF
given by
((AL/D*Ag) X Wpanp) [(Ap/D*)  — ((Ap/D*Ap) x Wpypa)/(Ap/D¥)
[(a,0)] — [(aVBu@).a(T(0)),T'(0))]



COCYCLES FOR KOTTWITZ COHOMOLOGY 79

(where u(p) is the place of D induced by p) is a Galois rigidification for np g .a
adapted to p|gan.

(11) If v = (v8°P,4%¢) € B(D/F), then np/prap:l = conjy
inD/EOWgIOb © (UD/E,a,ﬁ,*F)-

(12) [ft € TZ,D(AD) then nD/E,ta,ﬁ,*(tF) = nD/E(t)’I]D/E’a"pV’*(F).
(13) If o € Gal (D*/F), then

—1 (@]
neGal (0/2) V(w3

~ OND/E,«® 3 o,
(/8,0 1) "/ = COM, G (/) @00 ™1) o1, /(1,0 ) o) OID/ B o (D7)

(14) Suppose that C O D D E D F are finite Galois extensions, that o € Z(C/F)
and that T is a Galois rigidification of [a] adapted to p : C*® — F,. Suppose
also that o' € Z(D/E) and that T" is a Galois rigidification of [&'] adapted
to plpav. Then we can findt € Ty p(Ac) and v € B(D/E)¢ such that

Lo =" inf d g = f1'.
Nc/Dx0 = g/lDOt and  7Nc/p.p, él/lD

Moreover

Ne/Epsl = o5t él/lf Np/Ejsl

Proof: For the first part choose isomorphisms of extensions r: Wgab kD = W /F,D,a
and © : Wi,(g)r,)ab /B, pf pap.D = Wg,,,/F,.Da Because H'(Gal (D/F)u(,), Aj/D*) =
(0), we see that

conjaoFoe = Ly(p) © O

for some a € A}/ D*. Replacing I" by conj,oI" we have the desired Galois rigidification
adapted to p.

For the second part suppose that I'; and I's are two Galois rigidifications adapted
to p. Suppose more explicitly that I'; lifts to an isomorphism of extensions f
WEab/FD = WE/FDa and that ©; W E)Fy)/Fyp| pab, D = WEw(p)/FU7Da so that F o
0, = Lw( »)
choice of 0, in both equations. Then we can find b € DX( such that ©, = conj, 0 ©,
(as Hl(Gal (D/F)wipy: Dyy,y) = (0)). Moreover we can ﬁnd a € A}/D* such that

w(p)
T, = conj, ol (as H'(Gal (D/F),A%/D*) = (0)). Then conj,,- 1OF109 = Ln(n) ©O1,
so that ab~! € (A} /D> P/Fue) = (AX/E*)CE/Fuie) - as desired.

For the third part, if I Wgab gD = Wg/Fpa is an isomorphism of extensions
lifting I and 0 € Wgab/p|gai (p/r) lifts o, then

00;. Replacing I, by a A E—conjugate, we may assume that we have the same

roe = conj(ﬂ(rl)w(m)) o Conjelgxlob(o,_l) ol'oconjz : Wgav/pp = WEg/FD.a
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is an isomorphism of extensions lifting ['>*, and so I'>* is a Galois rigidification.
Moreover using lemma [6.8 we have

INCRY CONJ (1), () © COMJilob ;-1 © To 6,0 (0|p)«

= Oz

po‘Eab w(po)

o a
o) © COMglob 1) O Ly, © ©o(o|p)«

= L'?U(po) © (Conjegjc(a_l) 0Bo (U|D)*)>

and conjeec ;-1 © O © (0]p)s : Wip(m)p,)2 /5y p0.0 —+ Wi,y /FuD.a 1 an isomorphism of
extensions. The second assertion of this part follows immediately from the definitions.
For the fourth part we have

F0102,a

conj O COnj glob ( oI'oconj,, conj,,
(o2

oy torh)

o conjaglob(ggl’gl_l),l o conjeilob(

5(0‘;10’;1)1“(’,0.10.2))
- COHJ(B(Uz_lgl_l)UJ(palaQ))

= CONJ(B(05 07 ) oy on))

o Conjegob(
1
(@1 Duwpor)
0 CONJ giob(—1 —1y_1 O CONj " o conj gob,_—1y 0 ['"* o conj
s (02 71 )71 (02_15(0'1_1))11}(110' o9) ega (02 ) o
192
o (I‘Wl,a)ag,a

o) o) © ' o conj,, conj,,

: . . o100 .
O CONygiob (51 g 1)-1 © COM glob(,—1y O CONJ g o I'*%* o conj,,

- COHJ(B(Uz_lgl_l)UJ(palaQ))

= conj -
)07 07 asb 07 0717 80T BT ) M e

_ : o1,0\02,0x
= COHJQ]OC(O_gl,0;1);(1’)0102) o ([Tve)oze,

For the fifth part simply recall that LL? O 3; = CONj; O 3; O Ly

The first assertion of the sixth part follows from corollary and the fact that
Babe = conjb_1 (see the paragraph before lemma . The second assertion of the sixth
part follows from the first assertion and part [2]

For the seventh part we have

A . . . .
(‘T") = CONJ((1) (1), () © COMJtlob (-1 © CONJy,, ) © 5t I' o conj,

w(po)

= @) ] - o jo— o j o o ]
31O CONJy aa1) oo /7 gy © COMo g, ) © CONjglob ;1) I' o conj,

t(roe).

p)

For the eighth part suppose that I : Wgapp — Weypp, lifts T' and that © :
Wip(E)F)/Fupp = WE,,)/F.,D.a satisfies

T'od :La(p)o@.

p w
Define infc,p T from
((A&/C™) % Wgavpplaalc/r))/ (Ap /D)

to
(AS/C*) X WE/rDa

Gal(c/F))/(Ap /D)

irlfC/Df : [(av (07 T))] — [(CL, (F(0)7 T))];
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and
infe/p® : Wipgyp ) m, 00 — Wy, /FoCa
to be
(Coste X Wiptmy Py Fop0lGal €/ )i ) Disgy = (Coigy X Wy /50,0l Gal €781 ) Do)
[(a, (0,7))] — [(a, (O(a),7))].
Then

. = . infc/Da .
(infe/pl') 00, = 1,0, © (g}jfj 0).

We leave the straightforward verification of the ninth part to the reader.
For the tenth part we recall that in (Aj,/D* X Wpasp)/(Af/D*) the implicit map
is
AS/D* — AL/D* X Wpas/p
a — (Npjpa™t,a),
while in (A}/D* x Wpra)/(AL/D*) the implicit map is
(Ap/D*) — AL/D* X Wp/pa
a — (a"PEl q).
The difficulty here is that these two maps are not directly compatible.
Let I' : Wpav /o = Wh /Fa be an isomorphism of extensions lifting I', and

O : Winyr o — W /o
an isomorphism of extensions such that

foeﬁ:LZ(ﬁ)O@

Let B
FE : WEab/F,D — WE/F,D,nD/E’*a
be given by
(AS/D* X Wpavjpo) /(A /D) —> (AR/D* x Wpyra)/(A5/D¥)
[(a,0)] — [(@VEw@.a(l(0)),T'(0))].

This is well defined because for a € A% /D* we have Ya,u),5(a) = Np/p(a)/aPF. Tt

is a homomorphism because V4 g is a 1-cocycle. We deduce that I'? is an isomorphism
of extensions. Thus 1p,g oI is a rigidification of np /g .a.
We also define an isomorphism

E . ~
© 'W(EFv)ab/FU7D7ﬁ 5 WEw(m/Fvav"iD/E,*a

to be the map from
Doz X Wipp,)w/p, Xcas/r) Gal (D/F)))/Wpp,)»/(5r,)

to

(D:;(m X (WDu(ﬁ)/Fma X Gal (E/F) Gal (D/F»)/(WDu(ﬁ)/Fmahal (Du(ﬁ)/Ew(m))
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given by
[(a, (o,7))] = [(a, (O(0),7))].
To see this is well defined we need to check that for o € Wpp,jeo/(gr,) We have
rer, (€(0(0))) = olzr,)»

However if s : Gal (Dyz)/ Ew@) — Wipr,)»/Er, 18 a set theoretic section, we have

rer, (€(0(0))) = TEE,(HneGal(Dum/Ew(ﬁ))@(3 )(9(‘7)@(3;01))
= rer,(O(trw,,, o/, Wi, o o, ol(zr,)))
= TEF, (9 O Tpr, © 7“EF,J(U| EF,) ab))

and the claim follows because © o rpp, is the identity on (DF,)*. We also claim that
9~:Ln?/E* 0 OF : Wizmyp, ) Fy.D5 — WE/FDmp,p.a
from which the tenth part will follow. We will realize these maps as maps
(D;(m X (W(DFv)ab/Fv X Gal (E/F)G'a“1 (D/F»)/W(DFU)%/EFU — (AB/DX >4I/VD/F,C>¢)/(AB/DX)-
Both composites send a €~D:}(Zﬁ toa € Aj/D*. Thus suppose (0,7) € Wipp,)ab/p, XGal (B/F)
Gal (D/F). The first map, I'¥ o 65, sends (o, 7) to

[(r' (85(0)1 (egk’b( ) )IanEu@ (G%IOb(T)),eil‘jf’(T))]

= (5" (T eca oy (€8 (1) 85(0) T (e8°(7)) ' T (e8P (o))
VEu(@).a(ed (7)), €57 ())]

= [(Iecu o/m) AL 0 63)(0)eB () e8P (107 1) g u(p).aleA(7)), e8P (7)),

On the other hand Lnl(’f)E “* 0 OF sends (0, 7) to

conify sl L1 €8 (rno )i (o)) () e8P (1), e (7).
neGal (D/E)

Thus what we have to show is that for (o, 7) € WE,/Fo.Dinp,s..a X Gal (2/F) Gal (D/F)
we have

HneGal(D/E)( IOb(W)L (m( )egbb(T)_leglob(WUT_I)_I)VE,u(ﬁ),a(egabb(T))
= 0 (Mycamose) 80D b ) Ty o/ €4 (710~ )i (0) e () e5o0 (),

1.e.

1

HneGal(D/E)(eil‘)b(n)LS@( 0)ed® (no)~ 1)Hneea1(D/E) agP(nor™ 77)71’7E,u(;{),a(€§0b(7>)

I TLecar (p/) B |
Hne(}al (D/E) (@iIOb(TnU*l)Lff(,;) (0)egP(mn)~") HneGal (D/E) P (7, 1)
This in turn is equivalent to

Ya@al @) = 1 (@080 @)/ (@ () (B0) @),

neGal (D/E)

-1
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which is just the definition.

The eleventh and twelth parts are straightforward, so we leave them to the reader.

For the thirteenth part, if o € Gal (D**/F) and [(a, 7)] € (A}/D*ApxWpas,p)/(A}/ D),
then we have that

77D/E,oz,§a,>k (Fo,a)(a’ T)
= (@apaT(). T7() |
- (a”}/E u(po),o ((177)6(071) (po)con) e8P (& ,1)(F(COH‘]0<T)))),
=7 B(e=1), (50)CON;J 519D ,1)( (conj,(7))))
= ( (1= T)(ND/EB< ) PU)/ﬁ( _1)u(pa>
VE u(po),c (COHJ glOb( )(F(COHJU( ))))( T)B( 71)[D o COIlJ glOb(U 1)(F<Con~j‘7(7—))))
= (a(l_T)(Hn€Gal(D/E (B(o™ ) 7)) B(M)nuizo)/ B )nu ﬁ))
’YEu(m (conjggion -1y (I'(conj,(7)))), conj gion -1y (I'(conj, (7))))
- ‘]HneGal(D/E)n(/B( Yu(zo)) B nu(zo) /B nu(z) (any’“(ﬁ)’a(ConJeglOb(gfl)(F(COHJU(T))))’
conj gion -1y (I'(conj, (7 ))))
On the other hand we have

(nE,u(ﬁ),a D)o B (g 7)

COM(11,)508) (0 iy © COM e (o-1) 1D/ B, 00 (1) (71, oMo (7))
= CONJ(yy, 108) (0o OCOmJ esio0 -1y (7 0V B u(p),a (L' (conj, (7)), I'(conj, (7))
= Conj(nD/Eog)(g ., M)(a" Ve u(@)a T (conj, (T ))), conjgob 1) (I'(conj,(7))))
COMp, pos)(o >w<pg>W“‘”’mu(m,a(6%1‘“’(0‘1))

—1
V8.0 (€8P (™) (conj, (1)) e8P (=) 71, Conjegob(o,l)(F(COHjU(T))))
= CONJ(y 0B (0L (o (o (0 1)~ (AVEu(@)(COMgion (1) (T'(cOnjy (7)),
conj,gon, -1y (I'(conj, (7))))
= conj,(Mp/E.a,5e(L7)(a, 7)),
where
A
(1075 ) (7o) V. (8™ (7~) ™ Thyeca /)" (B atn) ™ B0 Bt
_1)T]u(p0') glob(O.—I’n)gfl(ﬁ(n)nu(m>aglob< ) 16( )nu(m
16( )nu(pg 5(77)nu(,3)
o 1n0u<po)agl°b(0'_1’ M BD)o-1mu(p) (1,071~
"B(0) )

HneGal (D/E) Blo
(B0 uo)”
= HneGal(D/E)ﬁ(

("B(o™")

)~

u(po

= Il eca (D/E) y(B(a a0t n)7 BB ) o-1u BN o1z
(@500 3(0) 80300y 0~
HneGal(D/E) al°e (07 n)e- Lru( Z)’)ﬁ(n07 Ino- 1u(i)704 ‘(n,o 1)771}(,)(7)5(77071);1}(50)

loc( 1)—1

g nu(pﬂ))’

HneGal(D/E)( 10 ( an)a Inu [)')/05
as desired. O
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We call two Galois rigidifications I'y, I's of a adapted to p equivalent if I'y = conj, ol
for some a € Di(p). We will write I'y ~ I'; to mean I'y and I's are equivalent, and
[[';] for the equivalence class of I'y. Note that, if 'y ~ T'y, then I'T* ~ 'S and
Ty ~ Ty and infe/p Ty ~ infep Ty and np/E.apd1 ~ Mp/Bajl2. Moreover we
have the following corollary:

Corollary 8.3. (1) If [I'] is an equivalence class of Galois rigidifications for a
adapted to p, then [I'>%| does not depend on the choice of a € a and is an
equivalence class of Galois rigidifications for a adapted to po. We will denote
it [']7. We have

([L]7)72 = [r]7ee.
(2) If [I'] is an equivalence class of Galois rigidifications for a adapted to p, then
L) = ['T] is an equivalence class of Galois rigidifications for 'a adapted to p.

We have
H(T)7) = ()

If [T] and [I"] are two equivalence classes of Galois rigidifications of a
adapted to p, then we can find t € Ty g(Ar) with [I"] =*[T].

Ift € Ty g(Ap) and'a = a and'[['] = [T, thent = abc witha € E°°(E/F)Y},
b e EIP(E/F)Y and ¢ € Ty p(Ap). Moreover for any such a,b,c we must
have Cw(pl) DGF(AE/EX)GM(E/FWP) of the form cy,) = ef with e € Ay and
f e Aga( 0@ 4yith °f/f € Ag for all 0 € Gal(D/F). If E is totally

imaginary, we deduce that f € Agal (E/F)

(8) If C D D D E D F are finite Galois extensions, if a € H(E/F)p, and if
[T} is an equivalence class of Galois rigidifications for a adapted to p, then
infe/p[l'] = [infe/p I is an equivalence class of Galois rigidifications for
infc,p a adapted to p. We have

(Wf[T])7 = it ([C]7ow)  and  inf(0]) = "(inf 1),

w(p)

for o € Gal (C®/F) and t € Ty p(Ap). Moreover if B> C DD D> EDF

are finite Galois extensions if a number field F', then

e bt = it

(4) If ap € H(D/F) and if [I'] is an equivalence class of Galois rigidifications for
a adapted to and F-linear embedding p : D* — F,, then MD/E,a5+L] does not
depend on the choice of o € ap. We will denote it np,p;.|I']. Ift € Top(Ap)
we have

1055+ ("[L]) = "2/ O (0 5.4[L)).
If o € Gal (D*/F) we have

Np/E,50+([L]17) = (py£,5411)7
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Proof: Everything but the last assertion of the second part follows immediately
from the previous lemma. For the last assertion of the second part, recall that we
must have ¢ = abc with a € E°(E/F)%, b € E8°P(E/F)Y and ¢ € Ty g(Ar). We have
abe[[] = [conjaw(p)cw(m oI and so I' = conj;-1,, ,, ° I for some d € D7 ,)- We deduce

that c,(,) = def with e € A}, and f € Ap with f/7f € Ag for all 0 € Gal (D/F). If
o € Gal (D/F)w) then?d/d = f/°f € D; yNAp C Ap/D* and, as this intersection

is trivial, we see that d € F* and f € Agal P/, Replacing e with de the assertion

follows. [

By complete rigidification data, {[I'5]}, for a € H(E/F)p we mean the choice for
each place v of F' and for each F-linear embedding p : E**D < F, of an equivalence
class [I';] of rigidification data for a adapted to p|ga» such that

e if 0 € Gal (E*D/F) then [[';,] = [['5]°.

Lemma 8.4. (1) If for each place v of F' we choose an F-linear embedding p, :

D* < F, and an equivalence class of rigidification data [T',] for a adapted
to py, then there is complete rigidification data {[I';]} for a with I';,] = [I',].
Moreover {[I';]} is unique.

(2) If t € Ty g(Ap) and if {[T'5]} is complete rigidification data for a, then {*[[';]}
is complete rigidification data for 'a.

(3) If {[T5]} and {[I']} are complete rigidification data for a, then there exists
t € Ty p(Ar) such that [ = *[T'5] for all p.

(4) If ap € H(D/F) and {[L';]} is complete rigidification data for ap, then
{np/e 5.5} is complete rigidification data for np/e.ap € H(E/F)p.

(5) If C D D D E D F are finite Galois extensions of F', if a € H(E/F)p and if
{[C5]} is complete rigidification data for a, then {infc/p[T’ } is complete
rigidification data for info;pa € H(E/F)c.

/7|Dab]

Proof: The first two and last two parts are clear. For the third part choose for
each place v of F' an F-linear embedding p, : D* < F,. Then we can find t, €
(AF/D>*)CSl(P/Fu@y) such that

5, ~ conj, ol
Define t € Ty g(Ar) by
tow@,) = Olu(z,)-
Then
[5,0) = ([L7])7 ="(F5))7) = "[Tauols
and the third part follows. [

We will write H(E/F)}, for the set of pairs (a,{[';]}), where a € H(E/F)p and
where {[I';]} is complete rigidification data for a. This set has a transitive action of

TQ’E(AD), where
(o {51} = (o {"[T31}).



86 JACK SEMPLINER AND RICHARD TAYLOR

There is a natural 75 g(Ap) equivariant map
H(E/F), — H(E/F)p
(a{[[5]}) — @

We will often denote an element of H(E/F)}, by at and then let a denote the under-
lying element of H(E/F)p.

Lemma 8.5. If at = (a,{[[;]}) € H(E/F)} and 'a™ = a*, then t = abef with
0 E(E/F), be E8P(E/F), ¢ €Ty p(Ar) and

fe€Tp(hr)n [[{d€Ap: “d/de Ap Vo € Gal(D/F)}.

weVg

If E is totally imaginary then in fact f € To 5(Ar) N [[yer, A

Proof: We know that t = abc with a € E°(E/F)%, b € E3°°(E/F)Y and ¢ €
Ty p(Ap). Moreover for all w € Vi we have ¢, = e, f, with e, € Ay and f, €

ASHPIe ith o f, ) fu € Ag for all ¢ € Gal(D/F). Then for o € Gal (D/F) we
have ¢, = €, f, and so we may assume that e,,, = e, and f,,, = 7 f,,. The lemma
follows. [J

There is a natural map
Mo/es HD/F)Y —  H(E/F)p
(ap, {[I31}) +— (p/Extp, {1D/E5:I5]})-

Ifte TZ,D(AD) then

nD/E,*taE — nD/E(t) (T]D/E,*a3>

If C DD D FE D F are finite Galois extensions of F', then there is a natural map
info)p: H(E/F)}, — H(E/F)
(a,{[l'7]}) = (infe/pap,{infc/p[l7,,,1})-
Ift € Ty g(Ap) then
inf ‘a®™ = "(inf a™).
C/D C/D
If BDC DD DEDF are finite Galois extensions of F', then

inf oinf = inf .
B/C C/D B/D

Now suppose that C' D D D E D F are finite Galois extensions of a number field
F and that a* = (a,{[[;]}) € H(D/F)}. We wish to define np/p.at € H(E/F)E.
To this end choose a; € H(D/F)". Then we can find ¢; € Ty p(Ac) with a* =
"info,p af’. We wish to define

+ — p/e(t1) {pf +
ND/E .« g/lD D/E%
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To see that this is a good definition suppose also that aj € H(D/F)" and t, €
Top(Ac) with a* = ®2info/paj. Choose s € Tpp(Ap) with aj = af. Then
tasti g+ = qF, 5o that

tysty ! €
£1°°(D/F)%E8 (D /F)0 Ty p(Ap)(To.p(Ar) N [Tyev, {d € Ao : “d/d € Ap Yo € Gal (C/F)})

and

UD/E(tQStl_l) c

gloc(E/F)%gglOb(E/F)OCTZF(AF)(TQ,D(AF) N H {d € AC : Jd/d € Ag Vo € Gal (C/F)})

veVp

(To see this suppose that

(fuluevi € Top(Ap) N [ {d € Ac: “d/d € Ap Yo € Gal (C/F)}.

veVp

Then f, € A} and np/e(fu)uevy, = (Np/Bfuw))wevy, Where for each w € Vg we
choose u(w) € Vp above it. Moreover if 7 € Gal (C/D) we have ""YNp /g fow) =
Np/e("™™ fuw)) € NpjpAp = Ag.) Thus

"p/E(t2) info/pnp/pa; = np/p(t2) infe/p np/e*ay
np,E(t2s) infC/D 77D/Eu;r

nD/E(t2Stfl)(”D/E(t1) info/p nD/EaD
— np/elt

Vinfe,p npypaf,
and np,p.at is well defined.

Lemma 8.6. Suppose that B D C' D D D E D F are finite Galois extensions of a
number field F.

(1) ]f Cl+ € H(D/F)g andt € TQ’D(AC), then 77[)/E7>ktCl+ = WD/E(t)nD/Ej*aJF‘
(2) [f a+ € %(C/F)E then T]D/E7*T]0/D7*Cl+ = nC/E,*aJF.
(3) If a* € H(D/F)c then np/g. infp,c at =infg,cnp/p.at.

Proof: These are all formal consequences of the definition, and the facts given above.

O

Corollary 8.7. Suppose that C D D D E D F are finite Galois extensions of
F. Suppose also that a; € H(C/F)" and af, € H(D/F)" and aj, € H(E/F)*
satisfy neyp.at = Vinfoypal, and npp.a}, = tinfppaj with ' € Top(Ac) and
te TZ,E(AD)' Then

+
C/E,xQ
Nlc/e <8¢ &E
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8.3. More technical lemmas. We have chosen to split the calculations needed
to prove the results of the next section into two. In this section we begin those
calculations.

Suppose that F'is a number field, that v is a place of F' and that D D E D F are
finite Galois extensions of F. Also let

a’ = (a,{[T,]}) € H(E/F)},.

If p: E**D — F, is F-linear and if 7 € Aut (F,/F) (a field theoretic automorphism
of F', fixing elements of F', but not necessarily continuous) then we have

" € Gal (E**D/F) — Gal (E* /F) XGa(/r) Gal (D/F) C Wgab jpp

and we can define

—~—\ —1 .
Turaolr) = ((o6al5) " elrl)) e ay D7Dy,
w(7p)

—_—

where a = (8P, o!°¢, 3) € a, and [';(77) is any lift of I'5(7?) (for some I'; € [['3]) to

E8°Y(E/F)p 4. This element is independent of the choices I'; and T'5(77), and of the
choice of a € a.

Lemma 8.8. (]) §u+,v,ﬁa(7) = 071§a+,v,ﬁ(T)ﬁ(U_l)w(ﬁU)/ﬁ<O-_l)w(TﬁU)' In partz’cu—
lar Go+ , 5(1) only depends on p|p.
(2) Gear w,5(T) = (tw@)/tuwp)) ot 0,5(T)- B
(3) If C > D D E D F are finite Galois extensions of F, if o : B**C — F, is
F-linear and if at € H(E/F)},, then Findo part w7/ (7) = Gat 0,7y, (T)-
(4) Gu+ v 5(T) only depends on plp. If p : B — F, is F-linear, we will write
Ga+0.p(T) = Gt 5(7) for any extension p: E**D — F, of p.

(‘5) ]fo‘ € Gal (D/E) then Jga“',v,p(T) = gcﬁ‘,v,p(T)ﬂ(O-)w(Tp)/B(U)w(p)'
(6) If at € H(D/F)* then

§77D/E,*°+7Uap(7—) = (ND/Egaﬂv,p(T)) HneGal (D/E) 5(”)%(0)/5(77)%(70)
HnEGal (D/E) ga*,v,pn*1 (T)

(7)) If C > D D E D F are finite Galois extensions of F, if p : E — F, is
F-linear and if a* € H(D/F)}, then

EUD/E,*quMP = H §a+,ﬂ,ﬁ(7-)7

p:D—F,

where p runs over extensions of p.
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Proof: For the first part choose a € a, then

g + pa

1 N
( loca —17'%’0')) egj"(ﬂ’”)>
( L wlrpo)

-1
loca Yoy €&’ (e )H(77)e&™ (=) B(a ), pa>> eﬁc(Tﬁf’))

g

(Tpo)

- (ﬁ(o o ) e ka7 ke b))
= (ko tocaloplr7) Ml ) 1)
w(Tpo
B R G R s G W ) I
7 1§a+vp<7—>ﬁ< )w(pU Bo~ 1);(17~ )( 1(7.:) 105( ))w(TﬁJ)(7 I(Tp)ila(ﬁ(ail)w(ﬁa))il
= Uﬁ Got 'Up( 7)B(0” )w(pa Blo~ 1);1’7’p0’ T (Blo ) w(go) /B0~ )w(pa )
=7 gaJr 'up( ) (O- )w(PCf (U 1);(17—,;0
If 0 € Gal (D*"/D), then Gui , 5,(7) /Gyt 5 €quals
B w@ /B = (1, 1)@ (1, 1w /a8 (1, 1) w@ o (1, 1)wep € DD
For the second part, if a € a, we have we have
—_ — _1
Giat 0 3(T) = ((IOCtatFﬁ(Tﬁ)> elOC(T”)>
w(z{i)
= (1 Oocatup Do)t t)t)  else(7)
w(TE)1
= (((TP) 1<tw(1/3) ))/(t;(lmt))w(-rﬁ) (<IOCQF5<75)) 620(7'5)) -
0
- (tw(ﬁ)/tw(rﬁ))ga“',v,ﬁ(T)'
For the third part, under the identification
EA(E/F)cinte pa = (T,p(Ap) X (E2(E/F)p.a Xaa(p/r) Gal (C/F)))/Tae(Ap)
e{ggc/D o(77) is identified with [(1, (el°(77"), 77"))]. Moreover, under the identification
We/rcinte,pa = (AG/C™ X (Wepp.a Xca(n/r) Gal (C/F))) /(AL /D)
(infe)p Iy |EabD)(7'/7) is identified with [(1, (Fﬁ/‘EabD(Tﬁ/)’ 7)]. Moreover loCint, p a(info/p E;‘/ab (")
can be chosen to be [(1, (loc, Fp | (7)) 77))]. The third part follows.

For the fourth part choose af € H(E/F)* and t € Ty p(Ap) with at = "infp /g af.
Then

§a+,v7ﬁ(7—) = (tw(ﬁ)/tw(Tﬁ))gaf7U,ﬁ\Eab (T)7
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which by part [I| only depends on p|g. The fifth part now follows immediately from
the first part.
For the sixth part we will make use of the identifications

We/rDnp, g0 = (AL/ D™ X Wpyra)/(AL/ DY)

and

EX(E/F) = (EEN(E/F)p % E8°°(D/F)a) /€5 (D/F)"

D?UD/E,*a
and
EAE/F)pnp s, = (To,p(Ap) 3 E(D/F)a)/To,0(Ap).

Under these identifications, if & € a and p : E**C' — F, extends p, then (Mp/B,a 5 L5) (7P)
corresponds to

(V@) (F( ?)),ls
[(Np/e(Ta(r7) )ngb(
[ (T

(Noys(T5(77) 8
es(17))].

Applying loc,, . .o we get

P

(7)) -

) B e (77))/ (a7 (77) P, Tp(77))]
) 1) HneGaI (D/E) (Oégbb(ﬁ, Tp)ﬁ(n)nu(ﬁ)/agbb(Tﬁa n)Tﬂ (B(n)nu(ﬁ)))a

—_——

[(Np/s(Ta(r?)e (77) ™) T yeqa (o) (@2 (0, 77) B0 uiy /02 (72, 1) (B(0)uis)
(npysB(77)) 71, el (77))]

and then taking the inverse gives

(7 Noys(e(P)Tp(r) )™ (1o :5(17) )

T agbb(Tp M/ B (1,77) el (7))
= [(Np/p(I'3(77) €§°b(7~5))(70)7 (np/Ef(T )) )

Moccat o/ B0ain ™ (@4 (2,0) [ (B0) @, 77)), e (77) ).

Multiplying on the right by 6}70;/1; o(7?) = [(1,€l°(77))] and taking the w(7p)-component
gives

—~~— —1

Np/e(T5(7)  eg°(77))
Th)—1 P o r P)—1 o 5
HneGal (D/E) B(U)nu(ﬁ)( ) (5(7_p)77U(i)70‘gl P(r7,m))/ ) (5(77)UU(/3)O‘gl >(n, 7).

However

—~~— —1 — —1 _

La(r7) 8 (17) = (Tp(r?)  B(r) e (") utrpy = (7 B(T)) sy Tar . 5(7)-

Thus g, ,. o+ 03(T) equals the product of Npgga+,5(7) with

(ND/E(T’?)A(B(T’H);(I;,)) i ) i ~ i
[T ccai e Bmu ™ (BP)nua®(77,1m) /77 (B(0)uzy @ (n, 7)),

-1



COCYCLES FOR KOTTWITZ COHOMOLOGY 91
which equals (77)~! applied to

HnEGal(D/E)ﬁ( )rIU(")O‘glOb( )Tp(ﬁ( )nu(p )/(/8(77) (ﬁ)agIOb(naTﬁ)n(ﬂ(Tﬁ)u(ﬁ))
= HneGal(D/E)B( p)‘rpnu(‘r“)agbb(Tpan)( 7]>>7Pnu Tﬁ) (5(77)nu(ﬁ7)/
(Bma(n, ) ("B(77)))num™ (B nuti) ) N )
)l (77,0) ) B)nu@)/ (Brr?) (0, 7)) ™ (B(1)nuti)

= HneGal D/E)( (
= AneGal( D/E)(aloc( 7n)rﬂnu(rﬁ)/abc(n:Tp)nu(ﬁ))( ( ) TPnu( Tﬁ)/ﬁ(nT )nu(ﬁ))
" (B @)/ B0 gu(z) . . )
= HneGal 0722, 1) ) (10, TP)u) (BT ) atozy / BOITP )
( ( )nu(ﬁ))/ﬁ( )nu 7-/3)) - -
= L ccan/m) (@ (T 0oz /@0, T)u@) ™ Tlhecar o5 Bnu@)/ B0)nucs)
=7 HneGal D/E)(ﬁ( )nu ,5))/6( )nu(T,B))y

and the first assertion of the sixth part of the lemma follows. The second assertion
of this part then follows from the first part of the lemma.

For the seventh part choose af € H(D/F)" and t € Ty p(A¢g) such that a™ =
"info p ai. Then

gTID/E,*a+7U,P<T)

g T
gnD/E( )me/D D/E, *af v P( )

= (UD/E( )w<p>/77D/E( Juw(rp) ) H gmfc/Dal vp(T)
= [twm/toen) 115 (t‘lj/wfm)gm,,()

and the result follows. [J

Lemma 8.9. (1) If T fizes the image E in F, and p : E**D — F, eatends p,
then Gor o, ,(7) = Art 5 (77| pan)
(2) If T is continuous then Gy, ,(7) = 1.
(3) ga*,v,p(TlTQ) - ga*,v,frzp@—l)gaﬂv,p@—?)'

Proof: By parts [2] and [3] of the previous lemma we reduce the first part to the case
that D = E. In this case, if p: E** — F, and « € a, then we have

-1

Jatwp(T) = (At (77)  €Q°(T7))uirp
= Artp (7)1 (1, D) )
= Art'(r7)7!

as desired.
For the second part, by continuity, we may suppose that 7 is the image of some

—~—

TEWs, g U f;,; : Wgab/pp = Wg/rp,a lifts Iz, then we may take I';(77) to be a
lift of T'5(05(7)) = L) (O(T)) for some © : Wi yav/k, o0 = Wy, /FoDa- Thus, if
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a € a, we need to prove that if o € WEw(p)/Fv,Dﬂ, then
—_—~—— —1 1
<<10Cabgj(p)(0)> egc@) - 1€ A%/D*ApD>.
w(p

If o € Dy, then this equals (07'ag*(1,1))u) € Dy On the other hand if

w(p)*
o = el°(n) with n € Gal (D/F),,), then this equals

The second part follows.
For the third part we have we will expand Gy , 1,,(71)Gq+ o ,(72). First note that,
if & € a we can rewrite

ga"",v,rgp(Tl)

—~— —1
= (ol ) )
(T172p)

—_ — 71
_ (loca (Conjﬁ((fg)_l) glob((Tg)_l)(rp(Tf))) elgc(ﬂw))( )
w(T17T2

w(rgp) Cax

—~—

- ((Conjﬁﬂff 1 Vg B((70) )~ telge (7)1 10Ca (Ip (7] ))*1> 6330(7{2‘7))

w(T1T2p)

and

§u+,v,p(7—2)

—_— 71
((tocals(7h)) " etet))
w(T2p)

(F) " es(a8)) (07 (08D

e 1
= <10C¢1FP(7—5)> 620(7—5))) ((7-5) 6(7_5))11/(72@/((75) 1ﬁ(7—2p>)w(nmp)'
w(T172p)
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Thus

ga*,v,frgp@—l)gaﬂv,p(T?)

—_—

= (B((Té’)‘l)w(m)ﬁ((fé’) Yt (local, (7)) cle(r5)else((+2) oca (T, (7)) eke(rf5)

el (rf§) el () 1>* BB Dabrpea™T™)
(D7 Bt (B B utraran

= /B«TQP)il)w 72,0)6«7—5)71)1_0(17172/))((T5)71(O‘loc(Tgv(7-2) ) 106(1 1)))w(Tszp)§a+,v,p<TlT2)
(else(rprg) el ( f’)*)*l@«wlw(w) Dt e(75) 1t 78))
(D BrE) utran /(B B s(raran

= G ()BT Bt (BE) D Bl
(8, (bt ) ot Dt
i { (G ) WIS PSSO T(C S WAy
(000 e (o) )
= Tt g (172) Tt Tt (0 () 7)(1) 02 (1)1, 7))
(P o () V(L 1)) () D o (af) )L

= §a+,v,p<7172)(Ww(sz)/Ww(nsz))(O‘IOC((T;)_laTQP)O‘IOC(l 1)/ag10b(( 2;)) 17 p)agbb(Ll))
1

£)-1 ocC — oc Y"1 (P T. oc
( 5) (al (T2p7 (TQP) l)al (17 1)))w(T1T2p)<( 5) ( 1) 2041 ((7—5) T{)TQP))w(lflfgp)

w(ri72p)

—~

= Ty (112) Tt o 05 (1F) 2, )0, 1))
(7)™, 78 )utra @ (L, Dasragy @ ((72) ™, 78) 11y @' (L D gy

((rg)*(aloc(TZp,(Bp) ) loc(Ll)))w(nmp)((Tz) NGO 1Tzaloc((72p) 1 TlpTéD))w(lﬁmp)

Il
s
p=1
+
<

S
—~
o
S
~—

8.4. Comparing correstrictions. Suppose that F' is a number field, that v is a
place of F' and that ¥ D F' is a finite Galois extensions of F'. Also let

"= (AL} e H(E/F);

and suppose 7 € Aut (F,/F). Now suppose further  that 7'/F is a torus which splits
over I/ and that u a cocharacter of T" defined over F,.
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If p: E < F, is F-linear and o = (a#"°", o!°°, 3) € a, then we saw in lemma
how to find an element b, € T'(Ag) with

—1 —1
locgcor geon (P 1) © (Ww(p) / ﬂ-’w(’l‘p)) = "rcor aloe(” 1) 0 (Ww(p)/ 7Tw(m))-

However it turns out that the choice of a* above a allows us to choose b, more
canonically, so that it is largely independent of the choice of p. That is what we will
explain next.

If 7 € Aut (F,/F) define

botwpr = yecaram 1" W B@ i/ B uw)Tar w,(T))
€ T(Ap)/T(F)T(Fuo)*T(D)T(Dn),

where p : E < F, is F-linear, a = (a#°?, o!°°, ) € a and for each € Gal (E/F) we
choose a lift 7 € Gal (D/F). We see immediately that this does not depend on the
lift of Gy+ ,, ,(7) We choose (because Ng/p(T(E)T(Ex)?) C T(F)T(Fi)?); nor on the
choice of @ € a (because we are modding out by T'(D)T'(D,)). It does not depend
on the choices 7 of lifts of elements n € Gal (E/F), for if 0, € Gal(D/FE) for each
n € Gal (E/F), then

HneGa1 (E/F) n Un_l(p_lﬂ1((5(0nmw(fp)/5(0nmw(p )§a+ v p( 7))
= Tecamn ' m( (u(ro) /Tue) ) (B(0n) " B (01) Fat (7))
= HneGal (E/F) ﬁil(p_lﬁo((71—w(‘rp)/7rw(p))(077 B(0) BN (Tuwrp) [ Tuw(o)) (B(0y ")) Gat ,0(T))
ecas/r) 77_1(pflﬂ)((Ww(m)/fw(p))(5(773)?&,?@(7))
ccar e 1 10 (Tt /Tui) (B(e, )7 Bloy))
= ILecam T 1 (Tuen /M) B0)Tar (7))
HneGal (E/F) ﬁil(pﬂ/i)((ﬂ—w(m)/ﬂw(ﬂ))(ﬁ(l)))
= ecam T 0)(Tutmp)/Tu)(BD))Far (7))

where we have applied lemma and part [5| of lemma . Finally b+ o, does not
depend on the choice of F-linear p : E — F,. Indeed if 0 € Gal (E/F), then

I cca e 17 ) (B@)wirpo) /B w00 Tar 0,50 (7))

HneGal E/F T] 10_(('00)71”)((Trw(TPU)/ﬂ—w(PU))(B(U_lm)gcﬁ,v,pa(T))

(E/F)
(E/F)
= HneGaI (E/F) 77 p 1“) ( Tw(rpo) /WW(PU))(ﬁ(ﬁ))aga+,v,po(7—))
HneGal (E/F) 77 1”) ( Tu(rp)/ Tuw(p) (Uﬁlm)ﬁam,p( 7)° ((Tw(po)/ Tuw(rpo)) (B0~ ))))
[ecaem T 1) (Tuen/Tue) Uﬁ(a_l)ﬁ(m)§a+,v,p(7)(ﬂ-w(l))/ﬂ—w(ﬂ? )("B(e71)))

again using lemma [6.9 and part [I] of lemma [8.8]
We claim that we have

IT '@ 0p(7) = bat e € T(Ap)/T(E)T(Exo)’T(D)T(D,),

p:E(—>F7U
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where p runs over F-linear embeddings F < F,. Although this new expression for
Z_)u+m%7 is perhaps simpler than our original definition, it is less precise - it gives the
value only in T'(Ap) /T(E)T(E«)°T(D)T(D,) and not in T'(Ap) /T (F)T(Fy) T (D)T(D,).
To prove the claim note that

Hp:EC—>Fv (p :u) (ga+ v p(T))

= HneGal E/F) " ( )( Jat v p0n<7—>>

= Ilccam _1(”0 M)(§a+ .00 (T (T oom) [ Trpom)) (BT))))

= HneGal (E/F) (o N)(§a+ .00 (T (Ta(rpo) / Tus(p0) ) (B(1)))
HnEGal e/ (7 1) (T po) / Tuwrp0)) (B (”3775( )

= Bﬂ+ﬂh#ﬂ' HneGal (E/F) (P IM)((Ww (p0)/ Tw(rpo)) (B(1)))

baﬂwm’

where pg : E < F, is F-linear and 7j € Gal (D/F) is a fixed lift of n € Gal (E/F),
and where we again use lemma [6.9] and part [1] of lemma [8.8]

Lemma 8.10. Suppose that C D D D FE D F are finite Galois extensions of a
number ﬁﬁld F, that T and T'/F are tori split by E, that v is a place of I, that
T € Aut (F,/F) and that p € X.(T)(F,).

(1) If at € H(E/F)}, and x : T — T’ is a morphism of algebraic groups over F,
then bat oy yop,r = X(ba+,v,#,7).

(2) If a* € H(E/F)}, then bise, ot wgur = Dt o pur-

(3) If a* € H(D/F)§, then by, . ot wpr = batwpur-

(4) If at € H(E/F)} and t € Ty g(Ap), then

Etcﬁ',v,u,r = cﬁ‘ U, 1, T H ( ) (WW(P /WW(TP)>(t)
= Cl+,’l)7/177' Hp( (ﬂ/ :u))( ))

where p runs over F-linear embeddings p : E < F,.
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Proof: The first part is clear from the definition, and the second follows immediately
from part [3] of lemma [8.8 For the third we have

an/E #0700,

= HneGal(E/F) ( ) ((ngeal (D/E) 5(77)@ (7p) /HCeGal (D/E) (%Cu(p))
HCGGal (D/E) Jat v pC T))

- HneGal(E/F) 7771( ) HCEGal (D/E) ( Teu(rp)/ Teu(p)) (B )¢ Gat0,p(T)B(O)cuo)/ BC) cutrp) ))

(8(
(B7)/B(0)) gﬁ,wm))
CBCH) Tt (7))

( )
- HneGal(E/F) 77_1( D) cheGal (D/E) ((WCU(Tp)/ﬂ'Cu )
= HneGal(E/F)ﬁ 1( 4) HCEGal D/E) ((WCU(Tp)/”Cu )

( (

= HneGal (E/F) HCEG&I (D/E) 77 ( Tu(rp) /ﬂ-u(ﬂ ) 6( lﬁ)>ga+,v,p<7—>))
= l_[ €Gal (E/F) H(eGal (D/E) ( 77) ( ) ((7Tu (1p) /Wu(p))(B(C_lm)ﬁam,p(ﬂ)
= ba“‘,v,un-

For the fourth part we have

btu*,v , 7'/baJr v ,u,T

ILccazmm (7 ) (/) i) (/) wo) (ta (o) o))
= HnEGal(E/F) 7771(,)—1”((7?1” )/7Tw (mp) )( t))
= HnEGal (E/F)((pn)ilu)((ﬂ—w pn)/”w rom) (1))
= Hp("fiu)(tw@)/tw(w)) 1
= L W)/ 1, 1) (twrm)
= TLC 1) (tw)/ TLO 1) (tue)
1,07 (/7)) (tue))-

O

Corollary 8.11. Suppose that D D E D F' are finite Galois extensions of a number
field F, that T/F is a torus split by E, that v is a place of F, that 7 € Aut (F,/F)
and that u € X.(T)(F,). Suppose also that a}; € H(E/F)" and af, € H(D/F)*.
Then we can find a t € Ty p(Ap) such that 'infp,p af, = np/p.af € H(E/F)}, in
which case
baE U, T = ?aD VT Hp(p llu)(tw(TP)/tw(P)))
ba JU T Hp(p‘l (Tﬂ/ﬂ) (tw(P)))7

where p runs over F-linear embeddings E — F,.

Lemma 8.12. Suppose that D D E D F are finite Galois extensions of a number
field F, that at € H(E/F)}, that T/F is a torus split by E, that v is a place of F,

that T € Aut (F,/F) and that,u € X.(T)(F,).
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(1) If D = E and a = (a#°,a!°¢, B) € a, then there is a lift b € T(Ag) of bat v pur
such that

—1

—1
locgcor geion (P 1) © (Ww(p)/ﬁw(m)) = "cor atoe(” 1) 0 (ﬂ—w(p)/ﬂ-w(’fp))'

(2) If T fizes the image of E in F,, then

bt = ] 07 ) (Art 5 77 ) 7Y,
neGal (E/Q)

where p: D < F, is any F-linear embedding, and where Art ;' 77| gab is any
lift of Art '77| gan to AT

(3) If T is continuous, then b+, ., = 1.

(4) ba+ VT2 ba+,v,f2u,n ba*,v,ufz

(5) If o € Gal (D/F), then
b o gir = bat e | [ T/ 1) (B(0) ()

p

where p runs over F-linear embeddings p : E < F,.

Proof: The first part follows immediately from lemma because Gy+, ,(T) €
AL /EXApE) and so
I[I 7' W@, () € T(AR)/T(F)T(FL).
n€Gal (E/F)

The second and third parts are immediate from the definition and lemma 8.9
For the fourth part note that

bu* V1, T1T2

Wecamm o 1 (B wirirap)/ B wip)) Jat 0,p(T172))
Hne(}al E/F G )((B(mw(rmp )/ B0 w(r2p) )gu+,v,T2p(T1>( (M w(rap) /B )ga+ v p(TQ))
= [_)a+7U7N772_H17€Ga1 (E/F) 7]—1<(72p)7 TZ:LL)(<B(mw(71720)/6(77)10(7'2[)))ga+,v,72p(7-1))

bu+ YU 5 T2 baJr 0,2 T

For the fifth part we have
Tbat v
ILecas/m T (”0 1) (BT )w(rp0)/ BT )wp0) )Tt 0,00 (T))
[l ecarm/m o )(((ﬁ(ﬁ)"ﬁ(a))wmo )/ (BI)TB(0) )u00))Tat 0 (7))
Po 1) ("(B(0)w(roon)/ B(O )w(pom)))
:u+vuTH( . 1) (B(0)w Tp/ﬁ( )w(p)
l_7a+wTH (" ") (B(o)u )/ TL( 1)(B(0)ue))
bat wnr [L, (7 ("1 18)) (B(0 ) )

ba+ vuTHneGal B/ H
(

= =
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8.5. Explicit formulae. Return to the situation discussed at the end of section
with F' = Q and E totally imaginary. We chose an infinite place w(oco) of E and
an isomorphismpy : Eye) — C and an element oy € Z(E/Q). Choose Galois

rigidification data o, : Gal (E?*/Q) — Wg/g.ay/AE for (o] such that
F07P0 @) 9p0 = Lg(()oo) 9] ég.

Thus in particular I'g ,, is adapted to p. We may extend [I'g ,,] to complete rigidifi-
cation data {[['o,|} for [ay]. Then we will set

ag = ([lewl, {[To,l}) € H(E/Q)".

We will also choose a lift fO,po of 'y, to an isomorphism Wgas g S Wg Q00+
If T/Q is a torus split by E, if p € X,(T)(C) and if 7 € Aut (C), then, keeping the
notation of section [6.4] we have:

Dot oo,ur
= Tlyecaz 0 1) (B /B0)w ))((locaoTopo(TpO))‘lel&)S(T”O)) (7p0))
= Tlyecam 0 1) (B0t /B0 wio) Lo (770) L B(TP)eEP (770)) 7o)
= Ilecamon 1(p51M)((EOpo(T"°) eglc"°( 0™ (BT ao0)) B (o) / B (M)
= Ileccamon 1(’J5iu)((~F0po(T’J°) teBob(rro)) T la(T”O TPO - (nn Lrpo. 1) fa(n
7 (0 )(

= HneGal(E/Q)n( )(Fo,po(T")‘leil;’b(n(fp)‘l)‘165581’(77))‘

)
)
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9. TANIYAMA GROUPS

In a special case the elements 5a+7v7u77 are related to Langlands’” Taniyama group.
We will explain this in this section. Note however that the results of this section are
not required for the statements of the main theorems in [ST]. They are only required
to compare the results of that paper with the work of Langlands and Milne.

9.1. The Serre torus. Suppose that F is a finite Galois extension of Q. We will
write Rpc for the restriction of scalars of G,, from £ N C (which we recall means
p(E) for any p : E — C) to Q. Thus X*(Rgc) = Map (Gal ((E N C)/Q),Z) with
Gal (C¥&/Q) action given by (9p)(7) = p(o~17).

If 7 € Gal (ENC/Q) we define an automorphism [7] of Rgc/Q by X*([7])(¢)(7') =
o(7'771). We have [ry75] = [11][m], i.e. this gives a left action of Gal (C*8/Q) on
Rec/Q.

There is also a cocharacter p*" = u@" : G,, — Rgc over C characterized by
X*(Mcan)(QO) — S0(1) We have Ulucan _ [0—1] o Iucan.

If T/Q is a torus split by £ and if 4 € X, (7T)(C) then there is a unique map of tori
fi: Rpc — T over Q such that p = fio p®. (X*(1)(x)(7) = xo"p.) If o € Aut (C)
then 71 = fio [0~ 1]

If D is a finite Galois extension of QQ containing £ then Np/p = ,L;EE% :Rpc — Rec
is a homomorphism also characterized by X*(Np,g)()(7) = ¢(7|g). I T/Q s a torus
split by E and if p € X*(T')(C), then we get fip : Rec — T and fip : Rpc — T.
They satisfy:

fE © ND/E = [ip.

We will also write Sg ¢ for the torus over Q characterized by
X*(Sg) ={(p,w) € Map (Gal (ENC)/Q),Z)xXZ : @(cct)+p(oT) =w Vo, 7 € Gal (ENC)/Q)},
with a left action of Gal (C*8/Q) given by

a(o,w) = (1 (e '7),w).
It is called the Serre torus. There is an obvious injection X*(Sgc) — X*(Rgc)

(sending (p, w) to ¢) with torsion free cokernel; and hence an epimorphism Rpc¢ —
Sg,c with connected kernel R}EC. The exact sequence

(0) — Rpc — Rgc — Spc — (0)

splits over E. The action of Gal (ENC/Q) on R (via 7+ [7]) over Q descends to
an action on Sg ¢, which we will denote in the same way. It is also characterized by

X ([T (e, w) = (7" = (7771, w).

We will again denote the composite of p“"

X.(Sgc)(C). It is also characterized by
X () (p,w) = (1) € 2= X¥(Gr).

with the map RE,(C —» SE,(C by pu®" e
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o ,,can

Again we have 7u® = [o~'] o u. Also note that the {[7] o ™}, cqal (caie /@) SPans
X.(Sgc). There is a second cocharacter wt : G,,, — Sg ¢ over Q characterized by

X*(wt)(p,w) =w € Z= X" (Gy).
Note that wt = (+D7ycan — ([er] ) ([7]u") for any 7 € Gal (C¥8/Q). If D D F

is another finite Galois extension of Q then Np,g : Rpc — Rgc descends to a map
Np/e : Spc — Sec, also characterized by

X*(Np/e)(p,w) = (1 = ¢(7]p), w).
If £y denotes the maximal CM subfield of E then

NE/EO : SE,C — SEO,C-

We recall (for instance from [MS]) that S ¢(Q) is a discrete subgroup of Sg c(A™)
and that ker' (Q, Sg.c) = (0).
If T/Q is any torus split by E and if u € X,(T')(C) satisfies

e 71 is independent of o € Gal (C*2/Q),
e and My € X, (T)(Q);

then there is a unique morphism g : Sgc — T over Q such that p = o u". We
have

X (1) (x) = (7= x0T, x o (‘up)).
Note that
“u=qolo.
Lemma 9.1. (1) Suppose that x € Z|VEg.0o|o@X«(Sec)(E) C X* (15 5)@0X.(Spc)(E).

Then
H Ty = 1.
neGal (E/Q)

2) I1,.ec (T e o Tw(p) : To,5 — Sec is trivial.

Proof: To prove the first part of the lemma we may replace £ with £ N C. By
linearity we only need to consider the case x = [7]u(m,, /70, ). As [7] is rationally
defined we are further reduced to the case x = u*"(m,, /my,). Thought of as an
element of Hom (7% grc, Se.c)(E N C) we have

HneGal (ENC/Q) Nt om,) = HneGaI (ENC/Q) (Tu) o Ty
= 1, cqa znc/)/cal (Ency, r)y (T HE) 0 Ty
- neGal (ENC/Q)/Gal (ENC), /R) ("wt) o Ty,

= wto wloo TTw:

As this does not depend on v, the first part of the lemma follows.
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For the second part note that this character can be rewritten

Hp:Ec—)(C p_ll(Tlucan/,ucan) O Tw(p)

- Hn:E%C npl:l (Tlucan/lucan) O Tuw(prn-1)
Hn:Ec—xC 1Py _Srucan/lucan) O Tow(pr)
g O S )

= Tppoc" "1 0 Tugon)/ Tlpoe "0 uca“ © Mu(py))
P G e o meerwmpn)/ Tlpoe "( 0 )
[Lpoe ™ (7 1 0 Turpn) ] Ty mose (0 B 0 Tugpn)

- 1_[77:]5:—><C77(p1 Ncan (Ww(Tm /ﬂ-w Pl)))
= 1’

by the first part. [J

9.2. The Taniyama group. Langlands considers extensions
1 — Spec— S — Gal (E**NC/Q) — 1
(as a pro-algebraic group over Q) such that the induced action of Gal (E** N C/Q)
on Sgc is given by [ ], together with a continuous group theoretic section
sp : Gal (E** N C/Q) — S(A™).
(We will follow [MS], which in turn followed [L]. However the two articles use different
conventions so it is hard to directly compare the details in the two sources.) Note that
such a pair (S sp) has no automorphisms (where we consider S with its structure of
an extension of Gal (E** N C/Q) by Sg.c). Also note that S(E) — Gal (E*> N C/Q).
(See [MS] p235.) Finally note that S|qa (gavnc/enc) is abelian.
Langlands showed that giving such a pair is equivalent to giving an element

be Z1(Gal(E™ NC/Q), (Spc(AFne)/Spc(E N C))F ENC/Q)
where Gal (E?P NC/Q) acts via [ ] and Gal (E'N C/Q) acts by its Galois action on
A%, such that b lifts to a continuous map

b:Gal (E**NC/Q) — Spc(A% )

such that
Gal(Eabﬂ(C/@)Q — SE(c(Eﬂ )
[

(r1,72) > b(70)[m1](b(72))b(T172) !
is locally constant. (See proposition 2.7 of [MS].) We will write

7L (Gal (E® N C/Q), (Sp(A%¢)/Sp.c(E N C))G (ENC/Q)

for the set of elements b € Z'(Gal (E** N C/Q), (Sg.c(A¥+c)/Skc(ENC))GalENC/Q)
with such a lift. If @ € S(E N C) has image @ € Gal (E*» N C/Q), then

b(@) = asp(@?).
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Langlands defines a particular element

—Tan

bp € Zy(Gal (B* NC/Q), (Spc(Afhe)/Spc(E NC))ET/D)
as follows. There is an exact sequence
1 — Ap o/ (ENC)* — Wgancp — Gal (ENC/Q) — 1.

Choose preimages w, € Wgannc g of each n € Gal (£ N C/Q) such that the following
conditions hold:
o w; =1
e and there is a set of representatives 1 € H C Gal(E N C/Q) for Gal (E N
C/Q)/Gal (C/R) such that w,. = w,0,,(j) for all n € H. (Here p, denotes
the identity embedding E** N C — C.)
If we WEabﬂ(C/Q then
WyW = Uy g0 Wiw
where . € Ajre/(ENC)* and where w denotes the image of w in Gal (ENC/Q).
Then Langlands takes

7 Tan can) (- 0o
by (w) = H (") (W) € Sec(AEnc)/Sec(ENC).
neGal (ENC/Q)

He verifies that it lies in (Spc(A% ¢)/Sg.c(ENC))% ENC/Q: that it doesn’t depend
on the choices of preimages w, (as long as they satisfy the above conditions); that it
only depends on the image 7 of w in Gal (E** NC/Q) (so we will often write l_)?n(T));
and that b, € Z._(Gal (B N C/Q), (Sp.c(A%c)/Sp.c(E N C))GEC/D) It also
doesn’t depend on the choice of 6, associated to po. (If 8,, is replaced by af, a!
with a € (ENC)*((ENC)X)?, then w, gets replaced by w,‘a/a if n ¢ H and is
unchanged if n € H. Thus u,, , gets multiplied by

"q/la if n¢ H a/M™q if nw & H

1 if ne H 1 ifpweH [

Thus B?“(w) changes by

[n 1 (15 Cafa) (™ ) (a/a))
= (TLyermt(@)/ Tlecatoncse (@) (Tecawoesey ™ #(@)/ TLen mwt(a))

= HnEGaI (ENC/Q) n(milﬂ/ﬂ) (a)
c SE,((;(@)SE@(R) = Sﬂ@(@)SE’(c(R) C SE’(c(E N C)SE@((E N C)Oo),

i.e. it is unchanged.)

We will write (§ £c,SPpc) for the corresponding extension with a finite adelic
section. It is usually referred to as the ‘Taniyama group’. We also write Sg ¢, for
the pre-image in Sgc of 7 € Gal (E** N C/Q), a right Sg c-torsor.
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If D D FE is another finite Galois extension there is a unique commutative diagram:

0) — Spec — Spe — Gal(D*NC/Q) — (0)
Np/e | NB/E 1 !
0) — Spc — Spc — Gal(E**NC/Q) — (0)
with N
Np/gosppc =spgc-
We remark that spyc(c) € Sp.c(Q). Indeed, we have

_ _J 1 itne H
Yonwe = _1,, if n¢ H.
—Tan ~ ~ ~
Thus by Sc) =1 and sppc(c) € Spc(E) N Spc(A®) = Sec(Q).
If @ € Spc(F) has image @ € Gal (E*» N C/Q) we will write

bE,Tan,a = O./_ISp(a) c SEg(E)SE,(C(AOO) C SE7c(A%O)
If p: E— C then

—Tan _
bE,Tan,a = Io_le' (a 1) mod SE,(C(E)

We have the following properties:
<1> If Y S SE,(C<E)7 then bE,Tan,a’y = 7_1bE,Tan,a-
(2) If p: E** — C then
bEfI‘an,oa = H n(pfllucan)(;—1w€;;)%71w§n) mod SE,(C(E)>
n€Gal (£/Q)

where 7 € Wgas g lifts @ € Gal (E**/Q) and where w” € Wb denotes the
pull back of w € Wgannc g along p.

(3)
bE,Tan7a1a2 - [62_1](bE,Tan7a1)bE,Tan,a2-
(IndeedN(aIOQ)_lsp(alag) = oy (o sp(@))az(as 'sp(ay)).)
(4) If « € Sgc(F) and 0 € Gal (E/Q), then
bE,Tan,aa(bE,Tan,a)il € SE',(C(E>

(Indeed 7(a~'sp(@)) = ((“a) ') (e 'sp(@)).)
(5) If D D E is another finite Galois extension of Q, then Np pbptane =
b

E,Tan,]vD/Ea'

Lemma 9.2. Any element of Gal (E**NC/ENC) has a lift to gE,C(Q). Ifa e Ay,
then there is a unique element a(a) € Sgc(Q) such that a(a) maps to Art grc(a) and

a(a)'sp(Artprc(@) = [T (@)™

neGal (E/Q)
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Thus if a € AY and p : E < C then a(p(a)) is the unique element of Sgc(Q)
which lies above Art grep(a) and satisfies

bE,Tan,a(a) = H Uﬂcan(P(@))_l = H 77('07 Iucan)(a)—l'

neGal (ENC/Q) neGal (E/Q)

Proof: Suppose that a € Ay and that o € Sg.c(ENC) lifts Art gre(a). Then

—Tan

OéSp(AI"t Em@(a))il = bE (Al"t Em(c(a)) € SEyc(A%omC>/SE7c(E N C)
equals the image of

II (@) € Spe(a™).
neGal (ENC/Q)
Thus

IT e (a) = yasp(Art gc(a)) ™ € Spc(A%Ae)
neGal (ENC/Q)

for some v € Spc(ENC). If n € Gal (ENC/Q) we see that
"(ya) = a,
so that v € Sg.c(Q) lifts Art gne(a). We set a(a) = ya. Then
a(a) sp(Art grc(a)) = sp(Art gre(a))a(a)™!
= (asplArt sncla) )
= HneGal (ENC/Q) nuet (@)
0

We will call a(a) well placed with respect to a.

9.3. Relationship between Taniyama groups and the elements l_)a+7oo,ucan77-.

Lemma 9.3. If a € :S'VE,(C(E) and 7 € Aut (C) have the same image in Gal (E*> N
C/Q), then

bar o ueon,r € Sp.c(AF)/Sp.c(E) = Rpc(AF)/Rec(E)Rp o (AF)

equals the image of bg Tan o-

Proof: Replacing a® by ‘a® leaves by+ o ucan » unchanged. (Use corollary , lemma
and note that Sgc(Q)Sgc(R) = Sgc(Q)Sec(R).) Thus it suffices to prove the
assertion with at = af, the class defined in section . In this case we may take

Lo, po (wf0) = €8°°(n°), and the result then follows from comparing the formula at the
end of section with the formula in item of section . O

Lemma 9.4. Suppose that D D E are finite Galois extensions of Q.

(1) Rpc(Q)Rec(D) = R c(Q)Rec(D).

(2) (Rec(QRec(D)) N Rpc(Af) = Rl c(Q)REc(D).
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(Here the closures are taken in Rpc(AY).

Proof: For the first part suppose that 7; € Rpc(Q) tend to h € Rpc(Q). As
Sec(Q) C Sgc(A™) is discrete, we may suppose that all the +; have the same image

§ € Spc(Q). Then h = (lim_; 77 7)1 € Rl (Q)Rpc(Q).
For the second part

(Rec(QRpc(D)NREc(AF) = (Ryc(Q)Rpc(D)NREc(AS) = R c(Q) Ry c(D).
0

Corollary 9.5. . If o € Spc(E) and 7 € Aut (C) have the same image Gal (E®>
C/Q), then

bat oo can s € Rpc(A%)/ R c(Q)Rec(E)
and
bp Tana € Rec(AF)/Ryc(AY)

have a unique common lift

bat coieon.a € Rpc(AF) /R c(Q) R ¢ (E).
(It is independent of the lift T of the image of o in Gal (E** N C/Q).)

Corollary 9.6. (1) If v € Rpc(E) then byt oo pean oy = 7 oot oo pcan -

(2) ba+7oo7ucan7a1a2 = [a;l](ba+’oo,ucan7a1)ba+7oo7ucan7a2.

(3) ba+7ooﬂucan7aa(ba-!—’oo“ucan’a)_l S R}E7C(AOEO)RE7((;(E)

(4) Suppose that D D E are finite Galois extensions of Q, that aj € H(E/Q)T,
that af, € H(D/Q)" and that t € Ty p(Ap) with np/p.a}, = 'infp/paf.
Suppose also that ap € §D,(C(D) and ap € gE,(C(E> have the same image in
Gal (E** N C/Q), so that aglﬁp/E(aD) € Sgc(D). Then

—1 a7 -La can can
Dot copsznap = (a5 No/p(ap))No/e(bet s e ap) [pmoc? (FHEHE) (tuip)

€ Rpc(AF)/REc(Q)Rpc(D),

where ag denotes the image of ag in Gal (E** N C/Q).
(5) [faar is as in section[8.5 and if T € Aut (C), then there is an element ag(T) €
Sg.c(E) such that 7 and ao(T) have the same image in Gal (E** N C/Q) and

—_—~— —1
1

bag,oo,ucan,ao(T) - H 77(p_ :ucan)(FO,po (Tp) G‘U&lsb(n(Tp)_l)_leilgb(n))v
n€Gal (£/Q)

e~

where fo’po(ﬂ’) is any lift of 1:07,)0 (7P) to Wi/,
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(6) If a € A}, and p : E — C, then a(p(a)) € §E,@(Q) lies above Art grc(p(a))
and we have

—1

Dat+ oo pcan a(p(a)) = n(” ™) (a)~
neGal (E/Q)

Proof: The first part follows from the corresponding property listed at the end
of section 9.2, The second part follows from the corresponding property listed at
the end of section and properties and of lemma and the equality
@2 pcan — [, o u. The third part follows from part (5 of lemma and lemma
9.1l The fourth part follows from comment [5] before lemma [9.2] lemma corollary
% and part |1| of lemma For the fifth part note that if o € Sk <c( ) has the
same image as 7 in Gal (EaL ﬂ (C/Q) then

— -1

[T o7 i) o (7)o (n(r) ™) e (1)) = byt s peon
n€Gal (E/Q)

with v € Rpc(F). (See section [8.5]) Thus ag(7) = ay~! will do. The sixth part
follows from part of lemma and lemma[9.2] O

Note the following simple remark:

Lemma 9.7. Suppose ¢1, 92 € Z,1,(E3(E/Q)a, T(E)) for some torus T/Q, and that
(1] = [¢2] € Hy,(E3(E/Q), (E)) Suppose also that loc™®(¢;) = %1 and that
brlby € T(A®). Then ¢y = éo.

(The point being that ¢, = "¢; with v € T(E), so that by b, € T(A®). Thus
vETA®)NT(E) =T(Q).)
Lemma 9.8. Ifga-ﬁ-’oo’ﬂcan’a is a lift of ba+ oo yean o t0 Rpc(AY), then there is a unique

element ;b/a-ﬁ-’oo”ucan’a € Zn,(E3(E/Q)a, Rpc(E)) such that:

(1) resoolocaaaﬂoo’“m’a — Dot oo pean o]
(2) If p: E — C and w(p) is the corresponding place of E, then

Aot soyema) = [ 1" ® (w(p) —w(rp))]
= [ (/T @ w(p)].

This is independent of the choice of p.

Moreover
(3) rescaloc|But o eom o] = (1 (o) ([~ o™ ([ clop™), (i [r] !
pet)(=1))].

(4) If we replace ba+ so,ucan o DY h’)/ba+ so,ucan o With h € REC(Q) and v € Ry ¢(E),

then gba+ so,ucan o Changes to ¢a+ 00,1 g -
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Proof: Choose e € a and p : & — C. By part of lemma [8.12] there is a lift
b € Rpc(AY) of byt s pen, such that res®loc,cor gaon (P p1) 0 (Tw(p)/Tw(rp)) = "L
Then by+ o0 yeon o = hyb for some h € Rpc(Q) and v € Rgc(E). Set

~ —1
Pat oouen,a = COT qetob (P 1) O (Tws(p)/ Tuw(rp))-

Then $a+,oo,ucan,a has the first property by construction and the second by definition

of k. Moreover
1

@ (wip) —w(rp) = Pt @w(p) e @ 0 w(p))
(7 e ) @ w(p)

= 7 (pe ) @ w(p)

€ (Z|Velo® Xi(Rec))cal(£/0)-

Because R c is a torus, the second property determines [@q+ oo yean o] uniquely. Thus

the first property implies the uniqueness of $a+,ooyucan7a by lemma .

To prove the third property note that x(resc /R100[50+7w7ucan7a]) = [p /7 u", and
SO

resc/rloc@ar oo pean ] = (1 ([Jop®) /([r~Jop ) ([T Jou™), (™ /I] o) (—1))].

The final assertion is clear. [

Lemma 9.9. (1) If a € :SYVE,C(E) and v € Sgc(E) then we can find ¥ € Rgc(E)
liftingv and h € R}EC(Q) such that G+ oo yean oy = &_l¢u+7m7ucan7a and b+ oo yean 4o =
h;\y/_lba-hoo’ﬂcan’a.

-1 can -1 can /T ,,can
(2) Vi . = Hpmsc” 10T/ Tuep) = [pmec” (00 /70 0,

where T € Aut (C) has the same image in Gal (C*2/Q) as a.
(3) Given o; € Spc(E) fori=1,2, there exists f € Ry (E) such that

hBbat oo ueon s = [0 e (Dat oo e an Dat o pemn o mod Rl (Q)
and
# Pt opean arar = (@ e (Bt oo,peon, a0 )Gt oo peon,az
where @ € Gal (E*®* N C/Q) denotes the image of a.
(4) If a € Spc(E) and 0 € Gal (E/Q), then

Do+ oo pean 0" (Dat oo pean ) "+ € Ry c(AX)Rpc(E) C Rpc(AF).

(5) Suppose that D D E are finite Galois extensions of Q, that af, € H(E/Q)*,
that af, € H(D/Q)* and that t € Tpp(Ap) with np/p.a}, = "infp/paf.
Suppose also that ap € §D,C(D) and ap € §E7@(E) have the same image
in Gal (E** N C/Q), so that a;ND/E(aD) € Spc(D). Choose (-

Ap,00,lE O
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lifting bagm? con . and b_s can o lifting bajg,oo, can - Lhen there exists 5 €

HE HOE ap,00, U Hrp D

Ry (D) with

Bt oz o = B0 Noyi(@p)) Nyt o esn o) 1] 7 CEHE 15ty mod R (@)

p:E—C
and

—1 %7 ~
Bﬁftd)%v ot = Ble No/p@p) Ny o + oo an Z;lg(é'g,(D/Q)%,RE,C(D)).
(Again ap denotes the image of ag in Gal (E** N C/Q).)
(6) If a € A}, and p : E — C, then we may take

~ —1 n _
batsopemnaay = || 0 #) (@)t € Rpc(A®)
neGal (£/Q)

and ¢a+ soe ap(a) = 1.
(7) If af is as in section[8.5 and T € Aut (C), then there is an element ap(T) €
SE,(C( ) above T|gabnc such that we may take

—~ —1
1

bot sopeinaot) = L1 10 1) o (1) eBP((7) ™) 7 8 (1) (oo
neGal (£/Q)

—~—

where ]A.;o’po(TP) is a lift of fO,po (1) to EB°P(E/F)°.

Proof: The first part follows from the first part of corollary 0.6l The second part
follows from the construction of [@g+ o yean o] as a correstriction. The third part follows
from the second part of corollary and lemma [0.7] The fourth part follows from
the third part of corollary [9.6]

The first half of the fifth part follows from the fourth part of corollary‘ For the

second half of the fifth part note that [infp /g, o can o p] AN [ND/po bt o ean o ]
in H}

alg

ano,u

(&(D/Q), Rpc(D)) have the same image under & in
(Z[VDlo ® X.(Rpc))aa(n/g) — (Z[Velo ® Xu(Rec))cal (£/0),

and so are equal. Thus it suffices to check that

o 00 N (ap))
res™locy,, inf = res®™loc Blag' Np/p N o
U D/Et d)“E’ oo,ug g °D D/E ¢ﬂD°°HCD”vaD’

or equivalently that

V- (t)

¢ ot oo, ucan ﬁ( 71],\\} oy
N — Pla p/e(eD)) o0
oot R D1}1Eftres locaE¢ oA g D/ Np/po(res™loca, Got o en o)),

or equivalently again that

Y5 e Ot e B Mo s(@p)NosGBr  cn )
at00,uSe0 o EOHE 1= / /

aDoo,uD s ap 1
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This follows from the second part and the first half of this part.
The first half of the sixth part follows from the sixth part of corollary 0.6, The
second half then follows because byt oo yean o € Rp,c(A™) and [Pg+ oo yemn o) s trivial

(because in turn its image under & is).
The seventh part follows from the fifth part of corollary [9.6 O
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