ON THE FORMALISM OF SHIMURA VARIETIES

JACK SEMPLINER AND RICHARD TAYLOR

To Dick Gross with admiration and gratitude

1. INTRODUCTION

The formalism of Shimura varieties was laid out by Deligne [DI], [D2] and Lang-
lands [L] 45 years ago. The formalism they suggested seems to us to have a number
of possible shortcomings:

(1)

Deligne’s ‘Shimura datum’, a pair (G, X) of a connected reductive group over
Q and a G(R) conjugacy class of homormorphisms h : RSEGW — G over R sat-
isfying certain axioms, paremtrizes not a (inverse system of) varieties Sh(G, X)
over some number field F(G,X), but the pair (Sh(G,X)/E(G,X), p®" :
E(G,X) — C) of the Shimura variety together with an embedding of its
field of definition into C. Indeed the ‘same (inverse system of) varieties’ over
E can be parametrized by different Shimura data depending on the choice of
embedding £ — C.

The theory of conjugation of Shimura varieties conjectured by Langlands [L]
and established by Milne [Mil] depends for its formulation on some unmoti-
vated, and somewhat non-canonical, choices of cocycles, which to the best of
our knowledge are written down only in [L]. This makes it quite hard to work
with, as does its reliance of choices of special points.

In [D2], Deligne imposes an axiom that the group G should have no sim-
ple factor over Q, whose real points are compact. This allows him to use
strong approximation to explicitly understand the connected components of
his Shimura varieties, but it should be unnecessary for their existence and for
the study of their conjugation properties.

The third of these points is unrelated to the other two and will be easily remedied
in section [3.4l We will discuss it no further in this introduction.

As a simple illustration point (1), consider a non-Galois totally real cubic extension
F/Q. It has three different embeddings 7; : F' < R for ¢ = 1,2,3. Write oo; for the
infinite place of F' corresponding to 7;. Let D;/F denote the quaternion algebra
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centre I’ ramified at exactly oo; for j # i. Denote by G;/Q the reductive groups
with G;(Q) = D). These groups are not isomorphic over Q. We have G;(R) =
GLy(R) x H* x H*, where H denotes the Hamiltonian quaternions. Let X; denote
the G;(R)-conjugacy class of the morphism h; : RS5G,, — G defined over R with

hi(a+z’b):<_ab Z) x1x1.

We have FE(G;, X;) = i,FF C C. Note that G; x A*® is independent of i. We will
denote the group G;(A>), which does not depend on ¢, simply as I". Deligne’s theory
of Shimura varieties gives us for each i an inverse system {Sh(G;, X;)y} of varieties
over 7;F' C C indexed by sufficiently small open compact subgroups of I" and with
an action of I'. However there is one such system {Sy} of varieties over F' indexed
by sufficiently small open compact subgroups of I' and with an action of I', such that
{m:Sy} with its ['-action is identified with {Sh(G;, X;)y} with its I'-action. It seems
to us unnecessarily cumbersome and confusing to index the one system {Sy} over F
by three different Shimura data, depending on how one wants to view F' as a subfield
of C. It would seem to be preferable to index {Sy} by some other data D over F' and
then to give a recipe that to D and any embedding 7 : F' — C attaches a Deligne
Shimura datum (Gp_,, Xp,) so that

(TSU)(C) = GDJ—\(GD,T(AOO)/U X XDJ-).

It turns out that points (1) and (2) above are closely related. Indeed the second
only became apparent to us as we tried to understand the first, and once we felt we
understood the second, the first was easily remedied.

To us the key to understanding possible shortcomings (1) and (2) is, perhaps not
surprisingly, to make use of Kottiwitz’s cohomology groups B(G). However it will be
essential for us to work with 1-cocycles, not only 1-cohomology classes. We work out
the requisite theory of cocycles in [ST].

In the rest of this introduction we will first recall Kottwitz’s theory including a
discussion of cocycles. We will then explain our, hopefully more canonical, reformu-
lation of the theory of conjugation of Deligne’s Shimura varieties. Finally we will
state an alternative formulation which avoids the shortcoming (1).

1.1. Algebraic cohomology. If G/Q is an algebraic group then Kottwitz defines
B(Q, G)pasic as a direct limit over finite Galois extensions F/Q of algebraic coho-
mology pointed sets H,,(E3(E/Q), G(E))pasic, which contain H'(Gal (E/Q), G(E)).
These pointed sets were canonically defined by Kottwitz [K2], but to define underly-
ing sets of cocyles we need additional data. This was explained in [ST]. To explain
our main results, we must recall some of this theory.

If G is an algebraic group we will write Z(G) for its centre and G* = G/Z(G). If
G is reductive we will write A for its arithmetic fundamental group.
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If E is a number field, we will write Vg for the set of places of E, Z[Vg] for the free
abelian group on Vj and Z[Vg], for the subgroup consisting of sums ) m,w where
> w M = 0. If £ is Galois over Q, these all have natural Gal (£/Q)-actions. In this
case, we will write Ty p (resp. T3 ) for the pro-torus over Q with character group
Z[VEg| (resp. Z[VE]o). There is a natural short exact sequence

(0) — G, — To g — T35 — (0).
There is a map
v Hyyy(E(E/Q), G(E))pasic — Hom (Ts5, Z(G))(Q)

with kernel H'(Gal (E/Q),G(E)).
If G is reductive and split by F, then Kottwitz also defined an important map, the
‘Kottwitz map’,

K Hal,lg(‘€3(E/Q>7 G(E))basic — (Z[VE]o @ Aa)qal (£/0),

where Ag denotes the arithmetic fundamental group of G.
The extra data we require is a choice of an element a* from a certain set H(E/Q)™,
which has a transitive action of 15 g(Ag). If S is a set of places of Q and if G/Q is

an algebraic group, we obtain:
(1) Pointed sets Z,(E3(E/Q)a+, G(E))pasic With an action of G(FE) and

Zn(E9°(E)Q)S,, G(AZ))basic with an action of G(A%) together with a G(E)-
equivariant map

locqt Z;Ig(gB(E/Q)a+a G(E))basic — Zzilg(gloc(E/Q)fﬂ G(AE))basic.

These constructions are functorial in G. If S = () we drop it from the notation.
(2) We have

H,1,(&3(E/Q), G(E))basic = G(E)\Zyyg(E3(E/Q)at, G(E))basic,
and the preimage of H'(Gal (F/Q),G(E)) is Z'(Gal (E/Q), G(FE)). Thus we
have a map

Zas(E3(E/Q)at, G(E)basic — 2" (Gal (E/Q), G* (E)),

which is surjective if Z(G) is a torus. If ¢ € Z,,, (E3(E/Q)at, G(E))basic then ¢
maps to an element of Z!(Gal (E/F),G*(E)) and hence we obtain an inner
form ?G of G.

Similarly
H,yo(E°°(E/Q), G(AE) basic = G(AR)\Zyyo (€°°(E/Q)3s , G(AE) basic
is canonically independent of at; and there is a map

v Hy (E°(E/Q)%, G(AL) Jhasic — @D X.(Z(G))(Q),

vgS
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with kernel (in Z}, (£'°(E/Q)*®, G(A%))pasic) identified with Z'(Gal (E/Q), G(A

If ¢ € Z),(E°(E/Q)®, G(AF))basic We obtain an inner for G of G over A%,
(3) If S” O S there is a natural map

alg(gloc(E/@)a+v (AE,S))basic — ZalL (510C(E/Q)a+v (Ag))basic-

Suppose that EV is a finite extension of Q, isomorphic to F,, for some, and
hence any, w|v. Then if v € S there is a map

reSEB/@u alg(glOC(E/Q) (AS))basm — alg( (EO/QU) (ES))basicv

where the latter set is Kottwitz’s local algebraic cohomology pointed set. This
gives an isomorphism

alg(gloc(E/Q) Jbasic = H alg EO/Qv) G(E ))basw

vgS

(Here the product is restricted with respect to the H'(Gal (EY)/Q,), G(Ogo)).)
(4) If G is reductive and split by E, then there are ‘Kottwitz maps’

K H;lg(gloc(E/Q)7G(AE))basm (Z|VE] ® Ag)cal (B/0) = @AG’ Gal (E9/Qu)>

and
t Hao(E°°(E/Q), G(AR) Jbasic — Aa.cal (5/0)-

The former is induced by the local Kottwitz maps and is compatible with the
global Kottwitz map and loc. The latter is the composition of the former
with the map (Z[VE] (%9 AG)Gal (E/Q) — AG,Gal (E/Q) induced by the sum of the
coefficients map Z[Vg] — Z. Thus % o loc = 0.
(5) If F is imaginary and 7'/Q is a torus split by £ and pu € X, (T)(C) and
7 € Aut (C), the group of field theoretic automorphisms of C, then there is a
special element
But eor € T(AF)/T(E)TTQ).
As E and a™ vary there is an explicit way of comparing these constructions. If D D
E,af € H(E/Q)" and aj, € H(D/Q)™, then the comparison of the constructions for
(E,a}) and (D, a};) depends on the choice of an element ¢ € Ty p(Ap).

This material, along with some other background, is summarized in section 2 of
[ST].

1.2. Some algebraic cohomology classes. If G/R is a connected reductive group
and p : G,,, — G over C we call p basic if puu factors through Z(G); and compactifying
if it is basic and in addition ad y(—1), which lies in G (R), is a Cartan involution.

If Y is a G(R)-conjugacy class of basic cocharacters then we obtain a class Xg(Y> €
H} (E(C/R),G(C)). (The class of the cocycle

alg
Aa(p) : (T, 5 52 =—1, jzj~' =) — G(C)

7).
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which sends z to (u°u)(z) and j to u(—1) for any p € Y.) If ¢ € Ag(Y) then G
comes equipped with a natural basic G(R)-conjugacy class of basic cocharacters Ysg.
(In the case ¢ = Ag(p) we have Yo = (1] vcyr)-)

If G*(R) is compact and if C is a G-conjugacy class of cocharacters, then C
contains a unique basic G(R)-conjugacy class Y (C).

Suppose now that Y is a G(R)-conjugacy class of compactifying cocharacters of G
and ¢ € Ag(Y) and 7 € Aut (C). We will write [Y]sg for the G-conjugacy class
containing Ysg. We set

Ac(Y = [V]og) = Aeg(Y (([Y]oe) V)]0 € HE,(E(C/R),G).

If ¢ € Ag(Y — "[Y]sg), then ™Y = (V(T[Y]oq) )od is a well defined (“G)(R)-
conjugacy class of compactifying cocharacters of ¥G.

We now turn to the global case. Suppose that G/Q is a connected reductive group.
If G is split by E, then Kottwitz showed that an element of H;lg(é’g(E /Q), G(E))pasic
is determined by its images under s and resgg /g o loc.

Suppose now that Y is a G(R)-conjugacy class of compactifying cocharacters of
Gc. If 7 € Aut (C) and if F/Q is a sufficiently large finite Galois extension, then

there is a unique
¢G,Y,T € H;lg(g3(E/@)7 G<E))basic
such that

* (bgy,) = P Aa(Y) @ (w(p) — w(rp)), where p : E < C and w(p) denotes
the corresponding infinite place of E (this is independent of the choice of p)
and where A\¢(Y') denotes the image of any element of Y in Ag;

e and resc/rlocdg y, = XG(Y —"Y]a).

If ¢ € ¢y, then G comes with a canonical (°G)(R) conjugacy class of compacti-

fying cocharacters ™Y .
This material is discussed in sections 2.4] and 2.5l

1.3. Conjugation of Deligne’s Shimura varieties. One can define a Shimura
datum (in the sense of Deligne) to be a pair (G,Y"), where G/Q is a connected reduc-
tive group and Y is a compactifying G(R)-conjugacy class of miniscule cocharacters
p: Gy — Gje. It is more common to consider instead of Y a G(R)-conjugacy class
of morphisms % : RS5G,, — G sr satisfying certain properties, but these two notions
are easily seen to be equivalent. (To a p as above we associate h, which is the descent
from C to R of (y1,%u).) Also note that Deligne assumes that G2 has no simple factor
over Q whose real points are compact. However, as we will see, everything (that we
will be discussing) remains true without this assumption.

To the Shimura datum (G,Y) and a sufficiently small open compact subgroup U C
G(A>), Deligne associates a smooth quasi-projective variety Sh(G,Y)y/C (called a
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Shimura variety) together with an identification of complex manifolds
G(Q\(G(A™)/U xY) — Sh(G,Y)y(C).

The system of these Shimura varieties as U varies has an action of G(A*) (by right
translation). If f : (G,Y) — (G',Y’) is a morphism of Shimura data (i.e. a morphism
f: G — G’ of algebraic groups over Q which carries Y to Y’) then there is an induced
maps of Shimura varieties. Deligne defines the reflex field E(G,Y) C C to be the
number field which is the fixed field of all automorphsims of C which fix the G(C)-
conjugacy class [Y]g(c) of cocharacters of G, which contains Y. He conjectured that
Sh(G,Y )y has a model over E(G,Y) satisfying certain additional properties, which
determine it uniquely. He proved this in many cases and Milne proved it in all cases.
Langlands conjectured a rather complicated and apparently ad hoc formula depending
on a number of choices for the conjugate of Sh(G,Y )y by any automorphism of C.
This was also proved by Milne.

Fix a sufficiently large finite Galois extension E/Q and a* € H(E/Q)". If (G,Y)
is a Shimura datum and ¢ € ¢gy.,, then (?G,™?Y) is another Shimura datum. If
moreover b € G(AS) with res™locg+¢ = °1, then we will define an isomorphism

ot (7,0,b) : TSh(G, Y )y — Sh(*G, ™Y )pp1.

These maps commute with the action of G(A™) (using the identification conj, :

G(A>) = ?°G(A™)) and with the action of morphisms f : (G,Y) — (G',Y’) of
Shimura data. One has a cocycle relation

‘I)a+(7172,¢1¢275152) = (I)aJF(Tla ¢1>bl) o Tl‘I)a+(T2, ¢2752)-

In the case where (G,Y) = (T, {p}) with T" a torus there is an explicit formula for
the @+ (7, ¢, b) involving the elements l_)a+7oo,ﬂ’7. These properties together completely
(over) characterize the maps @+ (7, ¢, b). We also explain how the maps ®y+ (7, ¢, b)
depend on E and a*. (See theorem [3.5| for all this.)

In particular the maps ®4+(7,1,1) for 7 € Aut (C) fixing F(G,Y’) provide descent
data for Sh(G,Y )y from C to E(G,Y), which yields the canonical model of Sh(G,Y )y
over F(G,Y).

The conjugation morphisms, whose existence was conjectured by Langlands and
proved by Milne, are special cases of our maps ®q+ (7, ¢,b) in which ¢ and b factor
through a suitable maximal torus in G and take a very particular form. Indeed our
theorem follows easily from Milne’s theorem, once we were able to discover the correct
formulation (and unravel Langlands definitions).

This is all discussed in section [3l

1.4. Rational Shimura varieties. Finally we propose an alternative formalism,
which we feel is better suited to keeping track of the rationality properties of Shimura
varieties.
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Fix a sufficiently large Galois extension F/Q and a™ € HT(E/Q). The theory we
describe is independent of these choices, in a way that is described precisely in the
body of the paper.

By a rational Shimura datum over a field L of characteristic 0 we mean a 4-tuple
(G,9,C,U), where

e (G/Q is a connected reductive group;

o € Zy (E°(E/Q)ar, G(AE))basic such that **5e/=Y G2 (R) is compact;

e (' is a conjugacy class of miniscule cocharacters of G (considered as a variety)
defined over L such that the image of C'in Ag gai(5/Q) (which is independent
of how one compares the fields £ and L) equals Fg();

e and U C (YG)(A™) is an open compact subgroup.

The group G plays very little role except as a basis point to identify the class of ex-
tended pure inner forms with which we are working. One gets a completely equivalent
theory if one replaces G by G for ¢ € Z),(E3(E/Q)qr, G(E))pasic- In the case that
Z(@) is connected, we may assume without loss of generality that G is quasi-split.

To a rational Shimura datum (G,, C,U) over L we associate a normal (smooth
if U is sufficiently small) quasi-projective variety Sh(G,v,C,U)/L. As U varies the
system of varieties has an action of (YG)(A>). (Note that YG/A may well not arise
from a group over Q, it is often what one might call ‘incoherent’.)

Crucially the action of Galois on Shimura varieties for rational Shimura data be-
comes completely transparent. If 7: L — L’ then

{TSh<G7 1/)7 Oa U)}U = {Sh(G7 wa TC? U)}U

(with their YG(A>)-actions).

These rational Shimura varieties are not exactly equal to canonical models of
Deligne’s Shimura varieties, rather they are finite unions of isomorphic copies of a
single such canonical model. Thus they carry the same information. Indeed when
one describes Shimura varieties as moduli spaces over rings of mixed characteristics it
is these rational Shimura varieties that arise, as has long been observed. (See for ex-
ample [K1] and [HT] and section |5| of this paper.) An additional benefit is that these
rational Shimura varieties actually have an action of a larger group than (YG)(A>),
a group that transitively permutes the constituent Deligne Shimura varieties. More

precisely let Gg 4 (A) denote the abelian group
{(C.9) € Z'(Gal(E/Q), Z(G)(E)) x G(Ag) : (locaC)?d = ¥}

with componentwise multiplication. There are embeddings

G (A) — éE,i/) (A)

and
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We define

Gru(A™) = Gpy(A)/Z(G)Q)CGR).
(The notation is not meant to suggest that G(A) or G, (A>) are the A or A points
of any algebraic group.) Then we have an exact sequence
(0) — *G(A™)/Z(G)(Q) — Gpu(A™) — ker(H' (Gal (B/Q), Z(G)(E)) — H'(Gal (E/Q), “G(Ar))) — (0).

The action of YG(A>) on the system of the {Sh(G, ), C,U)}y extends to an action
of G g (A%), which permutes transitively the constituent Deligne Shimura varieties.

Shimura varieties for rational Shimura data are also functorial in the rational
Shimura data in the following sense: By a morphism

(#,9,f) : (G1,91,C1,Ur) = (G2,12, Cy, Uy)
of rational Shimura data over L, we mean
e a cocycle ¢ € Z3,(E3(E/Q) o+, G2(E))basic;
e an clement g € Go(Ag),
e and a morphism f : G; — ¢G4 defined over Q,
such that f oy = 9 'ylocgd™! and f(C1) C Cy and (conj, o f)(U;) C Up. Given

such a morphism we obtain a morphism a morphism of varieties over E:
Sh(¢, g, f) : Sh(G1, 91, C1,Ur) — Sh(Ga, 2, Cy, Us).

(The case ¢ € Z'(Gal (E/Q), Z(G)(E) and f = 1 recovers the action of G ,(A®).)
We have

Sh(é1, g1, fi) o Sh(d1, g2, f2) = Sh(fi(P2)d1, 91 f1(g2), f1 © f2).

If ¢ € Z)),(Es(E/Q)ar, G(E))basic, then Sh(¢,1,1) gives a canonical isomorphism
between the the tower {Sh(G, ¥, C, U)}y with its éEW(AOO)—action and the alternative
tower {Sh(?G, ¥ (loce+¢) ™1, C,U)}y with its *Gr yoces)-1 (A®) = égyw(Aoo)—action.
Thus, as we have already mentioned, the exact choice of G amongst its class of inner
forms is not so important.

For any g € G(Ag) the map Sh(1l,g,1) gives an isomorphism between the sys-
tem {Sh(G,v,C,U)}y with its (N;'E7¢(A°°)—action and {Sh(G,%,C,V)}y with its
CN}'EW(AOO)—action, where we use conjugation by g to identify G g, (A®) and G oy (A™).
Thus in a sense {Sh(G, ¥, C,U)}y only depends on [¢] € Hyy (£°°(E/Q), G(Ag))basic-
However the identification is not canonical - it depends on the choice of ¢ taking
to 91p. This is why we have to work with cocycles and not only cohomology classes.

There is of course a theory of complex uniformization for rational Shimura vari-
eties. If (G,%,C,U) is a rational Shimura datum over C, then Sh(G,v,C,U)(C)
admits a uniformization by an Hermitian symmetric space, but this depends on
auxiliary choices. We must choose ¢ € Z,1,(E3(E/Q)at, G(E))basic and b € G(AY)
with resc/rloc[¢] = XqﬁG(Y(C)’l)reS@/R[w] and res®locg+ ¢ = Pres®1). We will write
*G(E)g for the subgroup of elements of *G(E) whose image in ¢G*(E) lies in



ON THE FORMALISM OF SHIMURA VARIETIES 9

9G24 (Q) and can be lifted to *G(R). Then °G(E)2 acts on Y ("C) and there is
a mapping *G(E)Y — G g4 (A®). There is an isomorphism of complex manifolds

Tow - GNQ)pr\(Gry(A®)/U x Y(TC)) =5 #Sh(G, 1, C)y(C).

In the case that G = T is a torus the action of Aut (C) can be made explicit: if
7 € Aut (C) then

7—<7T(¢7b) (ga :u)) = T (prp,brb) @’ TH)?

for any ¢, € ¢ry,;, and b, € T(A¥)/T(Q) such that res*locad, = "1 and the
image of b, in T(A%)/T(Q)T(E) is byt s pur-

We will write Z(G)! for the torus which is the intersection over all open sub-
groups U C Z(G)(A™) of the Zariski closure of Z(G)(Q) N U. (If the Q split rank
of Z(G) equals the R split rank, then Z(G)! is trivial. See theorem 5.12 of [PR].)
If (G,¢,C,U) is a rational Shimura dataum over C and if = is a representation
of YG/Z(G)' on a finite free A> module W which is rationalizable in a sense de-
fined in section [£.6] then there is a canonical variation of rational Hodge structures
W, /Sh(G, ¢, C,U)(C), with W, ®g R polarizable. This variation of Hodge structures
is unique, but only up to an isomorphism that is unique only up to composition with
an element of Z(Q), for some linear algebraic group Z/Q with Z(A*>) equal to the
centralizer of r in GL(W'). (So if r is absolutely irreducible, up to scalar multiples.)

All this is discussed in section[dl For a complete statement of the results mentioned
here see theorem [4.3] and section [L.6l

At the suggestion of Pol van Hoften we included section [5.1|, where we show that
the PEL moduli spaces of type A and C considered by Kottwitz in [K1] are rational
Shimura varieties in our sense.

1.5. Acknowledgements. After we released the first version of this paper Xinwen
Zhu informed us that he and Liang Xiao had some similar results. In particular
they had also removed the condition in Milne’s theorem that G® has no Q-simple
factor whose real points are compact. They had also considered finite unions of
Deligne’s Shimura varieties with an action of a group similar to (and perhaps equal
to) Gg(A™) and found these to have, in some ways, better properties.

We were aware of Dick Gross’ paper [G1], and Dick has since made us aware of the
follow up paper [G2], where related ideas are discussed in special cases. It is a great
pleasure to dedicate this paper to him.
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2. ALGEBRAIC BACKGROUND

2.1. Notations. For simplicity we will assume all fields we consider in this paper
will be assumed to be perfect unless we specifically say otherwise.

If V is a finite dimensional vector space we will write VY for its dual. If ( , )is a
perfect pairing on V' we will write ( , )V for the perfect pairing on V¥ characterized
by

((z, ), (g, )" =, 2).
Then ( , )VV = (, ) under the canonical identification V = VvV,

If F'is a field we will write F for an algebraic closure of F' and F?P for the maximal
abelian Galois extension of F'in F. If E/F is a Galois extension and L/F any field
extension, then we will write £ N L (resp. EL) for p(E) N L (resp. p(E)L) for any
F-linear embedding p : E < L. The field E N L (resp. EL) is a subfield of L (resp.
L) independent of the choice of p, but the identification of E N L with a subfield
of E depends on p. If L is any field of characteristic 0, we will write L# for the
subfield consisting of elements algebraic over Q. If L/ K is any extension of fields we
will write Aut (L/K) for the group of field theoretic automorphisms of L which fix
K pointwise. If L has characteristic 0 (resp. p > 0) will write Aut (L) for Aut (L/Q)
(resp. Aut (L/F,)). If L/K is Galois we will write Gal (L/K) for Aut (L/K). If E is

a subfield of C?8 then
(CAUt (C/E) _ E.

If F is a local field of characteristic 0 we will write Art  : F* — Gal (F#/F) for
the Artin map. (Normalized to take uniformizers to geometric Frobenius elements.)

If F' is an algebraic extension of Q we will write Vr for the set of places of F' and
Ap for the ring of adeles of F'. (In the case that F' is an infinite extension of Q then
Ap =lim_, g Ap, where E runs over subfields of F' finite over Q.) If v is a place of F’
then by F, we will mean lim_, g F, as E runs over subextensions of F//Q which are
finite over Q. (So F, may not be complete, but it is algebraic over Q,.) If F is a
number field will write Art 7 : AX/F*(FX)? = Gal (F**/F) for the Artin map.

If E/F is an algebraic extension of fields with F' a number field and if S C Vg
we will write Vg ¢ for the set of places of E above a place in S, and Ag g for the
ring of adeles of E supported at the primes in S. (If E is also a number field then
Ap g is the restricted product H:ﬂ wlpes EX.) We will also write VEYF_S = Vs and
AP = Aps.

We will write Z[Vgs] for the free ablelian group on Vg g and Z[Vgglo for the
subabelian group consisting of elements » | m,w with )" m,, = 0. If E/F is Galois,
both groups have a natural action of Gal (E/F) via o), m,w = Y my(ow) =
Y M1 W.

If F is an algebraic extension of Q and K is a local field and p : F < K, then
we will write v(p) = v(F, p) or w(p) = w(F,p) or u(p) = u(F,p) for the place of F
induced by p. (We will tend to use v(p) when the field is denoted F', w(p) when it
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is denoted E and u(p) otherwise.) If moreover F//Q is Galois and 7 € Aut (K), then
we will write 77 for the element of Gal (F//Q) satisfying p o 77 = 7p.

If EF/F is a Galois extension with F' a number field, and if v is a real place of F' we
will write [¢,] for the conjugacy class in Gal (E/F') consisting of complex conjugations
at places above v. If F' = Q and v = oo we will simply write [c].

2.2. Algebraic groups. If G is an (algebraic) group then Z(G) will denote its centre
and G* will denote G/Z(G). Moreover G will denote its commutator subgroup
and C(G) = G will denote it co-center/abelianization G/G%. If H C G is a
subgroup we will write Ng(H) for its normalizer and Zg(H) its centralizer. If H
has finite index, we will also write tr gy : G — H?®" for the transfer map. If H
is normal in G, then the image of tr g,y is contained in (H*®)%/#. If G acts on X
we will write [z]¢ for the G orbit of x € X and Zg(z) or G, or Stabg(z) for the
stabilizer of x in G. If G is an algebraic group acting on a variety X over a field F
and x € X(F), then [z]g is a variety, and [z]¢(F) D [2]gr), but these two sets may
not be equal.

If Fis a field, if K7,...,K, are fields containing F', and if G/F is an algebraic group;
then we will write G* (F),

-----

~~~~~~~~~~

We will write std for the character ¢ — ¢ of G,,.

If G is an affine algebraic group over F' then there a scheme X,(G), smooth and
separated over F', and a homomorphism g™V : G,, X X,(G) = G xr X.(G), such
that if S is any F-scheme and p : G,, s = Gg is a homomorphism, then there is a
unique morphism S — X, (G) under which p"™" pulls back to pu. Moreover

Gx X.(G) — X.(G) x X.(G)
(g;1) = (conj,opu,p)

is smooth; and

X (G)p = IT ¢z

(W EGF)\X+(G)(F)

(See sections 4 and 5 of exposé XI in [SGAJ].) If G is geometrically connected, then

the G/Zg(p) are the connected components of X,(G). Moreover if p € X, (G)(F)
and if F'([u]) denotes the fixed field of Stabg, 7 r ([tlg)), then Xi(G)r() has a

(unique) connected component [u] such that [u](F) = [u]gF). (Use lemma 33.7.18 of
[Stacks].) If C' C X,.(G) we will write C~! for the set of u=*, where p € C'.

We will require all our reductive groups to be geometrically connected, i.e. by the
term ‘reductive group’ we will mean what is often referred to as ‘connected reductive
group’. If G is reductive we will write G5C for the simply connected semi-simple cover
of G, If T is a maximal torus of G we will write 724 for the image of T'in G* (a
maximal torus in G*) and 79 = (G4 N T') (which is a maximal torus in G4, see
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remark 3.5 of [Co]) and 75 for the preimage of T in G5 (which is a maximal torus
in G5, see for instance proposition 4.1 of [Ca]). We have T = Zg(T). We will also
write Wy for the Weyl group Ng(T')/T', which we think of a finite algebraic group.
It acts faithfully on 7. We will also write Wr g for No(T)(F)/T(F) C Wr(F).

If G is reductive and 7' C G is a torus then the centralizer Z5(7T') is (connected)
reductive. (See corollary 11.12 of [BI].)

We remark that if 77 C G is a maximal torus and py, us € X, (T') are conjugate
under G(F) then they are conjugate under Wy (F). (This is probably well known, but
as we don’t know a reference we will sketch the proof. Let H denote the centralizer of
p1(Gy,) in G. Tt is reductive. (See theorem 2.1 of [Co].) Suppose that gy = guag™".
Then p(G,,) C gTg~ ! so that T and gTg~! are both maximal tori in H. Hence we
have gT'g~! = hTh™! for some h € H. Then h™'g € Ng(T) and 1 = h™'gusg~'h, as
desired.)

We will let Ag denote the algebraic fundamental group of G, i.e. X,(T)/X,(T5°)
for any maximal torus 7" of G. Note that the Weyl group Wy acts trivially on
X.(T)/X.(T5¢). Any two maximal tori T and T" defined over F are conjugate over
the separable closure F of F by g € G(F) with gNg(T) uniquely defined. Then
conj, induces an isomorphism X, (T)/X,(T5%) = X (T")/X.(T"*°). If we alter g by
an element h € Ng(T)(F) then this isomorphism changes by an element of Wr(F),
i.e. is in fact unchanged. Thus Ag is canonically defined independent of the choice
of T. In particular it has a canonical action of Gal (F/F). (If T = conj,T" and
o € Gal (F/F), then goconj, = conj,oooconj,, on X,(T) for some w, € Wr(F), and
so ooconj, = conj,oc on Ap.) If [u] is a conjugacy class of cocharacters i : G,, — G,
then [u] gives rise to well defined element Ag([u]) € Ag. If o € Gal(F/F) then
Aa(7lp]) = “Aa([u])-

If C'is a G-conjugacy class of cocharacters of G and ¢ € Z*(Gal (E/F), G* (E)),
then we set Cs( to be the image of C' under the identification ¢y : G x E = *G x E, a
conjugacy class of ?G. Under the identification conj g" G 5 2@, the conjugacy class
Cisg is sent to Cos. Moreover if o € Gal (F//F), then we have ?(Csg) = (°C)oc-

Now suppose that F' is a number field and G/F is a connected algebraic group.
Then G(F') is dense in [] .y, G(F,). (See theorem 7.7 of [PR].) Suppose further
that S is any finite set of pléces of F' and that T,, C G x Spec F, is a maximal
torus for all v € S. Then there is a maximal torus T' C G such that T" x Spec F, is
G(F,)-conjugate to T, for all v € S. (See corollary 3 to proposition 7.3 of [PR].)

For any Galois extension E/F (not necessarily finite, but F' still a number field)
we write ker' (Gal (E/F), G(E)) for

ker(H'(Gal (E/F),G(E)) — [ H'(Gal(E,/F,),G(E.))).

vEVR
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We will sometimes write ker' (F, G) for ker' (Gal (F/F),G(F)). If G is reductive then
ker' (Gal (E/F),G(E)) is finite. It vanishes if G is semi-simple and either adjoint or
simply connected. (See for instance theorems 6.6, 6.19 and 6.22 of [PR].)

Lemma 2.1. Suppose that G/Q is a reductive group and E/Q is a finite totally
imaginary Galois extension such that each connected component of G (R) contains

a point of G* (Q)p. Then
ker(H'(Gal (E/Q), Z(G)(E)) — H'(Gal (f/@)a G(AF)) © H'(Gal (C/R), Z(G)(C)))
ker(H' (Gal (E/Q), G(E)) — H'(Gal (E/Q), G(Ag)))

18 surjective.

Proof: By the Hasse principle for adjoint semi-simple groups we see that any element
of ker(H'(Gal (E/Q),G(E)) — H'(Gal (E/Q),G(Ag))) can be lifted to an element
of ¢ € ker(H'(Gal (F/Q), Z(G)(E)) — H'(Gal (E/Q),G(Ag))). Then we have

G (R)/G(R) = mo(G™ (R))/mo(G(R))
= ker(H'(Gal (C/R), Z(G)(C)) — H'(Gal (C/R),G(C))).

(The first equality follows from the open mapping theorem.) Choose v € G*(Q)g
lying in a connected component of G2 (R) which maps to the image of the restriction
of ¢. Let o(y) € ker(H'(Gal (E/Q), Z(G)(E)) — H'(Gal (E/Q),G(FE)) denote the
obstruction to lifting v to G(Q). (If ¥ denote a lift of v to G(FE) and let o(7) is
represented by the cocycle ¢ — 3°371.) Then Co(y)~' has the same image as ¢
in H'(Gal (E/Q),G(F)) but maps to 0 in H'(Gal (C/R), Z(G)(C)). The lemma
follows.[

2.3. Kottwitz’s extensions. We refer the reader to [ST] for the properties of Kot-
twitz cohomology which we will require. We present here only a brief summary.

If £/Q is a finite Galois extension of number fields we will write T g (resp. T3 )
for the protorus over Q with cocharacter group Z[Vg| (resp. Z[Vg]o) with its natural
action of Gal (£/Q). Thus there is a natural short exact sequence

0) — G, — Top — T35 — (0).
We will denote by 7, : To g — G, the character corresponding to w € Vg. We have
I 7 Toear) = ] Ax
weVE weVE

but with Galois action given by
U(([L’w)w) = (Jx0*1w>w-
If D D FE are finite Galois extensions of Q the map
DMt — Y myuulp
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gives rise to a commutative diagram
0) — G, — Ty — Tze — (0)
I LOD/E \ 3 LOD/E
0) — G, — Thp — T3p — (0);
and the map
YowMuww = Y [Dy By lmy,u
gives rise to a commutative diagram
0) — G — Thp — T3p — (0)
[D:E]l 77103/5’ \J 4 TIOD/E
0) — G — Thy — T35 — (0),
and
77103/E © L(l])/E =[D: E].
We set
E(E/Q) = H By CThp(Ag)

weVg

(with E thought of inside the w-copy of A},) and
E8P(F/Q)° = {(z4) € To.x(Ap) : 7, mod E* is independent of w} C Ty 5(Ag).

These are preserved by Gal (E/Q).
In [ST] we defined abelian groups Z(E£/Q) D B(E/Q) with compatible actions of
T p(Ag) such that T5 p(Ag) acts transitively on the quotient

H(E/Q) = Z(E/Q)/B(E/Q).

The stabilizer in T (A g) of any element of H(E/Q) is £°(E/Q) £8P (E/Q) Ty £(A).
To an element a € H(E/Q) we associate (uniquely up to unique isomorphism):

(1) Extensions
(0) — E(E/Q)° — £°(E/Q)s — Gal (E/Q) — (0)
and
(0) — £8°°(F/Q)° — £%°P(E/Q), — Gal (E/Q) — (0).
(2) Writing &(E/Q), for the pushout of £'°¢(E/Q), along £°°(E/Q)° — Ty p(AR),

a canonical map of extensions
loca : £4°(E/Q)y — Ex(F/Q)e
(3) An extension
(0) — T,p(E) — &(E/Q)a — Gal (E/Q) — (0)
defined as the pushout of £8°°(E/Q), along £8°P(E/Q)° — T3 p(E).
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An extension
(0) — AL/E" — Wgjga — Gal (£/Q) — (0)

defined as the pushout of £8°°(E/Q), along £8°°(E/Q)° — A}/E*. The
extension Wg/qq is isomorphic to the Weil group Wgas . This isomorphism
is mot canonical: it is only defined up to composition with conjugation by an
element of Aj,/E*. (The global Weil group

Weab o = Wayo/ Waye Wayel

is defined up to an isomorphism that is only unique up to composition with
conjugation by an element of EX(EX)0/E*.)
If S C Vg, an extension

(0) — E°(E/Q)Y — EY(E/Q)s — Gal (E/Q) — (0)
defined as the pushout of £'°¢(F/Q) along the projection
gloc E/@ H E>< s H E>< gloc E/Q)

weVg weVE, s

We will also write 51°C(E/@)XQ75 =E£°(E/Q)sa

If w|v are places of F and Q, an extension
(0) — E — Wi, /0,0 — Gal(E/Q), — (0)

defined as the pushout of £'°°(E/Q)q|cal (£/q)., along E°°(E/Q)? — EJ. There
is an isomorphism of extensions

WEw/via = W(EQ’u)ab/Qzﬂ
where Wgq, )= /q, denotes the local Weil group. This isomorphism is not
canonical, but only defined up to composition with conjugation by an element
of E. (In this case Wgg, g, is defined up to unique isomorphism.)
For w|v are places of E and Q, a map of extensions

tw  WE,/Qua = WE/Qa

compatible with £ < AL/E*.
If p: E* < Q,, then there is a map of extensions (the ‘decomposition
group’)
9p : W(p(E)Qv)ab/Qv — WEab/Q,
which is well defined up to composition with conjugation by an element of
EX(EX)?/E*. Then 6, and (f, will differ (after making the above identifica-

tions) by composmon W1th conjugatlon by an element of A;/E* (of course
depending on p).
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(Thus the choice of a € H(E/Q) inter alia gives rise to a preferred decomposition
group in Gal (E**/Q) above each place w of E. We think of the choice of a as being
analogous to the choice of such decomposition groups.)

Diagramatically we have:

E(E/Q)q ¢—— EFP(E/Q)y — W@,

lloc“

EOY(E/Q)g ——— &E(E/Q)q 0

J

EY(E/Q)alca5/0)00 — WEy/Qua

The choice of a ‘cocycle’ v € a gives rise to distinguished lifts €8 (o) € £8P (E/Q),
and €l°°(a) € £'°°(E/Q), of o0 € Gal (E/Q).

If t € T, p(Ag) there are canonical isomorphisms

g?(E/Q)a — 5?(E/Q)‘a

for each of the extensions considered above. They commute with all the arrows in
the above diagram, except for the arrows that go between the first row and one of
the other rows. For these we have

3¢ o loc, = conj, o locty 0 3;
and
conjy, © 3¢ 0 Ly, = L;? © 3t-
More generally, if D D F are finite Galois extensions of Q, if aj, € H(F/Q)" and
ay, € H(D/Q)" we can find t € Ty z(Ap) with, in the notation of [ST],

g/lf ap = Np/B0p.

The element ¢ is unique up to
E7(B/Q)pE™" (B/QpTag(4) ]| BX(EX)
weVg
(Again using the notation of |[ST].) If C' D D is another finite Galois extension of Q
and if af, € H(C/F)* satisfies no/p.al =¥ infe/p af, with ¢ € T p(A¢), then

+ _ tip/p() inf gt
C/E Q- = i ar.
Nc/ExA¢c &5 oE

We define the following pointed sets of algebraic cocycles:
(1) If G/F is a linear algebraic group, we define Z;lg(Sg(E/@)a, G(FE))pasic to be

the set of 1-cocycles ¢ : E(E/Q), — G(F) such that there is a, necessarily
unique, algebraic homomorphism vy : T3 p — Z(G) over Q with |z, () =
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v,. This pointed set of cocycles has a natural action of G(E) via the usual
coboundary map and we will denote the quotient H,,(E3(E/Q)a, G(E))basic-
(2) If G/Ag is a linear algebraic group, we define Z),,(£'°(E/Q)s,0, G(Ap,s))basic
to be the set of 1-cocycles ¢ : £°°(E/Q)sqa — G(Ags) such that there are
for each w € Vg g, necessarily unique, algebraic homomorphisms v, : G, —
Z(G) over Ey, almost all of which are trivial, with ¢|gie(g/q) = Hwevg V-
This pointed set of cocyles has a natural actions of G(Agg) via the usual
coboundary map and we will denote the quotient Hy_(E°°(E/Q)s.a, G(AE,s))basic-
(3) If G/Q, is a linear algebraic group, we define Z},(Wg, /g,.a, G(Ew))basic to be
the set of 1-cocycles ¢ : Wg, 9,4 — G(E,) for which there is a necessarily
unique, algebraic homomorphisms vg : G,, — Z(G) over Q, with ¢z« =
v,. This pointed set of cocyles has a natural actions of G(E,,) via the usual
coboundary map, and we will denote the quotient H ;lg(WEw /Qu,0: G(Ew) )basic-

There are natural equivariant maps
loc, : alg(g3(E/@>ﬂ7 G(E))pasic — Zallg(gloc(E/Q)m G(AE))basic
and, for S C &,
ress : Zyg (E°(E/Q)sr.a, G(AE,s))basic — Zag(E'°°(E/Q) 5,0, G(AE,5))basic

and for w € Vg g,
TeSy, : a]g<gloc<E/@)S a (AE,S))basic — Zilg(WEw/Qv,aa G(Ew»basic'

These maps are functorial in G and the maps resg and res,, are compatible in triples
whenever this makes sense. They give an isomorphism

alg(gloc(E/@>S as (AE S))basm —> H alg gloc(E/Q){v}pa G(Ev))basic

vES

where the products are restricted with respect to the subsets Z1(Gal (E/Q), G(Og.)).
To be more concise we will sometimes write £’ (E/Q), either £3(E/Q), or EXY(E/Q) s,
or Wg,/q,,« and Ag for Q (resp. Ag, resp. Q,) and Ag for E (resp. Agg, resp. E,)
and Gal*(E/Q) for Gal (E/Q) (resp. Gal (F/Q), resp. Gal (E,/Q,)).
Ifte TZE(AE) then 3; * induces maps

alg( (E/Q)cu (AE>)basm —> Zallg( ?(E/@>taa G(AE))basic

which are functorial in G' and are equivariant for the G(Ag)-action, so that they pass
to cohomology. We have v o z; = v and 2, = 2, © 21,. The maps z; commute with
the maps res® and res,.. We have

(loctq © 2) () = ”¢(t)(zt o locy) (o).

The maps the z; induce in cohomology are independent of ¢, and so Hy, (E"(E/Q)a, G(Ag))basic
together with the maps loc,, resg and res,, on Cohomology are Canomcally indepen-
dent of a. Thus we will denote it simply H,,(£ (E/Q), G(AE))pasic, loc, Tesg and
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res,,. We get isomorphisms

alg(gloc(E/@)Sa (AE,S))basic L> H;€S alg(glOC(E/@>{U}, (Ev))basic
HUES alg(WEw/Qw G(E ))basic
where for each v € S we choose a place w of E above it, and where the products are re-

stricted with respect to the subsets H'(Gal (E/Q), G(Og,)) (resp. H'(Gal (E,/Q,), G(Og.))).
The kernel of the map

loc : Hzilg(‘s‘S(E/Q)v G(E))basic — H;Ig(gloc(E/Q)v G(AE))basic

equals ker' (Gal (E/Q), G(E)).

If £9/Q, is a finite Galois extension and G/Q, is an algebraic group, we de-
fine Z3, (Wigoye /q,, G(E}) basic to be the subset of Z' (W g0y q,, G(E))) consisting
of cocycles ¢ whose restriction to W goja g are of the form vy o Art ;31% for some
vy € X.(Z(G))(Q,). The pointed set Z,,(Wigoyn q,, G(E}))basic i preserved by the
coboundary action of G(Ey) and we denote the quotient Hy, (Wgoyn g, , G(Ey))vasic-
If £/Q is a finite Galois extension and w|v is a place of E such that E, = EY over
Q,, then the choice of an isomorphism of extensions W goya g, = W, /g, .« gives rise
to bijections

Z e (Wigym jq,> G(E)) Jvasic = Zatg(WE, /@00 G(Euw) )basic

and

Hilg(W(EO)ab/vi G(EO))basw = Hal,lg(WEw/Qzﬂ G(E ))basim
the latter being independent of the choices of isomorphisms E? 2 E,, and W, (EQ)ab /Q, =
WE, /@.,a- The composite of this map with res,, gives a map

IeSE9/Q, - alg (gIOC(E/Q) (AE,S))basm — Halg(W(Eg)ab/Qw G(ES))basic

which is independent of all choices, including the choice of w.

If £/Q is a finite Galois extension and if for each place v of Q we fix a finite Galois
extension E?/Q, isomorphic to E,/Q, for any (and hence every) place w of E above
v, then we obtain an identification

H resgo/Q, alg(gloc(E/Q>S7 (AE S))basm — H alg Eo)ab/(@va G<ES))basiC7
veS veS
where the product is restricted with respect to the subsets H'(Gal (EJ/Q,), G(Op)).
For G/Aq an algebraic group there is a natural map
Z5(E" (E/Q)a, G(Ap) Jbasic — Z'(Gal'(E/Q), G™ (Ag)).

Thus if ¢ € alg( (E/Q)q, G(AE))basic there is a canonically defined inner form ¢G

of G over Ag, together with an isomorphism ¢, : G' X Ap 5 G x Agp such that
o1y(9) = ty((ad ¢(0))(og)) for all 0 € E*(E/Q), and g € G(Ag). If h € G(Ag) then

there is a unique isomorphism ¢, : G = "G over Ag such that ¢, 0 1y = ny 0 conjy,.
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Ity e alg( (E/Q)a; (*G)(AE) Jbasic, then ¢¢ € alg( “(E/Q)a; G(AE))basic and this
gives a bijection of sets

Zallg< ?(E/@>aa (¢G>(AE)>basm — Z;lg( ?<E/Q)u> G(AE)>basiC7

but this map does not preserve neutral elements. This product is functorial in G' and
commutes with loc,, res® and res,. We have vy = vy, and z(Vd) = z(1)2(¢).
The composite

Lyp O Ly 0Lyt Y(P@) s veG
is defined over Ag. We have (9¢)¢ = 9(1p¢) and so we get a bijection

alg( (E/Q) (¢G)(AE))baSIC — alg( (E/Q) (AE))basiC'

Moreover (i, 0 1)7¢ = 9(¢p¢), and if we use ¢, to identify G and *°G then the map
induced in cohomology by ¢ only depends on [¢] € H,, (€ (E/Q), G(AE))basic-

If ¢ € Hy,(£'(E/Q), G(AE))basic we will sometimes write G /Ag for *G for any
¢ € ¢. However we must keep in mind that ®G is unique up to an isomorphism, that
is only unique up to composition with conjugation by an element of ?G(Ag).

Now suppose that D D F is another finite Galois extension of Q, that af, €
H(D/Q)" and af, € H(E/Q)* and that ¢ € Ty p(Ap) with np/p.af, = 'infp/paf.
Then there is a map

it Ziy(€1(B/Qlag, GAR)vasic — Zatg(€'(D/Qay G(AD) asic

This map is functorial in G, commutes with products, and passes to cohomology.
These maps are all injective even on the level of cohomology. They commute with
the maps res® and res,.. We have

loca, (,inf (#)) =" inf (locey9).

Note that infg/p, = 2, and Vintpy 6 = Vo © 1D /E- If C D D is another finite Galois
extension of Q and if ac € H(C/Q) and if t' € Ty p(A¢) with ne/pac = t' infe)p ap,
then

inf o inf = inf .
C/D’t/ D/Evt C/EﬂtnD/E(t,)

Suppose that a € Ty p(A) and b € Egl"b(E/Q)% and ¢ € 510c(E/Q>%' If 6 €
alg<53<E/Q)a7 ( ))basic then

inf — vs(0) ipf .
D/lEn,abct(QS) DI?E,t(qb),

if ¢ € Z,,,(£°°(E/Q)7, G(AE))basic then

inf — (O™ inf (o):
D/lEI‘l,abct(gb) Dl/nE,t(gb)7
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and if ¢ € Z}, (W, /0,0, G(Ew))basic then
i — vs(mu()™h)
/B ?) oA

Thus the maps
inf’ alg( (E/Q), G(AE))basie — H;lg( (D/Q), G(Ap) )pasic

D/E\t

are independent of ¢, and so we will denote them simply infp,z. They commute with

loc, res® and res,, and we have infe/poinfp/p = info/p. Following Kottwitz, we
define

B(Q7 G)basic = EHEl‘ Hallg(g?)(E/Q)a G(E))basic

and
BIOC(@7 )basm - hm Halulg(gloc(E/@)S7 G(‘A%))b%ic

and
B(Qv> G)basw - hm Halg(WEw/va G(Ew))basic-

If G/Q is reductive and split by E Kottw1tz defines maps

: Hy (E°°(E/Q)s, G(AR) )basic — (Mg ® Z[Vi,s])cal (2/0)
(which we will denote simply x if S = Vp) and

R Hallg(83(E/Q)a G(E>>basic — (AG & Z[VE]O)Gal (E/Q)
with the following properties:

(1) If ¢ € H}\,(E3(E/Q), G(AR))pasic, then (k oloc)(¢) equals the image of ()
under (Ag @ Z[Vilo)cal(g/0) = (Ae @ Z[VE])Ga (2/0)-

YIf f: G — G, then ko f, = (f ® 1) o k, and similarly for kg.

) ROresg equals KR Composed with (Ag®Z[VE S’])Gal (E/Q) (Ag®Z[VE S])Gal (E/Q)-

3 k(Y @) = K(P)r(P).

ks o infp,p equals the Composition of k and the inverse of the natural iso-
morphism (Ag ® Z[Vp s])cal (p/0) = (Ae ® Z[Vi,s])cai (g/q)- Thus we obtain
maps

kst B(Q, Q) spasic — (Mg ® Z[VE s5])cal (2/0)-
(6) koinfp/p equals the composition of k and the inverse of the natural iso-
morphlsm (AG X Z[VD] )Gal (D/Q) —> (AG ® Z[VE] )Gal (E/Q)- Thus we obtain a
map

K B(Qa G)basm (AG’ ® Z[VE] )Gal (E/Q)-

This map has finite fibres.
(7) If S consists of finite places then

ks : B(Q, Q) spasic — (A ® Z[VE,s5))Gal (£/0)

is an isomorphism.



ON THE FORMALISM OF SHIMURA VARIETIES 21

(8) If S is a set of places of Q we will write B(Q, G)gpasic for the preimage in
B(Q, G)pasic of the image of A¢®RZ[VE slo in (A¢®Z[VE]o)Gai (£/q)- If S is finite
then there exists a finite extension D/E Galois over Q so that B(Q, G)s pasic
is contained in the image of

alg(gfﬂ(D/Q) ( ))basic — B(Q, G)basic-

(9) There is a cartesian square

resoloc
B(@’ G)basic — B(R, G)basic
k4 K
(A¢ ® Z[VElo)gal(B/0) — AG,Gal (Ew/R)
Do A @ W F= D eGal (Fu/R)\Gal (B/Q) O Ao~ 1w

where w|oo is any infinite place of E.
We will write

alg(gbc(E/Q)S? (AE))basic — AG,Gal (E/Q)

for the composition of kg with the map

(A¢ @ Z[VE.s))ga(g/0) — Acca(g/0)
YA ®uw > Ay

As g oinfp,p = g we see that we get a map Rg : B*(Q, Q) spasic — A gal @/Q)-
In the case S = Vp we will write simply %, and we have K o loc is trivial on

H3,(E3(E/Q), G(E))basic. The map
100 : B(QJ G)basic - kerﬁ C BIOC(Q7 G)basic

is surjective with finite fibres.

2.4. Real groups. In this section we suppose that G /R is a reductive group.

The group of real points G(R) has finitely many connected components. If either
G is simply connected semi-simple or G(R) is compact, then G(R) is connected.
(See theorem 3.6 and its first corollary and proposition 7.6 of [PR].) If G/R is
a reductive group and H is a normal subgroup defined over R then the image of
G(R) — (G/H)(R) is a union of connected components. (The image is open by the
open mapping theorem.) If (G/H)(R) is connected, for example if it is compact,
then G(R) — (G/H)(R). We will write G(R)" for the connected component of the
identity in G(R) in the archimedean topology. Because G(R) is Zariski dense in G,
we see that Zg(R) = Zg(G(R)) and that G(R)*® naturally embeds in G (R) (and
GR)™ > G (R)T.)

If G/R is reductive then a maximal torus " C G g is called fundamental if its split
rank is minimal among the split ranks of all maximal tori. All fundamental maximal
tori are conjugate by G(R). (See [BW] section 1.7.1.) If G’ is an inner form of G,
then fundamental maximal tori in G and G’ are isomorphic. (See lemma 2.8 of [Sh].)
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If T is a fundamental torus and if 724 (R) is compact (or equivalently if ¢ acts by
—1 on X,(7T%)) then Wr(R) = Wy (C). Moreover if T is a fundamental torus, then
T4 (R) is compact if and only if G has an inner form G’ with G"24 (R) compact. (See
proposition 3 of [LS].)

If G*(R) is compact then all maximal tori T" are fundamental, and hence conjugate.
Moreover, in this case, Wrr = Wr(R) = Wr(C), so that any two embeddings ¢, :
T — G are conjugate under G(R). (In the case that G(R) is compact the equality
Wrr = Wr(R) is well known, see for instance theorem 11.36 of [H|. The more general
case G*(R) compact reduces to this because G(R) — G4 (R).)

If 1 € X,.(G)(C) then we will call p basic if p°p factors through Z(G). In this case
‘pup = pu. We will write X, (G)(C)pasic for the set of basic cocharacters. Being basic
is preserved under G(R)-conjugacy. If p is basic, then p factors through a fundamental
maximal torus. (To see this work in G®4. Then (Im z)(R) is compact and so contained
in some maximal compact subgroup of G* (R). Hence it is contained in a maximal
compact torus, and so in a fundamental torus. See section 1.7.1 of [BW].) If G*(R)
is compact and p € X.(G) factors through a torus defined over R, then it factors
through a maximal torus 7" defined over R and is basic (because ¢ acts on X, (724)
by —1).

If p € X.(G)(C) then we will call u compactifying if p is basic and ad u(—1) €
G?(R) is a Cartan involution (i.e. G2 (C)“Mu-n°=! is compact). (See for instance
section 2 of [BC] for basic facts about Cartan involutions.) Being compactifying is
preserved under G(R)-conjugacy. If G' admits a compactifying cocharacter, then G#4
has a compact inner form.

If Y is a G(R) conjugacy class of elements of X,(G) we will call it basic (resp.
compactifying) if it contains an element which is basic (resp. compactifying), in
which case all its elements are basic (resp. compactifying). If Y is basic (resp.
compactifying) so is Y™! = {u=! : p € Y}. If Y is basic we will write vy = puu €
X.(Z(@)) for any p € Y. (This is of course independent of the choice of p € Y.)

Lemma 2.2. Suppose that G/R is a reductive group and that G* (R) is compact.
Any G-conjugacy class C C X, (G) contains a unique G(R)-conjugacy class Y (C)q
consisting of those cocharacters in C(C) which factor through a mazimal torus defined
over R. The elements of Y (C')¢ are in fact basic.

Proof: Any p € C(C) factors through some maximal torus and hence is conjugate
to a cocharacter factoring through any other maximal torus, for instance one defined
over R. If p, i/ € C(C) factor through maximal tori defined over R, then replacing p/’
by a G(R)-conjugate, we may assume it factors through the same maximal torus T
(defined over R) as u. Then p and ' are conjugate by an element of W (C) = Wrg,
i.e. pand p' are Ng(T)(R)-conjugate. [J
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Choose a representative af sr for the canonical class [ac/r] € H 2(Gal (C/R),C*)
defined by
0 o —1 if 01 =09 =¢C
oc/r(01,02) = 1 otherwise.

Then

Wejmap, = (€71 = ~1and jz5 =2),

with section e,o (1) = lande,o (¢) = j. Thus an element of Z, (W 40 G(C))basic
C/R C/R alg /R

is a pair (v, J) where v € X,(Z(G))(R) and J € G(C) satisfy

JJ =v(-1).
Moreover [(v,J)] = [(v/, J')] € Hy,(We/r, G(C))pasic if and only if v = v/ and there
exists g € G(C) such that

J =gJq".

If 4 € X,(G) is basic, then we obtain an element Ag(y) € Z;lg(WC/R,ag/R7G(C)>
defined by
Aa(p) = (1, p(=1)).

We have that k(Ac(1)) = Ac(p) and v5_ () = pp. This induces a surjective map

Ac 1 GR\X.(G)(C)pasic = Hy(Wesk, G(C))basic.

Thei image Ag(p) depends only on the G(R)-conjugacy class of p, so we will sometimes
write Ac([1c G(ry)- For this see section 5.3 of [STJ.
If p € X.(G)(C) is basic, then p € X, (AG( )G)(C) is also basic. If g € G(R) then
AG(conjg ou) =9\s(p) and
X, (conj,) : X,(PoWG) 5 X, (elnizonq)
takes ,u to conj op. If Y is a basic G(R)-conjugacy class of cocharacters, then the inner
form *¢(")G comes with a canonical cocharacter jis v, o (equal to the cocharacter u

of Ao G) and the pair ("G(Y G, psgv) G) is unique up to an isomorphism, unique up
to composition with conjugation by an element of Z(T\G(Y>G)(R)(MT\G(Y>G)' Note that

(XG(Y7 (XG(Y)

1)G,MXG<Y*1>G) = 7/'1’;;()/)G)
(as canonically as the two sides are defined).

This implies that the group A (which is defined up to an isomorphism unique
up to composition with conjugation by an element of (XG(Y)G) (R)) has a canonical
basic (S‘G(Y)G)(]R)—Conjugacy class of cocharacters Yx ), More precisely if ¢ €
Xg(Y) then ?G has a well defined basic (?G)(R) conjugacy class Ysq; and Yosn =
conj,Ysi. Note that AAc(Y)@<Y_ ng) = Ao(Y)
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Suppose that G2 (R) is compact and that C' is a G-conjugacy class of cocharacters
of G. If ¢ € Ag(Y(C)g') then ¢G comes with a canonical basic (*G)(R) conjugacy
class of cocharacters Y (C)og = (Y(C)g')sei and Y (C)osg = conj, Y (C)sg. We have

Ao (Y (C)og) = Aa(Y(C)gh) ™!

and

(Y (€)5h) = Aa(©)!
and
-1
Yxa(r(0)gh T Py
Now suppose that Y C X,(G) is a compactifying G(R)-conjugacy class (no longer
assuming G (R) is compact) and that C' is a G-conjugacy class in X,(G). Then C

is canonically a *¢()G-conjugacy class in X*(S‘G(Y)G), and so we have

XS\G(Y)G<Yr<cf)71 ) € Hl (WR7 )\G(Y)G)basic-

AWM alg
We set
Aa(Y = C) = As oo (Y(O):L y, JAa(Y) € H,

AeMa alg

(WRa G)basic .

The group Ae(Y=O) G comes with a *¢(Y=O)G (R)-conjugacy class of cocharacters

Y(C)ig(YfC)G = Y(C>XA (v(o)=?t .

Ac(Y)g AG(Y)G)(XG(Y)G)

More precisely if ¢ € /A\G(Y — O) then ?G comes with a canonical compactifying
(°G)(R) conjugacy class of cocharacters Y (C')eg; and Y (C')ssg = conj,Y (C)eg. Note
that

~ ~

Asgv—o (Y (O)sg—erg) = Aic(Y)g(Y(C)gémG)_l
and
ra(a(Y =€) = Aa(Y)/Aa(C)
and
Viatr—o) = Vv/ YY(@ss0¢°

If G4 (R) is compact and Cy, Cy are G-conjugacy classes of cocharacters, then

~

Aic(wcl)al)G(OZ - Y(Ol)XG(Y(c*l)al)G)S‘G(Y(Ol)a‘l) = XG(Y(CQ>E:1)
and

Y (Co)s_

XevEengh

(@2=Y(Cg - Y(O2)XG<Y<CQ>E;1>G'
G

¢ ghe Rarenghe
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2.5. Some important Kottwitz cohomology classes. In this section suppose
that G/Q is a reductive group. Suppose also that F/Q is a sufficiently large Galois
extension that
o [/ splits G;
e [/ is totally imaginary;
e B(Q, G) oo} pasic is contained in the image of H;lg(Sg(E/Q), G(E))pasic-
In this case we will say that E is acceptable for G. The existence of some such E
follows from the results recalled in section 2.3
The results asserted in the rest of this section are all immediate consequences of
the results recalled in section 2.3 and the results of 2.4
Suppose moreover that Y is a compactifying G(R)-conjugacy class of cocharacters
of G defined over C, and that 7 € Aut (C). Then there is a unique class ¢y, €
H,,(E3(E/Q), G(E))pasic such that

® rg(Pgy,) = P Aa(Y) @ (v(p) — v(p)); where p: E < C, and v(p) denotes
the corresponding infinite place of E (this is independent of the choice of p),
and #~'A¢(Y) denotes the unique element of Ag(E) mapping to Ag(Y) under
P
e and resc/rlocogy, = Ag(Y — 7[Y]q), where [Y]g is the unique G-conjugacy
class of cocharacters containing Y.
We see that res™locgg y ., = 1.

If ¢ € ¢pgy,, then Y ("[Y]q)sq is a compactifying conjugacy class of cocharacters of
9@ over C, which we will denote 7?Y". Note that if G = T is a torus then (°T, ™{u}) =
(T, {1}

When G;/Q are reductive groups and Y; are a compactifying G;(R)-conjugacy class
of cocharacters of G; over C, we will write f : (G1,Y]) — (Ga,Y2) to mean that
f : G1 = G5 is a morphism of algebraic groups over Q with fY; C Y5. In this case,
f © ¢G1,Y1,T - ¢G2,Y2,T and7 if ¢ € ¢G’1,Y1,Tﬂ then

f : (¢G17T7¢}/1) — (fO¢G2’T,fO¢}/2).

If G/Q is reductive and if Y is a compactifying G(R)-conjugacy class of cocharacters

of G over C, we will write Conj g ,(G,Y") for the set of triples (7, ¢, ), where
o 7 € Aut (C);

)€ dgy;
e b € G(AY) satisfies res®loc,¢ = 1.

We will call this the set of conjugation data for (G,Y). We will sometimes write
me0)(GY) = (*°G,7?Y). We have

conj, : G x A® 5 2G x A%,

If D D F is another finite Galois extension of Q, if ag € H(E/Q) and ap € H(D/Q)
and if t € T g(Ap) with *infg/gag = np/e.ap, and if (1,¢,b) € Conj B4 (G, Y),
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then

A0t (7:0:0) = (7, inf @ v4(1)b) € Conj pq,, (G, V).

If (71, ¢1,b1) € Conj E,a(Ga Y) and (72, ¢2, bz) € Conj E,aﬁ’m’bl(G? Y'), then
(TaT1, P21, b2b1) € Conj (G, Y),
and we have
(Tz,¢27b2)( T1,01,b1) (G Y)) — (T2Tl7¢2¢1,b2b1)(G’ Y)

(T ) ) € COIlj E,a(Glayi) and f : (G17}/1) - <G27}/2) then f(Tv ¢7 b) - (Taf o
, f(b)) € Conj g ,(G2,Y2) and f induces a map

MO0 f L CON(GL V) — T (G, Ya).

Moreover
conj ¢y © f= (T"M)f o conj,.
If we fix 7 € Aut (C) we will write Conj g ,(G,Y), for the subset of Conj 5 ,(G,Y)

consisting of those triples with first element 7. The group G(E) x G(A™) acts tran-
sitively on Conj g (G, Y), via

(7, 0)(7,¢,0) = (7,7¢,7bh").
The stabilizer of (7, ¢,b) is identified with *G(Q) via § — (5, b715b). We have
inf = inf .
A (0 2)(r:6,0)) = (v, ) inf (7,¢,b)
2.6. Rigidification. In this section we recall some additional structures in Kottwitz
cohomology, which can be found in sections 2 and 9 of [ST]. But first we must recall
the Serre torus and the Taniyama group.

Suppose that E/Q is a finite Galois extension. There is a torus Rg ¢/Q split by E
with a cocharacter p* = u@" € X.(Rpc) with the following universal property: if
T/Q is any torus split by F and if u € X, (T)(C), then there is a unique morphism
i Rgc — T over Q such that p = 1o p". Then we get a map

Aut (C) — Aut(Rpc/Q)
T — 7]
characterized by p®® = [1] o Tu®". (The torus Rgc is isomorphic to the restriction

of scalars from ENC to Q of G,,.) If D D E is another finite Galois extension
of Q, then there is a natural map Np/p : Rpc — Rpc over Q characterized by

can can

Np/p o pp™ = pg".
There is also an exact sequence of tori
(0) — Ry — Rgc — Spec — (0)
over Q, where Sg ¢ has the following universal property: if 7//Q is any torus split by
E and if p € X,.(T)(C) satisfies
o "1 =" for all T € Aut (C),
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e and "¢y is defined over Q;

then there is a unique morphism g : Spc — T over Q such that p = o pu®". The
action of Aut (C) preserves the above short exact sequence; and Np,p takes Rp, ¢ to
Rp ¢, and Spc to Spc. The torus Sgc is usually referred to as the Serre torus. We
have that Sg¢(Q) is a discrete subgroup of Sg c(A™).

Lemma 2.3. Suppose that x € Z[Ve lo @ Xi(Sec) C X*(Ts.5) ® X.(Spc). Then

H Ty = 1.

neGal (E/Q)

Langlands defines a canonical pro-algebraic group S g.c over Q (called the Taniyama
group), which is an extension

(0) — Sp,c — Spe — Gal (C*5/Q) — (0),
together with a section
sp : Gal (C¥8/Q) — Sp.c(A%);

such that the action of Gal (C*¢/Q) on Sgc is via 7 +— [r]. (Langlands actually
defined an extension of Gal(E* N C/Q) by Sgc. We have chosen to work with
the pull back of that extension to Gal (C*8/Q).) If D D E is another finite Galois
extension of QQ there is a natural map

ND/E : §D,(C — §E,<c

compatible with Np g : Sp.c — Sg,c, and satisfying ND/E o0spp = Spg-
Now we return to Kottwitz cohomology. If £/Q is a finite Galois extension there
is a set H(E/Q)" with a transitive action of T5 g(Ag) and an equivariant surjection

H(E/Q)T — H(E/Q).

If at € H(E/Q)" we will write a for its image in H(F/Q). The stabilizer of any
element of H(E/Q)™ is

gloc(E/Q)Ogglob(E/Q OTQQ H E>< E><
weVE
If D D F is another finite Galois extension of Q, if af, € H(E/Q)" and a}, €
H(D/Q)*, then we can find ¢ € Th g(Ap) with
UD/E,*CQS = tjijl}g ag
in the notation of [ST]. The element of ¢ is unique up to multiplication by an element

of
510C<E/Q) EglOb(E/@ T2@ H D>< D><

weVEg
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Again in the notation of [ST]. If C' D D is a third finite Galois extension of Q, if
Clg S H(O/Q)+ and if t/ € T27D(AC) with UC/D,*ag =t infc/D Clzs, then

_ tnp/e(t") inf a;‘g'
C/E

Suppose that v is ﬁ)lace of Q, that 7 € Aut (Q,), that T/Q is a torus split by E
and that p € X.(T)(Q,). Then there is an element

batwur € T(Ap)/T(E)T(E,)T(QT(R)*

with the following properties:

+
Nc/E Q¢

(1) bat v, urirs = Dat w72 pm batv”auﬁg-

(2) If 7 is continuous, then bg+ ., = 1.

(3) If p : E** — Q,, if 7 fixes the image of F in Q,, and if a, € A} with
poArt g(a,) = 7o p, then

BaJrﬂhMﬂ' = H n(pflu) (ap)_l'

neGal (E/Q)

In particular l_)a+,W7T only depends on 7| BT, -

(4) If 7 € Aut(C) and o € §E7C(E) have the same image in Gal (C¥2/Q),
then a~lsp(7|cae) € Spc(AR) lifts byr oo yean, € Spc(A%)/Sec(E). Thus
bt oo pean » and @~ Lsp(7|caig) have a unique common lift

ba+’00”u‘Can7a G RE,C(‘AOE'O)/RlE‘,(C(Q)RlE"(C(E)
This element is independent of the choice of 7 lifting the image of a in
Gal (C2/Q). ~ -
(5) If x : T"— T" over Q, then bg+ 4 your = X(bat v pr)-
(6) If D D E is another finite Galois extension of Q, if aj, € H(E/Q)" and

a, € H(D/Q)", and if t € Ty p(Ap) with 'infp, s af, = np/p.aj, then
b = Baponr [ 10 (tuen )
- baE:U#J Hp(p (TH/M)(tw(p)))>

where p runs over embeddings E < Q,.

In particular, item {4 tells us that the elements l_)um,,#,T are closely connected to, and
generalize, the cocycles that define the Taniyama group.
If Dot oo pean o 18 @ lift Of byt oo yean o t0 Rpc(A%), then there is a unique element

511*,00,/&3“,0( € ¢RE,C7{Mcan},T SUCh that
(7_, ¢a+700,/,1,ca“7a7 ba+7oo7“can7a) (- COI].J E,a(RE,(Cy {Mcan}).
If we replace ’50+7007Mcan,a~by h’y/ga—ﬁ-’OO,Hcan’a with h € m and v € Ry c(E), then

Dat oo,pucan o changes to0 TPg+ o0 yean 4.
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We have the following:
(1) If a € Spe(E) and v € Spe(E) then we can find § € Rpc(E) lifting

vy sgch that we may take Qg+ o0 yean yo = 7 ¢a+ oo pcan o and ba+ oo, o =
;\y/_lba-ﬁ-’OO’#can’a.
(2)
-1 can -1 can /T ,,can
= H p H O<7Tw(p)/7rw(7'p)> = H P (:U’ /:u )Oﬂ-w(p) GX*<RIE,C>(Q)7

p:E—C p:E—C

where 7 € Aut (C) has the same image in Gal (C¥5/Q) as a.
(3) Given a; € Spc(FE) for i = 1,2, there exists § € Rp ¢(F) such that

Pat 00,4021

Bbat oo pean anas = [ ] (Dt o om0 ) Dot ooucon o mod Rl o(Q)
and N _ N
B¢a+,m,ucaﬂ,a1a2 = [62_1](¢a+,w,uca“,a1)¢u+,w,uca“,a27
where @, € Gal (C*#/Q) denotes the image of ay.
(4) If v € Sgc(F) and o € Gal (E/Q), then
Dat o pieon o (Dt o eon ) € Ry o(AF)Rpc(E) C Rpc(Af).

(5) Suppose that D D E are finite Galois extensions of Q, that aE € ’H(E/@)
that af; € H(D/Q)" and that ¢t € Ty g(Ap) with np,p.af, = 'infp/paf.
Suppose also that ap € Spc(D) and ag € Spc(E) have the same image
in Gal (E*® N C/Q), so that a;ND/E(aD) € Sgc(D). Choose ba+ oS
lifting b and b+

CL-E,OO,/,L?" YOE a ,O0 ucan

byt sopeznap = B(O5 Noye(ap))Npe(bes s an) [ 7 (R85 (b)) mod R <(Q)

az;,00,1%
p:E—C

632}

,, lifting ba; Then there exists

can .
yOOLU DD

and

inf @+ e, = 6(a151ND/E(aD))ND/E o (Zag,oo,ugn,a 1g(53(D/Q) , Rec(D)).

D/Et a00HE

(Here @ denotes the image of ap in Gal (E** N C/Q).)

Suppose that E is totally imaginary. Choose an embedding py : £ — C and a
set of representatives Hy, 3 1 for Gal (E/Q)/Gal (Ey(py)/R). Recall that there is the
global Weil group Wigas q, which fits into an extension

(0) — AR/E™ — Wgas g — Gal (E/Q) — (0),
together with a map ¢ : Wpa g — Gal (E**/Q) and a map
19[,0 : WEw(pO)/R = <E$(p0),jw(p0) : ji(po) = —1 and jw(ﬂo)zj;(lpo) = Cw(po)z> — WEab/Q.
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All this is well defined up to conjugation by an element of EXEX /E*. Also choose a
section s : Gal (£/Q) — Wigas g such that

e 5(1) =1,

® 5(Cutpn)) = Opo (Julon)):
e and, if n € Ho, then s(ncu(y)) = s(0)s(Cup));

We may choose aj € H(FE/Q)" compatible with these choices (as explained in section
6.4 of [ST]), and then we have

bt conr = LI 0w s(n(r) ) s(n) € T(Ap)/T(E)T(Ex)T(QT(R),
n€Gal (E/Q)
where 770 denotes any lift of 77| gas to Wian /@- Moreover, if 7 € Aut (C), then there

is an element aq(7) € Sp.c(E) above 7|cas such that we may take

~ _q — L -
baé’,oo,ucan,ocg(’r) = H n(po M) (7—00 S(U(Tpo) 1) 18(”)) € T<AE )
n€Gal (E/Q)
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3. DELIGNE’S SHIMURA VARIETIES

3.1. Deligne’s Shimura data. In Deligne’s formalism, Shimura varieties are at-
tached to ‘Shimura data’. In this section we will recall Deligne’s definition of ‘Shimura
data’.

By a (Deligne) Shimura datum we shall mean a pair (G,Y"), where G/Q is a reduc-
tive group and Y C X,(G)(C) is a compactifying G(R)-conjugacy class of miniscule
cocharacters. The smooth manifold Y has a unique structure of a complex manifold
such that /=1 acts on 7},Y = Lie G(R)/Lie Stabg) (1) by ad u(v/—1). This will be
explained below. Moreover if ;1 € Y there is a unique parabolic subgroup P, C G
over C such that Lie P is the sum of the weight 0 and —1 spaces in Lie G for ad p.
Then P, (C) N G(R) = Stabgr) (1) and so there is a well defined map

Y — G(C)/P, (C)
conj,op > hP (C).

This is a diffeomorphism onto an open subset of G(C)/P; (C).
By a morphism ¢ : (G1,Y1) — (G2,Ys) we mean morphism ¢ : Gy — Go of
algebraic groups over Q such that ¢(Y;) C Y. For instance if v € G* (Q)g, then

conj, : (G,Y) — (G,Y).
We will write
E(G,Y) = C5tbaw ©¥law©) - C

for the field of definition of the G(C) conjugacy class [Y]q(c) containing Y. It is a
number field called the reflex field of (G,Y). It comes with a preferred embedding

ey E(G,Y) = C.

The variety Y] can be defined over E(G,Y).

This is not how a Shimura datum is usually defined, but is easily seen to be equiv-
alent to it, as we now explain. Write S for the restriction of scalars from C to R of
Gy, and identify

Sc = G, x Gy,

so that z @ w € S(C) = (C ®g C)* corresponds to (zw,Zw). There is a natural
inclusion G,, < S. Deligne defined a Shimura datum to be a pair (G, X), where
G/Q is a reductive algebraic group and X is a G(R)-conjugacy class of morphisms
h :S — Gg of algebraic groups over R satisfying the following axioms:
(1) if h € X then the adjoint action of S xg C = G,, X G,,, on (Lie G)¢ has all its
characters in the set {(1,—1),(0,0),(—1,1)};
(2) if h € X then ad h(i) is a Cartan involution for the adjoint group G*<.
If h € X then he : S¢ = G2, — G has the form (uy, “up) for a unique cocharacter
G — Ge. We define
Yx ={pn: he X}
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It is easily seen to be a basic G(R)-conjugacy class of miniscule cocharacters of
G. (Note that h|g,, = urpn, and that if h € X, then ad hlg, = 1.) It is more-
over compactifying because ad h(i) = ad pp(¢)pun(—1) = ad pp(—1)ad (upus)(—i) =
ad pup(—1). Conversely if (G,Y) is a Shimura datum in our sense and if u € Y, then
p and p€ commute (as p¢ is a central character times p~1) and so

(:uac:u) : G?’n — G/(C
descends to a homomorphism
hy:S — Gr.
Note that ad k(i) = ad (p(2)(“p)(—1)) = ad p(—1)ad (p°p)(—i) = ad p(—1). Thus

(G Ay peY})

is a Shimura datum in Deligne’s sense. These two constructions are easily seem to be
inverse to one another. By definition, E(G, Yx) coincides with the usual reflex field
of (G, X).

Write St for the kernel of the norm map S — G,,,. Then there is an identification
S/G,, = S* by the map which on R-points sends z € C* to z/°z. If h € X, then ad h
factors through a unique map uy, : S' — G?!. We have

uh|gl(R) = ad Mh|(CX)NC/R:1 .

According to proposition 5.9 and theorem 2.14 of [Mi3], the complex structure on

T, X = Lie G(R)/Lie Stabgr) (k) is such that (C*)Ne/z=! acts by the adjoint action of

up, i.e. by ad up,. This explains the assertion in the second paragraph of this section.
In [D2], Deligne imposed a further condition on his Shimura data (G, X):

(3) G*! has no Q factors on which the projection of any (and hence every) h € X
is trivial, or what amounts to the same thing: the projection of uy is trivial.

Most subsequent authors have continued to impose this assumption. In this paper we
will not impose this condition on a Shimura datum. If a Shimura datum (G,Y") does
satisfy the additional condition that G2 has no Q factor on which the projection of
any p is trivial, we will call (G,Y) a NCF-Shimura datum. (Here ‘NCF’ stands for
‘no compact factor’.)

An element p € Y is called special if it factors through a sub-torus 7' C G which is
defined over Q. We will call it E-special if we may choose T' such that in addition T
is split by F.

Lemma 3.1. (1) If p € Y s special it factors through a maximal torus defined
over Q.
(2) If p €Y is special and factors through a torus T defined over Q, then T (R)
is compact, i.e. ¢ acts on X,(T*) by —1.
(3) If T C G is a mazimal torus defined over Q and if T*(R) is compact then
there is a u € Y which factors through T
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(4) If G contains a mazimal torus T defined over Q and split by E with T (R)
compact, then the E-special points in Y are dense. In any case the special
points in Y are dense.

(5) If uw €Y is special and E/Q is Galois, then p is E-special if and only if p is
defined over E.

(6) If E/Q is finite Galois and if p € Y is E-special factoring through a torus
T C G defined over Q and split by E, then there is a commutative diagram

RLe — Z(G)NT C Z(G)

{ ) { {
Rpe T c G
{ { {

.
Spe =K T1ed G,

Moreover the the restriction /7|R}N does not depend on p orT'. We will denote
it fly,g. 7

Proof: For the first part suppose that p factors through a torus 7' C G defined over
Q. Then one can replace T by a maximal torus of Zg(T') defined over Q.

For the second part note that 7% embeds over R into the inner form of G
determined by the cocycle ¢ — ad pu(—1), whose real points are compact.

For the third part choose any p; € Y and chose a maximal torus 7} C G defined
over R through which p; factors. Then 7% (R) is compact (as in part 2)). Thus T
and T} are fundamental tori in G)r and hence T' = gT1¢~" for some g € G(R). Then
= gpurg— " will do.

For the first assertion of the fourth part, because G(Q) is dense in G(R), it suffices
to see that there is some F-special point. This follows from the previous part. For the
second assertion choose a maximal torus 7y C G defined over R with 724 (R) compact.
Then T} is G(R)-conjugate to some maximal torus 7' C G defined over Q, and we see
that 724 (R) is also compact. Choosing a finite Galois extension E/Q which splits
T, and the second assertion follows from the first. (The facts about algebraic groups
used in this paragraph were recalled in section )

For the fifth part note that if u factors through a torus 7" C G defined over Q
and split over E, then u, like any cocharacter of T', is defined over E. Conversely,
if p is defined over E and factors through a torus 77 C G defined over Q, then let
T be the minimal subtorus of 77 defined over Q through which p factors. Because
X, (T)) G (F/E) is Gal (E/Q)-invariant, we see that T splits over E.

For the sixth part note that one, and hence every, complex conjugation acts on
X,.(T*) by —1. If py and py € Y are two E-special points, then the composites y; :
G — G — C(G) are equal and hence so are the composites 1i; : Rgc — G — C(G).
Because Z(G) — C(G) is an isogeny we see that ﬁl’R}z,c = ﬁ2|R1E,C O
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3.2. Langlands’ theory of conjugation of Shimura data. Let at € H(E/Q)*.

Also fix choices of ba+ oo pean o ifting b+ o yean o and hence also of gba+ oo, pcan o A8 1N
section N

Suppose that a € Spc(E) and 7 € Aut (C) have the same image in Gal (C*2/Q).
Suppose also that p € Y is F-special, and choose a torus 7' C G defined over Q and
split by £, through which p factors. Then i : Rpc — T over Q.

We define

aE,cWL,T,a,u = ﬁ(%aﬂoo,uca“,a) € Z;lg<53<E/Q)a7 G(E))basic
and
bE’a+7T?a7u = ﬁ(ba+7m7ucan7a> e T<A?) C G(‘A?)'

These depend on the the choice of Ea+7oo7ucan’a. If we change ’l;ﬁm,“cana by h~vy with
h € Rpc(Q) and v € REc(E), then bg gt ra, changes to fiyp(hy)bpat ra, and
¢E at o, changes to “YE(7)¢E ot 70

We have the following observatlons which all follow from the corresponding results
fOI‘ (ba-&- Oo'ucan and ba"’,oo,,ug‘n, .
b

(1) res locaaﬂaﬂﬂa’“ — bgatran].

(2) vy = HPZE;}C(PA(M/TM)) O Ty(p), Which by lemmas is valued in

2(G).

(3) [&E’amw] = Qqy, € alg(gg(E/Q> G(E))pasic- (This is seen by reduction
to the case G = Rpc and using the results listed in section [2.5] )

(4) (7_7 5E,a+,7',a,ua’5E,a+,T,a,u) € COHj E,a(G7 Y)

(5) Given 7y, 7 € Aut (C) and o; € §E7@(E) having the same image in Gal (C*2/Q)
as 7;, there exists 5 € Z(G)(F), independent of p € Y E-special, such that

ﬁbE,a"",‘rng,alag,,u = bE,a"’,T1,a1,7'2ubE,a+,Tg,a2,,u mod Z<G) (@)

and
ngE at mi7me,a100,u0 ng at,m,a1, 7'2,u¢E at o0,
(6) If v € Sgpc(FE) then v has a lift ¥ € Rg¢(FE) (independent of 1) such that

Opat rar-tp =" Opat ran
and
Dt rat = BBt
(7) Suppose that D D F are finite Galois extensions of @Q, that aE € H(E /Q)T,
that a}, € H(D/Q)" and that ¢ € Ty E(AD) with np /g, Lah = “infp,p af. Sup—
pose also that ap € SD@( ) and ap € Sp c(F) have images 7p ENGal (D> N
C/Q) and 75 € Gal (E*» N C/Q) with 7p = 7p|ganc. Thus az'Np/p(ap) €
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Sgc(D). Choose b, £ o8
Then there exists ﬁ € Z( )(D) with

bE,aE,TE,aE,,u,VgE ( ) ﬁ:u(OéE ND/E(aD))bD aD,TD,aD “w mod Z(G) (Q)

E,GE,TE,QE,H

can hftlIlg b 27 ucan aIld b + can llftlllg baB,oo, can

05,00, e 0 a5,00,47 KU A’

and

inf gb

nf, Bk rpanp _ Biilap' Np/g(ap)) ¢D b rpsapu Zalulg(g?’(D/Q)aB’ G(D))basic'

We will write

¢E ST,00 14 = ad gE,aJUT,Oé”M € Zl(Gal (E/@)7 Gad (E))7
and B
b =adbgat o € G*(AY).

As the notation suggests these do not depend on the choice of a* or ,Ea+7oo”ucan’a. (This
follows from the properties listed above.) If v € Sg¢c(E) then

E, 1o,

— (adp)( 7)¢ad

QSETa'y E, 1o,

and
bal‘g’r,ayfl,y = (ad M)( )bETa,,u

The cocycle ¢3¢ ra0(r),u €duals the cocycle o — Co (T, faq )" of section 6 of [LJ]. More-
over the element b%' o) € G (A%) equals the element denoted adb(r, p)~" in
section 6 of [[]. (Recall that ag(7) was defined at the end of section [2.6]) Note that
Langlands does not mention the chosen lift o in his notation. This is presumably
because, as we just pointed out, there is a canonical relationship between these quan-
tities for different choices of a. Nonetheless we find it less confusing to keep track of
the a.

Suppose that D D E are finite Galois extensions of Q, and that ap € Sp (D) and
ap € Spc(E) have images 7p € Gal (D*™ N C/Q) and 75 € Gal (E** N C/Q) with
TE = Tp|gabnc. Then a;lND/E(ozD) € Sgc(D) and

baEdTE,aEu (ad :U’)(aE ND/E<aD))bD TD D,

and
inf ¢E STEQE, M M(aE ND/E(aD qu ,TD,OD, M Zl(Gal (D/@)7 Gad (D))

D/E
Following Langlands we will set
TG ) = (TG, T ) = Tt Bt o) (GLY),
so that

~

CONjyaa G X AT — TG x A%
S TH0G 1
and "p € Y. Note that

HUG,Y) = (PEren G, EranY),
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and so ™*%(G,Y") does not depend on the choice of a®. This notation is consistent
with Langlands notation in [L], except again Langlands suppresses the choice of « in
his notation. If v € Sgc(F), then there is a canonical identification

~ —1

e E(GLY) S e (@GLY)

CONJ(aq 1

and
Bt a1 = (W D)
This may be seen as explaining Langlands choice to suppress the « in his notation,
but again we feel it is clearer to make it explicit.
Suppose that D D E are finite Galois extensions of Q, and that ap € §D7C(D) and
ap € :S:E,(C(E) have images 7p € Gal (D N C/Q) and 7z € Gal (E** N C/Q) with
TE = Tp|gavnc. Then aglﬁp/E(ozD) € Spc(D) and

CONJ aa o ag! Npylap)) F (G Y) == TEIOE(GLY)

and
d
bE’TE ap,p (adlu)(aE ND/E(aD)>bab,TD,aD,u‘
As
qu S T1T2,001 Q2,4 ¢E )1 a1,T2M¢E T2, Q2,147
we see that
T1T2,M,001 2 (G Y) — 7—17T2,u,7a1 (TQ,M,OCQ(G Y))
b ) .
Similarly
ad _z7ad bad
Emim,aiae,u = VB ,00,"2p  E T ,a0,ut

If f:(G1,Y1) — (Ge,Y2) is a morphism of Shimura data and u; € Y] is special, then
we get a morphism

T,m,af . Ta#l,a(Gl, Y1) 7,f(p1), (G27 Yg)
Moreover

If p1, 4o € Y are both E-spe01a1 then we set
¢E,T,o¢,u1,u2 = ¢E’a+17—7&’“2¢5}u+,7',0[,ﬂ1 € Zl(Gal (E/Q)7 T7u17aG(E))

and
DB 7 ue = EE70+7T»Q7M2EE}a+,T,a,M1 € G(AT).
As the notation suggests, these do not depend on the choices of a™ and ’ga+7oo7ucan7a.
(1)
ad bp a1 us = bE 002 (bE . Ml) e G (A7)

and

¢ETQ#1:IJ«2 — ¢ETQ#2(¢ETG{M1) S Z1<Ga1 (E/@)aT“ul’OéGad (E))
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(2)

DB 0 i2(0) = DB ra,pis o Conj%d’mm @) (0B i piz)

(3) If ¥ € Rpc(E) maps to v € Sgc(F) then

bE,‘r,a%m,uz = ﬁ2(§)71bE,T,a,u1,u2ﬁl (%)
and
. = (=17, (5
(bE,‘r,a'y,m,,uz = Conjﬁl(ﬁ) (Hl(’Y) MQ(W)(bE,T,a,yl,ug)-

(4) Suppose that D D E are finite Galois extensions of Q, and that ap € Sp (D)
and ap € Spc(E) have images 7p € Gal (D* N C/Q) and 75 € Gal (E** N
C/Q) with 75 = 7p|gasnc. Then ap' Np/p(ap) € Spe(D) and

b5 rmampnpe = H2(ap Np/e(ap))bp.rp ap et (g Npjplap)) ™
and

(ﬁl(aglﬁD/E(aD))_l% (ap'Np,plap

. . . B )
inf ng,TE,OéE,MLHz - COHJﬁl(aglND/E(aD)) ¢D7TD16VD1IJ1:IJ2)

D/E

(5) (DB ) € HY(Gal (E/Q),™"2@) is trivial, so that

o.—1

¢E,T,Ol,[,b1”u2 (0-) = P)/EVT’OQ”LI7I’L2C0nj¢aEd,T,0¢,M1 (U)< 7E7T7anul:/'l’2)

for some g rapu e € G(E) well defined up to right multiplication by an
element of "#1*G(Q). We see that

gE,a+,T,Oé,M2 = TE e 2 ;gE,U.J",T,a“LLQ
and
Conj’YE,-r,a,m’#z : T"ulgaG % T’“%aGa
and
bEvTvaaMhMZ’yE}T,a,ul,ug < T,,uz,OéG(AOO).
Moreover

(T,ul ,ay) — TH2,0y

ConJ'YEma,uqu

The cocycle ¢p r.a0(r)umm € 2 (Gal (E/Q), #1:(TG) equals the cocycle denoted
0 — 7, in ‘the first lemma of comparison’ in section 6 of [L]. Moreover bg - ag(r), 1.0 €
G(AY) is the element denoted B(7) = B(T, p1, 2) in section 6 of [L]. Finally the
element Vg - ao(r)m e € G(£) is denoted u in the ‘second lemma of comparison’ in
section 6 of [L]. (Again recall that ag(7) was defined at the end of section [2.6])
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3.3. Deligne’s Shimura varieties. If U C G(A*) is an open compact subgroup,
we will write U2 for the image of U in G (Q,) for any finite place v of Q. We will
call an open compact subgroup U C G(A™) sufficiently small if for no integer m > 1
does G(Q)*! and each U2? contain an element of exact order m. Every open compact
subgroup of G(A>) has an open normal subgroup which is sufficiently small.

Given a Shimura datum (G,Y) and a sufficiently small compact open subgroup
U C G(A™>) the complex analytic manifold

Sh(G,Y)u(C) = GQN(G(A)/U xY)

arises from a unique smooth quasi-projective variety Sh(G,Y )y over C. Moreover to
each morphism f : (G1,Y;) — (Ge,Ys) of Shimura data, each sufficiently small open
compact subgroup U; C G;(A>) and each g € G5(A>) such that gf(U;)g~' C U, the
map
GLQN(G1(A%)/Ur x Y1) — G2(Q)\(G2(A™)/Us x Y3)
G1(Q)(hUy, ) — G2(Q)(f(h)g'Us, f(x),

is holomorphic and arises from an algebraic map
Sh(g, f) : Sh(G1, Y1)u, — Sh(G2, Y2)rs,.
If U >V are sufficiently small open compact subgroups then
Sh(1,1) : Sh(G,Y)y /U — Sh(G,Y)y,
where u € U acts as Sh(u, 1). Thus for any open compact subgroup U C G(A>) we
can define a normal, quasi-projective variety over C
Sh(G,Y )y = Sh(G,Y)y /U

for any sufficiently small, open, normal subgroup V' <1U. (This is independent of the
choice of V) If G =T is a torus then we have an isomorphism

7 ey : T@Q\T(A®) /U — Sh(T, {p})u(C)
QU — [(t,p)]
Note that
(1) T i 2 (G1, Y1) — (Ga Ya) and fo : (G, Ya) = (Gs, Ya) and if U; € GH(A™) is
a sufficiently small open compact subgroup and if g; € G;(A*) (for i = 2,3)
satisfy g2 f1(U1)gy ' C Uy and g3 f2(Us)gst C Us, then

Sh(gs, f2) o Sh(gz, fi) = Sh(gsfa(g2), f2 0 f1).

In particular as U varies over sufficiently small open compact subgroups of
G(A>) the filtered inverse system {Sh(G, Y )y} (with transition maps Sh(1, 1))
has a left action of G(A>), where g acts by Sh(g, 1).

(2) The maps Sh(g,1) : Sh(G,Y)y, — Sh(G,Y )y, are finite and faithfully flat
of degree [U2Z(G)(Q) : gU1g ' Z(G)(Q)]. If U, is sufficiently small then this

map is etale.
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(3) If y € G(Q) and w € U then Sh(uy™', conj, ) is the identity on Sh(G,Y)y. In
particular if z € Z(G)(Q) then Sh(z,1) = 1.

(4) U >V then

Sh(1,1) : Sh(G,Y)y — Sh(G,Y )y

is Galois with group U/V(Z(G)(Q)NU), where u € U acts as Sh(u, 1).

(5) If z € lim, v Sh(G, Y )y (C) then the image of G(A*)z is dense in Sh(G, YY)y (C),
for any U.

This implies the following: If T C G is a maximal torus defined over Q with

T34 (R) is compact, if i : T < G denotes this embedding, and if 4 € Y factors
through 7" (such a p always exists); then

U Sh(g,))(Sh(T. {1})g-10grir(a=)(C))
geG(A™)
is dense in Sh(G, C)y(C).
(6) The group of automorphisms of the variety Sh(G, YY)y is finite.

(For most of this see sections 1.8 and 1.14 of [D1]. For the uniqueness of the quasi-
projective algebraic structure on Sh(G,Y)y see [B2]. Item above follows from the
density of G(Q)u in Y for any p € Y, or even from the density of G(Q) in G(R).
Item (o)) follows from lemma 2.6.3 of [Ma]. (See also lemma 2.2 of [Mi2].))

As best we understand the main theorem of [Mil] (proving a conjecture of Lang-
lands from [L]), it asserts the following:

Theorem 3.2 (Milne). Suppose that (G,Y") is an NCF Deligne Shimura datum, that
E/Q is a finite Galois extension, and that p € Y is an E-special point. Suppose

also that T € Aut (C) and choose a € §E7@(E) above T|cag. Then there are unique
morphisms

O(7, ) : TSH(G, Y )y — Sh("G, Y Jeonj g )

E,7o,p

such that
(I)(T7 H, a)(T[(17 M)]) - (17 T:U“)
and
O (7, 1, ) 0o "Sh(g, 1) = Sh(COHjb%d ) (9),1) 0o ®(7, pu, @)
for all g € G(A™).
If py and ps €'Y are two E-special points, then

O(7, g, ) = Sh(bEma,m,;Az%E,IT,a,m,m7 conj, . )o O(7, g, ).

(Note that the right hand side is unchanged if Vg o u 5 Teplaced bY Ve 7010
with f € 7#22G(Q), and so the ambiguity in Y r.au u 15 unimportant.)

From these assertions the following additional formulae are easily deduced:
(1) If v € Spe(E) then O(7, p, ay) = Sh(1, conjiuq zyy)-1) (7, 1, @).
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(2) If f:(G1,Y1) = (Go,Y3) and g € G5(A*) and p; € Y is an E-special point,
then ®(7, f oy, ) o "Sh(g, f) = Sh(conjb%dm fou(g), THLE ) o D(T, g, ).
(3) ®(1i7a, ity 1vg) = P(71, 2 p, 001) 0 M P(70, 1, ta).
(4) If G =T is a torus then ®(7, p, o) o 7 o llp gy = Iy 13-
We note that the simple composition relation (3)) really depends on making ®(7, i, «)
depend on the choice of a and not just of 7. It would seem that to make it depend
on 7 alone one would need to find a section to

Spc(E) - Gal (B N C/Q),

i.e. a rational section not an adelic one. This is the reason we choose not to follow
Langlands, but to make the choice of o explicit.

3.4. Removing the NCF-condition. We start with the following lemma.

Lemma 3.3. Suppose that (G,Y) is a Shimura datum. Suppose also that H C G is a
normal connected reductive subgroup such that (G/H)(R) is compact and the image of
one, and hence every, u € Y in (G/H)(R) is trivial. We will write i for the inclusion
H — G. Also suppose that U is a sufficiently small open compact subgroup of G(A>).
(1) Then Y s a single H(R)-conjugacy class so that (H,Y) is also a Shimura
datum.
(2) G(Q)H(A®)\G(A>®)/U has finite cardinality.
(3) (G/H)(Q)NIm (U — (G/H)(A*)) = {1}. 1
(4) GQN(G(A®)/UXY) = [heco)npencm=)v HQNHAX)/(RURINH (A%))
Y)h.
(5) Sh(G,Y )y = HhGG(Q)H(Am)\G(Aw)/U Sh(H,Y )pun-1nm(as, where we map
Sh(H, Y)hUh—lﬂH(Aoo) — Sh(G, Y)U
via Sh(h™1,4).
Proof: The exact sequence
(0) — HY — ¢ — (G/H)™ — (0)
has a unique splitting in which (G/H)? lifts to a normal subgroup of G*. Write H’

for the pre-image in G of (G/H)* C H* x (G/H)™ = G*, so that (H")* = G/H.
Note that H'(R) — (G/H)(R) (as (G/H)(R) is compact) and acts trivially on Y. If
p, " € Y then p’ = conj, o u for some g € G(R). Let h € H'(R) have the same image
as g in (G/H)(R). Thus gh™" € H(R) and conj,,—1 o = p’. The first part of the
lemma follows.

The set

G(Q)H(A®)\G(A™)/U = G(Q)H(A®)\G(A)/UG(R)

is finite by theorem 5.1 of [PRI.

For the third part we see that (G/H)(Q)NIm (U — (G/H)(A)) is finite (because
(G/H)(R) is compact) and hence {1} because U is sufficiently small.
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For the fourth part, first note that
GQ\(GA™)/U xY) = 11 GQNGQHAT)WU/U X Y).

heG(Q)H (A®)\G(A>)/U

Next suppose that for g1, g2 € H(A™) and pq, pe € Y we have

Y(grhu, 1) = (g2h, p2),

for some v € G(Q) and u € U. Then we see that the image of v in (G/H)(Q) lies in
(G/H)(@Q)NIm (hUR™' — (G/H)(A>)) = {1}. Thusy € H(Q) and huh™! € H(A>).
We conclude that

H(Q\(H(A)/(hUL™" 1 H(A®)) x V) = GQ\(G(Q)H(A®)AU/U x Y)

is an isomorphism, and the third part of the lemma follows. The fifth part follows
from the fourth and the uniqueness assertion in section [3.3] O

Suppose that (G,Y) is a Deligne Shimura datum. We have G2 = Gad:ne x Gad.c,
where G3¢(R) is compact, but if H is any simple factor of G2:"¢/Q, then H(R)
is not compact. We will write G"® (resp. G°) for the connected component of the
identity of ker(G' — G®1:¢) (resp. ker(G — G*3™¢)) and G (resp. G') for G/G°
(resp. G/G"™). Thus

G° —» ac —y Gad c ;> Gc,ad
and

~

G —» anc —y Gad me Gnc,ad’
where the central maps have finite central kernels. We also have Z(G°) = Z(G) N G°
and Z(G"°) = Z(G) N G™. Moreover G¢ and G™ centralize each other. (Indeed if
we let G° act on G™ by conjugation, we see that, given h € G", there is a character
Xn : G¢ = Z(G) N G™ such that conj,(h) = xn(g)h. The character x; must factor
through C(G°), but is trivial on Z(G)NG® — C(G*). Thus x; = 1 and G° centralizes
h as desired.) We have an exact sequence

(0) — Z(G) N Z(G™) — G™ x G° — G — (0).

Note (G/G")(R) is compact and hence connected. Thus G°(R) - (G/G")(R).

If 4 € Y then the composition of y with G — G2 takes —1 to 1 and hence
factors through the squaring map G,, — G,,. As this composition is miniscule we
see that it must actually be trivial, i.e. p € X, (G™) and G° centralizes pu. By
lemma [3.3] (G™,Y) is a NCF-Shimura datum. Write i for the map G™ < G, so that
i:(G",Y)— (G,Y). Further by lemma 3.3| we have

Sh(G7 Y)U = H Sh(Gnc7 Y)hUh—lﬂG”C(AOO)a
heG(Q)Gm(A*)\G(A>)/U
where G(Q)G"(A*®)\G(A>)/U is finite, and where
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If W' = gyhu with g € G"(A>®), v € G(Q) and u € U, then
Sh(G™, Y )hun-1nane(as)
N Sh(h™,4)
Sh(g, conj,) J 2 Sh(G,Y)u
/" Sh((h)7,1)
Sh(G™, Y )y ny-1nGme(as)

commutes.

Now suppose that f : (G1,Y;) — (Ga,Ys) is a morphism of Shimura data, that
U; C G;(A*>) are sufficiently small open compact subgroups and that g € Go(A™)
such that gf(U;)g~! C Us. Note that f: G¢ — G5¢. If h € G(A™) then

Sh(h~1,i1)
Sh(GT®, Y1) hun-1nape(as) =" Sh(G1, Y1)y,

Sh(L, f) | 1 Sh(g, f)

- Sh(af (h=1)iz)
Sh(G3°, Y2) f(hyg-10a(f(h)g—1)-1nGye(a>) = 7 Sh(Ga, Va)u,

commutes.

Our next aim is to extend theorem to this setting. So suppose that (G,Y) is a
Shimura datum and that p € Y is an E-special point. Suppose also that 7 € Aut (C)

and a € gE,(C(E) lies above 7|cae.

Note that ¢g o+ ra, and bg gt 70, as defined for G equal those defined for G™.
Thus we will denote them with the same symbol. Hence G = 742G and T (GNC) =
("**G)". We claim that the images of G(Q) and **G(Q) in G°(Q) are equal, from
which it follows that

comjys  (GQIG™(A%)) = HG(Q) (A%,
and hence that conj pad gives a bijection

GQG"(A®NG(AZ) /U — THG(Q)™ G (A)\TG(A™) [conjypa (U).
To prove the claim suppose that v € G(Q). Then we have VE,rasconj,—1on € G"(E)
satisfying

gE,an,T,a,conj,Y,l ou(o-);gE,aJr,T,a,/,L(O-)_l

-1

_1 ~
= VErapconj,—1 O,U«ng,a‘hT,Ouﬂ(0)07E7T’a7u7conj‘771o’u(éE,a‘*',T,a“u(o-)
ie.
R : o
va’T’a"u’conjv*1“ o Con-]d’%d,.rya’u(a)( (77E,T,a,u,conj7,1u)>.
Hence
77E,‘r,a,u,conj,y_1u € T’M’QG(Q)
and has the same image in EC(E) as 7. Thus the image of G(Q) in @C(@) < contained

in the image of "**G(Q) in G*(Q). Using the identification ™ "#* " (T#2G) = G we
get the reverse inclusion.
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Now define
O(7, p, @) : TSh(G, V) — Sh(™" G, ™Y Jeonjg ()

E,7,o,p

to be the disjoint union over h € G(Q)G"™(A*)\G(A>)/U of the maps ®(7, p1, ):
7Sh(G™, Y Y- 1nneqamey = Sh(TaGne, may)

Conjbad (h)COIljbad (U)Conjbad (R)=INToGne(Aoe) -
E,mo,p E,mo,p E,7o,p

From the claim above we see that ®(7, i, @) is an isomorphism. We must check it is
independent of the choice of coset representatives h. For this suppose that h' = gvhu
with g € G™(A*) and v € G(Q) and v € U. Then

conipa () = (conipga (0775 ucons, st VT mcusicons, 1)

K

conjpa  (h)conjy  (u),
with VYVE,raconi, -1 € THheG(Q) and
cOps  (9V)VE rapconi, 1Y € PIG(AY).

Thus what we must show is that

(7, 1, a)o"Sh(g, conj, ) = Sh(conpe  (97)VE r.apconi, 1nY COM o 1) OB (T s C1)-
However
(I)(Tv K a) © TSh( ) COHj,y)
Sh(conjyea  (g), conj,) o (7, conj, 11, @)
sTHOG |
= Sh(CODJb%d’T,a’H (g)v COHJ'y) o Sh(bE7T,a,u7coan_1 M’}/E}ﬂa,u,conjw_lw CODJ’YE,T,a%COHjW71u) © (I)(Tv K Oé)-

Thus we are reduced to checking that

1

—1 _ .
Sh(,}/bE’T’Q/’M’COH‘jW*lM/yEvﬂOévuvconj,\/—l Mfy ) COHJ'Y'YE,T,a,u,Conj771H>

_ . _1 71 .
T Sh(con‘]baEd,‘r,a,p. (’)/)’YEvTaa:.UyCOﬂjwfl,u’y ’ CODJ’Y’YE,‘TVCM#,CODJ‘,Y?IP’)'

This is clear because
VbE,T,a,,u,conjv,l,u
zconjv_l (b§7a+ :Tva’#)bg}aJﬁT,a,y
bE,a'*,T,a,u’ybE,la-&-’T,a#
= Conjb%d’m’“ (7)-

We certainly have
(7, p, ) (p, 1) = ("p, 1),
If gUig~! C Us, we claim that
CI)(T7 M, Oé) © TSh(g7 1) = Sh(COHjb%d (9)7 1) © CI)(Tv Hs Oé),
as maps
"Sh(G,Y )y, — Sh(™**G, ™Y

conjjad (Uz)-
E,r,a,p
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However both sides when restricted to Sh(G, Y )i, p-1nGre(as) are just ®(7, i, a) tak-
ing

TSh(Gnc, Y)hUlh_lﬂG”c(A"o) — Sh(T’“’aGnC, T“u,ay)conjbad

E,7,a,

hg_l (U2)mﬂ',u,aGnc(Aoo) .
7

Now suppose that u; and s are special in Y and defined over E. We claim that

O(T, p2, ) = Sh(bE,T,am,uﬂE,lT,a,m,ug7 conj,yE,T’aMM) o d(7, g, @)

as maps

TSh(G’ Y)U — Sh(’nuz,aG, T’M’ay)conjbad U-

E,7,0,p9

To verify this, we must show that if h € G(A>), then

O(7, g, ) = Sh(bEma,bl71,2757177%”1#2, 1) o Sh(1, conjwmamw) o d(7, g, )
as maps from "Sh(G", Y )pup-1nGne(ace) to
Sh(T’M’aGnC, 7-’Mz’ay)conjbad (h)conj,aq (U)conj,aa (h)=Inmk2:xGne(Ace) -

E,7a,pug E,7,a,pug E,r,0,p9

However this equality is part of theorem [3.2]
Thus Milne’s theorem remains true without the NCF hypothesis. As noted
immediately after the statement of that theorem, this allows us to conclude:

Theorem 3.4. Suppose that E/Q is a finite Galois extension, that (G,Y") is a Deligne
Shimura datum, and that p € Y is an E-special point. Suppose also that T € Aut (C)

and choose o € Sg .. Then there is a unique morphism

O(7, i, @) : TSh(G, Y )y — Sh(™*G, ™Y oonj,,y (@)
E,1,a,p

such that
(1)<7-7 122 ()./)(/L, 1) = (T:u’ 1)
and
(I)(Tv K a) © Sh(ga 1) = Sh(COIljbaEdTa #(g)’ 1) © (I)(Ta K a)

for all g € G(A>). Moreover:

(1) If v € Spc(E) then ®(1, u, ay) = Sh(1, conjz(,)-1)®(T, i, ).

(2) If f: (G1,Y1) — (G2,Ys) and g € Go(A™®) and puy € Yy is a special point

defined over the image of E in C, then
(I)(T7 f O U1, Oé) o TSh(.g? f) - Sh<conjb%c{7_7&’fou (9)7 T”ul’af) © q)(7—7 M1, Oé).

(3) ®(Ti72, 1, 1002) = B(71, ™ 1, 1) © M R(7, i, ).
(4) If G =T is a torus then ®(7, pu, ) o7 o Ilp gy = oy (713
(5) If p1 and po are two such special points defined over E, then

O(7, 2, ) = Sh(bEmam,“275,17704,#1’“2, conj, - )o®(r,m, )
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3.5. Reformulation of Milne’s theorem. We now state and prove our first main
theorem, which is a reformulation of Milne’s theorem.

Theorem 3.5. Suppose that E/Q is a finite Galois extension and that a™ € H(E/Q)*.
If (G,Y) is a Shimura datum with E acceptable for G, if (1,¢,b) € Conj g ,(G,Y)
and if U is a sufficiently small open compact subgroup of G(A>), then there is an
1somorphism

cI)E,aJr (7—7 ¢7 b) : TSh(G’ Y)U ;> Sh(ﬁd)’b)(Ga Y)bUlf1
with the following properties.
(1) q)E,a+ (7—7 ¢7 b) o TSh(gv 1) = Sh(bgbila 1) o ¢E,a+ (7—7 ¢7 b)
(2) Sh(1, f) o @p o+ (1,0,b) = P o+ (7, f 0 @, f(b)) o TSh(1, f).
(3) If6 € G(E) and h € G(A™), then ®p o+ (7,%¢, 6bh) = Sh(1, conj;)o®g 4+ (T, ¢, b)o
"Sh(h, 1).
(4) If (11,01,b1) € Conj g o+ 2P2)(G,Y) and (72, ¢2,b2) € Conj g4+ (G,Y), then
Qg o+ (Ti72, G102, b1b2) = P o+ (71, 01,01) 0 " P o+ (T2, P2, b2).
(5) Suppose that G = T is a torus, that up € X.(T)(C) and that (7,¢,b) €
COHj E,a(T7 {N}) Then
b~ bt oo € T(A%)/T(Q) € T(AF)/T(QT(E).
Moreover
(I)E,a+ (7', (bv b) oTo HT,{H} = Sh(bg;‘l,oo,,u,ﬂ 1) © HTv{TH}'

In the special case that T fizes the image of E in C, then Hil{w}o(l)ﬂﬁ (1,¢,b)o
7o llp . equals multiplication by

ot T A )
p:E—C

where p is any extension of p to E?P.
(6) Suppose that D D E is another finite Galois extension of Q, that af, €
H(D/Q)" and that t € T g(Ap) with 'infp/pat =np/p.af,. Then

CI)D,ag (Di}’lEf,t(T7 Qb, b)) = CI)E',a+ (Tv ¢7 b)
(7) If p €Y is an E-special point and if o € Sp.c(E) lifts 7|cas, then
cI)E,u+ (T7 5E,a+,7,a,uagE,a+,T,a,u) = (I)(T> M, Oé).

Proof: Suppose that T' C G is a maximal torus defined over Q such that 724 (R) is
compact and 7" is split by E. Then we may choose 1 € Y that factors through 7'. It
will be E-special. Choosing « as in part of the theorem, we may find § € G(F)
and h € G(A™) such that

(7-7 QS) b) = (7—7 6$E,a+,’r,a,,u7 5,5K,a+,7,a,uh)~
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Then we are forced to set
q)E,an (Ta ¢7 b) = Sh(17 COHjé) © @(77 H, Oé) © TSh(hv ]-)

We must check that this is a good definition. N

If we replace bK,a"’,r,a,,u by ﬁY,E(’YZ)bK,a'*‘,T,a,M and ¢E,a+,~r,o¢,u by ﬁY’E(W)(bE,a“',T,a,u; with
v € Rpc(E) and z € Rj, +(Q); then ¢ is replaced by dfiy,z(y)~" and h is replaced by
hity g(z)~*. But Sh(1, conJMYE(A/ 1) = Sh(1, conjs) and Sh(hpy.g(2)~*, 1) = Sh(h, 1),
and so the definition is independent of the choice of bK,u+,T,Oz,/.L'

Ifv e ¢Ev°+7m’#G(Q) then

Sh(1, conjs, ) © ®(7, p1, o) o "Sh(b~'y~"bh, 1)
(1, conjs) o Sh(7, 1) o (r, 1, a) o "Sh(b~ 1y~ bh, 1)

= Sh(1, conjs) o ®(7, , ) o "Sh(h, 1),
and so the definition is independent of the choice of 4 and h.

If we replace o by ay” w1th v € Spc(E ) then there is a lift ¥ € Rgc(F) of v

such that ¢E,a+,~r,a'y—1,u = A(Y (bE at,ma,u and bE at,ray—tu — ,u( )bE7a+,T,o¢,u and so

(7—7 Cb, b) = (Ta oR) 1¢E,a+,77a7*1,u7 5”(7)_ bE,a*,T,a'yfl,p‘h)'
Then, because ®(7, i, ay~!) = Sh(1, conjz) o ®(7, 1, ), we see that

Sh(la COHJ'(;) © (I)(Tv Hs a) © TSh(ha 1) = Sh(L Conjéﬁﬁ)—l) © (D(T7 s a’y_l) o TSh(ha ]-)a

and our definition is independent of the choice of a.
Finally if we replace u by 4/, then

(1,0,b) = (T, 5, Jat ¢E at o’ s (5’73 at o )bE,a+,‘r,a,u’ (I;E"la+77-70[7#/7E,a+,T,a,u,u'gE,a+,T,a,uh>)‘
We must check that
Sh(1, conjs) o ®(7, p, @) o "Sh(h, 1)
= Sh(1, conj, -1 Yo ®(r, 1/ a) 0 TSh(g]j;,laJr,T,a,,/'YE,aﬂT,a,u,u’gE,aJrma,u}% 1),

Ea“"roen,u

or that

CD(T e, @ ) TSh(bEcﬁTa,u’yEcﬁra,uﬂbE“+TaH"1)
= Sh<1 COI]_]W—I )OSh(bETQP«#fYETaMNHCOH.]'yETa )Oq)(77u7a)7

E,at,70,p,u’

or even that

Sh('h_«j,lcﬁ,T7a’#’#/bE,a+,T,a n’b;g at ma 1) o (P(T’ Ky a)
= Sh(’@}cﬁ,T,a,u,ule,T,a,u,u’7 1)o (I)(T 1, @),
which is true.
Having checked that our definition is good we must check the desired properties.

Property is part of the definition, while property follows easily from the defi-
nition.
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Properties and are true for

(Ta (ba b) = (7—7 (bE,a“',T,a,u? bE,a“',T,a,u)a

because we can take QEE,a*,T,a,foy = f © ;ZZE,C!+,T,C¥,/J, and ’EE’,a*,T,a,fo,u = f(gE,a+,T,a,p)' To
check that they remain true for all (7, ¢,b), it suffices to check that if they are true
(7, ¢,b) then they are also true for (7,°¢, 6bh). However we have

P o+ (7,°¢, 6bh) 0 "Sh(g, 1)
= Sh(1, conjs) 0 Pg o+ (7, ¢,b) 0 "Sh(hg, 1)
= Sh(1, conjs) o Sh(bhgh b=, 1) 0 ®p o+ (7, ¢, b) 0 "Sh(h, 1)
= Sh(conjs,(9),1) 0 Pg o+ (T, %, bh)

and
Op o+ (7, f 09, f(5bh)) o "Sh(1, f)
= Sh(laconjf(d)) 0 ®p ot (7, f 0, f(b)b) o "Sh(f(h),1) o "Sh(1, f)
= Sh(1, conjss)) © P+ (7, f 0 @, f(b)b) 0 "Sh(1, f) o "Sh(h, 1)
= Sh(1, conj;)) o Sh(1, f) 0 @ q+(7, ¢, b) 0 "Sh(h, 1)
= Sh(1, f) o Sh(1, conjz) o Pg o+ (7, ¢,b) 0 "Sh(h, 1)
= Sh(1, f) o @p o+ (7, 0, dbh).

Similarly property is true in the case

(Ta ¢7 b) = (Ta gE,a*,T,a,u7,5E,a+,T7a,u>'
On the other hand if the claim is true for (7, ¢, b), then
Qp ot (T, S¢,6bh) o T o 7 g
h(1,conjs) o @ o+ (7, ¢,b) 0 7Sh(h, 1) o 7 o Iy g,
= Sh(h,1)o0 @Ea+(7' ¢,b) o ollp gy
= Sh(h 1) o Sh(bba+ ,00,[L,T 1) 9] HT7{T[A}
= Sh(5bhbcﬁL ,00, L4, T ) 1) © HT’{T.“}’
and so it is also true for (7,%¢, Jbh).

That property @ is true in the case G = T is a torus follows from property
because infp /g (7, ¢,0) = (7,infp s ¢, V4 (t)b) and

Bt e = Vatopr [ (7 1) © (M) /eI () = bt oV (0)-

p:E—C

Now consider the general case. Because infp/g.(7v, h)(T,¢,0) = (v, h)infp/p.(T, ¢,b),
the assertion will be true for (7, ¢,b) if and only if it is true for (’y, h)(7,¢,b). Choose
a maximal torus T' C G defined over Q and split by E such that 7% (R) is compact.
Also choose i € Y which factors through 7" and let ¢ denote the canonical embedding
i:T < G. Also choose (7,¢,b) € Conj g (T, {u}). It will suffice to prove that

Dot (7,10 6,(8)) = P (i (770 6,i(0).
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Because
U Shg, )(SW(T, {1})g-1vgnras))

geG(A>)

is Zariski dense in Sh(G,Y")y, it even suffices to check that

Bt (7,0 0,i(b)) 2 7Sh(g.) = D o (inf (7,10 6,(3)) 0 "Sh(s. )

for all g € G(A™). As conj,(g) = conj,, () (because ¢ is basic) and infp/p,(icd) =
ioinfp/ps ¢ and i(v4(t)) = Viee(t); applying properties (1)) and (2) we reduce to the
equality

q)E,a+ (7—7 §b, b) = Qg+ (

E,ap

(7,9,0)),

inf
D/E,t
which we have already verified.
Finally we must check property . If
(7'1; b1, bl) = (7'7 ¢E,a+,n,a1f2w bE,u+,T1,a1,72u)
and
(7—27 ¢2> b2) — (7—7 ¢E,a+,7'2,a2,,ua bE’,a"’,TQ,ag,,u)

Then the result is true because for some 5 € Z(G)(FE) we have

¢E,Cl+,‘l'170(17TQM¢E,CI+,T270¢2,M = ﬁ¢E,cﬁ‘,7'1'r2,oclocz,u
and
bE,a+,T170(1,72;,LbE,Cl+77'2,O!2,;,L = 5bE,a+,7'17'2,o¢1042,u mod Z(G) (Q)7

so that

(I)Eyﬂ"' (7—17—27 ?E:ﬂ*',7'1,041772M¢E;3+,7'2,0427M7 bE,a'*'ﬂ'l7011772/LbE'70+7T2,a2,M>

- CI)EJI* (7—17—27 ¢E7u+,T17'27061a21H7 bE7a+77'17'210410427N>'

Suppose now that property (4] holds for (71, ¢1,b1) and (72, @2, b2). Then it also holds
for (71,°¢1,0b1h) and (72, o, by), because

(I)E’qu (7'17'2, (6¢1)¢2, 5b1hb2)
= Ppar (1172, *(P162), 0b1ba(by ' hby))
Sh(1, conjs) © @ o+ (1172, G163, bibz) © ™7Sh(by 'hbg, 1)
Sh(l, conj(;) o q)E,cH' (7'1, ¢1, bl) o™ CI)E,a“' (TQ, (bg, bQ) ¢] T1T2Sh(b51hb2, 1)
Sh(l, COl’ljé) (¢] (I)E,a"" (7'1, ¢1, bl) o™ Sh(h, 1) (0] qu)E,a+ (7'2, (252, bg)
= DBpat(71,°01,001h) 0 " ®p o+ (72, P2, by).
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Similarly, if the property holds for (71, conjs—1 o ¢1,conjs—1(b1)) and (72, @2, bs), then
it also holds for (71, ¢1,b1) and (72, °dy, dboh), because

D p o+ (T172, 1 (°h2), b10b2R)
= ®p o+ (1179, °((conjs—1 © ¢1) o), dconjs—i (by)boh)
= Sh(1, conjs) o g o+ (7172, (cOnjs-1 0 P1)2, conjs—1(b1)b2) 0 ™™Sh(h, 1)
= Sh(1, conjs) 0 Pg o+ (71, cONj5-1 © 1, conjs—1(b1)) 0 " Pp o+ (T2, P2, b2) 0 "™Sh(h, 1)
= ®pq+(71,01,b1) 0 ™Sh(1, conjs) 0 "D o+ (72, P2, ba) 0 M™2Sh(h, 1)
= Ppo+ (11, 01,01) 0 " P oi (72, 2, 6bsD).

Note that
(7—17 Conj5—10¢E,a+,71,a1,,ua COIlj(;_l (bE,a+,71,a1,u>) - (7-17 ¢E,a+,71,a1,conj6,1o;u bE,aJr,Tl,al,conjé,l o,u)-
Thus property follows in full generality. [J

We remark that properties , and () completely characterize the ®g .+ (7, ¢, ).
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4. RATIONAL SHIMURA VARIETIES

In this section we define, for any field L of characteristic 0, an explicit category
RSD(L) (of ‘rational Shimura data over L’), together with fully faithful functors

RSD(7) : RSD(L) — RSD(L')
whenever 7 : L — L’ is a map of fields; and construct functors
Shy, : RSD(L) — QProj,,
to the category of quasi-projective varieties over L together with natural isomorphisms
®(7) : 70 Shy, — Shz o RSD(7)
whenever 7 : L — L’ is a map of fields. Moroever we will have

O(r'oT)=d(7") 0 T,(I)(T).

4.1. Rational Shimura data. In this section we will define the categories RSD(L),
for L a field of characteristic 0. This category will depend on the choice of a finite
totally imaginary Galois extension E/Q and a € H(E/Q), so we will sometimes
write RSD(FE, a; L). However we will also explain how these categories depend on
this choice. We will call an object of RSD(E, a; L) a ((E, a)-)rational Shimura datum
over a field L. Before turning to the definition we introduce a condition that means
that FE is sufficiently large to ‘see’ a particular Shimura variety.

If G/Q is a reductive group and ¢ € Z,(£°°(E/Q)q, G(AE))basic and C' is a G-
conjugacy, defined over a field L of characteristic 0, of cocharacters of G; we will say
that a finite Galois extension F/Q is acceptable for (G, v, C), if

(1) E is totally imaginarys;
(2) G contains a maximal torus 7' defined over Q with 724 (R) compact, which is
split by F;
(3) there is a finite set of places S of Q containing infinity such that
k([Y]) € Z[VE,s] C Z[VE]
and B(Q, G)spasic is contained in the image of Hy,(E3(E/Q), G(E))basic;
(4) and, if ¢ € Z;lg(Sg(E/Q)a,G(E))basic with loc[¢] = Avescu (Y (C)ral )],

resc/RY (v
then G (Q) g has a point in each connected component of *G* (R) .
Note that if (G,v,C) is any such triple then there is a finite Galois extension D/Q
containing £ such that for any ap € H(D/Q) and any t € T5 g(Ap) with np/g.ap =
Yinfp,p a, the field D is acceptable for (G, inf?)‘} g+ ¥, C). (This follows from point
recalled at the end of section [2.3] the finiteness of ker'(Q,?G) (see theorem 7.1 of
[BS]), and the density of G4 (Q) in *G*d (R) (see theorem 7.8 of [PR]).) Let Ly C L
be the field of definition of C. As C contains an element p that factors through
T, it contains an element that can be defined over E. Thus there is an embedding
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p: Ly — FE. In this case the Gal (£/Q) orbit of »C is defined independent of the
choice of p, and hence A\(C) = A(*C') € Ag gai(r/q) is well defined.
We now turn to the definition of RSD(E, a; L). An object of RSD(E, a; L) will be
a 4-tuple (G,v,C,U) where
(1) G is a reductive group over Q;
(2) ¥ € Z,(E°(E/Q)a, G(AE) )basic With *c/=¥G*(R) compact;
(3) C is a G-conjugacy class, defined over L, of miniscule cocharacacters of G

such that £ is acceptable for (G,v,C) and &(v)) = A(C) € Ag,qal (5/0);
(4) and U is an open compact subgroup of YG(A>).
By a morphism
(0,9, ) : (G1,91,C1, Ur) = (Ga, o, Co, Us)

in RSD(E, a; L), we will mean

e a cocycle ¢ € Z,,(E3(E/Q)q, G2 E) )basic,

e an element g € Gy(Ag),

e a morphism f : G; — ?G5 defined over Q;

such that
o fouh = (9 y)loced™ (so that conj, o f YiIG) — Y2Gy over A),
o f(C1) C Cy,

e and (conj, o f)(U1) C Us.
We define the composite of such morphisms by

(02, 92, f2) © (¢1, 91, f1) = (fa(@1) b2, 92f2(g1), f2 0 f1)
and set
Id(G7¢7c) = (1, 1, 1)

The purpose of GG is simply to provide some base point in a class of extended pure
inner forms, and is not very important. If Z(G) is connected, then (by proposition
10.4 of [K2]) any object of RSD(E, a; L) is isomorphic to one with G quasi-split. In
this case it would be simpler and more natural to restrict to the full subcategory of
4-tuples (G, 9, C,U) with G quasi-split, which loses no generality.

If 7: L — L' is a map of fields then we define a functor

RSD(7) : RSD(FE, a; L) — RSD(E, a; L')
by
T(G7 wv 07 U) = (Ga dja TC7 U)
and
"(0,9,1) = (0,9, 1)
This functor is fully faithful. Note that

RSD(7' o 7) = RSD(7") o RSD(7).
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Suppose that D D F is another finite Galois extension of Q, that ap € H(D/Q)
and that ¢ € Tb g(Ap) with np/g.ap = "infp,g a. Then there is a functor

infp,p, : RSD(E,a; L) — RSD(D,ap; L)
(G7 ¢7 C? U) — (G7 infD/E,t 2/}7 Cv U)
(9.9, f) = (infp/p:d,ve(t) "y, f).

(Note that YG = ™p/e:¥G.) Finally note that infp/p, is faithful and that

inf o inf = inf .
D'/D DJEt D'/Etnpg(t)

The reader is now in a position to read the statement of the main theorem [4.3]
except for the part concerning complex uniformization; and might like to do so.
However before stating that theorem we make some auxilliary definitions.

First note that there is an analogue RSD(F,a; L)~ of RSD(E,a; L) where one
suppresses the choice of open compact subgroup U (and the third condition imposed
in the definition of a morphism). The functors RSD(7) and infp /g, are still defined
in this setting. B

We will write Gg,(.p,0)(A) = Ggy(A) for the subgroup

{(¢.9,1) € ZHGal(E/Q), Z(G)(E)) x G(Ap) x {1} : (loca()? = ¥}
= {(C g, ) alg(g?)(E/Q)aa ( )(E))basic X G(AE) X {1G} . (IOCaC)gw = d}}
- Aut RSD(E,a;L)~ (G 1% )

Note that G B,Gw,c)(A) does not depend on a (as the notation suggests). (Nor does
it depend on C'.) Explicitly we have

<C2> g2, 1)(C17 g1, 1) = (CZCU 9291, 1)
We will often write (¢, g) for (¢, g,1). We have embeddings

g — (1,9)
and
z — (*1,z7h)

We further define

Cru(A™) = Gry(8)/Z(G)(Q'C(R).
There is a short exact sequence

(0) — “G(A%)/Z(C)(Q) — G p(A®) 5
ker(Z'(Gal (E/Q), Z(G)(E)) — H'(Gal (E/Q),“G(Ag))) — (0),

where ¢ is induced by (¢, g) — (. We endow G g0 (A®) with a topology by decreeing

that YG(A™) is an open subgroup in its usual topology. This makes Gg,(A®) a
totally disconnected, locally compact group. (We stress that the notation is not
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supposed to imply that éE,(G,w,C) (A) and éEﬂp(AOO) are the adelic points of any
algebraic group.)

Lemma 4.1.
ker(Z'(Gal (E/Q), Z(G)(E)) — H'(Gal(E/Q), VG (Ag)))
= ker(Z'(Gal(E/Q), Z(G)(E)) — H'(Gal (E/Q),"G(A¥)) & H'(Gal (E/F), Z(G)(Ex)))-
Proof: This is just the observation that
H'(Gal (C/R), Z(G)(C)) — H'(Gal (C/R),"G(C))
because YG(R) — YG* (R), because the latter is connected.[]
If (¢,9,f) : (G1,¢1,C1) — (Ga, 12, Ca), set

éE,(Gl,wl,Cl)(Aoo)f = {(C, h) c éE,(thhcl)(Aoo) : f OC is valued in Z(GQ)(E)}

Then we get a continuous homomorphism

0.0.0) : GrGroncyA®) — Gr (Ganca)(A%)
(¢,h) +— (fo(, conj,(f(h))),

satisfying
9(¢agvf)|lel(Aoo)/m = Conjg o f
and N
Os,.5) (1) © (0,9, f) = (¢.9,f) o h.
We get a map

infp et GrGue)(A%) — CN?D,irng/(%t/g,w,C) (A%)
[(C7g>] = [(infGZI(E/Q) Cug)L
which only depends on a and ‘a, but not on . It restricts to the identity on YG(A>) =
ianB?E,t¢G<AW)'

4.2. Labels. If (G,4,C) is a an object of RSD(E, a; C)~, we define Label (G, ¥, C)
to be the set of pairs (¢, b) where

(1) ¢ € Z,,(E(E/Q)a; G(E))pasic With
locl@] = Arewe v (V(C) sy W] € Hyyg (€°°(E/Q), G(Ap) basic,
(2) and b € G(A%) with res®loce¢ = ‘res™y € Z)),(£°°(E/Q)a, G(A%))basic-
Note that vy = un;%o). We set
(G0, O)py = (PG, Y (C)eg),
a Deligne Shimura datum. Note that

~

conj, : YG(A®) =5 ?G(A™),
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There is an embedding

i) CGNE)E = Gpy(A®)
v o= (0= v () (o)D), (b, 571)],

where 7 € (?G)(R) lifts ady € (°G?*)(Q). (This is independent of the lift 7.) Note
that

i (PG(E)E) NYG(A®) = b7?G(Q)b.
By lemma [4.1{ ¢ gives an isomorphism from G £u(A®)/YG(A®) to
ker(Z(Gal (E/Q), Z(G)(E)) — H'(Gal (E/Q),°G(Ag))®H"(Gal (C/R), Z(G)(C))).
The image of iy (*G(E)g) is
ker(Z'(Gal (B/Q), Z(G)(E)) — H'(Gal(E/Q), *G(E)) & H'(Gal (C/R), Z(G)(C))).
There is an action of G(E) x Gg4(A®) on Label o(G, ¥, C) via

(7, (€. 9))(,0) = (6¢, vb(9™) 7).
We have

i (9, = CONjg © f(sp) © cOn .
We call two elements of Label .(G, ¥, C) equivalent if one is a translate of the other
by an element of G(E) x (YG)(A>®). We denote this relations ~. Note that there is
a bijection

Label (G, 9,C)/ ~ — {¢ € H}\,(E(E/Q),G(E)) : locg = XreSC/RwG(Y(C)YQiC/MG)[w]}
[(9,0)] — [¢].

Lemma 4.2. (1) Label (G, v, C) # 0, and for (¢,b) € Label o(G, 1, C) we have
#(Label (G, v, 0)/ ~) = # ker' (Gal (E/Q),*°G(E)) = #ker' (Q, °G),

which in particular is finite.
(2) The action of G(E) x Gg(A>) on Label (G, v, C) is transitive.
(3) The map from

ker(H'(Gal (E/Q), Z(G)(E)) — H'(Gal (E/Q),*G(Ap))@H" (Gal (C/R), Z(G)(C)))
to
ker(H'(Gal (E/Q), G(E)) — H'(Gal (E/Q),°G(Ag)))

18 surjective. B
(4) The stabilizer in G(E)x G g .,(A®) of (¢,b) € Label o(G, 1, C) is (1xi(sp)(*G)(E)S).
(5) The stabilizer in G(E)x¥G(A%®) of (¢,b) € Label o(G, v, C) is (1xconj, ') (?G(Q)).
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Proof: For the first part E(XrestG(Y(C)_l)[w]) = 0 and so by proposition 15.1
of [K2] and the definition of acceptable we can find ¢ € Z},(E3(E/Q)q, G(E))basic

with loc[¢] = Xrescwg(Y(C’)_l)[w] H,, (E°(E/Q), G(AE))basic: Then there exists
h € G(A¥) with res®loc,d = "res™ € alg(é'loc(E/@)a, G(AY))basic-

For the second part it suffices to show that if ¢, ¢y € Hy, (E3(E/Q), G(E))pasic
both have the image

XreSC/ng(Y<C);s1C/RwG)[77/}] € Hilg(‘gloc(E/Q)a G(AE))basim
then ¢, = (¢, for some ¢ € H'(Gal (E/Q), Z(G)(E)) with

(0] = [¢]loc(C) € Hyy,(E°(E/Q), G(AE))basic.
However if ¢; € ¢, then
[6207"] € ker' (Gal (B/Q), “ G(E)).

By lemma [p2p7!] is the image of some
¢ € ker(H'(Gal (E/Q), Z(G)(E)) — H'(Gal (E/Q), G(AF))&H (Gal (C/R), Z(G)(C))).
Then

* ¢y =(h € alg(g?)(E/@) G(E))pasic;

o and [¢] = ([¢)locC) € Hy, (E°°(E/Q)%, G(AE))basic-
This establishes the second assertion.

The third assertion follows from lemma [2.1| and the definition of acceptable.
For the fourth assertion suppose that v € G( ) and (¢, g) € GEW(A) with

("¢, 7b(g>) ) = (9,b).
Then
(lo) = ﬁ(a)aw(a)*lfl =77'¢(0)"7¢(0)"" and so v € °G(E)%;
g>* =b"b;
if w is an infinite place of E, then resg, /rloc((] € H;lg(WEw/R, YG(Ey))basic 18
trivial, and so resg, rloc[(] € H'(Gal (E,/R), Z(G)(E,)) is trivial (because
YGad(R) is connected);
v € ¢G(E)F and (¢, g) = i) (7)h with h € G(EL);
o "res, 1) = res,t and so h € YG(R).

This establishes the fourth part. The final part follows from this. [

If (¢,9,f): (G1,¢1,C1) = (Ga,19, Cy) then we get a map

Labela(qbaga f) : Labela(Gla¢l7cl) — Labela(G%q/J%CQ)
(P1,01) — ((foor)o, f(br)g™).
To see that this is well defined, note that

Viog, = (fovy)(fo IJy(Cl))i1 = V¢2V<;1V;/%Cz)
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factors through Z(G5) and so (f o ¢1)¢ is basic. Moreover f gives a map
f: NG, — fooeq,
over Q which takes Y (C1)s,q, to Y (C2)(reenreq,, i-€.
[ ("GLY (Ch)og,) — ((fo¢1)¢G27Y<C2>(f0¢1)¢02)-
Moreover
conj s(p,)g-1 © conj, o f = foconj, : V'G1(A®) — (Foor)d Gy (A™).
Additionally, if (v, h) € G(E) x YG(A>), then

Label 4(¢, g, )7 (41, b1)) = T WD Label 4(¢, g, f) (1, b1),

and so we get an induced map
Label 4(¢, g, f) : (Label o(G1,%1,C1)/ ~) — (Label o(Ga, 12, Cs)/ ~).
If (¢,b) € Label (G, 4, C) and (1,¢', h) € Conj p ,(°G,Y (C)s), then
(¢’ ¢, hb) € Label 4(G, ¥, 7C).
(To verify this use the fact from the end of section [2.4] that

o~

("C-Y(C) Yesc g (Y (C)RL )

XreSC/Rva(Y(O) res(c/]RwG

X v(c) ! -1
resc/]RwG( ( )reSC/R¢G) (resC/RwG) resC/R¢G) (res(C/]RwG)

= Ay (YO L))

resC/Rw Ie.

If D D FE is another finite Galois extension of Q, that ap € H(D/Q) and that
t € To g(Ap) with np/p.ap = "infp g a. Then there is a map

infp g, : Label (G, 9,C) — Label,, (infp/p:(G, 9, C))
(¢7 b) L (infD/E,t ¢7 V¢>(t)b>

It induces a bijection

(Label o(G, 1, C)/ ~) — (Labela, ( inf (G,4,C))/ ~).

inf

D/Et
(Because, if (¢, b) € Label 4(G, v, C), then ker' (Gal (E/Q), ?G(E)) = ker' (Gal (D/Q),*G(D)),
as E is acceptable for G.) We have

Dl/nEf7t oLabel a(¢7 g, f) = Label aD( (¢7 g, .f)) o inf

inf
D/Et D/Et
and

inf o inf = inf .
D//Dat/ D/Evt D,/EvtnD/E(t/)
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4.3. Rational Shimura varieties. We now state and prove our second main theo-
rem.

Theorem 4.3. We have the following objects:
(I) For any finite totally imaginary Galois extension E/Q, any a™ € H(E/Q)T,
and any field L of characteristic 0; we may associate a functor
Shp o+, = Sh: RSD(E, a; L) — QProj;.
(II) To an embedding of fields T : L — L' we may associate a natural isomorphism
CI)E,a“' (T) = (I)(T) . TO ShE,a“';L ;> ShE,cﬁ‘;L’ 9] RSD(T)
(IIT) If D D> E is another finite Galois extension of Q, if af, € H(D/Q)" and if
t € Ty p(Ap) with npp.a}, ='infp,pa’, there is a natural isomorphism

a;:Shg g+, — Sh,, + , o inf .
, 073 D,ap,L D/E.t

(IV) If (G,4,C,U) is an object of RSD(E, a;C) with U sufficiently small and if
(¢,h) € Label go(G,9,C), then Shga+.c(G,9,C,U) is smooth and we may
associate an isomorphism of complex manifolds

Toarion) = Toa  “GE)E\(Gy(A®) /U x Y (C)og) — Shp (G, ¥, C,U)(C).
These objects satisfy the following properties.

(1) Sh(G,¢,C,U) is normal, and if U is sufficiently small, then it is smooth.

(2) If U is sufficiently small then the group of automorphisms of the variety
Sh(G,v,C,U) is finite.

(3) ]fgb € Zallg(g?)(E/Q)aaG<E))basic, then

Sh(¢,1,1) : Sh(°G,¥loc,¢™, C,U) = Sh(G, v, C,U).

(This expresses the independence of the choice of ‘base point’ G.)
(4) If z € Z(G)(E) and w € U and h € YG(R), then

Sh(*1, 2 'uh, 1) : Sh(G, ¥, C,U) —» Sh(G, b, C,U)

is the identity. In particular G, (A™) acts on the inverse system {Sh(G, ¥, C)u }u.
(5) Sh(1,¢9,1) : Sh(G,v,C,U) — Sh(G,4,C,V) is a faithfully flat, finite mor-
phism of degree [VZ(G)(Q) : gUg ' Z(G)(Q)]. If V is sufficiently small then
it 1s etale.
(6) If U 9V, then
Sh(1,1,1) : Sh(G,v,C,U) — Sh(G,,C, V)
is Galois with group VZ(G)(Q)/UZ(G)(Q) = V/U(Z(G)(Q) N V) acting via
v+~ Sh(l,v,1).
(7) ®(1) =1d and (7" o 7) = ®(7') o T B(7).
(8) apoPp o+ (1) = (I)D,C%(T) o qy.
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(9) If D' > D is another finite Galois extension of Q, if af, € ”;'-l(D’/Q)ﬂL and if
t'e T2,D(AD’) with T]D//D7*C1B/ =t 1nfD//D ClD, then Np'/E, *a ;) = — tnp/e(t’ IIlfD//E at
and

Qtnp p(t') = QA O Q.

(10) 172,50 € Go(A%), then Sh(G)omsu GV, 10]) = o (GF GUT), 1)),

(11) 7 o) ([(hgU, conj, (1))]) = (o) ([(GU, w)]).-

(12) If g1, 92 € Gpy(A™), then w5 5,4 ([(9192U, w)]) = m6) ([(92U, p)]).-

(18) §h(gz5/,\g, ) ome s ([(C R, 1) = T pc—101)0,fbrk)g-1) (L, f 0 i) In particular, if
k e G1’¢1 (Aoo)f, then

Sh(: g, 1) © T (61,60 (K: 1) = Tabelo(6.0.1)(01.61) (D09, (K), f © 12).
(14) If G =T is a torus and 7 € Aut (C), then

D(7)(T 0 T(g,5)) (G, 1) = T(pr06,5) (5 10),

for any (7, ¢, b,) € Conj (T, {u}) for which b, lifts by+ oo e € T(AF)/T(Q)T(E).
Such a pair (¢, b;) always ezists.

(15) ay o TEatip,(6.0) = TDakspint /g (6,0) © (infpme x1).

Before proving this theorem we will give an example of how one can make use of the
‘density of special points’ in this optic. The argument is the usual one, but rephrased
in our language. The particular corollary we prove is rather technical, but our reason
to prove it here as an example of this sort of argument and will be needed in section
4.0l

Corollary 4.4. The set of points in Sh(G, 1, C,U)(L) whose orbit under ®(7)ot for
T € Staby,, )(C) is finite are Zariski dense. If L = C, then these points are even
dense in the Archimedean topology.

Proof: Let S denote a finite set of places of Q containg oo and every place v with
[res, | is non-trivial and a finite place vy at which G splits and [res,, /| is trivial. For
v € S choose a maximal torus T;,, C G defined over Q, such that

e [res,i,] is in the image of B(Q,,T,)c—pasic for all v € S,

o T, is split,

e and 724 (R) is compact.
Then choose a torus T' C G defined over Q with T" conjugate over Q, to T, for
all v € S. (See corollary 3 to proposition 7.3 of [PR].) Write i for the inclusion
T — G. We can choose 1 € C' which factors through 7. We can also choose a
finite Galois extension D/Q containing E which splits T, and a}, € H(D/Q)*, and
t € To5(Ap) with "infp/p at = np/p.af, and ¢ € alg(gloc(D/Q)aD, T(AD))G—basic
with [1p] = infp/p[] € Hy, (E°9(D/Q), G(Ap))basic- Altering ¢y only at vy we may
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alter K(¢r) € Xy(T)cai(p/g) by any element in the image of X, (7%¢). As R(¢)r) maps
to A(C) in (X, (T)/X(T%%))cai(p/g) and as

( )Gal (D/Q) — X, (T)Gal(D/Q) — (X*(T)/X*(TSc))Gal(D/Q) — (O>
is right exact, we may arrange that A({¢}) = R(¢r) € Xo(T)cai(p/g)- Next choose
g€ G(AD) Wlth Ipp = infp g ).
If k € Gg w(A®) and V C T'(A*) with kgVgk' C U then

Sh(k) o oy " o Sh(1, g,4) : ShD,aj{,(T’ Yr,{p}, V) — Shg(G, ¥, C,U).

The image is finite and is preserved by ®(7) for 7 € Aut (L) which fixes C. As k and
V' vary, the union of the images is Zariski dense in Shg o(G,v¢,C,U). If L = C it is
even dense in the Archimedean topology. [J

One can use a similar argument to prove the uniqueness up to unique isomorphism
of objects satisfying the theorem. First of all one considers the case L = C. In this
case uniqueness of everything except the ®(7) is clear. The ®(7) are unique in the
case that G is a torus. Then an argument as in the corollary shows they are unique
for all G. Once one knows the uniqueness for L = C one can deduce it for L a number
field, and then for L any field of characteristic 0.

We will prove the theorem over the next two sections. We will first treat the case
L = C. The general case will follow from this rather formally. (Note that once we
prove the theorem in the case L = C, the corollary follows in that case.)

4.4. Proof in the case L = C. If (¢,b) € Label (G, v, C) we define
Sh(Ga ¢7 Cv U)(¢,b) = Sh(¢G7 Y(C)‘Z’G)bUb*l .

Up to canonical isomorphism this only depends on the equivalence class of (¢,b).
Indeed if v € G(E) and h € YG(A*), then conj, : °G = "°G and

Sh(conj'yb(h)_lv COIlj,Y) : Sh(G7 ¢7 07 U)(qb,b) _> Sh(G7 wv C) U)(”qb,wbh*l%
le.
Sh(conj., ()", conj,) : (°G,Y(C)og)swo-1 — ((°G,Y (C)r66)yph—10(rbh-1)-1
If we replace (v, h) by (74, hconj,—1(8)) with § € G(Q) then this map is replaced by

Sh(conj, s (hb~"0b)~ !, conj.5) = Sh(ybh~'b~'67'y~" conj ;)
= Sh(ybh~'b~'y~" conj,) o Sh(~", conjs)
= Sh(conj.,(h)~", conj,).

Thus we have a canonical isomorphism

Q(¢,b), (Y, 7bh 1) - Sh(G) ¢7 C) U)(¢,b) — Sh(G7 ¢7 O) U)('Y(f),'ybhfl)
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which is independent of the choice of (v, h), and Sh(G, v, C,U)4p) only depends on
[(¢,b)] up to canonical isomorphism. Thus we can define

Sh(G, ¢, C,U) = I1 Sh(G, ¥, C, U)s)
[(¢,b)]€Label o(G,3,C) /~

and it is well defined up to canonical isomorphism. As the union is finite, Sh(G, ¢, C, U)
is a quasi-projective variety. It is normal, and if U is sufficiently small then it is smooth
and its group of automorphisms is finite. (As bUb™! is again sufficiently small.)

Now suppose that (¢, g, f) : (G1,v¥1,C1,Ur) = (Ga, 19, Cy, Us). Then we define

Sh(9, g, f)lsu(Grwn.cr.00) 6,0y SGL Y1, C1 Ut ) (91,00) = Sh(Ga, ¥2, Ca, Un) (fog1)us ()9
to be
Sh(1, f) : Sh(¢1G1,Y(Cﬁ)mcl)blylb;l — Sh(Y°9Gy, Y (Co) ropnroc, ) f(b1)g—1Ung f (br)-1 -

This is well defined independent of the choice of representatives (¢, b;) because, for
v € G(E) and h € Y1 G1(A™), we have

Label o(¢, g, f)(7" (61, b1)) = T/ M9 D Label o(¢, g, f)(¢1,b1)
and
Sh(1, f)OSh(Conjfybl(h)_la COHJQ) = Sh(conjf(fy)f(bl)g—l(gf(h)g_l)_1> Conjf(y))OSh(L f)-

We have Sh(1,1,1) = Id and Sh((¢', ¢, f') o (¢, g, f)) = Sh(¢', ¢, f') o Sh(e, g, f)
(where (¢, ¢, f') : (Ga,19,Cy,Us) — (G3,13,C3,Us)). To verify the latter suppose
that (¢1,b1) € Label ((G1, 11, C1). Then we have to verify that Sh(1, f5) o Sh(1, f1) =
Sh(1, f1f2) as maps

Sh(G17 w17 Cl7 Ul)(d)l,ln) — Sh(G37 w?ﬂ 03)U3,((f2°((f10¢1)¢))¢/)f2(f1(bl)fh_l)gQ_l)

= Sh(G3, 93, C3)us ((f20f1061)((f200)8),(F201)(b1) 92/ (91))~1)

which is clear.
If ¢ € Zallg(53(E/Q)a7 G(E))basim then

Sh(¢,1,1) : Sh(°G,Ylocap™*, C,U) — Sh(G, v, C,U)

has two-sided inverse Sh(¢™!,1,1) and so is an isomorphism.
If 2 € Z(G)(E) and v € U and h € YG(R) then we must show that

Sh(*1, 2 "uh, 1) : Sh(G,,C,U) —> Sh(G, v, C,U)

is the identity. First note that it is an isomorphism, because it has two-sided inverse
Sh(* "1, zu~*h~",1). Moreover its restriction to Sh(G, v, C,U) (g, p,) i

Sh(l, 1) : Sh(¢1G, Y(C)¢1G)b1Ubfl — Sh(¢1G, Y(C)qblG)blUbl—l = Sh(G,Qﬂ, C)U,(dnzl,blu_lz)-
Thus it suffices to check that
X pr,b1), (61 bru—1z) = Sh(conjzbl(u_l), conj,) = Sh(blu_lbl_l, 1)
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equals Sh(1,1) on Sh(*1G, Y (C)ora)p, b5 which it does.
The map
Sh(1,¢,1) : Sh(G,v,C,U) — Sh(G,¢,C, V)
equals
1T Sh(1,1) : Sh(G, 1, C, U)(g161) — Sh(G, %, C, V) (41 51g-1),
[(¢1 ,bl)}eLabel G(Gﬂ/J:C)/N

l.e.

H (O‘(¢1,b1g_1),(¢1,b1)08h(1? 1)) : Sh(G, 9, C, U)(¢1,b1) — Sh(G, ¢, C, V)(¢1,b1)’
[(¢1,b1)]€Label o(G,4,C) /~
ie.

11 (Sh(conjy, (9), 1) : Sh("' G, Y (C)or )yt — Sh(P G, Y (Cor )y
[(¢1,b1)]€Label o(G,%,C)/~
This is finite and faithfully flat of degree

L Vo7 Z(G)(Q) : bigUg ™07 ' Z(G)(Q)] = [VZ(G)(Q) : gUg™' Z(G)(Q))-

If V is sufficiently small, then so is b;Vb;' and so this map is etale. If moreover
U <V, then we also see that

Sh(1,1,1) : Sh(G, v, C,U) — Sh(G, %, C, V)

is Galois with group VZ(G)(Q)/UZ(G)(Q) acting via v — Sh(1,v,1).
Next suppose that 7 € Aut (C). We define

(®(7) : Sh(G, v, C, U) —s Sh(G,,7C,U))
= i1 seravela(@.c)/m | Pt (T:6,0) : TSh(G, 9, C,U)(gy ) — Sh(G, 9, 7C, U)(¢¢1,bb1)>
= H[(¢1,b1)]eLabelu(G,w,C)/N (I)E,cﬁ(Ta ¢,b) : TSh(d)lGaY(C)mG)blUb;l = Sh(¢¢1G7Y(TC)WIG)bblUbl’lb—l)
for any (7,¢,b) € Conj  o(**G,Y (C)e, ). Note that ™Y (C)eyq = YV (7C)ss, . To see

that this is independent of the choice of (7,¢,b) € Conj g (**G,Y (C)s,) we must
check that if v € G(E) and h € “*G(A™>), then

a(¢¢1,bbl),((7¢)¢1,’ybh_lbl) o (I)(T7 ¢a b) = (I)(7_7 ’y¢7 7bh_1)7
i.e. that
Sh(con, s, (b h™by), coni,) o B(r, 6,b) = B(r, 6, 1bh ™).

However both sides equals Sh(1, conj, ) o ®(7, ¢, b)o"Sh(h~*,1). It is also independent
of the choice of representatives (¢1,b;) because, if v € G(E) and h € YG(A*) then
(7, conj, & 6, con, (b)) € Con o G.Y (C)rors) and

®(7, conj, © ¢, conj, (b)) © Ty ,b1),(161,9b181) = Npr bb1),((coni,00) 161001 h—1) © P(T, B, D).
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To see this, note that (conj, o ¢)"¢; = 7(d¢1) and decode the equality to
(I)(T7 COIle/(b, f)/bfyil) © TSh(Conjwbl <h71)7 COIl_].,Y) = Sh<conj'ybb1 (hil)v COIlj,y) o (I)(T, (b’ b)u
which holds because
(7. coni, 6, 7y~1) o "Shiconi.y, (A, coni. )
= Sh(1,conj,) o ®(, ¢, b) o "Sh(conj,, (A1), 1)
= Sh(1,conj,) o Sh(conjy, (h™1),1) o (7, ¢,b)
= Sh(conj'ybbl (h‘_l)a conjw) o (I)(T7 ¢7 b)

We have ®(1) = Id and ®(7'7) = ®&(7') o " ®(7). The latter because if (7, ¢,b) €
Conj (1@, Y(C)‘fG) and (7/,¢,b) € Conj (?'G,Y ("C)es,q), then (7'7,¢'¢,b'b) €
Conj ("G, Y (C)s, ) and

O(7'7, ¢, b'b) = (7', ¢/, 1) o " D(7, p, b).

We must check that ®(7)o7Sh(¢, g, f) = Sh(¢, g, f)o®(7). Consider the restriction

of both sides to

TSh(Gl, ¢1, Cl, Ul)(¢1,b1) — TSh(d)lGl, Y(Cl)qslGl)blUlbl—l.
Choose (¢/,1') € Conj (**G1,Y (Ch)erg, ), so that (fod/, f(b')) € Conj (VG Y (Ca)ireonrs, )-

then we are required to check that
O(r, fo ¢, f(V)) oTSh(L, f) = Sh(1, f) o ®(7, ¢, V')
as maps
"Sh(?1Gy, Y(CDora)pvprr — Sh(UW PG, Y (Ch)sotwonnog, ) f(bbr)g-1Usgf (bbr) 1

= Sh(Ga, ¥, C2)us (fo(6/61))6,f (0b1)g~)-
This is true.
In the setting of part [[TT] we define

0+ Shp et (G, C,U) < Shy 4 (G, inf (1),C,U)

D/E,t

to be the disjoint union of the maps

~

ShE,a+ (G> % Ca U)(tb,b) — ShD,aJDr (G? infD/E,t<w)7 Cv U)(infD/E,t(¢)’V¢(t)b)
| |
Sh(¢G,Y(C)¢G)bUb—1 — Sh(lnfD/E,t(‘ﬁ)G,Y(C)infD/Eyt(@G>V¢(t)bUb—1V¢(t)—1).

(Recall that v4(t) € Z(YG)(Ag).) This is well defined because if v € G(FE) and
h € YG(A™), then
Q1 © Qg b),(V94bh 1) = Ainfy b 1().6(1)),(Y infg o (¢) e (t)bh~1) © Vit
as maps
Shp ot (G, 0, C,U)gy — Shp o+ (G, infp/pi(¥), C,U)gntp) 5, (06)0m (07001
= Shp o (G infp/pe(V), C,U) @ int ) s y(6), 06 (0)h1) -
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To see this note that the equality decodes to
Sh(conj.,(h)~", conj,) = Sh(conjwqb(t)b(h)_l, conj,)
as maps
Sh(‘bG, Y(C)og)ovo—r — Sh(7 infD/E’t((b)G» Y(C)”infD/E,t(wg)'yw(t)bh—lth—lw(t)‘lv—l)'
This is equivalent to the equality
Sh(bh™'b71, 1) = Sh(vy(t)bh b wy(t) 1)
as maps
Sh(®G,Y (C)e w1 — Sh(™ P2 DG Y (Cintyy) ) g (006~ URb 1w (1))

which is clear as v4(t) is central.
To see that a; is a natural isomorphism we must check that

Gt O ShE,a+<¢7 9, f) = ShD,aE <D1}1Eft<¢>7 V¢>(t)7lg7 f) © Q.

On Shg o+ (G1, %1, C1, Ut) (g, 5,) this equality becomes Sh(1, f) = Sh(1, f) as maps
Shp.a+ (G1,¥1, C1, Un) (g1,01) — Shipat (G2, %2, C2, Uz) (int ), ((£061)6) w0 fosy 10 (1) F(B1)g=1)

i.e. as maps from Sh(*'Gj, Y(C)org, )y pr B0

inf o
Sh(p/e TPy Y (Co)nt 5,101 o, v oy 10 (0 (51)g~ VU2 g0y (D (b1 )g 1)1

To verify that a;0®p o+ () = @ o+ (7)o, we must check that on "Shg o+ (G, 1, C, U) g, b1)
we have

(I)E,a"" (7—7 b, b) = (I)D,ug (7-7 Di}lEf,t b, V¢(t>b)
as maps

TShE,a* (G, 'QZ}7 Ca U)(¢1,b1) — ShD,aJ{) (G’ 77D7 TC’ U)(infD/E,t(¢¢l)’V¢¢1 (t)bb1)
= Shp o (G, infpypi(1),"CU) intp, .4 (6) inf .0 (61) w6 (Obvis, (b1):

i.e. as maps

Tsh(¢lG,Y(C>¢1G)b1Ub;1 _> Sh(infD/Eﬁt((ﬁ(bl)G;Y(Tc)infD/Eyt(¢¢1>G)V¢¢1 (t)bblUbflb_1V¢¢l(t)_1
Sh(fle’ Y (7C)os G)bblUbl—lbfl
Sh(lnfD/E't(¢)¢l G, Y(TC)inD/E,t(¢>¢1 G)u¢(t)bb1Ubl_1b*1u¢(t)*17

where (., 6,b) € Conj 154(*G. Y (C)er;). so that
(7-7 Dl/nEf't ¢7 V¢(t)b) € COHj D,ap (infD/E’t ¢1G? Y(C)i“fD/E,t 4>10)'

this is part @ of theorem
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To verify that v, 1y = awoay we must check that if (¢1,01) € Label g (G, 9, C,U),
then Oty () = Qi O (i A8 MAaps

ShE,u+ (Gv iﬂ, Ca U)(¢>1,b1)
— ShD’,uZ, (G, infD’/E,tnD/E(t’) ¥, C, U)(iﬂfD/
= ShD/J;/(G, iIlfD//Djt/ infD/EJQb,C, U)

/E,tnD/E(t/)(¢1)7V¢1 (tnpye'))b1)

(nfpr/p 4 infD/E,t(¢1)7VinfD/Eyt(¢1)(tl)V¢1 (t)b1)-

Note that inf?D//E,tﬂD/E(t') = inf?D,/Qt, Oinf?D/E,t and that 1OCctD infD/E,lf(qsl))|T2,D(AD) =
loca(¢1)|1, »(ap) © Mpye- This is equivalent to checking that the composite of the two
identity maps
Sh(” G, Y (C)or)eoniy, ()
inf
— Sh( D/Et¢1G Y(C>me/Et¢1G)COH‘]V¢ (t)bl( )

inf 5/ p t infp /gt $1
Sh(* G Y (Ot ¢1G>Con‘]"1nfD/E PNCTINOICY

equals the identity map
Sh(fmfG, Y(C)a G)conjb1 ()
— Sh("P D NG Y (O,

/E,tnD/E(t’)¢1G) OnJuqb (tnp/p) bl(U)

which of course it does.
If U is sufficiently small and (¢,b) € Label (G, 9, C), then we define a map of
complex analytic spaces

Top)  PGE)IN(Gpy(A®) /U x Y(C)og) — Sh(G, 4, C,U)(C)
(G, 1) = Sh(g=")?G(Q)(bgUg b1, ),

where
¢G(Q)(bfngfgv71b71, /L) € Sh(G, w, C, @’Uﬁfl)(@b) ((C) = Sh(¢G, Y(C)¢G)b§U§—1b—1 ((C)

Equivalently

= °G(Q)(bgUg~'b~", )
€ Sh(G, v, C,U)z-1(41)(C)
= Sh(¢G Y(C)¢G)bgUg—1b—1<C)'

To see it is well defined, suppose that v € °G(E)g and ady has a lift 7 € ?G(R), so
that i) (v™") = ("1, (b7'y'b,7~'7)). Then we must check that

Sh("1, (6719710, 7719), D)(°G(Q) (b0~ 4b)gUG " (b~ 4b) 16", conjs o 1))
equals (°G(Q)(bgUg*b~*, 1)) in Sh(G, v, C,U)(C). Here

*G(Q)(b(b~ yb)gUg (b~ yb) "o conjs o) € Sh(G, 1, C,b~ ' vbgUg o'y 71b) 4.4 (C)
= Sh(*°G,Y(C)sg)ygug-16-11-1(C).

T(g,b) @a M)
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The former expression equals
(*G(Q)(ybgUg b~ conjs o)) € Sh(G, ¥, C,gUG™") (294 (C)
Sh("?G. Y (C)roq)bgug-16-14-

so we must check that

Argm),(6) (CG(Q) (UG b1y, conjson)) = (PG(Q)(bgUG b, 1)) € Sh(G, 4, C,gUG ) (4 (C),
i.e. that

Sh(1, conj,—1)(*G(Q)(vbgUg "o~y conjz o 1)) = (*G(Q)(bgUG"b~", 1))
€ Sh(G ZZJ,O gUg 1) (¢,b) (C)
= Sh(¢G (C)¢G)bgUg p—1,
which is clear.

We next prove that (4 is an isomorphism. If we write

éE,w(AOO) = H[(Cmgz‘)]éE,w(Aoo)l

iel
then (by lemma
I — Label(G,¢,C)/ ~
and
$GE)F\(Grp(A%)/U X YV (C)ag)

\

= L, G (B)E\(Gp (%) feomi 1 (U) x Y (C)og)

= Lo ?G* (B)2\(*G* (E)2G(A™)/Z(G)(Q)conj, 1(U) xY(C)sc)

= L, *G@QN\(YG(A™)/conj 1 (U) x YV (C)sg)-
The map 745 sends

[(geonj, +(U), )] € *GQ\(YG(A®) /conj,+(U) x ¥ (C)ec)

to a point in
Sh([(¢" 99 ) T'SK(G, ¥, C, 99 Ugig " )6,0)(C) = Sh(G, %, C,U)(¢45g9-1(C)

Sh(G, ¥, C, U)(Q(j),bg[l(giggfl))(c)
= Sh(G,%,C,U) ¢.p.0671(C):

Thus 744 is a disjoint union of maps
*GQ\(YG(A™)/conj,-+(U) x Y(C)ag) — Sh(G, 1, C,U) 4451 (C),
given by

(ge0miy () 19) = conr s SUG 007 )G @) b Vg7
Sh(conjy,1(g:9 " g; 1)) (°G(Q)(bgg; ' Ugig™'b~", 1))
*G(Q)((bgd™")bg; ' Ugib™", p),
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where in the first line
*G(Q)(bgg; 'Ugig™'b™", 1) € SW(G, ¥, C, 99, ' Ugig ) (6)(C) = Sh(®G, Y (C)6)yq117gig-15-1(C)
and in the second line
*G(Q)(bgg; 'Ugig b, ) € Sh(G, ¢, C,U),, ppag(C) = Sh(*G, Y(C)s6)ngg-10gig-15-1(C)
and in the third line
*G(Q)((bgb™bg; Ugib™ 1) € Sh(G, 1, C.U) g1 (C) = ShG, Y (Cho)g- 17901 (C):
Thus
Tow) + “GQN(YG(AZ) [conj,1(U) x Y(C)og) — *G(Q\(*G(A%)/conjy,-1(U) x Y(C)eg)
- Sh<¢G7Y(C)¢G)bgi_1Ugib*1((C)7
where the first map is conjugation by b. We conclude that m ;) is indeed an isomor-

phism.
To verify [L0] note that both sides equal

Sh(g1)Sh(g; )?G(Q)(bg2Ugy 'b~", 11) = Sh(919; 1) °G(Q) (bgagy ' (1UG; )15 "0~ 1)
where
¢G(Q)(b§2U§;16717 M) < Sh(Ga W Ca §2U§;1>(¢7b) ((C) = Sh(¢G7 Y<C>¢G>b§2U§2_1b*1 ((C)

To verify |11 we may (using part suppose that g = 1. In this case left hand side
is represented by
’Y¢G(Q) (’ybUb_lfy_la COHj’y(M)) < Sh(g, w7 CJ U)('Y(ﬁ,’yb) (C)
= Sh( ¢G7 Y(C)7¢G>7bUb*1”F1 (C)a
while the right hand side is represented by
*GQOUb, ) € Sh(G,,C,U)y(C)
- Sh(¢G, Y(C)¢G)bUb*1 ((C)
Thus we need to verify that
Sh(1, conj, ) (*GQBUb ) = "*GQ)(BUby ", coni, (1))
€ Sh( ¢G, Y(O)"/¢G),th—1th—1,y—1(C),
which is clear.

To verify property (12| we may (using part assume that go = 1 and that g; =
[(¢,g)]- In this case the left hand side is represented by

“CGQ)((bg)gUg H(bg™") ") € Sh(G,9,C.U)g15, (6 (C)
= Sh(d)G Y(C)¢’G)bUb 1.
This equals
*G(Q)(bUbL ™, ) € Sh(G, ¢, C,U)un(C)
= Sh(°G,Y(C)eq)prp-1,
which represents the right hand side.
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To verify the first half of property [13| note that the left hand side is represented by
the image under Sh(¢, g, f) of

CING(Q)(bikUK T ) € Sh((ﬁ,%,chU1)(cfl¢1,b1k)((:)
= Sh(< ¢1G1>Y(Cl)<*1¢1cl)b1kU1k—1b;1>

i.e. by

FUICTOI8G(Q)(f(bik) g Ung f(bik) Y, f(1)) € Sh(GQﬁ/)za027U2)(f(<*1¢1)¢,f(blk)g*1)((C)
= Sh(f(( ¢1)¢G27Y(CQ)f(C_1¢1)¢G2)f(blk‘)g_lUQQf(blk)_l

which also represents the right hand side. In the case that [(¢, k)] € Ggy(A%);, this
also equals

FUCGQ)(f(01)g (g.f (k)g™)Ua(gf (k)g™) g f (b) ", F (1))
€ Sh(Ga, ¥2, Gy, Ua)g, o @y-1(5(on)6.fbn)g—1) (C)
= Sh(f@V2Gy, Y (Ca)senreqs,) f(brk)g-1Ungfbrk) 1

~ o~

which is just m(r(g1)6,£01)g-1) (B9, (K), f o 1)]), as desired.
To verify property it suffices (by part to treat the case ¢ = 1. Then

T (1, 1) is represented by T(Q)(U,pn) € Sh(T,{p})v = Sh(T,v,{u},U) @y and
O(7) o T oM (1, 1) is represented by

(T(QU, ")) € SW(T, 0, {}, U) s, 0,5y = SWT, {7} )

This equals 7(g, 65,5 (1, "14).
To verify property it suffices (by part to show that

Q¢ 0 TrE,aJr%Pv((ﬁzb)(l’ /‘L> = 71-D,aj:r);p,infD/E,t((j),b)(17 ,LL)
However both sides are represented by

infD/E,t(¢)G(@) (bUb_1’ p) € ShD,ag (G, 9, C, U)(infD/E’t(qb)’qu(t)b) (C)
= Sh(lnfD/E,t(¢)G, Y(C)infD/E,t(¢)G)u¢(t)bUb—1u¢(t)—1-

4.5. The general case. First suppose that L is a number field embeddable into F.
If p: L < C then for any 7 € Aut (C/pL) we have

(1) : "SW(G, ,”C, U) > Sh(G,v,"C, U),

and these maps provide descent data, i.e. ®(mm) = ®(7y) 0 " ®(1y) for all 7,7 €
Aut (C/pL). Note that the automorphism group of Sh(G,,?C,U)(C) is finite and
that, by corollary [4.4] the set of C points of Sh(G,,*C,U) with finite orbit under
{®(r)or: 7€ Aut(C/L)} is Zariski dense. It follows from corollary 1.2 of [Mi2]
there is a unique model Shy, ,(G,v,C,U)/L of Sh(G,v,C,U) over L (with respect
to p). (Note that if z € C is fixed by a finite index subgroup of Aut (C), then z is
algebraic.)

The maps Sh(¢, g, f) and «; commute with ®(7) for 7 € Aut (C/pL) and so descend

to maps Shy, ,(¢, g, f) and «y, ,;. These satisfy properties , , , , , , @ and @
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If p) : L' - Cand 7:L — L' then we can find 7 € Aut (C) with with p'T = 7p.
The element 7 is not unique, but the coset Aut (C/p'L)7 is. Then

®(7) : "Sh(G,v,”C,U) = Sh(G,,”7C,U)
descends to
(7)), : "Shy (G, v, C,U) — Shy (G, v, 7C,U)
over L'. We have the following observations

e &(7),, : ToShy, = Shy/, o7 is a natural isomorphism. It commutes with
the Q.

o O(7)y 0T V(T = P(T'T) -

o If I/ =L and 7 € Aut (C/pL) then ®(7), , is the identity. (This follows from
the definition of Sh(G,v,?C,U),.)

e ®(7),, depends only on the coset Aut (C/p'L)7, and so we unambiguously
may denote it ®(7), .

Using ®(1), , we can identify Shy, , with Shy ,. These identifications are compatible
in triples. By Shy, we shall mean any of the Shy, , identified in this way. If 7: L1 — Lo
and p;, pi : L — C then

‘b(l)pz,p’g 0 D(T)py,00 = Q)(T)pﬁ,pé © (I)(l)m,p’l'

Thus we get a well defined natural isomorphism
CI)(T) . ShL L) ShL/.

It is easy to check that these satisfy parts[7] and [§]

Finally we treat the case of a general field L of characteristic 0. Any subfield L, of L
embeddable into F will be contained in KN L. Thus, if ¢, : ENL < L is the natural
inclusion, then RSD(vr) : RSD(E,a; EN L) — RSD(E,a; L) is an isomorphism of
categories (i.e. a functor which is bijective on objects and morphisms). We define
Shp o+, =t 0 Shg gt.prr ©RSD(e) ™ If 7: L — L' then 7(ENL) C ENL and we
define ®p 4+ (7) by

q)E,an (T) Ol = LL’(I)E,an (T|EQL).
We also define oy by
QpOlp =L ©Qg 0L,

where ¢ : EN L — DN L is the natural embedding. It is straight forward that all the
properties of the theorem are satisfied and that this last definition coincides with the

ones already made for C and for number fields embeddable into F.
This completes the proof of theorem [4.3]
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4.6. Local systems. If U C Z(G)(A*) is an open compact subgroup we will write
Z(@)}; for the Zariski closure of Z(G)(Q) N U. Moreover write

=z

It is a torus, (Z(G))° = Z(G)! for any U, and there exists U with Z(G)' = Z(G)},.
If V' is a sufficiently small open compact subgroup of G(A*) we will call it more
sufficiently small it Z(G)' = Z(G)ynzq)@a=)- Moreover if Z(G)(Q) denotes the
closure of Z(G)(Q) in Z(G)(A>) we have

(
Z2(G)(Q) = 2(G)(Q)NUZ(G)Q) = Z2(G)(Q)'Z(G)(Q)
(because Z(G)(A>)/(U N Z(G)(A>)) is discrete).

Suppose that (G,¢,C,U) € RSD(F,a;L) is a rational Shimura datum with U
more sufficiently small. Suppose moreover that W /A is a finite free module and
that r : YG/Z(G)! — GL(W) over A is a representation. As V runs over normal
open subgroups of U we have continuous homomorphisms

limy Gal (Sh(G,¢,C,V)/Sh(G,¢,C,U)) = U/(Z(G)(Q)NU)
— (YG/Z(G)")(A%)
s GL(W)(A>).
Thus we obtain a lisse etale A*-sheaf W,./Sh(G,¢,C,U). The map (W, r) — W,
extends to an exact A®-linear tensor functor. In particular if g € YG(A>), then
r(g)~" - (W,roconj,) = (W,r) induces an isomorphism

-1 . ~
g . Wroconjg > W»,-.

If (¢,9,f) : (G1,¢1,C1,Uy) = (Ga2,12,Ca, Us) is a morphism in RSD(E, a; L) and
if (Wy,7y) is a representation of ¥2G5 on a finite free A*-module, then 7 o conj gof
is a representation of ¥'G on Wy. Moreover

Sh((b? g, f)*WT‘2 = Wrgoconjgof-

Suppose that ((,g) € éij(Aoo), (G,v,C,U) € RSD(F,a;L) and (W ,r) is a
representation of YG over A®. Set

W ={wecWaxgE: '®w=/_(0)"w Vo cGal(E/Q)} =r(9)"'W,
a finite free A*°-module. Then r gives a map
VG — GL(*W /A™)
over A*® which we will denote ¢r. Then we get a ¥G-equivariant map
r(g)"": (W,roconj,) — (r(g)”'W,r) = (‘W,r),

and hence a map

“1:Sh(¢, 9)* Wy — W,
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This in turn gives
g_l : Sh(Cag)*(Wr ®qQ E) — (Wr ®qQ E)

For the rest of this section suppose that L = C. We will write W2 for the locally
constant sheaf of A*-modules on Sh(G, v, C,U)(C) corresponding to W,.
We define

Label g (G, ¢, C, W ,r) = Label (G, ¢, C, W, )

to be the set of tuples (¢, b, W, r, «), where (¢, b) € Label .(G, ¥, C), where W/Q is a
vector space, r : °G — GL(W/Q) is a representation defined over Q and

a:W®gA™® — W
over A* such that
r o conj, ' = conj, or.

This set may be empty. If it is non-empty, we will call r rationalizable.
If (¢,b) € Label 4(G,,C), if r is a representation of G on a Q-vector space W,
and if ¢ € Z'(Gal (E/Q), Z(G)(E)), then we set

W={weW®aqgFE: ®w=(_(c)'w Vo € Gal (E/Q)}.

It is preserved by the action of *G' (via r). If v € °G(E)E and iep)(7) = (¢, g), then
r(y)W =W,

We will call two elements (¢, b, W, r, «) and~(¢’, b, W' r' o) € Label (G, ¢, C, W )
equivalent if there exists (6, (n, h)) € G(E) x G,,(A*>) and an isomorphism 3 : "W =
W' of Q-vector spaces, such that

o (¢/,0) = 0 (6, b) = (Pdm, 6bh™),
e and aor(bh>*b™) =d' o f.
This implies that

e Bor(y)=r'(v6"1) o .
If ((&', (', k'), B") also exhibits the equivalence of (¢, b, W,r, ) and (¢, 0/, W' 1’ a/),
then 61" € *G(E)g and (', 1) = (0, h)ip(0710") and ' = Bor(s~1¥").
Write Z(r) for the centralizer in GL(W') of r. The set Label (G, 1, C, W, r) has
an action of Z(r)(A>) via

2(6,0,W,7,0) = (6,5, W,r,z0 ).

This action preserves the equivalence relation ~ and so descends to an action on
Label (G, v, C, W r)/ ~.

Lemma 4.5. (1) The action of Z(r) on Label (G, 1, C, W 1)/ ~ is transitive.
(2) The stabilizer in Z(r) of [(¢,b, W, r, )] € Label (G, v, C, W r)/ ~ isconj,(Z(r)),
where Z(r) denotes the centralizer in GL(W') of r.
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Proof: For the first part note that, as the action of G(E)x éw (A*>) on Label (G, 9, C)
is transitive, it suffices to show that if (¢, b, W,r, ) and (¢,b, W’ ', a/) are in the
set Label (G, 1, C, W, r) then there is an isomorphism § : W = W’ such that
conjgor = r’. To see such a 8 exists chose an isomorphism of Q-vector spaces
f: W' S W and look at the Q-vector space H = Hom o (W, W') together with the
polynomial function h — det(f o h). As the polynomial function does not vanish
identically on H ®g A, it is not the zero polynomial and hence does not vanish
identically on Q, as desired.

For the second part, if (6, (n, h)), 8) exhibits an equivalence between (¢, b, W, r, «)
and (¢,b,W,r, za), then § € *G(E)g and (n,h) = iy (0) and B : r(0)"'W = W
(ie. Br(0)~t € Z(r)) and aor(d) = zoao B3, ie. z = conj,(r(0)371), as desired. OJ

If (0,0, W,r,a) ~ (¢, b/, W’ 1" ) and this equivalence is exhibited by ((d, (n, h)), B)
the conjs : Z(r) = Z(r'). This isomprphism does not depend on the choice of
((0,(n,h)), ). Thus if A € we may write without ambiguity Z(\) for Z(r) for any
(o, b, W,r,ax) € A

Construction Summary. Suppose that r is rationalizable and X € Label (G, ¢, C, W r)/ ~.
Then there is a canonically defined locally constant sheaf of Q-modules Wi\ on
Sh(G, vy, C,U)(C) together with

e an isomorphism ay : Wy @9 A® = W,.; '

e a decreasing (exhaustive and separating) filtration Fil* on WrA®qOsh(a,p,c0)(c)
satisfying Griffiths transversality (i.e. (1 ® d)Fil'W, ®q Osh(a,p,0,0y @) C
Fil"™'W, ®q Qéh(GW’C’U)(C)), which makes (W,., {Fil'}) a variation of Hodge
structures with W, ®q R is polarizable.

Given A € Label g (G, v, C,W.r)/ ~ and z € Z(r) there is a unique isomorphism
Wi, {FiL}) = Wpoa, {FiL })

such that
Wr,)\ = Wr,z/\
&/\ \L \l/ &z)\
W, = W,

commutes. (However the choice of z taking X to N = z\ is not unique.) Thus W, is
independent of X, but only up to an isomorphism that is unique only up to composition
with an element of Z(\).

To carry out this construction we must first give a more direct description of Wi,
Lemma 4.6. ‘bG(E)%\(éw(AM)/Z(G)l(Q) x Y (C)sg) maps homeomorphically to
lim “G(E)2\(Gy (A%)/V x ¥ (C)ec).
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Proof: Note that
PGE)R\(Gy(A™) [V X Y (C)eg) = *G(E)Z\(Gy(A™)/Z([G)HQ)V x Y (C)sg),

so the map is well defined. It is continuous, and open by the definitions of the quotient
and inverse image topologies. It is clearly surjective, so we need only check it is
injective. So suppose that [(g1, 1)) and [(ga, po)] € *G(E)F\(Gy(A%)/Z(G)(Q) %
Y (C)se) have the same image in *G(FE )Q\(Gw(A‘X’)/V X Y (C)eg). We must show
that [(g1, 111)] = [(g2, 112)]. As they become equal in *G(E)2\(Gy(A®)/U x Y (C)s )
then we can find y € *G(E)E and u € U with (ygiu, yu1) = (g, p2). If 7 € *G(E)2
and v/ € U also have this property then v+ € *G(E)E N U fixes

muy. As U is sufficiently small we deduce that v~ 1" € Z(G)(E)NU = Z(G)(Q)NU.

Thus for any open subgroup V' C U we have (voygivy,vu1) = (go, o) for some
dy € Z(G)(Q) and vy € V so that

g €[N Z2(@QV = Z(G)(Q) = Z(G)H(Q)Z(G)(Q).

The result follows. [
As a consequence we see that, if (¢,b) € Label o(G, 9, C'), then we have

WwWm(Q) =A{f: Q — W : f continuous, and f(zu™") =r(u)f(z) Vu e U, z € Q},

where Q denotes the preimage of W@l’b)ﬂ C ‘z’G(E)%\(éw(AOO)/U X Y (C)sq) in the

space *G(E)E\(Gy(A%)/Z(G)H(Q) x Y(C)sg)- If (8, (n,h)) € G(E) x Gy(A™) then

7r(6177 M) = ((n,h),conj(;)ﬂ(_d)l’b), and so the descriptions of W*(Q)) for (¢,b) and

@:mh) (4, b) are related by the identification of
{f:Q— W f continuous, and f(zu"') = r(u)f(z) Vu e U, = € Q}

with

{f": ((n, k), conjs)Q — W : f' continuous, and f'(yu=?) = r(u)f'(y) Yu € U,

y € (1, h), conj;)Q2}
via
'(y) = f((n,h), conjs)~"y).

Lemma 4.7. If (¢,b) € Label .(G,v,C), then we have a description of YW, given by

W (Q) = {F:Q — W ®q E : F locally constant;: and F(((, g), ) € C_IW,
and Fi((io (), coni, )z) = (b8 F(z) ¥ € *G(E)S, = € ),

with the obuvious restriction maps, where Q denotes the e preimage of

T C CGE)R\(Gy(A®)[UXY (C)og) in the space Gy(A%)[Z(G)HQ)U XY (C)eg
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If instead we use > (p,b) we have

W (Q) = {F" : ((n, h), conj;)Qt = W ®¢q E : F' locally constant; and
F'((C.9) 1) € T(Q)W =< W
and F'((is)(v),conf, ) = r(b- ') F'(x) ¥y € *G(E)g, & € 0},

The canonical identification of these two sets is via:
F'(y) = r(h>)F((n, h), conjs)""y).
Proof: We first reinterpret our first description of Wi™ as

Wen(Q) = {f: ' — W : f continuous; and f((igp) (), conj )zu™t) = r(u) f ( )
Vu e Z(G)(Q)U, v € °G(E)F, = € %},
where now ' is the preimage of W’d)lb Q C2G(E)A\(Gy(A®) /U x Y(C)o) in

é¢(A°°) x Y (C)sg. Using instead M) (g, b) we have

Wen(Q) = {f: (n, h), conj;) > W . f’ continuous; and
S (((n, h)igsp (5 '98)(n, ) =", conj Jyu~t) = r(u )f’g )
Vu € Z(G)I(Q)U, V€ 6¢”G(E)%, y € ((n, h), conjs)Q2},
le.
wWen(Q) = {f': (n, h), conjs)¥ — W : f continuous; and
F(((1, 1), conjg) (i) () (igp) (), conj,, ) ((n, h)conjs) ~tyu™") = r(u) f'(y)
Vu € Z( HQU, v € °G(E)g, y € ((n,h), conjs)2}.
The canonical identification of these two descriptions is via
f'(y) = f((n, ), conjs)~"y).
Writing
Fp (€, 9), 1) = 7(g7) F((C, 9)s 1)
we get an identification
W (Q) = {F:Q — W ®q¢ E : F continuous; and F((C,g), ) € r(g)W ='W,
and F((igps)(7), coni, }2) = (b~ "B F(x) ¥ € *G(E), € ),
where now  is the preimage of 7 ¢b)Q C ?°G(E)Q\(Gy(A®)/U x Y(C)se) in the
space Gy (A®)/Z(G)(Q)U x Y (C)og. Similarly using @) (¢, b) we have
W (Q) = {F": ((n, h), conj;)Qt — W ®¢ E : F’ continuous; and
F'((¢,9),1) € T(Q)W ='W,
and F'((i(s)(7), conj,)z) = 7(b~'9b) F'(x) ¥y € *G(E)§, = € Q}.

The canonical identification of these two sets is via:

F'(y) = r(h*)F((n, h), conjs)~'y).
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Because é¢(A°°)/Z(G)1(Q)U X Y (C)sg is locally connected the lemma follows. [

Now suppose that (¢, b, W, r, «) € Label (G, v, C, W r). We define a locally con-
stant sheaf W45 w,ra) on Sh(G, 4, C,U) by

Wippwira)(2) = {F: Q — W @g E : Flocally constant; and F((¢,g), ) € < W,
and F(iou) (), con,)z) = r()F(z) ¥ € °G(E)S, x € 0},

where Q is the preimage of w@lb)ﬂ C PG(E)2\(Gy(A®) /U x Y (C)s) in the space
éd,(A‘X’)/Z(G)l(Q)U X Y(C)sg. The map F +— « o F' gives an isomorphism
A(ppWira)  WiobWira) @ AT — W,
We must analyze how this construction depends on (¢, b, W, r, ). We claim that if

(¢, 0, W' 1" &) ~ (¢,b, W, r, zar), then there is a (necessarilly unique) isomorphism
W(¢,b,W,r,a) = W(¢’,b’,W’,T’,a’) such that

Wipwra) = Wiy wir o)
A(gbWira) + b Qg Wt o)

W, = W,

commutes. Indeed if the equivalence of (¢, b, W, r, za)) and (¢, b, W' r', o') are equiva-
lent, and this equivalence is instanced by ((9, (n, h)), 5) then we define an isomorphism
between W(d),b,I/V,r,a) and W(d)’,b’,W’,r’,a’) by identifying

Wi bwira) () = {F: Q=W ®qg E : F locally constant; and F((¢,g),u) € 4_111/;
and F((igss)(7), coni, )2) = r(1)F(z) ¥y € *G(E)S, « € 0}
with
Wi v wr o () = {F' ((n, h), conjs) 2 — W’ ®q E : F' locally constant; and
F'((¢,g), 1) €W’ and
F'(((n, h)iggpy(0~10)(n, h) ™1, conj ) ((n, h), conjg)z) = '(7) F'(((n, h), conjs) )
Vy € MG(E)E, » € 0,
ie.
Wi v wrw,an () = {F' ((n,h),conj5)§ — W' ®q E : F'locally constant; and
F'((¢,9).p) € "W'; and
F'(((n, k), conjs ) (is) (7), conj, )x) = r' (076~ F'(((n, h), conjs)z)

vy € *G(E)E, © € Q},
via
F/(((nu h’)a COHj(g)I> - ﬂ o F(I’)
Using lemma [4.7], it is easy to check that this identification makes the desired diagram
commute.
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Associated to W, we have a locally free sheaf of Ogy(q,y,c,v)(c)-modules with con-
nection

Wr @ Osn(cuw,cu)c), 1 ® d).
Here Ogp(c,p,0,0)(c) denotes the sheaf of analytic functions on Sh(G, ¢, C,U)(C). Sim-
ilarly for W5, w,r,a)- We have

(Wipp,Wyr.a) ®q Oshc,w,cuy©)(2) = {F Q- (W ®q E) ®q C: F holomorphic; and
F((¢,9),m) €W g C; and F((igy (7). conj,)x) = r(v)F(z) ¥y € °G(E)g, = € Q},
where Q is the preimage of 7r(_¢ib)Q C ‘z’G(E)%\(@p(A“’)/U X Y (C)sq) in the space
Gy(A%)/Z(G)HQ)U x Y (C)og-
If p € Y(C)og and (¢, b, W,r, ) € Label o(G, 1), C, W, r) and ¢ € Z'(Gal (E/Q), Z(G))
we define a filtration Fil (4}, .. ), o0 ‘W ®q C by setting

Fll ’é(ﬁ,b,W,T,OL),,LLCW ®Q C

to be the sum of the j weight spaces for r o u for j < —i. If ((6,(n, h)), ) establishes
an equivalence between (¢, b, W,r, a) and (¢, 0, W' ', a/), then
BFll fé(b,b,W,r,a),uCW ®Q C=Fi féd)’,b’,W’,r’,a’),conjéo,u,CW ®Q C.
We define
Fili(W(¢7b7W7r,a) ®q Osh(c,uw,cu)©) () = {F : Q— (W ®q F) ®gp C : F holomorphic; and
F((ga g)a ,u) € Fil Z('¢,b,W,r,oz),u<_lVV ®Q (C; E}Vnd
Fl(io(7)s conj,)a) = r()F(x) ¥ € *G(E)S, o € O},
We see immediately that this filtration is preserved under the canonical identifica-
tion of Wb wira) and Wiy w s o1y and so we get a canonical decreasing filtration
Fil"OVr x ®g Osw(,p,c,0) ) on Wex @q Osnu,cuyc)- We claim that this defines
a variation of rational Hodge structures, with the associated variation of real Hodge
structures polarizable. Indeed this question is local and so reduces to the correspond-
ing question for Y (C)sg, where it is part of proposition 1.1.14 of [D2]. Finally, if

z € Z(r), then the identifications of W, , and W,. ., preserve these filtrations. Thus
we have completed the advertised construction.
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5. RELATIONSHIP BETWEEN RATIONAL SHIMURA VARIETIES AND SOME MODULI
PROBLEMS FOR ABELIAN VARIETIES

At the suggestion of Pol van Hoften we explain the connection between certain mod-
uli problems for abelian varieties with polarizations and endomorphisms considered
by Kottwitz and special cases of our rational Shimura varieties.

Following Kottwitz [K1] considers tuples (which we will call ‘PEL data’)

(B7 *7 V? ( ) )7 h)
where:

e B is a finite dimensional simple Q-algebra.
e x is a positive involution on B.
e I/ is a finitely generated left B-module.
e (, ):VxV — Qis anon-degenerate alternating form such that (bx,y) =
(z,b*y) for all b€ B and z,y € V.
e h:C — Endp(V) ®g R is a map of R-algebras such that
— (h(2)x,y) = (z,h(°2)y) for all z € C and 2,y € V ®g R
— and the (necessarily) symmetric R-bilinear form ( , (i) ) on V ®qg R is
positive definite.

Then V®@oC =V, &V, where h(2) ® 1 =1®zon V; and h(z) @1 =1®°zon V,
for all z € C. Note that Vi and V. are isotropic, and dual to each other under ( , ).
Kottwitz defines the ‘reflex field” L(B,*,V,( , ),h) C C to be the field of definition
of the isomorphism class of the B representation V. He also defines a not necessarily
connected reductive group G' = G (p,.v,( , ),») over Q of B-linear automorphisms of V'
which preserve ( , ) up to a scalar multiple. Thus there is a character v : G — G,
defined over Q such that (gz,gy) = v(g)(x,y). We can define wt, u, € X,(G)(C)
by requiring that wt(z) acts by z on V', while py(z) acts by z on V; and by 1 on
V.. Then wt is defined over Q and the geometric conjugacy class [up]g is defined
over L(B,*,V,(, ),h). (To see this suppose o € Aut (C/L(B,*,V,( , ),h)). Then
Ty acts as z on '®7V) and as 1 on '®9V,. By definition there is a B ®¢g C-linear
isomorphism f: Vi = 17V, Then f @ (V)™ : V ®oC = V ®q C is B ®q C-linear,
preserves (, ) and takes V; to ®9V} and V, to '®7V,. Thus f @ (fV)~! € G(C) and
7l = CONJ g pvy-1 O fin, as desired.)

If U ¢ G(A>) Kottwitz further considers the moduli problem on locally noetherian
L(B,*,V,( , ),h)-schemes, which sends S to the set of equivalence classes of 4-tuples
(A, A\, i, [n]), where

e A/S is an abelian scheme of dimension (1/2)dimg V/,
e \: A— AYis a polarization,
e i: B End(A/S) ®z Q such that

tr (i(0)|Liea) = tr (0@ V)|vy) € L(B,x, V. (, ),h)
for all b € B,
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e and [n] is a U-level structure on (A, \, 7).

If S is connected and s is a geometric point of S, then by a U-level structure on
(A, A, i) we mean a (S, s)-invariant U-orbit [n] of (B ®g A>)-linear isomorphisms 7
from V ®g A™ to the A*-Tate module of A; which takes ( , ) to an (A*)* multiple
of the A-Weil pairing. (Note that the pairing ( , ) is valued in A*°, while the A\-Weil
pairing is valued in A*(1), but since we are only requiring one pairing to match
with the other up to (A*)*-multiples, it doesn’t matter how we identify A* and
A>(1).) This is canonically independent of the choice of geometric point s. If S is
simply locally noetherian, then it is the disjoint union of its connected components
and by a U-level structure on (A, \,4)/S, we mean the choice of one on each connected
component of S.

We consider two 4-tuples (A, A, 4, [n]) and (A, X', ', []) equivalent if there is a B-
linear isogeny 3 : A — A’ such that p.[n] =[] and N o = 0 ¥ o A for some
7 € Q%

Kottwitz explains that if U is sufficiently small then this moduli problem is repre-
sented by a smooth quasi-projective scheme 7 : Ay — Sy = S(B,*,V,( , ),h)y over
the field L(B,*,V,( , ),h). If g € G(A*) and gU’g~' C U then there is a finite etale
map g : Syr — Sy coming from the U structure on (A"Y, \Univ univ) /G, oiven as the
U orbit of n™V o g1, (Kottwitz actually works over a localization of Orp v, ).n);
and this required him to replace our ‘trace condition’ with a ‘determinant condition’.
However his stronger results easily implies the results recalled here.)

If (A, A4, [n]) is a tuple representing a point of Sy (C) then we may associate to it
a tuple (H'(A(C),Q), ( , ), Fil 'H'(A(C), Q) g C, [1"]), where

e H'(A(C),Q) is a finitely generated right B-module;
e (, ), is the \-Weil pairing

H'(A(C),Q) x H'(A(C), Q) — (2mi)~'Q

which is a non-degenerate alternating pairing satisfying (zb,y), = (z,yb*),)
forall be B and x,y € H;

e Fil' H'(A(C),Q) ®q C is a maximal isotropic B-invariant subspace such that
(Fil'HY(A(C),Q) ®¢ C) N ¢(Fil'H'(A(C),Q) ®g C) = (0) and there is an
isomorphism of B ®¢ C modules V}Y = Fil' H!(A(C), Q) ®¢ C;

o if (| >X,gr_1 is the R-valued, R-bilinear pairing on

(Fil'H'(A(C),Q) ®g C)" = (H'(A(C),Q)" ®q C)/Fil'(H'(A(C),Q) ®g C)*

induced by H'(A(C),Q)Y ®g R = (Fil'H'(A(C),Q)¢)Y and ((27i)( , )a)Y,
then the necessarily symmetric pairing ( )X g1 1S positive definite;

~

e V"1 is a U-orbit of B ®g A*™-linear isomorphisms 7""~! : V¥ ®@g A® =
Fil'H'(A(C),Q) ®g A taking ( , )V to ( , ) for some A linear identifi-
cation A® = (27i)"tA>.
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We will write G, = (##n) " (-1 G, which is compact mod centre, and let C be
the Gc-conjugacy class of y,. Then Y(C)g = [pun]am). We will also write Gr for
the Grassmannian of maximal B-invariant isotropic subspaces W C V'V such that
W = V)Y as B-modules. Then Gr = G/Stabg((VY ®g C)#(-D="1) = G/P, . (Note
that pn(—1) = —1 is equivalent to ux(z) = 27! for all z € Z*.) Thus there is a
natural embedding

Y(C)g — Gr(C)
sending y to (VY ®g C)*=Y="1. The map is a biholomorphic isomorphism of Y (C)q
with an open subset of Gr(C).

The centre Z(B) of B is a CM (possibly totally real) field with maximum totally
real subfield Z(B)*. Set d = [Z(B)" : Q]. We have BRgR 2 M,,,,(C)? or M, (R)?
or M, /gxn/g(H)d, where H denotes the Hamiltonian quaternions. These are referred
to as cases A, C and D respectively. For the rest of this section we assume we are in
case A or C, but not D. This ensures that G is connected. (See section 5 of [K1J.)

Choose a finite Galois extension F/Q which is acceptable for F, and an ele-
ment at € H(E/Q)T. Also choose an infinite place w,, of F and a section s :

{1, e }\Gal (E/Q) — E°(E/Q)woq- Define t,, € Zallg(WEwoo/RJ? G(FEyw..)) by
ww00|E1>§oo = wt

and

Then define 1, € Z;lg(SIOC(E/Q)OO,a, G(FEx)) by

Veo(0) = 11 $(7) ", (s(1)as(ra) ™)
r€{1,cu, }\Gal (E/Q)
and
¥ = (1,40) € 23, (E°°(E/Q)a, G(AR)).
Then
(G, 9, [, U) € RSD(E, a; L(B,*,V,( , ),h)).

Note that (1,1) € Label o(G, v, [u]c). Write 7 for the representation of ¥G on VV ®q
A*>. Tt is rationalizable. (By the representation r of G on VV.)
In the rest of this section we will prove the following theorem.

Theorem 5.1. Suppose that (B,*,V,( , ),h) is PEL data of type A or C. Let G/Q
be the reductive group defined above and U C G(A>) be a sufficiently small open
compact subgroup. Choose E/Q acceptable for G and a™ € H(E/Q)*. Let

(G, ¢, [u]e,U) € RSD(E, a; C)
be as defined above. Then there is an isomorphism

8(37*"/’( ) )vh)U L) Sh(Gawa [:U’IZILU)
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(of varieties over C). If (A, \,i,m) maps to y then there is an isomorphism of Hodge
structures

(H'(A,Q),Fil'Fil'H' (A(C), Q) ®¢ C) & (W,,, Fil'W,., ®q C).

It should be routine to extend this theorem to an isomorphism of varieties over
L(B,*,V,(, ),h) by keeping track of what happens at CM points, but we have
not carried out this exercise. The strategy of the proof will first be to exhibit a
bijection of C-points, then show the map is holomorphic and deduce from [B2] that
it is isomorphism of varieties.

Consider the set LAD (B, ,V,( , ),h)y of tuples

where

e H is a finitely generated right B-module;

e (, )g: HxH — (2ri)~'Q is a non-degenerate alternating form such that
(xb,y) g = (x,yb*)y for all b € B and x,y € H;

e Fil'(H ®y C) C (H ®g C) is a maximal isotropic B-invariant subspace such
that Fil'(H ®g C) N'®°Fil'(H ®¢ C) = (0) and such that there is an isomor-
phism of B ®¢ C-modules V}Y = Fil'(H ®¢ C);

o if (1, )i -1 is the R-valued, R-bilinear pairing on (Fil'He)Y = (HY ®q
C)/Fil'(H ®g C)* induced by HY ®g R = (Fil'He)Y and ((27i)( , )u)Y,
then the necessarily symmetric pairing (i )Y{,gr—l is positive definite;

e [ny] is a U-orbit of B ®gA*-linear isomorphisms 7 : VY ®gA® = H Qg A>®
taking ( , )V to (, )y for some A™ linear identification A* = (277) 1A,

We call two such triples (H, ( , )g, Fil°(H ®¢ C), [ny]) and (H',( , g, Fil°(H' ®q
C), [nu']) equivalent if there is an isomorphism of B-modules

B:H 5 H

which takes ( , )u to a QZ,-multiple of ( , )z and Fil°(H ®q C) to Fil° (H’ ®q C)
and [ng] to [nm]. We write (H, ( , )u, Fil°(H®oC), [nu]) ~ (H',( , ), Fil°(H'®q
C), [nar])-

Lemma 5.2. The map
(A, X i, [n]) — (H'(A(C),Q), (, ) Fil'H'(A(C),Q) ®¢ C, [n"7])
induces a bijection
S(B,*,V,(, ),h)y(C) = LAD (B,*,V,( , ),h)y/~.

Proof: We must first check that the given map is well defined. If g : A — A’ is
an isogeny giving an equivalence of (A, i, A, [n]) and (A',i', X, [f]), then § induces an
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isomorphism H'(A(C),Q) — H'(A'(C), Q) giving an equivalence

(H'(A'(C),Q),(, ) Fil'H'(A(C),Q) ®g C, [y
~ (H'Y(A(C),Q),(, )n— H'(A(C),Q) & C,[n"1]).

We can define a map in the other direction by choosing a lattice A C HY on
which ((27i)~Y( , )g)V is Z-valued, and sending (H, ( , )z, Fil°(H ®¢ C), [nx]) to
[(A,4, A, [n])], where

A(C) = (HY ®g C)/(A + (Fil'H ®g C)*),
(', )m is the A-Weil pairing,

e and [n] is induced by [ny] and the identification of the Tate module of A with
HY ®g A™.

The equivalence class of (A, 1, A, [n]) does not depend on the choice of A, and only
depends on the equivalence class of (H,( , )z, Fil°(H ®¢ C), [na)).
These two maps are easily checked to be two sided inverses to each other. [

We want to provide a reformulation of the data LAD (B,*,V,( , ),h)y. First we
may replace ( , )y with 27i( , )g, with the obvious modification of the conditions.
Secondly we may replace the choice of Fil'(H ®g C) with a homomorphism of R-
algebras hy : C — End 5(H ®g R) such that hy(z) acts as z on Fil'(H ®g C) and
as °z on °Fil'(H ®g C). Then hy satisfies the following conditions:

hd (l’, hH(Z)y>H = (hH(CZ)xJ y)H7
o VY 2 (H ®qC)")= as B ®g C-modules,
o ( ,hy(i) )u, which is necessarily symmetric, is positive definite on H ®q R.

Conversely if hy satisfies these conditions then Fil'(H ®q C) = (H ®q C)"# )= will
satisfy the conditions defining an element of LAD (B,*,V,( , ),h)y. Moreover, by
lemma 4.2 of [?], these three conditions are equivalent to

e there is a B ®g R-linear isomorphism V¥ ®gR = H ®g R which takes ( , )Y
to an RZ, multiple of ( , )y and takes h" to hy.

Thus we may think of LAD (B, ,V,( , ), h)y as theset of tuples (H,( , )u, hu, [ng])
where:

e H is a finitely generated right B-module;

e (., )y : HxH — Qis anon-degenerate alternating form such that (zb,y)y =
(x,yb*)y for all b € B and x,y € H;

o hy : C — End pgyr(H ®g R) such that there exists a B ®g R-linear isomor-
phism V¥ ®g R = H ®¢ R which takes ( , )V to an RX, multiple of ( , )x
and takes h" to hp;

e [ny] is a U-orbit of B ®gA™-linear isomorphisms 7y : VY ®gA>® = H ®@gA™®
taking ( , )Y to a (A®)*-multiple of ( , )py.
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Two such tuples (H,( , )m,hu,[nu]) and (H',( , g/, ha, [na]) are equivalent if
and only if there is an isomorphism of B-modules

p:H -~ H
which takes ( , )y to a Q% -multiple of ( , )m and hy to hy and [ng] to [nm].

If we write G for the group of B-linear automorphisms of H which preserve ( , )y
up to scalar multiples, then we may replace hy by the induced map RS%Gm —
Gy over R which it induces. (This does not enlarge the collection of tuples we
are considering because the weights of hy on V¥ must be (1,0) and (0,1).) Then
hac = (' °ut) where p € X,.(Gy)(C) commutes with 4. Thus we may also think
of LAD (B,*,V,( , ),h)u as the set of tuples (H,( , )u, g, [nu]) where:

e H is a finitely generated right B-module;
e ( , )y : HxH — Qis anon-degenerate alternating form such that (zb,y)y =
(x,yb*)g for all b € B and x,y € H;
e iy € X.(Gy)(C) such that there exists a B ®¢g R-linear isomorphism V" ®q
R = H ®g R which takes ( , )V to an RX, multiple of ( , )y and takes p,
to pm;
e [ny] is a U-orbit of B ®gA™-linear isomorphisms 7y : VY ®gA® = H ®@gA™®
taking ( , )Y to a (A°)*-multiple of ( , )y.
Two such triples (H,( , )u,pm, [ng)) and (H',( , )mr, 1w, [nr]) are equivalent if
and only if there is an isomorphism of B-modules

B:H = H
which takes ( , )y to a QZ,-multiple of ( , )m and ppy to pgr and [ny] to nu.

Lemma 5.3. Suppose we are in case A or C. Then LAD (B,*,V,( , ),h)y is in
bijection with Sh(G,,C,U)(C) via the map which sends 711)[((C, 9), )] to the tu-
ple [ (V) )Y, wg®U)], where € (1, )Y is obtained from (, )V and any
identification of v Q with Q.

Proof: Using 7,1y we may replace Sh(G,,C,U)(C) with G(E)\(Gy(A®) /U x
Y (C)¢). The given map is easily checked to be well defined. (One needs to notice
that, by lemma , VYRR = 2V @gR for some z € Z(G)(C). If = conjj, o
with & € G(R), then zk : V¥ @g R 5 ¢V ®@¢ R takes (, )Y to an R*-multiple
of <'(, ) and p to ) To see the map is injective suppose that ((¢,g), ) and
((¢,9), 1) € Gp(A™) X Y(C)¢ with

VT ) g U ~ (VT )Y g ),
Then there must be § € G(E) with g¢ VY = <"7'VY, so that ('¢"'(0) = 776 for
all 0 € Gal (E/Q). In particular 8 € G(E)®. Because the restriction to resc/r(’'¢™" €

H'(Gal (C/R), Z(G)) is trivial, we see that in fact § € G(FE)2. Moreover ' =
conjg o f.
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Finally we need to check surjectivity. So suppose that [(H,( , )m,un, [nu])] €
LAD (B,*,V,( , ),h). Then there is an element ¢ € ker'(Gal (E/Q), G(E)) with
(H,(, )u)=?(VY,(, )Y). By lemmal2.1] we may in fact choose ¢ to be the image
of some

¢ € ker(Z'(Gal (E/Q), Z(G)(E)) — H*(Gal (E/Q), G(AY))DH"'(Gal (C/R), Z(G)(C))).

Without loss of generality we may assume that (H,( , )g) = (< VY.< (1, )Y).
Then ny must arise from ¢* € G(AY) with (7' = 97 1. Moreover there is z,, €
Z(G)(C) with 2,,VY ®g R = ¢'VY ®g R and resc/r("' = *<1. Then there is
k € G(R) such that pug = conj,_, oy, = conjpuy, as desired. O

(.

Corollary 5.4. There is a biholomorphic bijection
S(B,*V.(, ),h)u(C) — Sh(G,, [, "], U)(C).

Proof: We have exhibited a bijective map, so it is enough to show it is holomorphic,
which is a local question. Suppose that [(A, A, i, [n])] maps to 7,1)((¢, ), ). Then
for a sufficiently small simply connected neighbourhood €2 of [(A4, A, 4, [n])], R'm.Q is
constant on € and isomorphic to (¢ VY,¢7"(, )¥) and n¥~! is identified with >
for all z € Q. The image of z € Qis (" VY, (1, )V, e, [¢°]), where p, € Y(C)g
is characterized by

FilJ(CVY ®gC) = (VY ®g C)r=tD="1,

As z — FilL(€7'VY ®g C) is a holomorphic map Q — Gr(C), and u — (¢ 'VY ®q
C)*=Y==1 embeds Y (C)g biholomorphically as an open subdomain in Gr(C), we see
that Q — Y(C)¢g given by x — p, is holomorphic, as desired.[]

It follows from [B2] that this map
S(B,*,V.(, ),h)u(C) = Sh(G, ¢, "], U)(C)
arises from a unique algebraic map
S(B,#V,(, ),h)y — Sh(G, ¢, [1m,"],U),

which is in fact an isomorphism by Zariski’s main theorem.
The final assertion of theorem [5.1] follows on unravelling the definitions.
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