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1. Introduction

The formalism of Shimura varieties was laid out by Deligne [D1], [D2] and Lang-
lands [L] 45 years ago. The formalism they suggested seems to us to have a number
of possible shortcomings:

(1) Deligne’s ‘Shimura datum’, a pair (G,X) of a connected reductive group over
Q and aG(R) conjugacy class of homormorphisms h : RSR

CGm → G over R sat-
isfying certain axioms, paremtrizes not a (inverse system of) varieties Sh(G,X)
over some number field E(G,X), but the pair (Sh(G,X)/E(G,X), ρcan :
E(G,X) ↪→ C) of the Shimura variety together with an embedding of its
field of definition into C. Indeed the ‘same (inverse system of) varieties’ over
E can be parametrized by different Shimura data depending on the choice of
embedding E ↪→ C.

(2) The theory of conjugation of Shimura varieties conjectured by Langlands [L]
and established by Milne [Mi1] depends for its formulation on some unmoti-
vated, and somewhat non-canonical, choices of cocycles, which to the best of
our knowledge are written down only in [L]. This makes it quite hard to work
with, as does its reliance of choices of special points.

(3) In [D2], Deligne imposes an axiom that the group Gad should have no sim-
ple factor over Q, whose real points are compact. This allows him to use
strong approximation to explicitly understand the connected components of
his Shimura varieties, but it should be unnecessary for their existence and for
the study of their conjugation properties.

The third of these points is unrelated to the other two and will be easily remedied
in section 3.4. We will discuss it no further in this introduction.

As a simple illustration point (1), consider a non-Galois totally real cubic extension
F/Q. It has three different embeddings τi : F ↪→ R for i = 1, 2, 3. Write ∞i for the
infinite place of F corresponding to τi. Let Di/F denote the quaternion algebra
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centre F ramified at exactly ∞j for j 6= i. Denote by Gi/Q the reductive groups
with Gi(Q) = D×i . These groups are not isomorphic over Q. We have Gi(R) ∼=
GL2(R) × H× × H×, where H denotes the Hamiltonian quaternions. Let Xi denote
the Gi(R)-conjugacy class of the morphism hi : RSC

RGm → Gi defined over R with

hi(a+ ib) =

(
a b
−b a

)
× 1× 1.

We have E(Gi, Xi) = τiF ⊂ C. Note that Gi × A∞ is independent of i. We will
denote the group Gi(A∞), which does not depend on i, simply as Γ. Deligne’s theory
of Shimura varieties gives us for each i an inverse system {Sh(Gi, Xi)U} of varieties
over τiF ⊂ C indexed by sufficiently small open compact subgroups of Γ and with
an action of Γ. However there is one such system {SU} of varieties over F indexed
by sufficiently small open compact subgroups of Γ and with an action of Γ, such that
{τiSU} with its Γ-action is identified with {Sh(Gi, Xi)U} with its Γ-action. It seems
to us unnecessarily cumbersome and confusing to index the one system {SU} over F
by three different Shimura data, depending on how one wants to view F as a subfield
of C. It would seem to be preferable to index {SU} by some other data D over F and
then to give a recipe that to D and any embedding τ : F ↪→ C attaches a Deligne
Shimura datum (GD,τ , XD,τ ) so that

(τSU)(C) = GD,τ\(GD,τ (A∞)/U ×XD,τ ).

It turns out that points (1) and (2) above are closely related. Indeed the second
only became apparent to us as we tried to understand the first, and once we felt we
understood the second, the first was easily remedied.

To us the key to understanding possible shortcomings (1) and (2) is, perhaps not
surprisingly, to make use of Kottiwitz’s cohomology groups B(G). However it will be
essential for us to work with 1-cocycles, not only 1-cohomology classes. We work out
the requisite theory of cocycles in [ST].

In the rest of this introduction we will first recall Kottwitz’s theory including a
discussion of cocycles. We will then explain our, hopefully more canonical, reformu-
lation of the theory of conjugation of Deligne’s Shimura varieties. Finally we will
state an alternative formulation which avoids the shortcoming (1).

1.1. Algebraic cohomology. If G/Q is an algebraic group then Kottwitz defines
B(Q, G)basic as a direct limit over finite Galois extensions E/Q of algebraic coho-
mology pointed sets H1

alg(E3(E/Q), G(E))basic, which contain H1(Gal (E/Q), G(E)).
These pointed sets were canonically defined by Kottwitz [K2], but to define underly-
ing sets of cocyles we need additional data. This was explained in [ST]. To explain
our main results, we must recall some of this theory.

If G is an algebraic group we will write Z(G) for its centre and Gad = G/Z(G). If
G is reductive we will write ΛG for its arithmetic fundamental group.
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If E is a number field, we will write VE for the set of places of E, Z[VE] for the free
abelian group on VE and Z[VE]0 for the subgroup consisting of sums

∑
wmww where∑

wmw = 0. If E is Galois over Q, these all have natural Gal (E/Q)-actions. In this
case, we will write T2,E (resp. T3,E) for the pro-torus over Q with character group
Z[VE] (resp. Z[VE]0). There is a natural short exact sequence

(0) −→ Gm −→ T2,E −→ T3,E −→ (0).

There is a map

ν : H1
alg(E3(E/Q), G(E))basic −→ Hom (T3,E, Z(G))(Q)

with kernel H1(Gal (E/Q), G(E)).
If G is reductive and split by E, then Kottwitz also defined an important map, the

‘Kottwitz map’,

κ : H1
alg(E3(E/Q), G(E))basic −→ (Z[VE]0 ⊗ ΛG)Gal (E/Q),

where ΛG denotes the arithmetic fundamental group of G.
The extra data we require is a choice of an element a+ from a certain set H(E/Q)+,

which has a transitive action of T2,E(AE). If S is a set of places of Q and if G/Q is
an algebraic group, we obtain:

(1) Pointed sets Z1
alg(E3(E/Q)a+ , G(E))basic with an action of G(E) and

Z1
alg(E loc(E/Q)Sa+ , G(AS

E))basic with an action of G(AS
E) together with a G(E)-

equivariant map

loca+ : Z1
alg(E3(E/Q)a+ , G(E))basic −→ Z1

alg(E loc(E/Q)Sa+ , G(AE))basic.

These constructions are functorial in G. If S = ∅ we drop it from the notation.
(2) We have

H1
alg(E3(E/Q), G(E))basic = G(E)\Z1

alg(E3(E/Q)a+ , G(E))basic,

and the preimage of H1(Gal (E/Q), G(E)) is Z1(Gal (E/Q), G(E)). Thus we
have a map

Z1
alg(E3(E/Q)a+ , G(E))basic −→ Z1(Gal (E/Q), Gad (E)),

which is surjective if Z(G) is a torus. If φ ∈ Z1
alg(E3(E/Q)a+ , G(E))basic then φ

maps to an element of Z1(Gal (E/F ), Gad (E)) and hence we obtain an inner
form φG of G.

Similarly

H1
alg(E loc(E/Q)S, G(AS

E))basic = G(AS
E)\Z1

alg(E loc(E/Q)Sa+ , G(AS
E))basic

is canonically independent of a+; and there is a map

ν : H1
alg(E loc(E/Q)S, G(AS

E))basic −→
⊕
v 6∈S

X∗(Z(G))(Qv),
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with kernel (in Z1
alg(E loc(E/Q)S, G(AS

E))basic) identified with Z1(Gal (E/Q), G(AS
E)).

If φ ∈ Z1
alg(E loc(E/Q)S, G(AS

E))basic we obtain an inner for φG of G over AS
E.

(3) If S ′ ⊃ S there is a natural map

resS
′
: Z1

alg(E loc(E/Q)Sa+ , G(AE,S))basic −→ Z1
alg(E loc(E/Q)S

′

a+ , G(AS′

E ))basic.

Suppose that E0
v is a finite extension of Qv isomorphic to Ew for some, and

hence any, w|v. Then if v 6∈ S there is a map

resE0
v/Qv : H1

alg(E loc(E/Q)S, G(AS
E))basic −→ H1

alg(E(E0
v/Qv), G(E0

v))basic,

where the latter set is Kottwitz’s local algebraic cohomology pointed set. This
gives an isomorphism

H1
alg(E loc(E/Q)S, G(AS

E))basic ∼=
∏
v 6∈S

′
H1

alg(E(E0
v/Qv), G(E0

v))basic.

(Here the product is restricted with respect to the H1(Gal (E0
v/Qv), G(OE0

v
)).)

(4) If G is reductive and split by E, then there are ‘Kottwitz maps’

κ : H1
alg(E loc(E/Q), G(AE))basic −→ (Z[VE]⊗ ΛG)Gal (E/Q) =

⊕
v

ΛG,Gal (E0
v/Qv),

and

κ : H1
alg(E loc(E/Q), G(AE))basic −→ ΛG,Gal (E/Q).

The former is induced by the local Kottwitz maps and is compatible with the
global Kottwitz map and loc. The latter is the composition of the former
with the map (Z[VE]⊗ ΛG)Gal (E/Q) → ΛG,Gal (E/Q) induced by the sum of the
coefficients map Z[VE]→ Z. Thus κ ◦ loc = 0.

(5) If E is imaginary and T/Q is a torus split by E and µ ∈ X∗(T )(C) and
τ ∈ Aut (C), the group of field theoretic automorphisms of C, then there is a
special element

ba+,∞,µ,τ ∈ T (A∞E )/T (E)T (Q).

As E and a+ vary there is an explicit way of comparing these constructions. If D ⊃
E, a+E ∈ H(E/Q)+ and a+D ∈ H(D/Q)+, then the comparison of the constructions for
(E, a+E) and (D, a+D) depends on the choice of an element t ∈ T2,E(AD).

This material, along with some other background, is summarized in section 2 of
[ST].

1.2. Some algebraic cohomology classes. If G/R is a connected reductive group
and µ : Gm → G over C we call µ basic if µcµ factors through Z(G); and compactifying
if it is basic and in addition adµ(−1), which lies in Gad (R), is a Cartan involution.

If Y is a G(R)-conjugacy class of basic cocharacters then we obtain a class λ̂G(Y ) ∈
H1

alg(E(C/R), G(C)). (The class of the cocycle

λ̂G(µ) : 〈C×, j : j2 = −1, jzj−1 = cz〉 −→ G(C)
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which sends z to (µcµ)(z) and j to µ(−1) for any µ ∈ Y .) If φ ∈ λ̂G(Y ) then φG
comes equipped with a natural basic G(R)-conjugacy class of basic cocharacters YφG.

(In the case φ = λ̂G(µ) we have YφG = [µ](φG)(R).)

If Gad (R) is compact and if C is a G-conjugacy class of cocharacters, then C
contains a unique basic G(R)-conjugacy class Y (C).

Suppose now that Y is a G(R)-conjugacy class of compactifying cocharacters of G

and φ ∈ λ̂G(Y ) and τ ∈ Aut (C). We will write [Y ]φG for the φG-conjugacy class
containing YφG. We set

λ̂G(Y − τ [Y ]φG) = λ̂φG(Y (τ [Y ]φG)−1)[φ] ∈ H1
alg(E(C/R), G).

If ψ ∈ λ̂G(Y − τ [Y ]φG), then τ,ψY = (Y (τ [Y ]φG)−1)−1ψG is a well defined (ψG)(R)-

conjugacy class of compactifying cocharacters of ψG.
We now turn to the global case. Suppose that G/Q is a connected reductive group.

If G is split by E, then Kottwitz showed that an element of H1
alg(E3(E/Q), G(E))basic

is determined by its images under κ and resE0
∞/R ◦ loc.

Suppose now that Y is a G(R)-conjugacy class of compactifying cocharacters of
G/C. If τ ∈ Aut (C) and if E/Q is a sufficiently large finite Galois extension, then
there is a unique

φG,Y,τ ∈ H1
alg(E3(E/Q), G(E))basic

such that

• κ(φG,Y,τ ) = ρ−1
λG(Y ) ⊗ (w(ρ) − w(τρ)), where ρ : E ↪→ C and w(ρ) denotes

the corresponding infinite place of E (this is independent of the choice of ρ)
and where λG(Y ) denotes the image of any element of Y in ΛG;

• and resC/RlocφG,Y,τ = λ̂G(Y − τ [Y ]G).

If φ ∈ φG,Y,τ then φG comes with a canonical (φG)(R) conjugacy class of compacti-

fying cocharacters τ,φY .
This material is discussed in sections 2.4 and 2.5.

1.3. Conjugation of Deligne’s Shimura varieties. One can define a Shimura
datum (in the sense of Deligne) to be a pair (G, Y ), where G/Q is a connected reduc-
tive group and Y is a compactifying G(R)-conjugacy class of miniscule cocharacters
µ : Gm → G/C. It is more common to consider instead of Y a G(R)-conjugacy class

of morphisms h : RSC
RGm → G/R satisfying certain properties, but these two notions

are easily seen to be equivalent. (To a µ as above we associate hµ which is the descent
from C to R of (µ, cµ).) Also note that Deligne assumes that Gad has no simple factor
over Q whose real points are compact. However, as we will see, everything (that we
will be discussing) remains true without this assumption.

To the Shimura datum (G, Y ) and a sufficiently small open compact subgroup U ⊂
G(A∞), Deligne associates a smooth quasi-projective variety Sh(G, Y )U/C (called a
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Shimura variety) together with an identification of complex manifolds

G(Q)\(G(A∞)/U × Y )
∼−→ Sh(G, Y )U(C).

The system of these Shimura varieties as U varies has an action of G(A∞) (by right
translation). If f : (G, Y )→ (G′, Y ′) is a morphism of Shimura data (i.e. a morphism
f : G→ G′ of algebraic groups over Q which carries Y to Y ′) then there is an induced
maps of Shimura varieties. Deligne defines the reflex field E(G, Y ) ⊂ C to be the
number field which is the fixed field of all automorphsims of C which fix the G(C)-
conjugacy class [Y ]G(C) of cocharacters of G, which contains Y . He conjectured that
Sh(G, Y )U has a model over E(G, Y ) satisfying certain additional properties, which
determine it uniquely. He proved this in many cases and Milne proved it in all cases.
Langlands conjectured a rather complicated and apparently ad hoc formula depending
on a number of choices for the conjugate of Sh(G, Y )U by any automorphism of C.
This was also proved by Milne.

Fix a sufficiently large finite Galois extension E/Q and a+ ∈ H(E/Q)+. If (G, Y )
is a Shimura datum and φ ∈ φG,Y,τ , then (φG, τ,φY ) is another Shimura datum. If

moreover b ∈ G(A∞E ) with res∞loca+φ = b1, then we will define an isomorphism

Φa+(τ, φ, b) : τSh(G, Y )U
∼−→ Sh(φG, τ,φY )bUb−1 .

These maps commute with the action of G(A∞) (using the identification conjb :

G(A∞)
∼→ φG(A∞)) and with the action of morphisms f : (G, Y ) → (G′, Y ′) of

Shimura data. One has a cocycle relation

Φa+(τ1τ2, φ1φ2, b1b2) = Φa+(τ1, φ1, b1) ◦ τ1Φa+(τ2, φ2, b2).

In the case where (G, Y ) = (T, {µ}) with T a torus there is an explicit formula for
the Φa+(τ, φ, b) involving the elements ba+,∞,µ,τ . These properties together completely
(over) characterize the maps Φa+(τ, φ, b). We also explain how the maps Φa+(τ, φ, b)
depend on E and a+. (See theorem 3.5 for all this.)

In particular the maps Φa+(τ, 1, 1) for τ ∈ Aut (C) fixing E(G, Y ) provide descent
data for Sh(G, Y )U from C to E(G, Y ), which yields the canonical model of Sh(G, Y )U
over E(G, Y ).

The conjugation morphisms, whose existence was conjectured by Langlands and
proved by Milne, are special cases of our maps Φa+(τ, φ, b) in which φ and b factor
through a suitable maximal torus in G and take a very particular form. Indeed our
theorem follows easily from Milne’s theorem, once we were able to discover the correct
formulation (and unravel Langlands definitions).

This is all discussed in section 3.

1.4. Rational Shimura varieties. Finally we propose an alternative formalism,
which we feel is better suited to keeping track of the rationality properties of Shimura
varieties.
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Fix a sufficiently large Galois extension E/Q and a+ ∈ H+(E/Q). The theory we
describe is independent of these choices, in a way that is described precisely in the
body of the paper.

By a rational Shimura datum over a field L of characteristic 0 we mean a 4-tuple
(G,ψ,C, U), where

• G/Q is a connected reductive group;
• ψ ∈ Z1

alg(E loc(E/Q)a+ , G(AE))basic such that resC/RψGad (R) is compact;
• C is a conjugacy class of miniscule cocharacters of G (considered as a variety)

defined over L such that the image of C in ΛG,Gal (E/Q) (which is independent
of how one compares the fields E and L) equals κG(ψ);
• and U ⊂ (ψG)(A∞) is an open compact subgroup.

The group G plays very little role except as a basis point to identify the class of ex-
tended pure inner forms with which we are working. One gets a completely equivalent
theory if one replaces G by φG for φ ∈ Z1

alg(E3(E/Q)a+ , G(E))basic. In the case that
Z(G) is connected, we may assume without loss of generality that G is quasi-split.

To a rational Shimura datum (G,ψ,C, U) over L we associate a normal (smooth
if U is sufficiently small) quasi-projective variety Sh(G,ψ,C, U)/L. As U varies the
system of varieties has an action of (ψG)(A∞). (Note that ψG/A may well not arise
from a group over Q, it is often what one might call ‘incoherent’.)

Crucially the action of Galois on Shimura varieties for rational Shimura data be-
comes completely transparent. If τ : L→ L′ then

{τSh(G,ψ,C, U)}U = {Sh(G,ψ, τC,U)}U
(with their ψG(A∞)-actions).

These rational Shimura varieties are not exactly equal to canonical models of
Deligne’s Shimura varieties, rather they are finite unions of isomorphic copies of a
single such canonical model. Thus they carry the same information. Indeed when
one describes Shimura varieties as moduli spaces over rings of mixed characteristics it
is these rational Shimura varieties that arise, as has long been observed. (See for ex-
ample [K1] and [HT] and section 5 of this paper.) An additional benefit is that these
rational Shimura varieties actually have an action of a larger group than (ψG)(A∞),
a group that transitively permutes the constituent Deligne Shimura varieties. More

precisely let G̃E,ψ(A) denote the abelian group

{(ζ, g) ∈ Z1(Gal (E/Q), Z(G)(E))×G(AE) : (locaζ)gψ = ψ}
with componentwise multiplication. There are embeddings

ψG(A) ↪→ G̃E,ψ(A)
g 7−→ (1, g)

and
Z(G)(E) ↪→ G̃E,ψ(A)

δ 7−→ ((σ 7→ δ/σδ), δ−1).
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We define
G̃E,ψ(A∞) = G̃E,ψ(A)/Z(G)(Q)ψG(R).

(The notation is not meant to suggest that G̃(A) or G̃E,ψ(A∞) are the A or A∞ points
of any algebraic group.) Then we have an exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃E,ψ(A∞) −→ ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE))) −→ (0).

The action of ψG(A∞) on the system of the {Sh(G,ψ,C, U)}U extends to an action

of G̃E,ψ(A∞), which permutes transitively the constituent Deligne Shimura varieties.
Shimura varieties for rational Shimura data are also functorial in the rational

Shimura data in the following sense: By a morphism

(φ, g, f) : (G1, ψ1, C1, U1)→ (G2, ψ2, C2, U2)

of rational Shimura data over L, we mean

• a cocycle φ ∈ Z1
alg(E3(E/Q)a+ , G2(E))basic,

• an element g ∈ G2(AE),
• and a morphism f : G1 → φG2 defined over Q,

such that f ◦ ψ1 = g−1
ψ2locaφ

−1 and f(C1) ⊂ C2 and (conjg ◦ f)(U1) ⊂ U2. Given
such a morphism we obtain a morphism a morphism of varieties over E:

Sh(φ, g, f) : Sh(G1, ψ1, C1, U1) −→ Sh(G2, ψ2, C2, U2).

(The case φ ∈ Z1(Gal (E/Q), Z(G)(E) and f = 1 recovers the action of G̃E,ψ(A∞).)
We have

Sh(φ1, g1, f1) ◦ Sh(φ1, g2, f2) = Sh(f1(φ2)φ1, g1f1(g2), f1 ◦ f2).
If φ ∈ Z1

alg(E3(E/Q)a+ , G(E))basic, then Sh(φ, 1, 1) gives a canonical isomorphism

between the the tower {Sh(G,ψ,C, U)}U with its G̃E,ψ(A∞)-action and the alternative

tower {Sh(φG,ψ(loca+φ)−1, C, U)}U with its φ̃GE,ψ(locaφ)−1(A∞) = G̃G,ψ(A∞)-action.
Thus, as we have already mentioned, the exact choice of G amongst its class of inner
forms is not so important.

For any g ∈ G(AE) the map Sh(1, g, 1) gives an isomorphism between the sys-

tem {Sh(G,ψ,C, U)}U with its G̃E,ψ(A∞)-action and {Sh(G, gψ,C, V )}V with its

G̃E,gψ(A∞)-action, where we use conjugation by g to identify G̃E,ψ(A∞) and G̃E,gψ(A∞).
Thus in a sense {Sh(G,ψ,C, U)}U only depends on [ψ] ∈ H1

alg(E loc(E/Q), G(AE))basic.
However the identification is not canonical - it depends on the choice of g taking ψ
to gψ. This is why we have to work with cocycles and not only cohomology classes.

There is of course a theory of complex uniformization for rational Shimura vari-
eties. If (G,ψ,C, U) is a rational Shimura datum over C, then Sh(G,ψ,C, U)(C)
admits a uniformization by an Hermitian symmetric space, but this depends on
auxiliary choices. We must choose φ ∈ Z1

alg(E3(E/Q)a+ , G(E))basic and b ∈ G(A∞E )

with resC/Rloc[φ] = λ̂ψG(Y (C)−1)resC/R[ψ] and res∞loca+φ = bres∞ψ. We will write
φG(E)QR for the subgroup of elements of φG(E) whose image in φGad (E) lies in
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φGad (Q) and can be lifted to φG(R). Then φG(E)QR acts on Y (τC) and there is

a mapping φG(E)QR → G̃E,ψ(A∞). There is an isomorphism of complex manifolds

π(φ,b) : φGad (Q)E,R\(G̃E,ψ(A∞)/U × Y (τC))
∼−→ ρSh(G,ψ,C)U(C).

In the case that G = T is a torus the action of Aut (C) can be made explicit: if
τ ∈ Aut (C) then

τ(π(φ,b)(g̃, µ)) = π(φτφ,bτ b)(g̃,
τµ),

for any φτ ∈ φT,{µ},τ and bτ ∈ T (A∞E )/T (Q) such that res∞locaφτ = bτ1 and the

image of bτ in T (A∞E )/T (Q)T (E) is ba+,∞,µ,τ .
We will write Z(G)1 for the torus which is the intersection over all open sub-

groups U ⊂ Z(G)(A∞) of the Zariski closure of Z(G)(Q) ∩ U . (If the Q split rank
of Z(G) equals the R split rank, then Z(G)1 is trivial. See theorem 5.12 of [PR].)
If (G,ψ,C, U) is a rational Shimura dataum over C and if r is a representation
of ψG/Z(G)1 on a finite free A∞ module W which is rationalizable in a sense de-
fined in section 4.6, then there is a canonical variation of rational Hodge structures
Wr/Sh(G,ψ,C, U)(C), withWr⊗QR polarizable. This variation of Hodge structures
is unique, but only up to an isomorphism that is unique only up to composition with
an element of Z(Q), for some linear algebraic group Z/Q with Z(A∞) equal to the
centralizer of r in GL(W ). (So if r is absolutely irreducible, up to scalar multiples.)

All this is discussed in section 4. For a complete statement of the results mentioned
here see theorem 4.3 and section 4.6.

At the suggestion of Pol van Hoften we included section 5.1, where we show that
the PEL moduli spaces of type A and C considered by Kottwitz in [K1] are rational
Shimura varieties in our sense.

1.5. Acknowledgements. After we released the first version of this paper Xinwen
Zhu informed us that he and Liang Xiao had some similar results. In particular
they had also removed the condition in Milne’s theorem that Gad has no Q-simple
factor whose real points are compact. They had also considered finite unions of
Deligne’s Shimura varieties with an action of a group similar to (and perhaps equal

to) G̃E,ψ(A∞) and found these to have, in some ways, better properties.
We were aware of Dick Gross’ paper [G1], and Dick has since made us aware of the

follow up paper [G2], where related ideas are discussed in special cases. It is a great
pleasure to dedicate this paper to him.
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2. Algebraic background

2.1. Notations. For simplicity we will assume all fields we consider in this paper
will be assumed to be perfect unless we specifically say otherwise.

If V is a finite dimensional vector space we will write V ∨ for its dual. If ( , ) is a
perfect pairing on V we will write ( , )∨ for the perfect pairing on V ∨ characterized
by

((x, ), (y, ))∨ = (y, x).

Then ( , )∨∨ = ( , ) under the canonical identification V
∼→ V ∨∨.

If F is a field we will write F for an algebraic closure of F and F ab for the maximal
abelian Galois extension of F in F . If E/F is a Galois extension and L/F any field
extension, then we will write E ∩ L (resp. EL) for ρ(E) ∩ L (resp. ρ(E)L) for any
F -linear embedding ρ : E ↪→ L. The field E ∩ L (resp. EL) is a subfield of L (resp.
L) independent of the choice of ρ, but the identification of E ∩ L with a subfield
of E depends on ρ. If L is any field of characteristic 0, we will write Lalg for the
subfield consisting of elements algebraic over Q. If L/K is any extension of fields we
will write Aut (L/K) for the group of field theoretic automorphisms of L which fix
K pointwise. If L has characteristic 0 (resp. p > 0) will write Aut (L) for Aut (L/Q)
(resp. Aut (L/Fp)). If L/K is Galois we will write Gal (L/K) for Aut (L/K). If E is
a subfield of Calg then

CAut (C/E) = E.

If F is a local field of characteristic 0 we will write Art F : F× → Gal (F ab/F ) for
the Artin map. (Normalized to take uniformizers to geometric Frobenius elements.)

If F is an algebraic extension of Q we will write VF for the set of places of F and
AF for the ring of adeles of F . (In the case that F is an infinite extension of Q then
AF = lim→E AE, where E runs over subfields of F finite over Q.) If v is a place of F
then by Fv we will mean lim→E Ev as E runs over subextensions of F/Q which are
finite over Q. (So Fv may not be complete, but it is algebraic over Qv.) If F is a

number field will write Art F : A×F/F×(F×∞)0
∼→ Gal (F ab/F ) for the Artin map.

If E/F is an algebraic extension of fields with F a number field and if S ⊂ VF
we will write VE,S for the set of places of E above a place in S, and AE,S for the
ring of adeles of E supported at the primes in S. (If E is also a number field then
AE,S is the restricted product

∏′
w: w|F∈S E

×
w .) We will also write V VF−S

E = VE,S and

AVF−S
E = AE,S.
We will write Z[VE,S] for the free ablelian group on VE,S and Z[VE,S]0 for the

subabelian group consisting of elements
∑

wmww with
∑

wmw = 0. If E/F is Galois,
both groups have a natural action of Gal (E/F ) via σ

∑
wmww =

∑
wmw(σw) =∑

wmσ−1ww.

If F is an algebraic extension of Q and K is a local field and ρ : F ↪→ K, then
we will write v(ρ) = v(F, ρ) or w(ρ) = w(F, ρ) or u(ρ) = u(F, ρ) for the place of F
induced by ρ. (We will tend to use v(ρ) when the field is denoted F , w(ρ) when it
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is denoted E and u(ρ) otherwise.) If moreover F/Q is Galois and τ ∈ Aut (K), then
we will write τ ρ for the element of Gal (F/Q) satisfying ρ ◦ τ ρ = τρ.

If E/F is a Galois extension with F a number field, and if v is a real place of F we
will write [cv] for the conjugacy class in Gal (E/F ) consisting of complex conjugations
at places above v. If F = Q and v =∞ we will simply write [c].

2.2. Algebraic groups. If G is an (algebraic) group then Z(G) will denote its centre
and Gad will denote G/Z(G). Moreover Gder will denote its commutator subgroup
and C(G) = Gab will denote it co-center/abelianization G/Gder. If H ⊂ G is a
subgroup we will write NG(H) for its normalizer and ZG(H) its centralizer. If H
has finite index, we will also write tr G/H : Gab → Hab for the transfer map. If H

is normal in G, then the image of tr G/H is contained in (Hab)G/H . If G acts on X
we will write [x]G for the G orbit of x ∈ X and ZG(x) or Gx or StabG(x) for the
stabilizer of x in G. If G is an algebraic group acting on a variety X over a field F
and x ∈ X(F ), then [x]G is a variety, and [x]G(F ) ⊃ [x]G(F ), but these two sets may
not be equal.

If F is a field, if K1,...,Kr are fields containing F , and if G/F is an algebraic group;
then we will write Gad (F )K1,...,Kr for the subgroup of G(F ) consisting of elements
which admit lifts to each G(Ki). If E/F is a finite extension of fields we will write
G(E)FK1,...,Kr

for the set of elements of G(E) that map to Gad (F )K1,...,Kr ⊂ Gad (E).
We will write std for the character t 7→ t of Gm.
If G is an affine algebraic group over F then there a scheme X∗(G), smooth and

separated over F , and a homomorphism µuniv : Gm ×F X∗(G) → G ×F X∗(G), such
that if S is any F -scheme and µ : Gm,S → GS is a homomorphism, then there is a
unique morphism S → X∗(G) under which µuniv pulls back to µ. Moreover

G×X∗(G) −→ X∗(G)×X∗(G)
(g, µ) 7−→ (conjg ◦ µ, µ)

is smooth; and

X∗(G)F =
∐

[µ]∈G(F )\X∗(G)(F )

G/ZG(µ).

(See sections 4 and 5 of exposé XI in [SGA3].) If G is geometrically connected, then
the G/ZG(µ) are the connected components of X∗(G). Moreover if µ ∈ X∗(G)(F )
and if F ([µ]) denotes the fixed field of StabGal (F/F )([µ]G(F )), then X∗(G)F ([µ]) has a

(unique) connected component [µ] such that [µ](F ) = [µ]G(F ). (Use lemma 33.7.18 of

[Stacks].) If C ⊂ X∗(G) we will write C−1 for the set of µ−1, where µ ∈ C.
We will require all our reductive groups to be geometrically connected, i.e. by the

term ‘reductive group’ we will mean what is often referred to as ‘connected reductive
group’. If G is reductive we will write GSC for the simply connected semi-simple cover
of Gder. If T is a maximal torus of G we will write T ad for the image of T in Gad (a
maximal torus in Gad ) and T der = (Gder ∩ T ) (which is a maximal torus in Gder, see
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remark 3.5 of [Co]) and T SC for the preimage of T in GSC (which is a maximal torus
in GSC, see for instance proposition 4.1 of [Co]). We have T = ZG(T ). We will also
write WT for the Weyl group NG(T )/T , which we think of a finite algebraic group.
It acts faithfully on T . We will also write WT,F for NG(T )(F )/T (F ) ⊂ WT (F ).

If G is reductive and T ⊂ G is a torus then the centralizer ZG(T ) is (connected)
reductive. (See corollary 11.12 of [B1].)

We remark that if T ⊂ G is a maximal torus and µ1, µ2 ∈ X∗(T ) are conjugate
under G(F ) then they are conjugate under WT (F ). (This is probably well known, but
as we don’t know a reference we will sketch the proof. Let H denote the centralizer of
µ1(Gm) in G. It is reductive. (See theorem 2.1 of [Co].) Suppose that µ1 = gµ2g

−1.
Then µ1(Gm) ⊂ gTg−1 so that T and gTg−1 are both maximal tori in H. Hence we
have gTg−1 = hTh−1 for some h ∈ H. Then h−1g ∈ NG(T ) and µ1 = h−1gµ2g

−1h, as
desired.)

We will let ΛG denote the algebraic fundamental group of G, i.e. X∗(T )/X∗(T
SC)

for any maximal torus T of G. Note that the Weyl group WT acts trivially on
X∗(T )/X∗(T

SC). Any two maximal tori T and T ′ defined over F are conjugate over
the separable closure F of F by g ∈ G(F ) with gNG(T ) uniquely defined. Then

conjg induces an isomorphism X∗(T )/X∗(T
SC)

∼→ X∗(T
′)/X∗(T

′SC). If we alter g by

an element h ∈ NG(T )(F ) then this isomorphism changes by an element of WT (F ),
i.e. is in fact unchanged. Thus ΛG is canonically defined independent of the choice
of T . In particular it has a canonical action of Gal (F/F ). (If T ′ = conjgT and

σ ∈ Gal (F/F ), then σ◦conjg = conjg◦σ◦conjwσ on X∗(T ) for some wσ ∈ WT (F ), and
so σ◦conjg = conjg ◦σ on ΛT .) If [µ] is a conjugacy class of cocharacters µ : Gm → G,

then [µ] gives rise to well defined element λG([µ]) ∈ ΛG. If σ ∈ Gal (F/F ) then
λG(σ[µ]) = σλG([µ]).

If C is a G-conjugacy class of cocharacters of G and φ ∈ Z1(Gal (E/F ), Gad (E)),

then we set CφG to be the image of C under the identification ιφ : G×E ∼→ φG×E, a

conjugacy class of φG. Under the identification conjg : φG
∼→ gφG, the conjugacy class

CφG is sent to CgφG. Moreover if σ ∈ Gal (F/F ), then we have σ(CφG) = (σC)φG.
Now suppose that F is a number field and G/F is a connected algebraic group.

Then G(F ) is dense in
∏

v∈VF,∞ G(Fv). (See theorem 7.7 of [PR].) Suppose further

that S is any finite set of places of F and that Tv ⊂ G × SpecFv is a maximal
torus for all v ∈ S. Then there is a maximal torus T ⊂ G such that T × SpecFv is
G(Fv)-conjugate to Tv for all v ∈ S. (See corollary 3 to proposition 7.3 of [PR].)

For any Galois extension E/F (not necessarily finite, but F still a number field)
we write ker1(Gal (E/F ), G(E)) for

ker(H1(Gal (E/F ), G(E))→
∏
v∈VF

H1(Gal (Ew/Fv), G(Ew))).
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We will sometimes write ker1(F,G) for ker1(Gal (F/F ), G(F )). If G is reductive then
ker1(Gal (E/F ), G(E)) is finite. It vanishes if G is semi-simple and either adjoint or
simply connected. (See for instance theorems 6.6, 6.19 and 6.22 of [PR].)

Lemma 2.1. Suppose that G/Q is a reductive group and E/Q is a finite totally
imaginary Galois extension such that each connected component of Gad (R) contains
a point of Gad (Q)E. Then

ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), G(A∞E ))⊕H1(Gal (C/R), Z(G)(C)))
↓

ker(H1(Gal (E/Q), G(E))→ H1(Gal (E/Q), G(AE)))

is surjective.

Proof: By the Hasse principle for adjoint semi-simple groups we see that any element
of ker(H1(Gal (E/Q), G(E)) → H1(Gal (E/Q), G(AE))) can be lifted to an element
of ζ ∈ ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), G(AE))). Then we have

Gad (R)/G(R) = π0(G
ad (R))/π0(G(R))

= ker(H1(Gal (C/R), Z(G)(C))→ H1(Gal (C/R), G(C))).

(The first equality follows from the open mapping theorem.) Choose γ ∈ Gad (Q)E
lying in a connected component of Gad (R) which maps to the image of the restriction
of ζ. Let o(γ) ∈ ker(H1(Gal (E/Q), Z(G)(E)) → H1(Gal (E/Q), G(E)) denote the
obstruction to lifting γ to G(Q). (If γ̃ denote a lift of γ to G(E) and let o(γ) is
represented by the cocycle σ 7→ γ̃σγ̃−1.) Then ζo(γ)−1 has the same image as ζ
in H1(Gal (E/Q), G(E)) but maps to 0 in H1(Gal (C/R), Z(G)(C)). The lemma
follows.�

2.3. Kottwitz’s extensions. We refer the reader to [ST] for the properties of Kot-
twitz cohomology which we will require. We present here only a brief summary.

If E/Q is a finite Galois extension of number fields we will write T2,E (resp. T3,E)
for the protorus over Q with cocharacter group Z[VE] (resp. Z[VE]0) with its natural
action of Gal (E/Q). Thus there is a natural short exact sequence

(0) −→ Gm −→ T2,E −→ T3,E −→ (0).

We will denote by πw : T2,E → Gm the character corresponding to w ∈ VE. We have∏
w∈VE

πw : T2,E(AE)
∼−→

∏
w∈VE

A×E,

but with Galois action given by

σ((xw)w) = (σxσ−1w)w.

If D ⊃ E are finite Galois extensions of Q the map

Z[VD] −→ Z[VE]∑
umuu 7−→

∑
umuu|E
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gives rise to a commutative diagram

(0) −→ Gm −→ T2,E −→ T3,E −→ (0)
|| ι0D/E ↓ ↓ ι0D/E

(0) −→ Gm −→ T2,D −→ T3,D −→ (0);

and the map
Z[VE] −→ Z[VD]∑
wmww 7−→

∑
u[Du : Eu|E ]mu|Eu

gives rise to a commutative diagram

(0) −→ Gm −→ T2,D −→ T3,D −→ (0)
[D : E] ↓ η0D/E ↓ ↓ η0D/E

(0) −→ Gm −→ T2,E −→ T3,E −→ (0),

and

η0D/E ◦ ι0D/E = [D : E].

We set

E loc(E/Q)0 =
∏
w∈VE

E×w ⊂ T2,E(AE)

(with E×w thought of inside the w-copy of A×E) and

Eglob(E/Q)0 = {(xw) ∈ T2,E(AE) : xw mod E× is independent of w} ⊂ T2,E(AE).

These are preserved by Gal (E/Q).
In [ST] we defined abelian groups Z(E/Q) ⊃ B(E/Q) with compatible actions of

T2,E(AE) such that T2,E(AE) acts transitively on the quotient

H(E/Q) = Z(E/Q)/B(E/Q).

The stabilizer in T2,E(AE) of any element ofH(E/Q) is E loc(E/Q)0Eglob(E/Q)0T2,E(A).
To an element a ∈ H(E/Q) we associate (uniquely up to unique isomorphism):

(1) Extensions

(0) −→ E loc(E/Q)0 −→ E loc(E/Q)a −→ Gal (E/Q) −→ (0)

and

(0) −→ Eglob(E/Q)0 −→ Eglob(E/Q)a −→ Gal (E/Q) −→ (0).

(2) Writing E2(E/Q)a for the pushout of E loc(E/Q)a along E loc(E/Q)0 ↪→ T2,E(AE),
a canonical map of extensions

loca : Eglob(E/Q)a −→ E2(E/Q)a.

(3) An extension

(0) −→ T3,E(E) −→ E3(E/Q)a −→ Gal (E/Q) −→ (0)

defined as the pushout of Eglob(E/Q)a along Eglob(E/Q)0 → T3,E(E).
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(4) An extension

(0) −→ A×E/E
× −→ WE/Q,a −→ Gal (E/Q) −→ (0)

defined as the pushout of Eglob(E/Q)a along Eglob(E/Q)0 → A×E/E×. The
extension WE/Q,a is isomorphic to the Weil group WEab/Q. This isomorphism
is not canonical: it is only defined up to composition with conjugation by an
element of A×E/E×. (The global Weil group

WEab/Q = WQ/Q/[WQ/E,WQ/E],

is defined up to an isomorphism that is only unique up to composition with
conjugation by an element of E×(E×∞)0/E×.)

(5) If S ⊂ VQ, an extension

(0) −→ E loc(E/Q)0S −→ E loc(E/Q)S,a −→ Gal (E/Q) −→ (0)

defined as the pushout of E loc(E/Q) along the projection

πS : E loc(E/Q)0 =
∏
w∈VE

E×w �
∏

w∈VE,S

E×w = E loc(E/Q)0S.

We will also write E loc(E/Q)
VQ−S
a = E loc(E/Q)S,a.

(6) If w|v are places of E and Q, an extension

(0) −→ E×w −→ WEw/Qv ,a −→ Gal (E/Q)w −→ (0)

defined as the pushout of E loc(E/Q)a|Gal (E/Q)w along E loc(E/Q)0 → E×w . There
is an isomorphism of extensions

WEw/Qv ,a
∼= W(EQv)ab/Qv ,

where W(EQv)ab/Qv denotes the local Weil group. This isomorphism is not
canonical, but only defined up to composition with conjugation by an element
of E×w . (In this case W(EQv)ab/Qv is defined up to unique isomorphism.)

(7) For w|v are places of E and Q, a map of extensions

ιaw : WEw/Qv ,a ↪→ WE/Q,a

compatible with E×w ↪→ A×E/E×.
If ρ : Eab ↪→ Qv, then there is a map of extensions (the ‘decomposition

group’)

θρ : W(ρ(E)Qv)ab/Qv ↪→ WEab/Q,

which is well defined up to composition with conjugation by an element of
E×(E×∞)0/E×. Then θρ and ιaw will differ (after making the above identifica-
tions) by composition with conjugation by an element of A×E/E× (of course
depending on ρ).
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(Thus the choice of a ∈ H(E/Q) inter alia gives rise to a preferred decomposition
group in Gal (Eab/Q) above each place w of E. We think of the choice of a as being
analogous to the choice of such decomposition groups.)

Diagramatically we have:

E3(E/Q)a Eglob(E/Q)a WE/Q,a

E loc(E/Q)a E2(E/Q)a

E loc(E/Q)a|Gal (E/Q)w WEw/Qv ,a

loca

ιaw

The choice of a ‘cocycle’α ∈ a gives rise to distinguished lifts eglobα (σ) ∈ Eglob(E/Q)a
and elocα (σ) ∈ E loc(E/Q)a of σ ∈ Gal (E/Q).

If t ∈ T2,E(AE) there are canonical isomorphisms

zt : E?(E/Q)a
∼−→ E?(E/Q)ta

for each of the extensions considered above. They commute with all the arrows in
the above diagram, except for the arrows that go between the first row and one of
the other rows. For these we have

zt ◦ loca = conjt ◦ locta ◦ zt
and

conjtw ◦ zt ◦ ι
a
w = ι

ta
w ◦ zt.

More generally, if D ⊃ E are finite Galois extensions of Q, if a+E ∈ H(E/Q)+ and
a+D ∈ H(D/Q)+ we can find t ∈ T2,E(AD) with, in the notation of [ST],

t inf
D/E

a+E = ηD/E,∗a
+
D.

The element t is unique up to

E loc(E/Q)0DEglob(E/Q)0DT2,Q(A)
∏
w∈VE

E×(E×∞)0.

(Again using the notation of [ST].) If C ⊃ D is another finite Galois extension of Q
and if a+C ∈ H(C/F )+ satisfies ηC/D,∗a

+
C = t′ infC/D a+D with t′ ∈ T2,D(AC), then

ηC/E,∗a
+
C = tηD/E(t

′) inf
C/E

a+E.

We define the following pointed sets of algebraic cocycles:

(1) If G/F is a linear algebraic group, we define Z1
alg(E3(E/Q)a, G(E))basic to be

the set of 1-cocycles φ : E3(E/Q)a → G(E) such that there is a, necessarily
unique, algebraic homomorphism νφ : T3,E → Z(G) over Q with φ|T3,E(E) =
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νφ. This pointed set of cocycles has a natural action of G(E) via the usual
coboundary map and we will denote the quotient H1

alg(E3(E/Q)a, G(E))basic.

(2) If G/AS is a linear algebraic group, we define Z1
alg(E loc(E/Q)S,a, G(AE,S))basic

to be the set of 1-cocycles φ : E loc(E/Q)S,a → G(AE,S) such that there are
for each w ∈ VE,S, necessarily unique, algebraic homomorphisms νφ,w : Gm →
Z(G) over Ew, almost all of which are trivial, with φ|E loc(E/Q)0S

=
∏

w∈V SE
νφ,w.

This pointed set of cocyles has a natural actions of G(AE,S) via the usual
coboundary map and we will denote the quotientH1

alg(E loc(E/Q)S,a, G(AE,S))basic.

(3) If G/Qv is a linear algebraic group, we define Z1
alg(WEw/Qv ,a, G(Ew))basic to be

the set of 1-cocycles φ : WEw/Qv ,a → G(Ew) for which there is a necessarily
unique, algebraic homomorphisms νφ : Gm → Z(G) over Qv with φ|E×w =
νφ. This pointed set of cocyles has a natural actions of G(Ew) via the usual
coboundary map, and we will denote the quotient H1

alg(WEw/Qv ,a, G(Ew))basic.

There are natural equivariant maps

loca : Z1
alg(E3(E/Q)a, G(E))basic −→ Z1

alg(E loc(E/Q)a, G(AE))basic

and, for S ⊂ S ′,

resS : Z1
alg(E loc(E/Q)S′,a, G(AE,S′))basic −→ Z1

alg(E loc(E/Q)S,a, G(AE,S))basic

and for w ∈ VE,S,

resw : Z1
alg(E loc(E/Q)S,a, G(AE,S))basic −→ Z1

alg(WEw/Qv ,a, G(Ew))basic.

These maps are functorial in G and the maps resS and resw are compatible in triples
whenever this makes sense. They give an isomorphism

Z1
alg(E loc(E/Q)S,a, G(AE,S))basic

∼−→
∏
v∈S

′
Z1

alg(E loc(E/Q){v},a, G(Ev))basic

where the products are restricted with respect to the subsets Z1(Gal (E/Q), G(OE,v)).
To be more concise we will sometimes write E?(E/Q)a either E3(E/Q)a or E loc(E/Q)S,a

or WEw/Qv ,a and AQ for Q (resp. AS, resp. Qv) and AE for E (resp. AE,S, resp. Ew)

and Gal ?(E/Q) for Gal (E/Q) (resp. Gal (E/Q), resp. Gal (Ew/Qv)).
If t ∈ T2,E(AE) then z−1t induces maps

zt : Z1
alg(E?(E/Q)a, G(AE))basic

∼−→ Z1
alg(E?(E/Q)ta, G(AE))basic

which are functorial in G and are equivariant for the G(AE)-action, so that they pass
to cohomology. We have ν ◦ zt = ν and zt1t2 = zt1 ◦ zt2 . The maps zt commute with
the maps resS and resw. We have

(locta ◦ zt)(φ) = νφ(t)(zt ◦ loca)(φ).

The maps the zt induce in cohomology are independent of t, and soH1
alg(E?(E/Q)a, G(AE))basic

together with the maps loca, resS and resw on cohomology are canonically indepen-
dent of a. Thus we will denote it simply H1

alg(E?(E/Q), G(AE))basic, loc, resS and
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resw. We get isomorphisms

H1
alg(E loc(E/Q)S, G(AE,S))basic

∼−→
∏′

v∈SH
1
alg(E loc(E/Q){v}, G(Ev))basic

∼−→
∏′

v∈SH
1
alg(WEw/Qv , G(Ew))basic

where for each v ∈ S we choose a place w of E above it, and where the products are re-
stricted with respect to the subsetsH1(Gal (E/Q), G(OE,v)) (resp. H1(Gal (Ew/Qv), G(OE,w))).
The kernel of the map

loc : H1
alg(E3(E/Q), G(E))basic −→ H1

alg(E loc(E/Q), G(AE))basic

equals ker1(Gal (E/Q), G(E)).
If E0

v/Qv is a finite Galois extension and G/Qv is an algebraic group, we de-
fine Z1

alg(W(E0
v)

ab/Qv , G(E0
v))basic to be the subset of Z1(W(E0

v)
ab/Qv , G(E0

v)) consisting

of cocycles φ whose restriction to W(E0
v)

ab/E0
v

are of the form νφ ◦ Art −1E0
v

for some

νφ ∈ X∗(Z(G))(Qv). The pointed set Z1
alg(W(E0

v)
ab/Qv , G(E0

v))basic is preserved by the

coboundary action of G(E0
v) and we denote the quotient H1

alg(W(E0
v)

ab/Qv , G(E0
v))basic.

If E/Q is a finite Galois extension and w|v is a place of E such that Ew ∼= E0
v over

Qv, then the choice of an isomorphism of extensions W(E0
v)

ab/Qv
∼= WEw/Qv ,a gives rise

to bijections

Z1
alg(W(E0

v)
ab/Qv , G(E0

v))basic
∼= Z1

alg(WEw/Qv ,a, G(Ew))basic

and

H1
alg(W(E0

v)
ab/Qv , G(E0

v))basic
∼= H1

alg(WEw/Qv , G(Ew))basic,

the latter being independent of the choices of isomorphisms E0
v
∼= Ew andW(E0

v)
ab/Qv

∼=
WEw/Qv ,a. The composite of this map with resw gives a map

resE0
v/Qv : H1

alg(E loc(E/Q), G(AE,S))basic −→ H1
alg(W(E0

v)
ab/Qv , G(E0

v))basic

which is independent of all choices, including the choice of w.
If E/Q is a finite Galois extension and if for each place v of Q we fix a finite Galois

extension E0
v/Qv isomorphic to Ew/Qv for any (and hence every) place w of E above

v, then we obtain an identification∏
v∈S

resE0
v/Qv : H1

alg(E loc(E/Q)S, G(AE,S))basic
∼−→
∏
v∈S

′
H1

alg(W(E0
v)

ab/Qv , G(E0
v))basic,

where the product is restricted with respect to the subsets H1(Gal (E0
v/Qv), G(OE0

v
)).

For G/AQ an algebraic group there is a natural map

Z1
alg(E?(E/Q)a, G(AE))basic −→ Z1(Gal ?(E/Q), Gad (AE)).

Thus if φ ∈ Z1
alg(E?(E/Q)a, G(AE))basic there is a canonically defined inner form φG

of G over AQ, together with an isomorphism ιφ : G × AE
∼→ φG × AE such that

σιφ(g) = ιφ((adφ(σ))(σg)) for all σ ∈ E?(E/Q)a and g ∈ G(AE). If h ∈ G(AE) then

there is a unique isomorphism ιh : φG
∼→ hφG over AQ such that ιh ◦ ιφ = ιhφ ◦ conjh.
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If ψ ∈ Z1
alg(E?(E/Q)a, (

φG)(AE))basic, then ψφ ∈ Z1
alg(E?(E/Q)a, G(AE))basic and this

gives a bijection of sets

Z1
alg(E?(E/Q)a, (

φG)(AE))basic
∼−→ Z1

alg(E?(E/Q)a, G(AE))basic,

but this map does not preserve neutral elements. This product is functorial in G and
commutes with loca, resS and resw. We have νψφ = νψνψ and zt(ψφ) = zt(ψ)zt(φ).
The composite

ιψφ ◦ ι−1φ ◦ ι
−1
ψ : ψ(φG)

∼−→ ψφG

is defined over AQ. We have (gψ)φ = g(ψφ) and so we get a bijection

H1
alg(E?(E/Q), (φG)(AE))basic

∼−→ H1
alg(E?(E/Q), G(AE))basic.

Moreover (ιg ◦ ψ)gφ = g(ψφ), and if we use ιg to identify φG and
gφG then the map

induced in cohomology by φ only depends on [φ] ∈ H1
alg(E?(E/Q), G(AE))basic.

If φ ∈ H1
alg(E?(E/Q), G(AE))basic we will sometimes write φG/AQ for φG for any

φ ∈ φ. However we must keep in mind that φG is unique up to an isomorphism, that
is only unique up to composition with conjugation by an element of φG(AQ).

Now suppose that D ⊃ E is another finite Galois extension of Q, that a+D ∈
H(D/Q)+ and a+E ∈ H(E/Q)+ and that t ∈ T2,E(AD) with ηD/E,∗a

+
D = t infD/E a+E.

Then there is a map

inf
D/E,t

: Z1
alg(E?(E/Q)aE , G(AE))basic −→ Z1

alg(E?(D/Q)aD , G(AD))basic.

This map is functorial in G, commutes with products, and passes to cohomology.
These maps are all injective even on the level of cohomology. They commute with
the maps resS and resw. We have

locaD( inf
D/E,t

(φ)) = νφ(t) inf
D/E,t

(locaEφ).

Note that infE/E,t = zt and ν infD/E,t φ = νφ ◦ ηD/E. If C ⊃ D is another finite Galois

extension of Q and if aC ∈ H(C/Q) and if t′ ∈ T2,D(AC) with ηC/D,∗aC = t′ infC/D aD,
then

inf
C/D,t′

◦ inf
D/E,t

= inf
C/E,tηD/E(t

′)
.

Suppose that a ∈ T2,E(A) and b ∈ Eglob(E/Q)0D and c ∈ E loc(E/Q)0D. If φ ∈
Z1

alg(E3(E/Q)a, G(E))basic then

inf
D/E,abct

(φ) = νφ(b) inf
D/E,t

(φ);

if φ ∈ Z1
alg(E loc(E/Q)Sa , G(AS

E))basic then

inf
D/E,abct

(φ) = νφ(π
S(c)−1) inf

D/E,t
(φ);
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and if φ ∈ Z1
alg(WEw/Qv ,a, G(Ew))basic then

inf
D/E,abct

(φ) = νφ(πw(c)
−1) inf

D/E,t
(φ).

Thus the maps

inf
D/E,t

: H1
alg(E?(E/Q), G(AE))basic −→ H1

alg(E?(D/Q), G(AD))basic

are independent of t, and so we will denote them simply infD/E. They commute with
loc, resS and resw, and we have infC/D ◦ infD/E = infC/E. Following Kottwitz, we
define

B(Q, G)basic = lim
→,E

H1
alg(E3(E/Q), G(E))basic

and
Bloc(Q, G)Sbasic = lim

→,E
H1

alg(E loc(E/Q)S, G(AS
E))basic

and
B(Qv, G)basic = lim

→,Ew
H1

alg(WEw/Qv , G(Ew))basic.

If G/Q is reductive and split by E, Kottwitz defines maps

κS : H1
alg(E loc(E/Q)S, G(AE))basic −→ (ΛG ⊗ Z[VE,S])Gal (E/Q)

(which we will denote simply κ if S = VQ) and

κ : H1
alg(E3(E/Q), G(E))basic −→ (ΛG ⊗ Z[VE]0)Gal (E/Q)

with the following properties:

(1) If φ ∈ H1
alg(E3(E/Q), G(AE))basic, then (κ ◦ loc)(φ) equals the image of κ(φ)

under (ΛG ⊗ Z[VE]0)Gal (E/Q) → (ΛG ⊗ Z[VE])Gal (E/Q).
(2) If f : G→ G′, then κ ◦ f∗ = (f ⊗ 1) ◦ κ, and similarly for κS.
(3) κ◦resS equals κ composed with (ΛG⊗Z[VE,S′ ])Gal (E/Q) � (ΛG⊗Z[VE,S])Gal (E/Q).
(4) κ(ψφ) = κ(ψ)κ(φ).
(5) κS ◦ infD/E equals the composition of κ and the inverse of the natural iso-

morphism (ΛG ⊗ Z[VD,S])Gal (D/Q)
∼→ (ΛG ⊗ Z[VE,S])Gal (E/Q). Thus we obtain

maps
κS : Bloc(Q, G)S,basic −→ (ΛG ⊗ Z[VE,S])Gal (E/Q).

(6) κ ◦ infD/E equals the composition of κ and the inverse of the natural iso-

morphism (ΛG ⊗ Z[VD]0)Gal (D/Q)
∼→ (ΛG ⊗ Z[VE]0)Gal (E/Q). Thus we obtain a

map
κ : B(Q, G)basic −→ (ΛG ⊗ Z[VE]0)Gal (E/Q).

This map has finite fibres.
(7) If S consists of finite places then

κS : Bloc(Q, G)S,basic
∼−→ (ΛG ⊗ Z[VE,S])Gal (E/Q)

is an isomorphism.
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(8) If S is a set of places of Q we will write B(Q, G)S,basic for the preimage in
B(Q, G)basic of the image of ΛG⊗Z[VE,S]0 in (ΛG⊗Z[VE]0)Gal (E/Q). If S is finite
then there exists a finite extension D/E Galois over Q so that B(Q, G)S,basic
is contained in the image of

H1
alg(E3(D/Q), G(D))basic −→ B(Q, G)basic.

(9) There is a cartesian square

B(Q, G)basic
resw◦loc−→ B(R, G)basic

κ ↓ κ ↓
(ΛG ⊗ Z[VE]0)Gal (E/Q) −→ ΛG,Gal (Ew/R)∑

w λw ⊗ w 7−→
∑

σ∈Gal (Ew/R)\Gal (E/Q) σλσ−1w,

where w|∞ is any infinite place of E.

We will write

κS : H1
alg(E loc(E/Q)S, G(AE))basic −→ ΛG,Gal (E/Q)

for the composition of κS with the map

(ΛG ⊗ Z[VE,S])Gal (E/Q) −→ ΛG,Gal (E/Q)∑
λw ⊗ w 7−→

∑
w λw.

As κS ◦ infD/E = κS we see that we get a map κS : Bloc(Q, G)S,basic → ΛG,Gal (Q/Q).
In the case S = VQ we will write simply κ, and we have κ ◦ loc is trivial on
H1

alg(E3(E/Q), G(E))basic. The map

loc : B(Q, G)basic � kerκ ⊂ Bloc(Q, G)basic

is surjective with finite fibres.

2.4. Real groups. In this section we suppose that G/R is a reductive group.
The group of real points G(R) has finitely many connected components. If either

G is simply connected semi-simple or G(R) is compact, then G(R) is connected.
(See theorem 3.6 and its first corollary and proposition 7.6 of [PR].) If G/R is
a reductive group and H is a normal subgroup defined over R then the image of
G(R) → (G/H)(R) is a union of connected components. (The image is open by the
open mapping theorem.) If (G/H)(R) is connected, for example if it is compact,
then G(R) � (G/H)(R). We will write G(R)+ for the connected component of the
identity in G(R) in the archimedean topology. Because G(R) is Zariski dense in G,
we see that ZG(R) = ZG(G(R)) and that G(R)ad naturally embeds in Gad (R) (and
G(R)ad ⊃ Gad (R)+.)

If G/R is reductive then a maximal torus T ⊂ G/R is called fundamental if its split
rank is minimal among the split ranks of all maximal tori. All fundamental maximal
tori are conjugate by G(R). (See [BW] section I.7.1.) If G′ is an inner form of G,
then fundamental maximal tori in G and G′ are isomorphic. (See lemma 2.8 of [Sh].)
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If T is a fundamental torus and if T ad (R) is compact (or equivalently if c acts by
−1 on X∗(T

ad )) then WT (R) = WT (C). Moreover if T is a fundamental torus, then
T ad (R) is compact if and only if G has an inner form G′ with G′,ad (R) compact. (See
proposition 3 of [LS].)

IfGad (R) is compact then all maximal tori T are fundamental, and hence conjugate.
Moreover, in this case, WT,R = WT (R) = WT (C), so that any two embeddings i, i′ :
T ↪→ G are conjugate under G(R). (In the case that G(R) is compact the equality
WT,R = WT (R) is well known, see for instance theorem 11.36 of [H]. The more general
case Gad (R) compact reduces to this because G(R)� Gad (R).)

If µ ∈ X∗(G)(C) then we will call µ basic if µcµ factors through Z(G). In this case
cµµ = µcµ. We will write X∗(G)(C)basic for the set of basic cocharacters. Being basic
is preserved underG(R)-conjugacy. If µ is basic, then µ factors through a fundamental
maximal torus. (To see this work in Gad . Then (Imµ)(R) is compact and so contained
in some maximal compact subgroup of Gad (R). Hence it is contained in a maximal
compact torus, and so in a fundamental torus. See section I.7.1 of [BW].) If Gad (R)
is compact and µ ∈ X∗(G) factors through a torus defined over R, then it factors
through a maximal torus T defined over R and is basic (because c acts on X∗(T

ad )
by −1).

If µ ∈ X∗(G)(C) then we will call µ compactifying if µ is basic and adµ(−1) ∈
Gad (R) is a Cartan involution (i.e. Gad (C)conjµ(−1)◦c=1 is compact). (See for instance
section 2 of [BC] for basic facts about Cartan involutions.) Being compactifying is
preserved under G(R)-conjugacy. If G admits a compactifying cocharacter, then Gad

has a compact inner form.
If Y is a G(R) conjugacy class of elements of X∗(G) we will call it basic (resp.

compactifying) if it contains an element which is basic (resp. compactifying), in
which case all its elements are basic (resp. compactifying). If Y is basic (resp.
compactifying) so is Y −1 = {µ−1 : µ ∈ Y }. If Y is basic we will write νY = µcµ ∈
X∗(Z(G)) for any µ ∈ Y . (This is of course independent of the choice of µ ∈ Y .)

Lemma 2.2. Suppose that G/R is a reductive group and that Gad (R) is compact.
Any G-conjugacy class C ⊂ X∗(G) contains a unique G(R)-conjugacy class Y (C)G
consisting of those cocharacters in C(C) which factor through a maximal torus defined
over R. The elements of Y (C)G are in fact basic.

Proof: Any µ ∈ C(C) factors through some maximal torus and hence is conjugate
to a cocharacter factoring through any other maximal torus, for instance one defined
over R. If µ, µ′ ∈ C(C) factor through maximal tori defined over R, then replacing µ′

by a G(R)-conjugate, we may assume it factors through the same maximal torus T
(defined over R) as µ. Then µ and µ′ are conjugate by an element of WT (C) = WT,R,
i.e. µ and µ′ are NG(T )(R)-conjugate. �
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Choose a representative α0
C/R for the canonical class [αC/R] ∈ H2(Gal (C/R),C×)

defined by

α0
C/R(σ1, σ2) =

{
−1 if σ1 = σ2 = c
1 otherwise.

Then
WC/R,α0

C/R
∼= 〈C×, j : j2 = −1 and jzj−1 = cz〉,

with section eα0
C/R

(1) = 1 and eα0
C/R

(c) = j. Thus an element of Z1
alg(WC/R,α0

C/R
, G(C))basic

is a pair (ν, J) where ν ∈ X∗(Z(G))(R) and J ∈ G(C) satisfy

J cJ = ν(−1).

Moreover [(ν, J)] = [(ν ′, J ′)] ∈ H1
alg(WC/R, G(C))basic if and only if ν = ν ′ and there

exists g ∈ G(C) such that
J ′ = gJ cg−1.

If µ ∈ X∗(G) is basic, then we obtain an element λ̂G(µ) ∈ Z1
alg(WC/R,α0

C/R
, G(C))

defined by

λ̂G(µ) = (µcµ, µ(−1)).

We have that κ(λ̂G(µ)) = λG(µ) and ν λ̂G(µ) = µcµ. This induces a surjective map

λ̂G : G(R)\X∗(G)(C)basic � H1
alg(WC/R, G(C))basic.

The image λ̂G(µ) depends only on the G(R)-conjugacy class of µ, so we will sometimes

write λ̂G([µ]G(R)). For this see section 5.3 of [ST].

If µ ∈ X∗(G)(C) is basic, then µ ∈ X∗(λ̂G(µ)G)(C) is also basic. If g ∈ G(R) then

λ̂G(conjg ◦ µ) = gλ̂G(µ) and

X∗(conjg) : X∗(
λ̂G(µ)G)

∼−→ X∗(
λ̂G(conjg◦µ)G)

takes µ to conjg◦µ. If Y is a basic G(R)-conjugacy class of cocharacters, then the inner

form λ̂G(Y )G comes with a canonical cocharacter µλ̂G(Y )G
(equal to the cocharacter µ

of λ̂G(µ)G) and the pair (λ̂G(Y )G, µλ̂G(Y )G
) is unique up to an isomorphism, unique up

to composition with conjugation by an element of Z
(λ̂G(Y )G)(R)(µλ̂G(Y )G

). Note that

(λ̂G(Y
−1)G, µλ̂G(Y−1)G

) = (λ̂G(Y )G, µ−1
λ̂G(Y )G

)

(as canonically as the two sides are defined).

This implies that the group λ̂G(Y )G (which is defined up to an isomorphism unique

up to composition with conjugation by an element of (λ̂G(Y )G)(R)) has a canonical

basic (λ̂G(Y )G)(R)-conjugacy class of cocharacters Yλ̂G(Y )G
. More precisely if φ ∈

λ̂G(Y ) then φG has a well defined basic (φG)(R) conjugacy class YφG; and YgφG =

conjgYφG. Note that λ̂λ̂G(Y )G
(Y −1

λ̂G(Y )G
) = λ̂G(Y )−1.



24 JACK SEMPLINER AND RICHARD TAYLOR

Suppose that Gad (R) is compact and that C is a G-conjugacy class of cocharacters

of G. If φ ∈ λ̂G(Y (C)−1G ) then φG comes with a canonical basic (φG)(R) conjugacy
class of cocharacters Y (C)φG = (Y (C)−1G )−1φG; and Y (C)gφG = conjgY (C)φG. We have

λ̂φG(Y (C)φG) = λ̂G(Y (C)−1G )−1

and

κ(λ̂G(Y (C)−1G )) = λG(C)−1

and

νλ̂G(Y (C)−1
G ) = ν−1Y (C)G

.

Now suppose that Y ⊂ X∗(G) is a compactifying G(R)-conjugacy class (no longer
assuming Gad (R) is compact) and that C is a G-conjugacy class in X∗(G). Then C

is canonically a λ̂G(Y )G-conjugacy class in X∗(
λ̂G(Y )G), and so we have

λ̂λ̂G(Y )G
(Y (C)−1

λ̂G(Y )G
) ∈ H1

alg(WR,
λ̂G(Y )G)basic.

We set

λ̂G(Y − C) = λ̂λ̂G(Y )G
(Y (C)−1

λ̂G(Y )G
)λ̂G(Y ) ∈ H1

alg(WR, G)basic.

The group λ̂G(Y−C)G comes with a λ̂G(Y−C)G(R)-conjugacy class of cocharacters

Y (C)λ̂G(Y−C)G
= Y (C)λ̂

λ̂G(Y )G
(Y (C)−1

λ̂G(Y )G

)

(λ̂G(Y )G)

.

More precisely if φ ∈ λ̂G(Y − C) then φG comes with a canonical compactifying
(φG)(R) conjugacy class of cocharacters Y (C)φG; and Y (C)gφG = conjgY (C)φG. Note
that

λ̂λ̂G(Y−C)G
(Y (C)λ̂G(Y−C)G

) = λ̂λ̂G(Y )G
(Y (C)−1

λ̂G(Y )G
)−1

and

κG(λ̂G(Y − C)) = λG(Y )/λG(C)

and

νλ̂G(Y−C) = νY /νY (C)
λ̂G(Y )G

.

If Gad (R) is compact and C1, C2 are G-conjugacy classes of cocharacters, then

λ̂λ̂G(Y (C1)
−1
G

)
G

(C2 − Y (C1)λ̂G(Y (C1)
−1
G

)
G

)λ̂G(Y (C1)
−1
G ) = λ̂G(Y (C2)

−1
G )

and

Y (C2)λ̂
λ̂G(Y (C1)

−1
G

)
G

(C2−Y (C1)λ̂G(Y (C1)
−1
G

)
G

)

(
λ̂G(Y (C1)

−1
G

)
G)

= Y (C2)λ̂G(Y (C2)
−1
G

)
G
.
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2.5. Some important Kottwitz cohomology classes. In this section suppose
that G/Q is a reductive group. Suppose also that E/Q is a sufficiently large Galois
extension that

• E splits G;
• E is totally imaginary;
• B(Q, G){∞},basic is contained in the image of H1

alg(E3(E/Q), G(E))basic.

In this case we will say that E is acceptable for G. The existence of some such E
follows from the results recalled in section 2.3.

The results asserted in the rest of this section are all immediate consequences of
the results recalled in section 2.3 and the results of 2.4.

Suppose moreover that Y is a compactifying G(R)-conjugacy class of cocharacters
of G defined over C, and that τ ∈ Aut (C). Then there is a unique class φG,Y,τ ∈
H1

alg(E3(E/Q), G(E))basic such that

• κG(φG,Y,τ ) = ρ−1
λG(Y )⊗ (v(ρ)− v(τρ)); where ρ : E ↪→ C, and v(ρ) denotes

the corresponding infinite place of E (this is independent of the choice of ρ),

and ρ−1
λG(Y ) denotes the unique element of ΛG(E) mapping to λG(Y ) under

ρ;

• and resC/RlocφG,Y,τ = λ̂G(Y − τ [Y ]G), where [Y ]G is the unique G-conjugacy
class of cocharacters containing Y .

We see that res∞locφG,Y,τ = 1.
If φ ∈ φG,Y,τ , then Y (τ [Y ]G)φG is a compactifying conjugacy class of cocharacters of

φG over C, which we will denote τ,φY . Note that ifG = T is a torus then (φT, τ,φ{µ}) =
(T, {τµ}).

When Gi/Q are reductive groups and Yi are a compactifying Gi(R)-conjugacy class
of cocharacters of Gi over C, we will write f : (G1, Y1) → (G2, Y2) to mean that
f : G1 → G2 is a morphism of algebraic groups over Q with fY1 ⊂ Y2. In this case,
f ◦ φG1,Y1,τ = φG2,Y2,τ and, if φ ∈ φG1,Y1,τ , then

f : (φG1,
τ,φY1)→ (f◦φG2,

τ,f◦φY2).

IfG/Q is reductive and if Y is a compactifyingG(R)-conjugacy class of cocharacters
of G over C, we will write Conj E,a(G, Y ) for the set of triples (τ, φ, b), where

• τ ∈ Aut (C);
• φ ∈ φG,Y,τ ;
• b ∈ G(A∞E ) satisfies res∞locaφ = b1.

We will call this the set of conjugation data for (G, Y ). We will sometimes write
(τ,φ,b)(G, Y ) = (φG, τ,φY ). We have

conjb : G× A∞ ∼−→ φG× A∞.

IfD ⊃ E is another finite Galois extension of Q, if aE ∈ H(E/Q) and aD ∈ H(D/Q)
and if t ∈ T2,E(AD) with t infE/Q aE = ηD/E,∗aD, and if (τ, φ, b) ∈ Conj E,aE(G, Y ),
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then
inf
D/E,t

(τ, φ, b) = (τ, inf
D/E,t

φ,νφ(t)b) ∈ ConjD,aD(G, Y ).

If (τ1, φ1, b1) ∈ Conj E,a(G, Y ) and (τ2, φ2, b2) ∈ Conj E,a
τ1,φ1,b1(G, Y ), then

(τ2τ1, φ2φ1, b2b1) ∈ Conj E,a(G, Y ),

and we have
(τ2,φ2,b2)((τ1,φ1,b1)(G, Y )) = (τ2τ1,φ2φ1,b2b1)(G, Y ).

If (τ, φ, b) ∈ Conj E,a(G1, Y1) and f : (G1, Y1) → (G2, Y2) then f(τ, φ, b) = (τ, f ◦
φ, f(b)) ∈ Conj E,a(G2, Y2) and f induces a map

(τ,φ,b)f : (τ,φ,b)(G1, Y1) −→ f(τ,φ,b)(G2, Y2).

Moreover
conjf(b) ◦ f = (τ,φ,b)f ◦ conjb.

If we fix τ ∈ Aut (C) we will write Conj E,a(G, Y )τ for the subset of Conj E,a(G, Y )
consisting of those triples with first element τ . The group G(E)×G(A∞) acts tran-
sitively on Conj E,a(G, Y )τ via

(γ, h)(τ, φ, b) = (τ, γφ, γbh−1).

The stabilizer of (τ, φ, b) is identified with φG(Q) via δ 7→ (δ, b−1δb). We have

inf
D/E,t

((γ, h)(τ, φ, b)) = (γ, h) inf
D/E,t

(τ, φ, b).

2.6. Rigidification. In this section we recall some additional structures in Kottwitz
cohomology, which can be found in sections 2 and 9 of [ST]. But first we must recall
the Serre torus and the Taniyama group.

Suppose that E/Q is a finite Galois extension. There is a torus RE,C/Q split by E
with a cocharacter µcan = µcan

E ∈ X∗(RE,C) with the following universal property: if
T/Q is any torus split by E and if µ ∈ X∗(T )(C), then there is a unique morphism
µ̃ : RE,C → T over Q such that µ = µ̃ ◦ µcan. Then we get a map

Aut (C) −→ Aut (RE,C/Q)
τ 7−→ [τ ]

characterized by µcan = [τ ] ◦ τµcan. (The torus RE,C is isomorphic to the restriction
of scalars from E ∩ C to Q of Gm.) If D ⊃ E is another finite Galois extension
of Q, then there is a natural map ND/E : RD,C → RE,C over Q characterized by
ND/E ◦ µcan

D = µcan
E .

There is also an exact sequence of tori

(0) −→ R1
E,C −→ RE,C −→ SE,C −→ (0)

over Q, where SE,C has the following universal property: if T/Q is any torus split by
E and if µ ∈ X∗(T )(C) satisfies

• cτµ = τcµ for all τ ∈ Aut (C),
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• and 1+cµ is defined over Q;

then there is a unique morphism µ̃ : SE,C → T over Q such that µ = µ̃ ◦ µcan. The
action of Aut (C) preserves the above short exact sequence; and ND/E takes R1

D,C to

R1
E,C, and SD,C to SE,C. The torus SE,C is usually referred to as the Serre torus. We

have that SE,C(Q) is a discrete subgroup of SE,C(A∞).

Lemma 2.3. Suppose that χ ∈ Z[VE,∞]0 ⊗X∗(SE,C) ⊂ X∗(T3,E)⊗X∗(SE,C). Then∏
η∈Gal (E/Q)

ηχ = 1.

Langlands defines a canonical pro-algebraic group S̃E,C over Q (called the Taniyama
group), which is an extension

(0) −→ SE,C −→ S̃E,C −→ Gal (Calg/Q) −→ (0),

together with a section

sp : Gal (Calg/Q) −→ S̃E,C(A∞);

such that the action of Gal (Calg/Q) on SE,C is via τ 7→ [τ ]. (Langlands actually
defined an extension of Gal (Eab ∩ C/Q) by SE,C. We have chosen to work with
the pull back of that extension to Gal (Calg/Q).) If D ⊃ E is another finite Galois
extension of Q there is a natural map

ÑD/E : S̃D,C −→ S̃E,C

compatible with ND/E : SD,C −→ SE,C, and satisfying ÑD/E ◦ spD = spE.
Now we return to Kottwitz cohomology. If E/Q is a finite Galois extension there

is a set H(E/Q)+ with a transitive action of T2,E(AE) and an equivariant surjection

H(E/Q)+ � H(E/Q).

If a+ ∈ H(E/Q)+ we will write a for its image in H(E/Q). The stabilizer of any
element of H(E/Q)+ is

E loc(E/Q)0Eglob(E/Q)0T2,Q(A)
∏
w∈VE

E×(E×∞)0.

If D ⊃ E is another finite Galois extension of Q, if a+E ∈ H(E/Q)+ and a+D ∈
H(D/Q)+, then we can find t ∈ T2,E(AD) with

ηD/E,∗a
+
D = t inf

D/E
a+E

in the notation of [ST]. The element of t is unique up to multiplication by an element
of

E loc(E/Q)0DEglob(E/Q)0DT2,Q(A)
∏
w∈VE

D×(D×∞)0.
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Again in the notation of [ST]. If C ⊃ D is a third finite Galois extension of Q, if
a+C ∈ H(C/Q)+ and if t′ ∈ T2,D(AC) with ηC/D,∗a

+
C = t′ infC/D a+D, then

ηC/E,∗a
+
C = tηD/E(t

′) inf
C/E

a+E.

Suppose that v is a place of Q, that τ ∈ Aut (Qv), that T/Q is a torus split by E
and that µ ∈ X∗(T )(Qv). Then there is an element

ba+,v,µ,τ ∈ T (AE)/T (E)T (Ev)T (Q)T (R)+

with the following properties:

(1) ba+,v,µ,τ1τ2 = ba+,v,τ2µ,τ1ba+,v,µ,τ2 .

(2) If τ is continuous, then ba+,v,µ,τ = 1.

(3) If ρ : Eab ↪→ Qv, if τ fixes the image of E in Qv, and if aρ ∈ A×E with
ρ ◦ Art E(aρ) = τ ◦ ρ, then

ba+,v,µ,τ =
∏

η∈Gal (E/Q)

η(ρ
−1

µ)(aρ)
−1.

In particular ba+,v,µ,τ only depends on τ |Eab∩Qv .

(4) If τ ∈ Aut (C) and α ∈ S̃E,C(E) have the same image in Gal (Calg/Q),

then α−1sp(τ |Calg) ∈ SE,C(A∞E ) lifts ba+,∞,µcan,τ ∈ SE,C(A∞E )/SE,C(E). Thus

ba+,∞,µcan,τ and α−1sp(τ |Calg) have a unique common lift

ba+,∞,µcan,α ∈ RE,C(A∞E )/R1
E,C(Q)R1

E,C(E).

This element is independent of the choice of τ lifting the image of α in
Gal (Calg/Q).

(5) If χ : T → T ′ over Q, then ba+,v,χ◦µ,τ = χ(ba+,v,µ,τ ).
(6) If D ⊃ E is another finite Galois extension of Q, if a+E ∈ H(E/Q)+ and

a+D ∈ H(D/Q)+, and if t ∈ T2,E(AD) with t infD/E a+E = ηD/E,∗a
+
D, then

ba+E ,v,µ,τ
= ba+D,v,µ,τ

∏
ρ(
ρ−1
µ)(tw(τρ)/tw(ρ)))

= ba+D,v,µ,τ
∏

ρ(
ρ−1

(τµ/µ)(tw(ρ))),

where ρ runs over embeddings E ↪→ Qv.

In particular, item 4 tells us that the elements ba+,v,µ,τ are closely connected to, and
generalize, the cocycles that define the Taniyama group.

If b̃a+,∞,µcan,α is a lift of ba+,∞,µcan,α to RE,C(A∞E ), then there is a unique element

φ̃a+,∞,µcan,α ∈ φRE,C,{µcan},τ such that

(τ, φ̃a+,∞,µcan,α, b̃a+,∞,µcan,α) ∈ Conj E,a(RE,C, {µcan}).

If we replace b̃a+,∞,µcan,α by hγb̃a+,∞,µcan,α with h ∈ R1
E,C(Q) and γ ∈ R1

E,C(E), then

φ̃a+,∞,µcan,α changes to γφ̃a+,∞,µcan,α.
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We have the following:

(1) If α ∈ S̃E,C(E) and γ ∈ SE,C(E) then we can find γ̃ ∈ RE,C(E) lifting

γ such that we may take φ̃a+,∞,µcan,γα = γ̃−1
φ̃a+,∞,µcan,α and b̃a+,∞,µcan,γα =

γ̃−1b̃a+,∞,µcan,α.
(2)

ν φ̃a+,∞,µcan,α
=

∏
ρ:E↪→C

ρ−1

µcan◦(πw(ρ)/πw(τρ)) =
∏

ρ:E↪→C

ρ−1

(µcan/τµcan)◦πw(ρ) ∈ X∗(R1
E,C)(Q),

where τ ∈ Aut (C) has the same image in Gal (Calg/Q) as α.

(3) Given αi ∈ S̃E,C(E) for i = 1, 2, there exists β ∈ R1
E,C(E) such that

βb̃a+,∞,µcan,α1α2
≡ [α−12 ](̃ba+,∞,µcan,α1

)̃ba+,∞,µcan,α mod R1
E,C(Q)

and
βφ̃a+,∞,µcan,α1α2

= [α−12 ](φ̃a+,∞,µcan,α1
)φ̃a+,∞,µcan,α2

,

where α2 ∈ Gal (Calg/Q) denotes the image of α2.

(4) If α ∈ S̃E,C(E) and σ ∈ Gal (E/Q), then

b̃a+,∞,µcan,α
σ (̃ba+,∞,µcan,α)−1 ∈ R1

E,C(A∞E )RE,C(E) ⊂ RE,C(A∞E ).

(5) Suppose that D ⊃ E are finite Galois extensions of Q, that a+E ∈ H(E/Q)+,
that a+D ∈ H(D/Q)+ and that t ∈ T2,E(AD) with ηD/E,∗a

+
D = t infD/E a+E.

Suppose also that αD ∈ S̃D,C(D) and αE ∈ S̃E,C(E) have the same image

in Gal (Eab ∩ C/Q), so that α−1E ÑD/E(αD) ∈ SE,C(D). Choose b̃a+E ,∞,µcanE ,αE

lifting ba+E ,∞,µcanE ,αE
and b̃a+D,∞,µcanD ,αD

lifting ba+D,∞,µcanD ,αD
. Then there exists

β ∈ R1
E,C(D) with

b̃a+E ,∞,µcanE ,αE
≡ β(α−1E ÑD/E(αD))ND/E (̃ba+D,∞,µcanD ,αD

)
∏

ρ:E↪→C

ρ−1

(αEµcan
E /µcan

E )(tw(ρ)) mod R1
E,C(Q)

and

inf
D/E,t

φ̃a+E ,∞,µ
can
E ,αE

= β(α−1
E ÑD/E(αD))ND/E ◦ φ̃a+D,∞,µ

can
D ,αD

∈ Z1
alg(E3(D/Q)a+D

, RE,C(D)).

(Here αE denotes the image of αE in Gal (Eab ∩ C/Q).)

Suppose that E is totally imaginary. Choose an embedding ρ0 : E ↪→ C and a
set of representatives H∞ 3 1 for Gal (E/Q)/Gal (Ew(ρ0)/R). Recall that there is the
global Weil group WEab/Q, which fits into an extension

(0) −→ A×E/E
× −→ WEab/Q −→ Gal (E/Q) −→ (0),

together with a map ϕ : WEab/Q � Gal (Eab/Q) and a map

θρ0 : WEw(ρ0)
/R = 〈E×w(ρ0), jw(ρ0) : j2w(ρ0) = −1 and jw(ρ0)zj

−1
w(ρ0)

= cw(ρ0)z〉 −→ WEab/Q.
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All this is well defined up to conjugation by an element of E×E×∞/E
×. Also choose a

section s : Gal (E/Q)→ WEab/Q such that

• s(1) = 1,
• s(cw(ρ0)) = θρ0(jw(ρ0)),
• and, if η ∈ H∞, then s(ηcw(ρ0)) = s(η)s(cw(ρ0)),

We may choose a+0 ∈ H(E/Q)+ compatible with these choices (as explained in section
6.4 of [ST]), and then we have

ba+0 ,∞,µ,τ =
∏

η∈Gal (E/Q)

η(ρ
−1
0 µ)(τ̃ ρ0

−1
s(η(τ ρ0)−1)−1s(η)) ∈ T (AE)/T (E)T (E∞)T (Q)T (R)0,

where τ̃ ρ0 denotes any lift of τ ρ0|Eab to WEab/Q. Moreover, if τ ∈ Aut (C), then there

is an element α0(τ) ∈ S̃E,C(E) above τ |Calg such that we may take

b̃a+0 ,∞,µcan,α0(τ)
=

∏
η∈Gal (E/Q)

η(ρ
−1
0 µ)(τ̃ ρ0

−1
s(η(τ ρ0)−1)−1s(η)) ∈ T (A∞E ).
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3. Deligne’s Shimura varieties

3.1. Deligne’s Shimura data. In Deligne’s formalism, Shimura varieties are at-
tached to ‘Shimura data’. In this section we will recall Deligne’s definition of ‘Shimura
data’.

By a (Deligne) Shimura datum we shall mean a pair (G, Y ), where G/Q is a reduc-
tive group and Y ⊂ X∗(G)(C) is a compactifying G(R)-conjugacy class of miniscule
cocharacters. The smooth manifold Y has a unique structure of a complex manifold
such that

√
−1 acts on TµY = LieG(R)/Lie StabG(R)(µ) by adµ(

√
−1). This will be

explained below. Moreover if µ ∈ Y there is a unique parabolic subgroup P−µ ⊂ G
over C such that LieP−µ is the sum of the weight 0 and −1 spaces in LieG for adµ.
Then P−µ (C) ∩G(R) = StabG(R)(µ) and so there is a well defined map

Y −→ G(C)/P−µ (C)
conjh ◦ µ 7−→ hP−µ (C).

This is a diffeomorphism onto an open subset of G(C)/P−µ (C).
By a morphism φ : (G1, Y1) → (G2, Y2) we mean morphism φ : G1 → G2 of

algebraic groups over Q such that φ(Y1) ⊂ Y2. For instance if γ ∈ Gad (Q)R, then

conjγ : (G, Y ) −→ (G, Y ).

We will write

E(G, Y ) = CStabAut (C)([Y ]G(C)) ⊂ C
for the field of definition of the G(C) conjugacy class [Y ]G(C) containing Y . It is a
number field called the reflex field of (G, Y ). It comes with a preferred embedding

ı(G,Y ) : E(G, Y ) ↪→ C.

The variety [Y ]G can be defined over E(G, Y ).
This is not how a Shimura datum is usually defined, but is easily seen to be equiv-

alent to it, as we now explain. Write S for the restriction of scalars from C to R of
Gm and identify

SC ∼= Gm ×Gm

so that z ⊗ w ∈ S(C) = (C ⊗R C)× corresponds to (zw, zw). There is a natural
inclusion Gm ↪→ S. Deligne defined a Shimura datum to be a pair (G,X), where
G/Q is a reductive algebraic group and X is a G(R)-conjugacy class of morphisms
h : S→ GR of algebraic groups over R satisfying the following axioms:

(1) if h ∈ X then the adjoint action of S×R C ∼= Gm×Gm on (LieG)C has all its
characters in the set {(1,−1), (0, 0), (−1, 1)};

(2) if h ∈ X then adh(i) is a Cartan involution for the adjoint group Gad .

If h ∈ X then hC : SC ∼= G2
m → GC has the form (µh,

cµh) for a unique cocharacter
µh : Gm → GC. We define

YX = {µh : h ∈ X}.
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It is easily seen to be a basic G(R)-conjugacy class of miniscule cocharacters of
G. (Note that h|Gm = µh

cµh, and that if h ∈ X, then adh|Gm = 1.) It is more-
over compactifying because adh(i) = adµh(i)

cµh(−i) = adµh(−1)ad (µh
cµh)(−i) =

adµh(−1). Conversely if (G, Y ) is a Shimura datum in our sense and if µ ∈ Y , then
µ and µc commute (as µc is a central character times µ−1) and so

(µ, cµ) : G2
m −→ G/C

descends to a homomorphism

hµ : S −→ G/R.

Note that adhµ(i) = ad (µ(i)(cµ)(−i)) = adµ(−1)ad (µcµ)(−i) = adµ(−1). Thus

(G, {hµ : µ ∈ Y })

is a Shimura datum in Deligne’s sense. These two constructions are easily seem to be
inverse to one another. By definition, E(G, YX) coincides with the usual reflex field
of (G,X).

Write S1 for the kernel of the norm map S → Gm. Then there is an identification
S/Gm

∼→ S1 by the map which on R-points sends z ∈ C× to z/cz. If h ∈ X, then adh
factors through a unique map uh : S1 → Gad . We have

uh|S1(R) = adµh|(C×)NC/R=1 .

According to proposition 5.9 and theorem 2.14 of [Mi3], the complex structure on
ThX = LieG(R)/Lie StabG(R)(h) is such that (C×)NC/R=1 acts by the adjoint action of
uh, i.e. by adµh. This explains the assertion in the second paragraph of this section.

In [D2], Deligne imposed a further condition on his Shimura data (G,X):

(3) Gad has no Q factors on which the projection of any (and hence every) h ∈ X
is trivial, or what amounts to the same thing: the projection of µh is trivial.

Most subsequent authors have continued to impose this assumption. In this paper we
will not impose this condition on a Shimura datum. If a Shimura datum (G, Y ) does
satisfy the additional condition that Gad has no Q factor on which the projection of
any µ is trivial, we will call (G, Y ) a NCF-Shimura datum. (Here ‘NCF’ stands for
‘no compact factor’.)

An element µ ∈ Y is called special if it factors through a sub-torus T ⊂ G which is
defined over Q. We will call it E-special if we may choose T such that in addition T
is split by E.

Lemma 3.1. (1) If µ ∈ Y is special it factors through a maximal torus defined
over Q.

(2) If µ ∈ Y is special and factors through a torus T defined over Q, then T ad (R)
is compact, i.e. c acts on X∗(T

ad ) by −1.
(3) If T ⊂ G is a maximal torus defined over Q and if T ad (R) is compact then

there is a µ ∈ Y which factors through T .



ON THE FORMALISM OF SHIMURA VARIETIES 33

(4) If G contains a maximal torus T defined over Q and split by E with T ad (R)
compact, then the E-special points in Y are dense. In any case the special
points in Y are dense.

(5) If µ ∈ Y is special and E/Q is Galois, then µ is E-special if and only if µ is
defined over E.

(6) If E/Q is finite Galois and if µ ∈ Y is E-special factoring through a torus
T ⊂ G defined over Q and split by E, then there is a commutative diagram

R1
E,C −→ Z(G) ∩ T ⊂ Z(G)
↓ ↓ ↓

RE,C
µ̃−→ T ⊂ G

↓ ↓ ↓
SE,C

ad µ̃−→ T ad ⊂ Gad .

Moreover the the restriction µ̃|R1
E,C

does not depend on µ or T . We will denote

it µ̃Y,E.

Proof: For the first part suppose that µ factors through a torus T ⊂ G defined over
Q. Then one can replace T by a maximal torus of ZG(T ) defined over Q.

For the second part note that T ad embeds over R into the inner form of Gad

determined by the cocycle c 7→ adµ(−1), whose real points are compact.
For the third part choose any µ1 ∈ Y and chose a maximal torus T1 ⊂ G defined

over R through which µ1 factors. Then T ad
1 (R) is compact (as in part 2)). Thus T

and T1 are fundamental tori in G/R and hence T = gT1g
−1 for some g ∈ G(R). Then

µ = gµ1g
−1 will do.

For the first assertion of the fourth part, because G(Q) is dense in G(R), it suffices
to see that there is some E-special point. This follows from the previous part. For the
second assertion choose a maximal torus T1 ⊂ G defined over R with T ad

1 (R) compact.
Then T1 is G(R)-conjugate to some maximal torus T ⊂ G defined over Q, and we see
that T ad (R) is also compact. Choosing a finite Galois extension E/Q which splits
T , and the second assertion follows from the first. (The facts about algebraic groups
used in this paragraph were recalled in section 2.2.)

For the fifth part note that if µ factors through a torus T ⊂ G defined over Q
and split over E, then µ, like any cocharacter of T , is defined over E. Conversely,
if µ is defined over E and factors through a torus T1 ⊂ G defined over Q, then let
T be the minimal subtorus of T1 defined over Q through which µ factors. Because
X∗(T1)

Gal (E/E) is Gal (E/Q)-invariant, we see that T splits over E.
For the sixth part note that one, and hence every, complex conjugation acts on

X∗(T
ad ) by −1. If µ1 and µ2 ∈ Y are two E-special points, then the composites µi :

Gm → G→ C(G) are equal and hence so are the composites µ̃i : RE,C → G→ C(G).
Because Z(G)→ C(G) is an isogeny we see that µ̃1|R1

E,C
= µ̃2|R1

E,C
�
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3.2. Langlands’ theory of conjugation of Shimura data. Let a+ ∈ H(E/Q)+.

Also fix choices of b̃a+,∞,µcan,α lifting ba+,∞,µcan,α and hence also of φ̃a+,∞,µcan,α as in
section 2.6.

Suppose that α ∈ S̃E,C(E) and τ ∈ Aut (C) have the same image in Gal (Calg/Q).
Suppose also that µ ∈ Y is E-special, and choose a torus T ⊂ G defined over Q and
split by E, through which µ factors. Then µ̃ : RE,C → T over Q.

We define

φ̃E,a+,τ,α,µ = µ̃(φ̃a+,∞,µcan,α) ∈ Z1
alg(E3(E/Q)a, G(E))basic

and

b̃E,a+,τ,α,µ = µ̃(̃ba+,∞,µcan,α) ∈ T (A∞E ) ⊂ G(A∞E ).

These depend on the the choice of b̃a+,∞,µcan,α. If we change b̃a+,∞,µcan,α by hγ with

h ∈ R1
E,C(Q) and γ ∈ R1

E,C(E), then b̃E,a+,τ,α,µ changes to µ̃Y,E(hγ)̃bE,a+,τ,α,µ and

φ̃E,a+,τ,α,µ changes to µ̃Y,E(γ)φ̃E,a+,τ,α,µ.
We have the following observations, which all follow from the corresponding results

for φ̃a+,∞,µcanC ,α and b̃a+,∞,µcanC ,α:

(1) res∞locaφ̃E,a+,τ,α,µ = b̃E,a+,τ,α,µ1.

(2) ν φ̃E,a+,τ,α,µ
=
∏

ρ:E↪→C(ρ
−1

(µ/τµ)) ◦ πv(ρ), which by lemmas 2.3 is valued in

Z(G).

(3) [φ̃E,a+,τ,α,µ] = φG,Y,τ ∈ H1
alg(E3(E/Q), G(E))basic. (This is seen by reduction

to the case G = RE,C and using the results listed in section 2.5.)

(4) (τ, φ̃E,a+,τ,α,µ, b̃E,a+,τ,α,µ) ∈ Conj E,a(G, Y ).

(5) Given τ1, τ2 ∈ Aut (C) and αi ∈ S̃E,C(E) having the same image in Gal (Calg/Q)
as τi, there exists β ∈ Z(G)(E), independent of µ ∈ Y E-special, such that

βb̃E,a+,τ1τ2,α1α2,µ ≡ b̃E,a+,τ1,α1,τ2µb̃E,a+,τ2,α2,µ mod Z(G)(Q)

and
βφ̃E,a+,τ1τ2,α1α2,µ = φ̃E,a+,τ1,α1,τ2µφE,a+,τ2,α2,µ.

(6) If γ ∈ SE,C(E) then γ has a lift γ̃ ∈ RE,C(E) (independent of µ) such that

φ̃E,a+,τ,αγ−1,µ = µ̃(γ̃)φ̃E,a+,τ,α,µ

and

b̃E,a+,τ,αγ−1,µ = µ̃(γ̃)̃bE,a+,τ,α,µ.

(7) Suppose that D ⊃ E are finite Galois extensions of Q, that a+E ∈ H(E/Q)+,
that a+D ∈ H(D/Q)+ and that t ∈ T2,E(AD) with ηD/E,∗a

+
D = t infD/E a+E. Sup-

pose also that αD ∈ S̃D,C(D) and αE ∈ S̃E,C(E) have images τD ∈ Gal (Dab ∩
C/Q) and τE ∈ Gal (Eab ∩ C/Q) with τE = τD|Eab∩C. Thus α−1E ÑD/E(αD) ∈
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SE,C(D). Choose b̃a+E ,∞,µcanE ,αE
lifting ba+E ,∞,µcanE ,αE

and b̃a+D,∞,µcanD ,αD
lifting ba+D,∞,µcanD ,αD

.

Then there exists β ∈ Z(G)(D) with

b̃E,a+E ,τE ,αE ,µ
ν φ̃

E,a+
E
,τE,αE,µ

(t) ≡ βµ̃(α−1E ÑD/E(αD))̃bD,a+D,τD,αD,µ
mod Z(G)(Q)

and

inf
D/E,t

φ̃E,a+E ,τE ,αE ,µ
= βµ̃(α−1

E ÑD/E(αD))φ̃D,a+D,τD,αD,µ
∈ Z1

alg(E3(D/Q)a+D
, G(D))basic.

We will write

φad
E,τ,α,µ = ad φ̃E,a+,τ,α,µ ∈ Z1(Gal (E/Q), Gad (E)),

and
badE,τ,α,µ = ad b̃E,a+,τ,α,µ ∈ Gad (A∞E ).

As the notation suggests these do not depend on the choice of a+ or b̃a+,∞,µcan,α. (This
follows from the properties listed above.) If γ ∈ SE,C(E) then

φad
E,τ,αγ−1,µ = (ad µ̃)(γ)φad

E,τ,α,µ

and
badE,τ,αγ−1,µ = (ad µ̃)(γ)badE,τ,α,µ.

The cocycle φad
E,τ,α0(τ),µ

equals the cocycle σ 7→ cσ(τ, µad )−1 of section 6 of [L]. More-

over the element badE,τ,α0(τ),µ
∈ Gad (A∞E ) equals the element denoted ad b̃(τ, µ)−1 in

section 6 of [L]. (Recall that α0(τ) was defined at the end of section 2.6.) Note that
Langlands does not mention the chosen lift α in his notation. This is presumably
because, as we just pointed out, there is a canonical relationship between these quan-
tities for different choices of α. Nonetheless we find it less confusing to keep track of
the α.

Suppose that D ⊃ E are finite Galois extensions of Q, and that αD ∈ S̃D,C(D) and

αE ∈ S̃E,C(E) have images τD ∈ Gal (Dab ∩ C/Q) and τE ∈ Gal (Eab ∩ C/Q) with

τE = τD|Eab∩C. Then α−1E ÑD/E(αD) ∈ SE,C(D) and

badE,τE ,αE ,µ = (ad µ̃)(α−1E ÑD/E(αD))badD,τD,αD,µ

and
inf
D/E

φad
E,τE ,αE ,µ

= µ̃(α−1
E ÑD/E(αD))φad

D,τD,αD,µ
∈ Z1(Gal (D/Q), Gad (D)).

Following Langlands we will set
τ,µ,α(G, Y ) = (τ,µ,αG, τ,µ,αY ) = (τ,φE,a+,τ,α,µ,bE,a+,τ,α,µ)(G, Y ),

so that
conjbadE,τ,α,µ : G× A∞ ∼−→ τ,µ,αG× A∞

and τµ ∈ τ,µ,αY . Note that

τ,µ,α(G, Y ) = (φ
ad
E,τ,α,µG, τ,φ

ad
E,τ,α,µY ),
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and so τ,µ,α(G, Y ) does not depend on the choice of a+. This notation is consistent
with Langlands notation in [L], except again Langlands suppresses the choice of α in
his notation. If γ ∈ SE,C(E), then there is a canonical identification

conj(ad µ̃)(γ) : τ,µ,α(G, Y )
∼−→ τ,µ,αγ−1

(G, Y )

and
badE,τ,αγ−1,µ = (ad µ̃)(γ)badE,τ,α,µ.

This may be seen as explaining Langlands choice to suppress the α in his notation,
but again we feel it is clearer to make it explicit.

Suppose that D ⊃ E are finite Galois extensions of Q, and that αD ∈ S̃D,C(D) and

αE ∈ S̃E,C(E) have images τD ∈ Gal (Dab ∩ C/Q) and τE ∈ Gal (Eab ∩ C/Q) with

τE = τD|Eab∩C. Then α−1E ÑD/E(αD) ∈ SE,C(D) and

conj(ad µ̃)(α−1
E ÑD/E(αD)) : τD,µ,αD(G, Y )

∼−→ τE ,µ,αE(G, Y )

and
badE,τE ,αE ,µ = (ad µ̃)(α−1E ÑD/E(αD))badD,τD,αD,µ.

As
φad
E,τ1τ2,α1α2,µ

= φad
E,τ1,α1,τ2µ

φad
E,τ2,α2,µ

,

we see that
τ1τ2,µ,α1α2(G, Y ) = τ1,τ2µ,α1(τ2,µ,α2(G, Y )).

Similarly
badE,τ1τ2,α1α2,µ

= badE,τ1,α1,τ2µ
badE,τ2,α2,µ

.

If f : (G1, Y1)→ (G2, Y2) is a morphism of Shimura data and µ1 ∈ Y1 is special, then
we get a morphism

τ,µ1,αf : τ,µ1,α(G1, Y1) −→ τ,f(µ1),α(G2, Y2).

Moreover
conjbad

E,τ,α,f(µ1)
◦ f = τ,µ1,αf ◦ conjbadE,τ,α,µ1

.

If µ1, µ2 ∈ Y are both E-special then we set

φE,τ,α,µ1,µ2 = φ̃E,a+,τ,α,µ2φ̃
−1
E,a+,τ,α,µ1

∈ Z1(Gal (E/Q), τ,µ1,αG(E))

and
bE,τ,α,µ1,µ2 = b̃E,a+,τ,α,µ2 b̃

−1
E,a+,τ,α,µ1

∈ G(A∞E ).

As the notation suggests, these do not depend on the choices of a+ and b̃a+,∞,µcan,α.

(1)

ad bE,τ,α,µ1,µ2 = badE,τ,α,µ2(b
ad
E,τ,α,µ1

)−1 ∈ Gad (A∞E )

and

φE,τ,α,µ1,µ2 7−→ φad
E,τ,α,µ2

(φad
E,τ,α,µ1

)−1 ∈ Z1(Gal (E/Q), τ,µ1,αGad (E)).
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(2)

φE,τ,α,µ1,µ2(σ) = bE,τ,α,µ1,µ2conjφadE,τ,α,µ1 (σ)
(σbE,τ,α,µ1,µ2)

−1.

(3) If γ̃ ∈ RE,C(E) maps to γ ∈ SE,C(E) then

bE,τ,αγ,µ1,µ2 = µ̃2(γ̃)−1bE,τ,α,µ1,µ2µ̃1(γ̃)

and

φE,τ,αγ,µ1,µ2 = conjµ̃1(γ̃)(
µ̃1(γ̃)−1µ̃2(γ̃)φE,τ,α,µ1,µ2).

(4) Suppose that D ⊃ E are finite Galois extensions of Q, and that αD ∈ S̃D,C(D)

and αE ∈ S̃E,C(E) have images τD ∈ Gal (Dab ∩ C/Q) and τE ∈ Gal (Eab ∩
C/Q) with τE = τD|Eab∩C. Then α−1E ÑD/E(αD) ∈ SE,C(D) and

bE,τE ,αE ,µ1,µ2 = µ̃2(α
−1
E ÑD/E(αD))bD,τD,αD,µ1,µ2µ̃1(α

−1
E ÑD/E(αD))−1

and

inf
D/E

φE,τE ,αE ,µ1,µ2 = conjµ̃1(α−1
E ÑD/E(αD))(

µ̃1(α
−1
E ÑD/E(αD))−1µ̃2(α

−1
E ÑD/E(αD))φD,τD,αD,µ1,µ2)

(5) [φE,τ,α,µ1,µ2 ] ∈ H1(Gal (E/Q), τ,µ1,αG) is trivial, so that

φE,τ,α,µ1,µ2(σ) = γE,τ,α,µ1,µ2conjφadE,τ,α,µ1 (σ)
(σγ−1E,τ,α,µ1,µ2)

for some γE,τ,α,µ1,µ2 ∈ G(E) well defined up to right multiplication by an
element of τ,µ1,αG(Q). We see that

φ̃E,a+,τ,α,µ2 = γE,τ,α,µ1,µ2 φ̃E,a+,τ,α,µ2

and

conjγE,τ,α,µ1,µ2 : τ,µ1,αG
∼−→ τ,µ2,αG,

and

bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

∈ τ,µ2,αG(A∞).

Moreover

conjγE,τ,α,µ1,µ2 (τ,µ1,αY ) = τ,µ2,αY.

The cocycle φE,τ,α0(τ),µ1,µ2 ∈ Z1(Gal (E/Q), τ,µ1,α0(τ)G) equals the cocycle denoted
σ 7→ γσ in ‘the first lemma of comparison’ in section 6 of [L]. Moreover bE,τ,α0(τ),µ1,µ2 ∈
G(A∞E ) is the element denoted B(τ) = B(τ, µ1, µ2) in section 6 of [L]. Finally the
element γE,τ,α0(τ),µ1,µ2 ∈ G(E) is denoted u in the ‘second lemma of comparison’ in
section 6 of [L]. (Again recall that α0(τ) was defined at the end of section 2.6.)
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3.3. Deligne’s Shimura varieties. If U ⊂ G(A∞) is an open compact subgroup,
we will write Uad

v for the image of U in Gad (Qv) for any finite place v of Q. We will
call an open compact subgroup U ⊂ G(A∞) sufficiently small if for no integer m > 1
does G(Q)ad and each Uad

v contain an element of exact order m. Every open compact
subgroup of G(A∞) has an open normal subgroup which is sufficiently small.

Given a Shimura datum (G, Y ) and a sufficiently small compact open subgroup
U ⊂ G(A∞) the complex analytic manifold

Sh(G, Y )U(C) = G(Q)\(G(A∞)/U × Y )

arises from a unique smooth quasi-projective variety Sh(G, Y )U over C. Moreover to
each morphism f : (G1, Y1)→ (G2, Y2) of Shimura data, each sufficiently small open
compact subgroup Ui ⊂ Gi(A∞) and each g ∈ G2(A∞) such that gf(U1)g

−1 ⊂ U2 the
map

G1(Q)\(G1(A∞)/U1 × Y1) −→ G2(Q)\(G2(A∞)/U2 × Y2)
G1(Q)(hU1, x) 7−→ G2(Q)(f(h)g−1U2, f(x),

is holomorphic and arises from an algebraic map

Sh(g, f) : Sh(G1, Y1)U1 −→ Sh(G2, Y2)U2 .

If U B V are sufficiently small open compact subgroups then

Sh(1, 1) : Sh(G, Y )V /U
∼−→ Sh(G, Y )U ,

where u ∈ U acts as Sh(u, 1). Thus for any open compact subgroup U ⊂ G(A∞) we
can define a normal, quasi-projective variety over C

Sh(G, Y )U = Sh(G, Y )V /U

for any sufficiently small, open, normal subgroup V CU . (This is independent of the
choice of V .) If G = T is a torus then we have an isomorphism

ΠT,{µ} : T (Q)\T (A∞)/U
∼−→ Sh(T, {µ})U(C)

T (Q)tU 7−→ [(t, µ)]

Note that

(1) If f1 : (G1, Y1)→ (G2, Y2) and f2 : (G2, Y2)→ (G3, Y3) and if Ui ⊂ Gi(A∞) is
a sufficiently small open compact subgroup and if gi ∈ Gi(A∞) (for i = 2, 3)
satisfy g2f1(U1)g

−1
2 ⊂ U2 and g3f2(U2)g

−1
3 ⊂ U3, then

Sh(g3, f2) ◦ Sh(g2, f1) = Sh(g3f2(g2), f2 ◦ f1).
In particular as U varies over sufficiently small open compact subgroups of
G(A∞) the filtered inverse system {Sh(G, Y )U} (with transition maps Sh(1, 1))
has a left action of G(A∞), where g acts by Sh(g, 1).

(2) The maps Sh(g, 1) : Sh(G, Y )U1 → Sh(G, Y )U2 are finite and faithfully flat
of degree [U2Z(G)(Q) : gU1g

−1Z(G)(Q)]. If U2 is sufficiently small then this
map is etale.
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(3) If γ ∈ G(Q) and u ∈ U then Sh(uγ−1, conjγ) is the identity on Sh(G, Y )U . In

particular if z ∈ Z(G)(Q) then Sh(z, 1) = 1.
(4) U B V then

Sh(1, 1) : Sh(G, Y )V −→ Sh(G, Y )U

is Galois with group U/V (Z(G)(Q) ∩ U), where u ∈ U acts as Sh(u, 1).
(5) If x ∈ lim←V Sh(G, Y )V (C) then the image ofG(A∞)x is dense in Sh(G, Y )U(C),

for any U .
This implies the following: If T ⊂ G is a maximal torus defined over Q with

T ad (R) is compact, if i : T ↪→ G denotes this embedding, and if µ ∈ Y factors
through T (such a µ always exists); then⋃

g∈G(A∞)

Sh(g, i)(Sh(T, {µ})g−1Ug∩T (A∞)(C))

is dense in Sh(G,C)U(C).
(6) The group of automorphisms of the variety Sh(G, Y )U is finite.

(For most of this see sections 1.8 and 1.14 of [D1]. For the uniqueness of the quasi-
projective algebraic structure on Sh(G, Y )U see [B2]. Item (5) above follows from the
density of G(Q)µ in Y for any µ ∈ Y , or even from the density of G(Q) in G(R).
Item (6) follows from lemma 2.6.3 of [Ma]. (See also lemma 2.2 of [Mi2].))

As best we understand the main theorem of [Mi1] (proving a conjecture of Lang-
lands from [L]), it asserts the following:

Theorem 3.2 (Milne). Suppose that (G, Y ) is an NCF Deligne Shimura datum, that
E/Q is a finite Galois extension, and that µ ∈ Y is an E-special point. Suppose

also that τ ∈ Aut (C) and choose α ∈ S̃E,C(E) above τ |Calg . Then there are unique
morphisms

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)

such that
Φ(τ, µ, α)(τ [(1, µ)]) = (1, τµ)

and
Φ(τ, µ, α) ◦ τSh(g, 1) = Sh(conjbadE,τ,α,µ(g), 1) ◦ Φ(τ, µ, α)

for all g ∈ G(A∞).
If µ1 and µ2 ∈ Y are two E-special points, then

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2 ) ◦ Φ(τ, µ1, α).

(Note that the right hand side is unchanged if γE,τ,α,µ1,µ2 is replaced by γE,τ,α,µ1,µ2β
with β ∈ τ,µ2,αG(Q), and so the ambiguity in γE,τ,α,µ1,µ2 is unimportant.)

From these assertions the following additional formulae are easily deduced:

(1) If γ ∈ SE,C(E) then Φ(τ, µ, αγ) = Sh(1, conj(ad µ̃)(γ)−1)Φ(τ, µ, α).
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(2) If f : (G1, Y1)→ (G2, Y2) and g ∈ G2(A∞) and µ1 ∈ Y1 is an E-special point,
then Φ(τ, f ◦ µ1, α) ◦ τSh(g, f) = Sh(conjbadE,τ,α,f◦µ(g), τ,µ1,αf) ◦ Φ(τ, µ1, α).

(3) Φ(τ1τ2, µ, α1α2) = Φ(τ1,
τ2µ, α1) ◦ τ1Φ(τ2, µ, α2).

(4) If G = T is a torus then Φ(τ, µ, α) ◦ τ ◦ ΠT,{µ} = ΠT,{τµ}.

We note that the simple composition relation (3) really depends on making Φ(τ, µ, α)
depend on the choice of α and not just of τ . It would seem that to make it depend
on τ alone one would need to find a section to

S̃E,C(E)� Gal (Eab ∩ C/Q),

i.e. a rational section not an adelic one. This is the reason we choose not to follow
Langlands, but to make the choice of α explicit.

3.4. Removing the NCF-condition. We start with the following lemma.

Lemma 3.3. Suppose that (G, Y ) is a Shimura datum. Suppose also that H ⊂ G is a
normal connected reductive subgroup such that (G/H)(R) is compact and the image of
one, and hence every, µ ∈ Y in (G/H)(R) is trivial. We will write i for the inclusion
H ↪→ G. Also suppose that U is a sufficiently small open compact subgroup of G(A∞).

(1) Then Y is a single H(R)-conjugacy class so that (H,Y ) is also a Shimura
datum.

(2) G(Q)H(A∞)\G(A∞)/U has finite cardinality.
(3) (G/H)(Q) ∩ Im (U → (G/H)(A∞)) = {1}.
(4) G(Q)\(G(A∞)/U×Y ) =

∐
h∈G(Q)H(A∞)\G(A∞)/U H(Q)\(H(A∞)/(hUh−1∩H(A∞))×

Y )h.
(5) Sh(G, Y )U =

∐
h∈G(Q)H(A∞)\G(A∞)/U Sh(H,Y )hUh−1∩H(A∞), where we map

Sh(H,Y )hUh−1∩H(A∞) ↪→ Sh(G, Y )U

via Sh(h−1, i).

Proof: The exact sequence

(0) −→ Had −→ Gad −→ (G/H)ad −→ (0)

has a unique splitting in which (G/H)ad lifts to a normal subgroup of Gad . Write H ′

for the pre-image in G of (G/H)ad ⊂ Had × (G/H)ad = Gad , so that (H ′)ad
∼→ G/H.

Note that H ′(R)� (G/H)(R) (as (G/H)(R) is compact) and acts trivially on Y . If
µ, µ′ ∈ Y then µ′ = conjg ◦µ for some g ∈ G(R). Let h ∈ H ′(R) have the same image
as g in (G/H)(R). Thus gh−1 ∈ H(R) and conjgh−1 ◦ µ = µ′. The first part of the
lemma follows.

The set
G(Q)H(A∞)\G(A∞)/U = G(Q)H(A∞)\G(A)/UG(R)

is finite by theorem 5.1 of [PR].
For the third part we see that (G/H)(Q)∩ Im (U → (G/H)(A∞)) is finite (because

(G/H)(R) is compact) and hence {1} because U is sufficiently small.
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For the fourth part, first note that

G(Q)\(G(A∞)/U × Y ) =
∐

h∈G(Q)H(A∞)\G(A∞)/U

G(Q)\(G(Q)H(A∞)hU/U × Y ).

Next suppose that for g1, g2 ∈ H(A∞) and µ1, µ2 ∈ Y we have

γ(g1hu, µ1) = (g2h, µ2),

for some γ ∈ G(Q) and u ∈ U . Then we see that the image of γ in (G/H)(Q) lies in
(G/H)(Q)∩Im (hUh−1 → (G/H)(A∞)) = {1}. Thus γ ∈ H(Q) and huh−1 ∈ H(A∞).
We conclude that

H(Q)\(H(A∞)/(hUh−1 ∩H(A∞))× Y )
h−→ G(Q)\(G(Q)H(A∞)hU/U × Y )

is an isomorphism, and the third part of the lemma follows. The fifth part follows
from the fourth and the uniqueness assertion in section 3.3. �

Suppose that (G, Y ) is a Deligne Shimura datum. We have Gad = Gad ,nc ×Gad ,c,
where Gad ,c(R) is compact, but if H is any simple factor of Gad ,nc/Q, then H(R)
is not compact. We will write Gnc (resp. Gc) for the connected component of the
identity of ker(G � Gad ,c) (resp. ker(G � Gad ,nc)) and G

nc
(resp. G

c
) for G/Gc

(resp. G/Gnc). Thus

Gc � G
c
� Gad ,c ∼−→ Gc,ad

and
Gnc � G

nc
� Gad ,nc ∼−→ Gnc,ad ,

where the central maps have finite central kernels. We also have Z(Gc) = Z(G)∩Gc

and Z(Gnc) = Z(G) ∩ Gnc. Moreover Gc and Gnc centralize each other. (Indeed if
we let Gc act on Gnc by conjugation, we see that, given h ∈ Gnc, there is a character
χh : Gc → Z(G) ∩ Gnc such that conjg(h) = χh(g)h. The character χh must factor
through C(Gc), but is trivial on Z(G)∩Gc � C(Gc). Thus χh = 1 and Gc centralizes
h as desired.) We have an exact sequence

(0) −→ Z(Gc) ∩ Z(Gnc) −→ Gnc ×Gc −→ G −→ (0).

Note (G/Gnc)(R) is compact and hence connected. Thus Gc(R)� (G/Gnc)(R).
If µ ∈ Y then the composition of µ with G → Gad ,c takes −1 to 1 and hence

factors through the squaring map Gm → Gm. As this composition is miniscule we
see that it must actually be trivial, i.e. µ ∈ X∗(G

nc) and Gc centralizes µ. By
lemma 3.3 (Gnc, Y ) is a NCF-Shimura datum. Write i for the map Gnc ↪→ G, so that
i : (Gnc, Y )→ (G, Y ). Further by lemma 3.3 we have

Sh(G, Y )U =
∐

h∈G(Q)Gnc(A∞)\G(A∞)/U

Sh(Gnc, Y )hUh−1∩Gnc(A∞),

where G(Q)Gnc(A∞)\G(A∞)/U is finite, and where

Sh(h−1, i) : Sh(Gnc, Y )hUh−1∩Gnc(A∞) ↪→ Sh(G, Y )U .
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If h′ = gγhu with g ∈ Gnc(A∞), γ ∈ G(Q) and u ∈ U , then

Sh(Gnc, Y )hUh−1∩Gnc(A∞)

↘ Sh(h−1, i)
Sh(g, conjγ) ↓ o Sh(G, Y )U

↗ Sh((h′)−1, i)
Sh(Gnc, Y )h′U(h′)−1∩Gnc(A∞)

commutes.
Now suppose that f : (G1, Y1) → (G2, Y2) is a morphism of Shimura data, that

Ui ⊂ Gi(A∞) are sufficiently small open compact subgroups and that g ∈ G2(A∞)
such that gf(U1)g

−1 ⊂ U2. Note that f : Gnc
1 → Gnc

2 . If h ∈ G(A∞) then

Sh(Gnc
1 , Y1)hU1h−1∩Gnc1 (A∞)

Sh(h−1,i1)
↪→ Sh(G1, Y1)U1

Sh(1, f) ↓ ↓ Sh(g, f)

Sh(Gnc
2 , Y2)f(h)g−1U2(f(h)g−1)−1∩Gnc2 (A∞)

Sh(gf(h−1),i2)
↪→ Sh(G2, Y2)U2

commutes.
Our next aim is to extend theorem 3.2 to this setting. So suppose that (G, Y ) is a

Shimura datum and that µ ∈ Y is an E-special point. Suppose also that τ ∈ Aut (C)

and α ∈ S̃E,C(E) lies above τ |Calg .

Note that φ̃E,a+,τ,α,µ and b̃E,a+,τ,α,µ as defined for G equal those defined for Gnc.

Thus we will denote them with the same symbol. Hence G
c

= τ,µ,αG
c

and τ,µ,α(Gnc) =
(τ,µ,αG)nc. We claim that the images of G(Q) and τ,µ,αG(Q) in G

c
(Q) are equal, from

which it follows that

conjbadE,τ,α,µ(G(Q)Gnc(A∞)) = τ,µ,αG(Q)τ,µ,αGnc(A∞),

and hence that conjbadE,τ,α,µ gives a bijection

G(Q)Gnc(A∞)\G(A∞)/U
∼−→ τ,µ,αG(Q)τ,µ,αGnc(A∞)\τ,µ,αG(A∞)/conjbadE,τ,α,µ(U).

To prove the claim suppose that γ ∈ G(Q). Then we have γE,τ,α,µ,conjγ−1◦µ ∈ Gnc(E)

satisfying

φ̃E,a+,τ,α,conjγ−1◦µ(σ)φ̃E,a+,τ,α,µ(σ)−1

= γE,τ,α,µ,conjγ−1◦µφ̃E,a+,τ,α,µ(σ)σγ−1E,τ,α,µ,conjγ−1◦µφ̃E,a+,τ,α,µ(σ)−1

i.e.
γγE,τ,α,µ,conjγ−1µ = conjφadE,τ,α,µ(σ)(

σ(γγE,τ,α,µ,conjγ−1µ)).

Hence
γγE,τ,α,µ,conjγ−1µ ∈ τ,µ,αG(Q)

and has the same image in G
c
(E) as γ. Thus the image of G(Q) in G

c
(Q) is contained

in the image of τ,µ,αG(Q) in G
c
(Q). Using the identification τ−1,τµ,α−1

(τ,µ,αG) = G we
get the reverse inclusion.
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Now define

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)

to be the disjoint union over h ∈ G(Q)Gnc(A∞)\G(A∞)/U of the maps Φ(τ, µ, α):

τSh(Gnc, Y )hUh−1∩Gnc(A∞)
∼→ Sh(τ,µ,αGnc, τ,µ,αY )conj

bad
E,τ,α,µ

(h)conj
bad
E,τ,α,µ

(U)conj
bad
E,τ,α,µ

(h)−1∩τ,µ,αGnc(A∞).

From the claim above we see that Φ(τ, µ, α) is an isomorphism. We must check it is
independent of the choice of coset representatives h. For this suppose that h′ = gγhu
with g ∈ Gnc(A∞) and γ ∈ G(Q) and u ∈ U . Then

conjbadE,τ,α,µ(h′) = (conjbadE,τ,α,µ(gγ)γ−1E,τ,α,µ,conjγ−1µ
γ−1)(γγE,τ,α,µ,conjγ−1µ)

conjbadE,τ,α,µ(h)conjbadE,τ,α,µ(u),

with γγE,τ,α,µ,conjγ−1µ ∈ τ,µ,αG(Q) and

conjbadE,τ,α,µ(gγ)γ−1E,τ,α,µ,conjγ−1µ
γ−1 ∈ τ,µ,αGnc(A∞).

Thus what we must show is that

Φ(τ, µ, α)◦τSh(g, conjγ) = Sh(conjbadE,τ,α,µ(gγ)γ−1E,τ,α,µ,conjγ−1µ
γ−1, conjγγE,τ,α,µ,conj

γ−1µ
)◦Φ(τ, µ, α).

However

Φ(τ, µ, α) ◦ τSh(g, conjγ)
= Sh(conjbadE,τ,α,µ(g), conjγ) ◦ Φ(τ, conjγ−1µ, α)

= Sh(conjbadE,τ,α,µ(g), conjγ) ◦ Sh(bE,τ,α,µ,conjγ−1µγ
−1
E,τ,α,µ,conjγ−1µ

, conjγE,τ,α,µ,conj
γ−1µ

) ◦ Φ(τ, µ, α).

Thus we are reduced to checking that

Sh(γbE,τ,α,µ,conjγ−1µγ
−1
E,τ,α,µ,conjγ−1µ

γ−1, conjγγE,τ,α,µ,conj
γ−1µ

)

= Sh(conjbadE,τ,α,µ(γ)γ−1E,τ,α,µ,conjγ−1µ
γ−1, conjγγE,τ,α,µ,conj

γ−1µ
).

This is clear because

γbE,τ,α,µ,conjγ−1µ

= γconjγ−1 (̃bE,a+,τ,α,µ)̃b−1E,a+,τ,α,µ
= b̃E,a+,τ,α,µγb̃

−1
E,a+,τ,α,µ

= conjbadE,τ,α,µ(γ).

We certainly have
Φ(τ, µ, α)(µ, 1) = (τµ, 1).

If gU1g
−1 ⊂ U2, we claim that

Φ(τ, µ, α) ◦ τSh(g, 1) = Sh(conjbadE,τ,α,µ(g), 1) ◦ Φ(τ, µ, α),

as maps
τSh(G, Y )U1 → Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U2).
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However both sides when restricted to Sh(G, Y )hU1h−1∩Gnc(A∞) are just Φ(τ, µ, α) tak-
ing

τSh(Gnc, Y )hU1h−1∩Gnc(A∞) −→ Sh(τ,µ,αGnc, τ,µ,αY )conj
bad
E,τ,α,µ

hg−1 (U2)∩τ,µ,αGnc(A∞).

Now suppose that µ1 and µ2 are special in Y and defined over E. We claim that

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2 ) ◦ Φ(τ, µ1, α)

as maps
τSh(G, Y )U −→ Sh(τ,µ2,αG, τ,µ2,αY )conj

bad
E,τ,α,µ2

U .

To verify this, we must show that if h ∈ G(A∞), then

Φ(τ, µ2, α) = Sh(bE,τ,α,b1,b2γ
−1
E,τ,α,µ1,µ2

, 1) ◦ Sh(1, conjγE,τ,α,µ1,µ2 ) ◦ Φ(τ, µ1, α)

as maps from τSh(Gnc, Y )hUh−1∩Gnc(A∞) to

Sh(τ,µ2,αGnc, τ,µ2,αY )conj
bad
E,τ,α,µ2

(h)conj
bad
E,τ,α,µ2

(U)conj
bad
E,τ,α,µ2

(h)−1∩τ,µ2,αGnc(A∞).

However this equality is part of theorem 3.2.
Thus Milne’s theorem 3.2 remains true without the NCF hypothesis. As noted

immediately after the statement of that theorem, this allows us to conclude:

Theorem 3.4. Suppose that E/Q is a finite Galois extension, that (G, Y ) is a Deligne
Shimura datum, and that µ ∈ Y is an E-special point. Suppose also that τ ∈ Aut (C)

and choose α ∈ S̃E,C,τ . Then there is a unique morphism

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)

such that

Φ(τ, µ, α)(µ, 1) = (τµ, 1)

and

Φ(τ, µ, α) ◦ Sh(g, 1) = Sh(conjbadE,τ,α,µ(g), 1) ◦ Φ(τ, µ, α)

for all g ∈ G(A∞). Moreover:

(1) If γ ∈ SE,C(E) then Φ(τ, µ, αγ) = Sh(1, conjµ̃(γ)−1)Φ(τ, µ, α).
(2) If f : (G1, Y1) → (G2, Y2) and g ∈ G2(A∞) and µ1 ∈ Y1 is a special point

defined over the image of E in C, then

Φ(τ, f ◦ µ1, α) ◦ τSh(g, f) = Sh(conjbadE,τ,α,f◦µ(g), τ,µ1,αf) ◦ Φ(τ, µ1, α).

(3) Φ(τ1τ2, µ, α1α2) = Φ(τ1,
τ2µ, α1) ◦ τ1Φ(τ2, µ, α2).

(4) If G = T is a torus then Φ(τ, µ, α) ◦ τ ◦ ΠT,{µ} = ΠT,{τµ}.
(5) If µ1 and µ2 are two such special points defined over E, then

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2 ) ◦ Φ(τ, µ1, α).
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3.5. Reformulation of Milne’s theorem. We now state and prove our first main
theorem, which is a reformulation of Milne’s theorem.

Theorem 3.5. Suppose that E/Q is a finite Galois extension and that a+ ∈ H(E/Q)+.
If (G, Y ) is a Shimura datum with E acceptable for G, if (τ, φ, b) ∈ Conj E,a(G, Y )
and if U is a sufficiently small open compact subgroup of G(A∞), then there is an
isomorphism

ΦE,a+(τ, φ, b) : τSh(G, Y )U
∼−→ Sh(τ,φ,b)(G, Y )bUb−1

with the following properties.

(1) ΦE,a+(τ, φ, b) ◦ τSh(g, 1) = Sh(bgb−1, 1) ◦ ΦE,a+(τ, φ, b).
(2) Sh(1, f) ◦ ΦE,a+(τ, φ, b) = ΦE,a+(τ, f ◦ φ, f(b)) ◦ τSh(1, f).
(3) If δ ∈ G(E) and h ∈ G(A∞), then ΦE,a+(τ, δφ, δbh) = Sh(1, conjδ)◦ΦE,a+(τ, φ, b)◦

τSh(h, 1).
(4) If (τ1, φ1, b1) ∈ Conj E,a+

(τ2,c2,b2)(G, Y ) and (τ2, φ2, b2) ∈ Conj E,a+(G, Y ), then

ΦE,a+(τ1τ2, φ1φ2, b1b2) = ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2, φ2, b2).

(5) Suppose that G = T is a torus, that µ ∈ X∗(T )(C) and that (τ, φ, b) ∈
Conj E,a(T, {µ}). Then

b−1ba+,∞,µ,τ ∈ T (A∞)/T (Q) ⊂ T (A∞E )/T (Q)T (E).

Moreover

ΦE,a+(τ, φ, b) ◦ τ ◦ ΠT,{µ} = Sh(bb
−1
a+,∞,µ,τ , 1) ◦ ΠT,{τµ}.

In the special case that τ fixes the image of E in C, then Π−1T,{τµ}◦ΦE,a+(τ, φ, b)◦
τ ◦ ΠT,{µ} equals multiplication by

b−1
∏

ρ:E↪→C

(ρ
−1

µ)(Art −1E τ ρ̃)−1,

where ρ̃ is any extension of ρ to Eab.
(6) Suppose that D ⊃ E is another finite Galois extension of Q, that a+D ∈
H(D/Q)+ and that t ∈ T2,E(AD) with t infD/E a+ = ηD/E,∗a

+
D. Then

ΦD,a+D
( inf
D/E,t

(τ, φ, b)) = ΦE,a+(τ, φ, b).

(7) If µ ∈ Y is an E-special point and if α ∈ S̃E,C(E) lifts τ |Calg , then

ΦE,a+(τ, φ̃E,a+,τ,α,µ, b̃E,a+,τ,α,µ) = Φ(τ, µ, α).

Proof: Suppose that T ⊂ G is a maximal torus defined over Q such that T ad (R) is
compact and T is split by E. Then we may choose µ ∈ Y that factors through T . It
will be E-special. Choosing α as in part (7) of the theorem, we may find δ ∈ G(E)
and h ∈ G(A∞) such that

(τ, φ, b) = (τ, δφ̃E,a+,τ,α,µ, δb̃K,a+,τ,α,µh).
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Then we are forced to set

ΦE,a+(τ, φ, b) = Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1).

We must check that this is a good definition.

If we replace b̃K,a+,τ,α,µ by µ̃Y,E(γz)̃bK,a+,τ,α,µ and φ̃E,a+,τ,α,µ by µ̃Y,E(γ)φ̃E,a+,τ,α,µ, with

γ ∈ R1
E,C(E) and z ∈ R1

E,C(Q); then δ is replaced by δµ̃Y,E(γ)−1 and h is replaced by

hµ̃Y,E(z)−1. But Sh(1, conjδµ̃Y,E(γ)−1) = Sh(1, conjδ) and Sh(hµ̃Y,E(z)−1, 1) = Sh(h, 1),

and so the definition is independent of the choice of b̃K,a+,τ,α,µ.

If γ̃ ∈ φ̃E,a+,τ,α,µG(Q) then

Sh(1, conjδγ) ◦ Φ(τ, µ, α) ◦ τSh(b−1γ−1bh, 1)
= Sh(1, conjδ) ◦ Sh(γ, 1) ◦ Φ(τ, µ, α) ◦ τSh(b−1γ−1bh, 1)
= Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1),

and so the definition is independent of the choice of δ and h.
If we replace α by αγ−1 with γ ∈ SE,C(E), then there is a lift γ̃ ∈ RE,C(E) of γ

such that φ̃E,a+,τ,αγ−1,µ = µ̃(γ̃)φ̃E,a+,τ,α,µ and b̃E,a+,τ,αγ−1,µ = µ̃(γ̃)̃bE,a+,τ,α,µ and so

(τ, φ, b) = (τ, δµ̃(γ̃)
−1

φ̃E,a+,τ,αγ−1,µ, δµ̃(γ̃)−1b̃E,a+,τ,αγ−1,µh).

Then, because Φ(τ, µ, αγ−1) = Sh(1, conjγ̃) ◦ Φ(τ, µ, α), we see that

Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1) = Sh(1, conjδµ̃(γ̃)−1) ◦ Φ(τ, µ, αγ−1) ◦ τSh(h, 1),

and our definition is independent of the choice of α.
Finally if we replace µ by µ′, then

(τ, φ, b) = (τ,
δγ−1

E,a+,τ,α,µ,µ′ φ̃E,a+,τ,α,µ′ , (δγ
−1
E,a+,τ,α,µ,µ′ )̃bE,a+,τ,α,µ′ (̃b

−1
E,a+,τ,α,µ′γE,a+,τ,α,µ,µ′ b̃E,a+,τ,α,µh)).

We must check that

Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1)

= Sh(1, conjδγ−1

E,a+,τ,α,µ,µ′
) ◦ Φ(τ, µ′, α) ◦ τSh(̃b−1E,a+,τ,α,µ′γE,a+,τ,α,µ,µ′ b̃E,a+,τ,α,µh, 1),

or that

Φ(τ, µ, α) ◦ τSh(̃b−1E,a+,τ,α,µγ
−1
E,a+,τ,α,µ,µ′ b̃E,a+,τ,α,µ′ , 1)

= Sh(1, conjγ−1

E,a+,τ,α,µ,µ′
) ◦ Sh(bE,τ,α,µ,µ′γ

−1
E,τ,α,µ,µ′ , conjγE,τ,α,µ,µ′ ) ◦ Φ(τ, µ, α),

or even that

Sh(γ−1E,a+,τ,α,µ,µ′ b̃E,a+,τ,α,µ′ b̃
−1
E,a+,τ,α,µ, 1) ◦ Φ(τ, µ, α)

= Sh(γ−1E,a+,τ,α,µ,µ′bE,τ,α,µ,µ′ , 1) ◦ Φ(τ, µ, α),

which is true.
Having checked that our definition is good we must check the desired properties.

Property (7) is part of the definition, while property (3) follows easily from the defi-
nition.
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Properties (1) and (2) are true for

(τ, φ, b) = (τ, φ̃E,a+,τ,α,µ, b̃E,a+,τ,α,µ),

because we can take φ̃E,a+,τ,α,f◦µ = f ◦ φ̃E,a+,τ,α,µ and b̃E,a+,τ,α,f◦µ = f (̃bE,a+,τ,α,µ). To
check that they remain true for all (τ, φ, b), it suffices to check that if they are true
(τ, φ, b) then they are also true for (τ, δφ, δbh). However we have

ΦE,a+(τ, δφ, δbh) ◦ τSh(g, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(hg, 1)
= Sh(1, conjδ) ◦ Sh(bhgh−1b−1, 1) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(conjδbh(g), 1) ◦ ΦE,a+(τ, δφ, δbh)

and
ΦE,a+(τ, f ◦ δφ, f(δbh)) ◦ τSh(1, f)

= Sh(1, conjf(δ)) ◦ ΦE,a+(τ, f ◦ φ, f(b)b) ◦ τSh(f(h), 1) ◦ τSh(1, f)
= Sh(1, conjf(δ)) ◦ ΦE,a+(τ, f ◦ φ, f(b)b) ◦ τSh(1, f) ◦ τSh(h, 1)
= Sh(1, conjf(δ)) ◦ Sh(1, f) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(1, f) ◦ Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(1, f) ◦ ΦE,a+(τ, δφ, δbh).

Similarly property (5) is true in the case

(τ, φ, b) = (τ, φ̃E,a+,τ,α,µ, b̃E,a+,τ,α,µ).

On the other hand if the claim is true for (τ, φ, b), then

ΦE,a+(τ, δφ, δbh) ◦ τ ◦ ΠT,{µ}
= Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1) ◦ τ ◦ ΠT,{µ}
= Sh(h, 1) ◦ ΦE,a+(τ, φ, b) ◦ τ ◦ ΠT,{µ}

= Sh(h, 1) ◦ Sh(bb
−1
a+,∞,µ,τ , 1) ◦ ΠT,{τµ}

= Sh(δbhb
−1
a+,∞,µ,τ , 1) ◦ ΠT,{τµ},

and so it is also true for (τ, δφ, δbh).
That property (6) is true in the case G = T is a torus follows from property (5)

because infD/E,t(τ, φ, b) = (τ, infD/E,t φ,νφ(t)b) and

ba+D,∞,µ,τ
= ba+,∞,µ,τ

∏
ρ:E↪→C

((ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)))(t) = ba+,∞,µ,τνφ(t).

Now consider the general case. Because infD/E,t(γ, h)(τ, φ, b) = (γ, h) infD/E,t(τ, φ, b),
the assertion will be true for (τ, φ, b) if and only if it is true for (γ, h)(τ, φ, b). Choose
a maximal torus T ⊂ G defined over Q and split by E such that T ad (R) is compact.
Also choose µ ∈ Y which factors through T and let i denote the canonical embedding
i : T ↪→ G. Also choose (τ, φ, b) ∈ Conj E,a(T, {µ}). It will suffice to prove that

ΦE,a+(τ, i ◦ φ, i(b)) = ΦE,a+D
( inf
D/E,t

(τ, i ◦ φ, i(b))).
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Because ⋃
g∈G(A∞)

Sh(g, i)(Sh(T, {µ})g−1Ug∩T (A∞))

is Zariski dense in Sh(G, Y )U , it even suffices to check that

ΦE,a+(τ, i ◦ φ, i(b)) ◦ τSh(g, i) = ΦE,a+D
( inf
D/E,t

(τ, i ◦ φ, i(b))) ◦ τSh(g, i)

for all g ∈ G(A∞). As conjb(g) = conjνφ(t)b(g) (because φ is basic) and infD/E,t(i◦φ) =

i ◦ infD/E,t φ and i(νφ(t)) = νi◦φ(t); applying properties (1) and (2) we reduce to the
equality

ΦE,a+(τ, φ, b) = ΦE,a+D
( inf
D/E,t

(τ, φ, b)),

which we have already verified.
Finally we must check property (4). If

(τ1, φ1, b1) = (τ, φ̃E,a+,τ1,α1,τ2µ, b̃E,a+,τ1,α1,τ2µ)

and

(τ2, φ2, b2) = (τ, φ̃E,a+,τ2,α2,µ, b̃E,a+,τ2,α2,µ)

Then the result is true because for some β ∈ Z(G)(E) we have

φ̃E,a+,τ1,α1,τ2µφ̃E,a+,τ2,α2,µ = βφ̃E,a+,τ1τ2,α1α2,µ

and

b̃E,a+,τ1,α1,τ2µb̃E,a+,τ2,α2,µ ≡ βb̃E,a+,τ1τ2,α1α2,µ mod Z(G)(Q),

so that

ΦE,a+(τ1τ2, φ̃E,a+,τ1,α1,τ2µφ̃E,a+,τ2,α2,µ, b̃E,a+,τ1,α1,τ2µb̃E,a+,τ2,α2,µ)

= ΦE,a+(τ1τ2, φ̃E,a+,τ1τ2,α1α2,µ, b̃E,a+,τ1τ2,α1α2,µ).

Suppose now that property (4) holds for (τ1, φ1, b1) and (τ2, φ2, b2). Then it also holds
for (τ1,

δφ1, δb1h) and (τ2, φ2, b2), because

ΦE,a+(τ1τ2, (
δφ1)φ2, δb1hb2)

= ΦE,a+(τ1τ2,
δ(φ1φ2), δb1b2(b

−1
2 hb2))

= Sh(1, conjδ) ◦ ΦE,a+(τ1τ2, φ1φ2, b1b2) ◦ τ1τ2Sh(b−12 hb2, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(b−12 hb2, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, φ1, b1) ◦ τ1Sh(h, 1) ◦ τ1ΦE,a+(τ2, φ2, b2)
= ΦE,a+(τ1,

δφ1, δb1h) ◦ τ1ΦE,a+(τ2, φ2, b2).
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Similarly, if the property holds for (τ1, conjδ−1 ◦ φ1, conjδ−1(b1)) and (τ2, φ2, b2), then
it also holds for (τ1, φ1, b1) and (τ2,

δφ2, δb2h), because

ΦE,a+(τ1τ2, φ1(
δφ2), b1δb2h)

= ΦE,a+(τ1τ2,
δ((conjδ−1 ◦ φ1)φ2), δconjδ−1(b1)b2h)

= Sh(1, conjδ) ◦ ΦE,a+(τ1τ2, (conjδ−1 ◦ φ1)φ2, conjδ−1(b1)b2) ◦ τ1τ2Sh(h, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, conjδ−1 ◦ φ1, conjδ−1(b1)) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(h, 1)
= ΦE,a+(τ1, φ1, b1) ◦ τ1Sh(1, conjδ) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(h, 1)
= ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2,

δφ2, δb2h).

Note that

(τ1, conjδ−1◦φ̃E,a+,τ1,α1,µ, conjδ−1 (̃bE,a+,τ1,α1,µ)) = (τ1, φ̃E,a+,τ1,α1,conjδ−1◦µ, b̃E,a+,τ1,α1,conjδ−1◦µ).

Thus property (4) follows in full generality. �

We remark that properties (1), (2) and (5) completely characterize the ΦE,a+(τ, φ, b).
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4. Rational Shimura varieties

In this section we define, for any field L of characteristic 0, an explicit category
RSD(L) (of ‘rational Shimura data over L’), together with fully faithful functors

RSD(τ) : RSD(L) −→ RSD(L′)

whenever τ : L→ L′ is a map of fields; and construct functors

ShL : RSD(L) −→ QProjL

to the category of quasi-projective varieties over L together with natural isomorphisms

Φ(τ) : τ ◦ ShL
∼−→ ShL′ ◦ RSD(τ)

whenever τ : L→ L′ is a map of fields. Moroever we will have

Φ(τ ′ ◦ τ) = Φ(τ ′) ◦ τ ′Φ(τ).

4.1. Rational Shimura data. In this section we will define the categories RSD(L),
for L a field of characteristic 0. This category will depend on the choice of a finite
totally imaginary Galois extension E/Q and a ∈ H(E/Q), so we will sometimes
write RSD(E, a;L). However we will also explain how these categories depend on
this choice. We will call an object of RSD(E, a;L) a ((E, a)-)rational Shimura datum
over a field L. Before turning to the definition we introduce a condition that means
that E is sufficiently large to ‘see’ a particular Shimura variety.

If G/Q is a reductive group and ψ ∈ Z1
alg(E loc(E/Q)a, G(AE))basic and C is a G-

conjugacy, defined over a field L of characteristic 0, of cocharacters of G; we will say
that a finite Galois extension E/Q is acceptable for (G,ψ,C), if

(1) E is totally imaginary;
(2) G contains a maximal torus T defined over Q with T ad (R) compact, which is

split by E;
(3) there is a finite set of places S of Q containing infinity such that

κ([ψ]) ∈ Z[VE,S] ⊂ Z[VE]

and B(Q, G)S,basic is contained in the image of H1
alg(E3(E/Q), G(E))basic;

(4) and, if φ ∈ Z1
alg(E3(E/Q)a, G(E))basic with loc[φ] = λ̂resCψG(Y (C)−1resC/RψG

)[ψ],

then φGad (Q)E has a point in each connected component of φGad (R) .

Note that if (G,ψ,C) is any such triple then there is a finite Galois extension D/Q
containing E such that for any aD ∈ H(D/Q) and any t ∈ T2,E(AD) with ηD/E,∗aD =
t infD/E a, the field D is acceptable for (G, inf locD/E,t ψ,C). (This follows from point (8)

recalled at the end of section 2.3, the finiteness of ker1(Q, φG) (see theorem 7.1 of
[BS]), and the density of φGad (Q) in φGad (R) (see theorem 7.8 of [PR]).) Let L0 ⊂ L
be the field of definition of C. As C contains an element µ that factors through
T , it contains an element that can be defined over E. Thus there is an embedding
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ρ : L0 ↪→ E. In this case the Gal (E/Q) orbit of ρC is defined independent of the
choice of ρ, and hence λ(C) = λ(ρC) ∈ ΛG,Gal (E/Q) is well defined.

We now turn to the definition of RSD(E, a;L). An object of RSD(E, a;L) will be
a 4-tuple (G,ψ,C, U) where

(1) G is a reductive group over Q;
(2) ψ ∈ Z1

alg(E loc(E/Q)a, G(AE))basic with resC/RψGad (R) compact;
(3) C is a G-conjugacy class, defined over L, of miniscule cocharacacters of G

such that E is acceptable for (G,ψ,C) and κ(ψ) = λ(C) ∈ ΛG,Gal (E/Q);
(4) and U is an open compact subgroup of ψG(A∞).

By a morphism

(φ, g, f) : (G1, ψ1, C1, U1)→ (G2, ψ2, C2, U2)

in RSD(E, a;L), we will mean

• a cocycle φ ∈ Z1
alg(E3(E/Q)a, G2(E))basic,

• an element g ∈ G2(AE),
• a morphism f : G1 → φG2 defined over Q;

such that

• f ◦ ψ1 = (g
−1
ψ2)locaφ

−1 (so that conjg ◦ f : ψ1G1 → ψ2G2 over A),
• f(C1) ⊂ C2,
• and (conjg ◦ f)(U1) ⊂ U2.

We define the composite of such morphisms by

(φ2, g2, f2) ◦ (φ1, g1, f1) = (f2(φ1)φ2, g2f2(g1), f2 ◦ f1)

and set

Id(G,ψ,C) = (1, 1, 1).

The purpose of G is simply to provide some base point in a class of extended pure
inner forms, and is not very important. If Z(G) is connected, then (by proposition
10.4 of [K2]) any object of RSD(E, a;L) is isomorphic to one with G quasi-split. In
this case it would be simpler and more natural to restrict to the full subcategory of
4-tuples (G,ψ,C, U) with G quasi-split, which loses no generality.

If τ : L→ L′ is a map of fields then we define a functor

RSD(τ) : RSD(E, a;L) −→ RSD(E, a;L′)

by
τ (G,ψ,C, U) = (G,ψ, τC,U)

and
τ (φ, g, f) = (φ, g, f).

This functor is fully faithful. Note that

RSD(τ ′ ◦ τ) = RSD(τ ′) ◦ RSD(τ).
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Suppose that D ⊃ E is another finite Galois extension of Q, that aD ∈ H(D/Q)
and that t ∈ T2,E(AD) with ηD/E,∗aD = t infD/E a. Then there is a functor

infD/E,t : RSD(E, a;L) −→ RSD(D, aD;L)
(G,ψ,C, U) 7−→ (G, infD/E,t ψ,C, U)

(φ, g, f) 7−→ (infD/E,t φ,νφ(t)−1g, f).

(Note that ψG = infD/E,t ψG.) Finally note that infD/E,t is faithful and that

inf
D′/D,t′

◦ inf
D/E,t

= inf
D′/E,tηD/E(t′)

.

The reader is now in a position to read the statement of the main theorem 4.3,
except for the part concerning complex uniformization; and might like to do so.
However before stating that theorem we make some auxilliary definitions.

First note that there is an analogue RSD(E, a;L)− of RSD(E, a;L) where one
suppresses the choice of open compact subgroup U (and the third condition imposed
in the definition of a morphism). The functors RSD(τ) and infD/E,t are still defined
in this setting.

We will write G̃E,(G,ψ,C)(A) = G̃E,ψ(A) for the subgroup

{(ζ, g, 1) ∈ Z1(Gal (E/Q), Z(G)(E))×G(AE)× {1G} : (locaζ)gψ = ψ}
= {(ζ, g, 1) ∈ Z1

alg(E3(E/Q)a, Z(G)(E))basic ×G(AE)× {1G} : (locaζ)gψ = ψ}
⊂ Aut RSD(E,a;L)−(G,ψ,C).

Note that G̃E,(G,ψ,C)(A) does not depend on a (as the notation suggests). (Nor does
it depend on C.) Explicitly we have

(ζ2, g2, 1)(ζ1, g1, 1) = (ζ2ζ1, g2g1, 1).

We will often write (ζ, g) for (ζ, g, 1). We have embeddings

ψG(A) ↪→ G̃E,ψ(A)
g 7−→ (1, g)

and
Z(G)(E) ↪→ G̃E,ψ(A)

z 7−→ (z1, z−1).

We further define
G̃E,ψ(A∞) = G̃E,ψ(A)/Z(G)(Q)ψG(R).

There is a short exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃E,ψ(A∞)
ζ−→

ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE))) −→ (0),

where ζ is induced by (ζ, g) 7→ ζ. We endow G̃E,ψ(A∞) with a topology by decreeing

that ψG(A∞) is an open subgroup in its usual topology. This makes G̃E,ψ(A∞) a
totally disconnected, locally compact group. (We stress that the notation is not
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supposed to imply that G̃E,(G,ψ,C)(A) and G̃E,ψ(A∞) are the adelic points of any
algebraic group.)

Lemma 4.1.

ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE)))
= ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(A∞E ))⊕H1(Gal (E/F ), Z(G)(E∞))).

Proof: This is just the observation that

H1(Gal (C/R), Z(G)(C)) ↪→ H1(Gal (C/R), ψG(C))

because ψG(R)� ψGad (R), because the latter is connected.�

If (φ, g, f) : (G1, ψ1, C1) −→ (G2, ψ2, C2), set

G̃E,(G1,ψ1,C1)(A∞)f = {(ζ, h) ∈ G̃E,(G1,ψ1,C1)(A∞) : f ◦ ζ is valued in Z(G2)(E)}.
Then we get a continuous homomorphism

θ̃(φ,g,f) : G̃E,(G1,ψ1,C1)(A∞)f −→ G̃E,(G2,ψ2,C2)(A∞)
(ζ, h) 7−→ (f ◦ ζ, conjg(f(h))),

satisfying

θ̃(φ,g,f)|ψ1G1(A∞)/Z(G1)(Q) = conjg ◦ f
and

θ̃(φ,g,f)(h) ◦ (φ, g, f) = (φ, g, f) ◦ h.
We get a map

infD/E,t : G̃E,(G,ψ,C)(A∞) −→ G̃D,infD/E,t(G,ψ,C)(A∞)

[(ζ, g)] 7−→ [(inf
Gal (D/Q)
Gal (E/Q) ζ, g)],

which only depends on a and ta, but not on t. It restricts to the identity on ψG(A∞) =
inflocD/E,t ψG(A∞).

4.2. Labels. If (G,ψ,C) is a an object of RSD(E, a;C)−, we define Label a(G,ψ,C)
to be the set of pairs (φ, b) where

(1) φ ∈ Z1
alg(E3(E/Q)a, G(E))basic with

loc[φ] = λ̂resC/RψG
(Y (C)−1resC/RψG

)[ψ] ∈ H1
alg(E loc(E/Q), G(AE))basic,

(2) and b ∈ G(A∞E ) with res∞locaφ = bres∞ψ ∈ Z1
alg(E loc(E/Q)a, G(A∞E ))basic.

Note that νφ = νψν
−1
Y (C). We set

(G,ψ,C)(φ,b) = (φG, Y (C)φG),

a Deligne Shimura datum. Note that

conjb : ψG(A∞)
∼−→ φG(A∞),
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There is an embedding

i(φ,b) : (φG)(E)QR ↪→ G̃E,ψ(A∞)
γ 7−→ [((σ 7→ γ−1φ(σ)σγφ(σ)−1), (b−1γb, γ̂−1γ))],

where γ̂ ∈ (φG)(R) lifts ad γ ∈ (φGad )(Q). (This is independent of the lift γ̂.) Note
that

i(φ,b)(
φG(E)QR) ∩ ψG(A∞) = b−1φG(Q)b.

By lemma 4.1 ζ gives an isomorphism from G̃E,ψ(A∞)/ψG(A∞) to

ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), φG(AE))⊕H1(Gal (C/R), Z(G)(C))).

The image of i(φ,b)(
φG(E)QR) is

ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), φG(E))⊕H1(Gal (C/R), Z(G)(C))).

There is an action of G(E)× G̃E,ψ(A∞) on Label a(G,ψ,C) via

(γ, (ζ, g))(φ, b) = (γφζ, γb(g∞)−1).

We have

i(γ,g̃)(φ,b) = conjg̃ ◦ i(φ,b) ◦ conj−1γ .

We call two elements of Label a(G,ψ,C) equivalent if one is a translate of the other
by an element of G(E)× (ψG)(A∞). We denote this relations ∼. Note that there is
a bijection

Label a(G,ψ,C)/ ∼ ∼−→ {φ ∈ H1
alg(E3(E/Q), G(E)) : locφ = λ̂resC/RψG

(Y (C)−1resC/RψG
)[ψ]}

[(φ, b)] 7−→ [φ].

Lemma 4.2. (1) Label a(G,ψ,C) 6= ∅, and for (φ, b) ∈ Label a(G,ψ,C) we have

#(Label a(G,ψ,C)/ ∼) = # ker1(Gal (E/Q), φG(E)) = # ker1(Q, φG),

which in particular is finite.

(2) The action of G(E)× G̃E,ψ(A∞) on Label a(G,ψ,C) is transitive.
(3) The map from

ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), φG(AE))⊕H1(Gal (C/R), Z(G)(C)))

to

ker(H1(Gal (E/Q), G(E))→ H1(Gal (E/Q), φG(AE)))

is surjective.

(4) The stabilizer in G(E)×G̃E,ψ(A∞) of (φ, b) ∈ Label a(G,ψ,C) is (1×i(φ,b))(φG)(E)QR).
(5) The stabilizer in G(E)×ψG(A∞) of (φ, b) ∈ Label a(G,ψ,C) is (1×conj−1b )(φG(Q)).
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Proof: For the first part κ(λ̂resCψG(Y (C)−1)[ψ]) = 0 and so by proposition 15.1
of [K2] and the definition of acceptable we can find φ ∈ Z1

alg(E3(E/Q)a, G(E))basic

with loc[φ] = λ̂resCψG(Y (C)−1)[ψ] ∈ H1
alg(E loc(E/Q), G(AE))basic. Then there exists

h ∈ G(A∞E ) with res∞locaφ = hres∞ψ ∈ Z1
alg(E loc(E/Q)a, G(A∞E ))basic.

For the second part it suffices to show that if φ1,φ2 ∈ H1
alg(E3(E/Q), G(E))basic

both have the image

λ̂resC/RψG
(Y (C)−1resC/RψG

)[ψ] ∈ H1
alg(E loc(E/Q), G(AE))basic,

then φ2 = ζφ1 for some ζ ∈ H1(Gal (E/Q), Z(G)(E)) with

[ψ] = [ψ]loc(ζ) ∈ H1
alg(E loc(E/Q), G(AE))basic.

However if φi ∈ φi then

[φ2φ
−1
1 ] ∈ ker1(Gal (E/Q), φ1G(E)).

By lemma 2.1 [φ2φ
−1
1 ] is the image of some

ζ ∈ ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), G(A∞E ))⊕H1(Gal (C/R), Z(G)(C))).

Then

• φ2 = ζφ1 ∈ H1
alg(E3(E/Q), G(E))basic;

• and [ψ] = ([ψ]locζ) ∈ H1
alg(E loc(E/Q)∞, G(AE))basic.

This establishes the second assertion.
The third assertion follows from lemma 2.1 and the definition of acceptable.

For the fourth assertion suppose that γ ∈ G(E) and (ζ, g) ∈ G̃E,ψ(A) with

(γφζ, γb(g∞)−1) = (φ, b).

Then

• ζ(σ) = φ(σ)σγφ(σ)−1γ−1 = γ−1φ(σ)σγφ(σ)−1 and so γ ∈ φG(E)Q;
• g∞ = b−1γb;
• if w is an infinite place of E, then resEw/Rloc[ζ] ∈ H1

alg(WEw/R,
ψG(Ew))basic is

trivial, and so resEw/Rloc[ζ] ∈ H1(Gal (Ew/R), Z(G)(Ew)) is trivial (because
ψGad (R) is connected);
• γ ∈ φG(E)QR and (ζ, g) = i(φ,b)(γ)h with h ∈ G(E∞);
• hres∞ψ = res∞ψ and so h ∈ ψG(R).

This establishes the fourth part. The final part follows from this. �

If (φ, g, f) : (G1, ψ1, C1)→ (G2, ψ2, C2) then we get a map

Label a(φ, g, f) : Label a(G1, ψ1, C1) −→ Label a(G2, ψ2, C2)
(φ1, b1) 7−→ ((f ◦ φ1)φ, f(b1)g

−1).

To see that this is well defined, note that

νf◦φ1 = (f ◦ νψ1)(f ◦ νY (C1))
−1 = νψ2ν

−1
φ ν

−1
Y (C2)
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factors through Z(G2) and so (f ◦ φ1)φ is basic. Moreover f gives a map

f : φ1G1 −→ (f◦φ1)φG2

over Q which takes Y (C1)φ1G1
to Y (C2)(f◦φ1)φG2

, i.e.

f : (φ1G1, Y (C1)φ1G1
) −→ ((f◦φ1)φG2, Y (C2)(f◦φ1)φG2

).

Moreover

conjf(b1)g−1 ◦ conjg ◦ f = f ◦ conjb1 : ψ1G1(A∞) −→ (f◦φ1)φG2(A∞).

Additionally, if (γ, h) ∈ G(E)× ψG(A∞), then

Label a(φ, g, f)((γ,h)(φ1, b1)) = (f(γ),gf(h)g−1)Label a(φ, g, f)(φ1, b1),

and so we get an induced map

Label a(φ, g, f) : (Label a(G1, ψ1, C1)/ ∼) −→ (Label a(G2, ψ2, C2)/ ∼).

If (φ, b) ∈ Label a(G,ψ,C) and (τ, φ′, h) ∈ Conj E,a(
φG, Y (C)φG), then

(φ′φ, hb) ∈ Label a(G,ψ,
τC).

(To verify this use the fact from the end of section 2.4 that

λ̂λ̂resC/RψG
(Y (C)−1

resC/RψG
)

(
resC/RψG)

(τC − Y (C)λ̂resC/RψG
(Y (C)−1

resC/RψG
)

(
resC/RψG)

)λ̂resC/RψG
(Y (C)−1resC/RψG

)

= λ̂resC/RψG
(Y (τC)−1resC/RψG

).)

If D ⊃ E is another finite Galois extension of Q, that aD ∈ H(D/Q) and that
t ∈ T2,E(AD) with ηD/E,∗aD = t infD/E a. Then there is a map

infD/E,t : Label a(G,ψ,C) −→ Label aD(infD/E,t(G,ψ,C))
(φ, b) 7−→ (infD/E,t φ,νφ(t)b).

It induces a bijection

(Label a(G,ψ,C)/ ∼)
∼−→ (Label aD( inf

D/E,t
(G,ψ,C))/ ∼).

(Because, if (φ, b) ∈ Label a(G,ψ,C), then ker1(Gal (E/Q), φG(E))
∼→ ker1(Gal (D/Q), φG(D)),

as E is acceptable for G.) We have

inf
D/E,t

◦Label a(φ, g, f) = Label aD( inf
D/E,t

(φ, g, f)) ◦ inf
D/E,t

and

inf
D′/D,t′

◦ inf
D/E,t

= inf
D′/E,tηD/E(t′)

.
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4.3. Rational Shimura varieties. We now state and prove our second main theo-
rem.

Theorem 4.3. We have the following objects:

(I) For any finite totally imaginary Galois extension E/Q, any a+ ∈ H(E/Q)+,
and any field L of characteristic 0; we may associate a functor

ShE,a+;L = Sh : RSD(E, a;L) −→ QProjL.

(II) To an embedding of fields τ : L ↪→ L′ we may associate a natural isomorphism

ΦE,a+(τ) = Φ(τ) : τ ◦ ShE,a+;L
∼−→ ShE,a+;L′ ◦ RSD(τ).

(III) If D ⊃ E is another finite Galois extension of Q, if a+D ∈ H(D/Q)+ and if
t ∈ T2,E(AD) with ηD/E,∗a

+
D = t infD/E a+, there is a natural isomorphism

αt : ShE,a+;L
∼−→ ShD,a+D,L

◦ inf
D/E,t

.

(IV) If (G,ψ,C, U) is an object of RSD(E, a;C) with U sufficiently small and if
(φ, h) ∈ Label E,a(G,ψ,C), then ShE,a+;C(G,ψ,C, U) is smooth and we may
associate an isomorphism of complex manifolds

πE,a+;(φ,h) = π(φ,h) : φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG)
∼−→ ShE,a+;C(G,ψ,C, U)(C).

These objects satisfy the following properties.

(1) Sh(G,ψ,C, U) is normal, and if U is sufficiently small, then it is smooth.
(2) If U is sufficiently small then the group of automorphisms of the variety

Sh(G,ψ,C, U) is finite.
(3) If φ ∈ Z1

alg(E3(E/Q)a, G(E))basic, then

Sh(φ, 1, 1) : Sh(φG,ψlocaφ
−1, C, U)

∼−→ Sh(G,ψ,C, U).

(This expresses the independence of the choice of ‘base point’ G.)
(4) If z ∈ Z(G)(E) and u ∈ U and h ∈ ψG(R), then

Sh(z1, z−1uh, 1) : Sh(G,ψ,C, U) −→ Sh(G,ψ,C, U)

is the identity. In particular G̃ψ(A∞) acts on the inverse system {Sh(G,ψ,C)U}U .
(5) Sh(1, g, 1) : Sh(G,ψ,C, U) → Sh(G,ψ,C, V ) is a faithfully flat, finite mor-

phism of degree [V Z(G)(Q) : gUg−1Z(G)(Q)]. If V is sufficiently small then
it is etale.

(6) If U C V , then

Sh(1, 1, 1) : Sh(G,ψ,C, U) −→ Sh(G,ψ,C, V )

is Galois with group V Z(G)(Q)/UZ(G)(Q) ∼= V/U(Z(G)(Q) ∩ V ) acting via
v 7→ Sh(1, v, 1).

(7) Φ(1) = Id and Φ(τ ′ ◦ τ) = Φ(τ ′) ◦ τ ′Φ(τ).
(8) αt ◦ ΦE,a+(τ) = ΦD,a+D

(τ) ◦ αt.
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(9) If D′ ⊃ D is another finite Galois extension of Q, if a+D′ ∈ H(D′/Q)+ and if

t′ ∈ T2,D(AD′) with ηD′/D,∗a
+
D′ = t′ infD′/D a+D; then ηD′/E,∗a

+
D′ = tηD/E(t

′) infD′/E a+

and

αtηD/E(t′) = αt′ ◦ αt.

(10) If g̃1, g̃2 ∈ G̃E,ψ(A∞), then Sh(g̃1)◦π(φ,b)([(g̃2U, µ)]) = π(φ,b)([(g̃2g̃
−1
1 (g̃1Ug̃

−1
1 ), µ)]).

(11) π(γφ,γbh−1)([(hg̃U, conjγ(µ))]) = π(φ,b)([(g̃U, µ)]).

(12) If g̃1, g̃2 ∈ G̃E,ψ(A∞), then πg̃1(φ,b)([(g̃1g̃2U, µ)]) = π(φ,b)([(g̃2U, µ)]).
(13) Sh(φ, g, f) ◦ π(φ1,b1)([(ζ, k)], µ) = π(f(ζ−1φ1)φ,f(b1k)g−1)(1, f ◦ µ). In particular, if

k̂ ∈ Ĝ1,ψ1(A∞)f , then

Sh(φ, g, f) ◦ πρ,(φ1,b1)(k̂, µ) = πLabel a(φ,g,f)(φ1,b1)(θ̃(φ,g,f)(k̂), f ◦ µ).

(14) If G = T is a torus and τ ∈ Aut (C), then

Φ(τ)(τ ◦ π(φ,b))(g̃, µ) = π(φτφ,bτ b)(g̃,
τµ),

for any (τ, φτ , bτ ) ∈ Conj a(T, {µ}) for which bτ lifts ba+,∞,µ,τ ∈ T (A∞E )/T (Q)T (E).
Such a pair (φτ , bτ ) always exists.

(15) αt ◦ πE,a+;ρ,(φ,b) = πD,a+D;ρ,infD/E,t(φ,b)
◦ (infD/E,t×1).

Before proving this theorem we will give an example of how one can make use of the
‘density of special points’ in this optic. The argument is the usual one, but rephrased
in our language. The particular corollary we prove is rather technical, but our reason
to prove it here as an example of this sort of argument and will be needed in section
4.5.

Corollary 4.4. The set of points in Sh(G,ψ,C, U)(L) whose orbit under Φ(τ)◦ τ for
τ ∈ StabAut (L)(C) is finite are Zariski dense. If L = C, then these points are even
dense in the Archimedean topology.

Proof: Let S denote a finite set of places of Q containg ∞ and every place v with
[resvψ] is non-trivial and a finite place v0 at which G splits and [resv0ψ] is trivial. For
v ∈ S choose a maximal torus Tv ⊂ G defined over Qv such that

• [resvψv] is in the image of B(Qv, Tv)G−basic for all v ∈ S,
• Tv0 is split,
• and T ad

∞ (R) is compact.

Then choose a torus T ⊂ G defined over Q with T conjugate over Qv to Tv for
all v ∈ S. (See corollary 3 to proposition 7.3 of [PR].) Write i for the inclusion
T ↪→ G. We can choose µ ∈ C which factors through T . We can also choose a
finite Galois extension D/Q containing E which splits T , and a+D ∈ H(D/Q)+, and
t ∈ T2,E(AD) with t infD/E a+ = ηD/E,∗a

+
D, and ψT ∈ Z1

alg(E loc(D/Q)aD , T (AD))G−basic
with [ψT ] = infD/E[ψ] ∈ H1

alg(E loc(D/Q), G(AD))basic. Altering ψT only at v0 we may
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alter κ(ψT ) ∈ X∗(T )Gal (D/Q) by any element in the image of X∗(T
sc). As κ(ψT ) maps

to λ(C) in (X∗(T )/X∗(T
sc))Gal (D/Q) and as

X∗(T
sc)Gal (D/Q) −→ X∗(T )Gal (D/Q) −→ (X∗(T )/X∗(T

sc))Gal (D/Q) −→ (0)

is right exact, we may arrange that λ({µ}) = κ(ψT ) ∈ X∗(T )Gal (D/Q). Next choose
g ∈ G(AD) with gψT = infD/E,t ψ.

If k̃ ∈ G̃E,ψ(A∞) and V ⊂ T (A∞) with k̃gV g−1k̃−1 ⊂ U then

Sh(k̃) ◦ α−1t ◦ Sh(1, g, i) : ShD,a+D
(T, ψT , {µ}, V ) −→ ShE,a(G,ψ,C, U).

The image is finite and is preserved by Φ(τ) for τ ∈ Aut (L) which fixes C. As k̃ and
V vary, the union of the images is Zariski dense in ShE,a(G,ψ,C, U). If L = C it is
even dense in the Archimedean topology. �

One can use a similar argument to prove the uniqueness up to unique isomorphism
of objects satisfying the theorem. First of all one considers the case L = C. In this
case uniqueness of everything except the Φ(τ) is clear. The Φ(τ) are unique in the
case that G is a torus. Then an argument as in the corollary shows they are unique
for all G. Once one knows the uniqueness for L = C one can deduce it for L a number
field, and then for L any field of characteristic 0.

We will prove the theorem over the next two sections. We will first treat the case
L = C. The general case will follow from this rather formally. (Note that once we
prove the theorem in the case L = C, the corollary follows in that case.)

4.4. Proof in the case L = C. If (φ, b) ∈ Label a(G,ψ,C) we define

Sh(G,ψ,C, U)(φ,b) = Sh(φG, Y (C)φG)bUb−1 .

Up to canonical isomorphism this only depends on the equivalence class of (φ, b).

Indeed if γ ∈ G(E) and h ∈ ψG(A∞), then conjγ : φG
∼→ γφG and

Sh(conjγb(h)−1, conjγ) : Sh(G,ψ,C, U)(φ,b)
∼−→ Sh(G,ψ,C, U)(γφ,γbh−1),

i.e.

Sh(conjγb(h)−1, conjγ) : (φG, Y (C)φG)bUb−1
∼−→ (

γφG, Y (C)γφG)γbh−1U(γbh−1)−1 .

If we replace (γ, h) by (γδ, hconjb−1(δ)) with δ ∈ φG(Q) then this map is replaced by

Sh(conjγδb(hb
−1δb)−1, conjγδ) = Sh(γbh−1b−1δ−1γ−1, conjγδ)

= Sh(γbh−1b−1γ−1, conjγ) ◦ Sh(δ−1, conjδ)
= Sh(conjγb(h)−1, conjγ).

Thus we have a canonical isomorphism

α(φ,b),(γφ,γbh−1) : Sh(G,ψ,C, U)(φ,b)
∼−→ Sh(G,ψ,C, U)(γφ,γbh−1)
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which is independent of the choice of (γ, h), and Sh(G,ψ,C, U)(φ,b) only depends on
[(φ, b)] up to canonical isomorphism. Thus we can define

Sh(G,ψ,C, U) =
∐

[(φ,b)]∈Label a(G,ψ,C)/∼

Sh(G,ψ,C, U)(φ,b)

and it is well defined up to canonical isomorphism. As the union is finite, Sh(G,ψ,C, U)
is a quasi-projective variety. It is normal, and if U is sufficiently small then it is smooth
and its group of automorphisms is finite. (As bUb−1 is again sufficiently small.)

Now suppose that (φ, g, f) : (G1, ψ1, C1, U1)→ (G2, ψ2, C2, U2). Then we define

Sh(φ, g, f)|Sh(G1,ψ1,C1,U1)(φ1,b1)
: Sh(G1, ψ1, C1, U1)(φ1,b1) −→ Sh(G2, ψ2, C2, U2)((f◦φ1)φ,f(b1)g−1)

to be

Sh(1, f) : Sh(φ1G1, Y (C1)φ1G1
)b1U1b

−1
1
−→ Sh((f◦φ1)φG2, Y (C2)(f◦φ1)φG2

)f(b1)g−1U2gf(b1)−1 .

This is well defined independent of the choice of representatives (φ1, b1) because, for
γ ∈ G(E) and h ∈ ψ1G1(A∞), we have

Label a(φ, g, f)((γ,h)(φ1, b1)) = (f(γ),gf(h)g−1)Label a(φ, g, f)(φ1, b1)

and

Sh(1, f)◦Sh(conjγb1(h)−1, conjγ) = Sh(conjf(γ)f(b1)g−1(gf(h)g−1)−1, conjf(γ))◦Sh(1, f).

We have Sh(1, 1, 1) = Id and Sh((φ′, g′, f ′) ◦ (φ, g, f)) = Sh(φ′, g′, f ′) ◦ Sh(φ, g, f)
(where (φ′, g′, f ′) : (G2, ψ2, C2, U2) → (G3, ψ3, C3, U3)). To verify the latter suppose
that (φ1, b1) ∈ Label a(G1, ψ1, C1). Then we have to verify that Sh(1, f2) ◦Sh(1, f1) =
Sh(1, f1f2) as maps

Sh(G1, ψ1, C1, U1)(φ1,b1) −→ Sh(G3, ψ3, C3)U3,((f2◦((f1◦φ1)φ))φ′,f2(f1(b1)g−1
1 )g−1

2 )

= Sh(G3, ψ3, C3)U3,((f2◦f1◦φ1)((f2◦φ)φ′),(f2◦f1)(b1)(g2f(g1))−1)
,

which is clear.
If φ ∈ Z1

alg(E3(E/Q)a, G(E))basic, then

Sh(φ, 1, 1) : Sh(φG,ψlocaφ
−1, C, U) −→ Sh(G,ψ,C, U)

has two-sided inverse Sh(φ−1, 1, 1) and so is an isomorphism.
If z ∈ Z(G)(E) and u ∈ U and h ∈ ψG(R) then we must show that

Sh(z1, z−1uh, 1) : Sh(G,ψ,C, U) −→ Sh(G,ψ,C, U)

is the identity. First note that it is an isomorphism, because it has two-sided inverse
Sh(z

−1
1, zu−1h−1, 1). Moreover its restriction to Sh(G,ψ,C, U)(φ1,b1) is

Sh(1, 1) : Sh(φ1G, Y (C)φ1G)b1Ub−1
1
−→ Sh(φ1G, Y (C)φ1G)b1Ub−1

1
= Sh(G,ψ,C)U,(φ1z1,b1u−1z).

Thus it suffices to check that

α(φ1,b1),(zφ1,b1u−1z) = Sh(conjzb1(u
−1), conjz) = Sh(b1u

−1b−11 , 1)
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equals Sh(1, 1) on Sh(φ1G, Y (C)φ1G)b1Ub−1
1

, which it does.

The map

Sh(1, g, 1) : Sh(G,ψ,C, U)→ Sh(G,ψ,C, V )

equals ∐
[(φ1,b1)]∈Label a(G,ψ,C)/∼

Sh(1, 1) : Sh(G,ψ,C, U)(φ1,b1) −→ Sh(G,ψ,C, V )(φ1,b1g−1),

i.e. ∐
[(φ1,b1)]∈Label a(G,ψ,C)/∼

(α(φ1,b1g−1),(φ1,b1)◦Sh(1, 1)) : Sh(G,ψ,C, U)(φ1,b1) −→ Sh(G,ψ,C, V )(φ1,b1),

i.e. ∐
[(φ1,b1)]∈Label a(G,ψ,C)/∼

(Sh(conjb1(g), 1) : Sh(φ1G, Y (C)φ1G)b1Ub−1
1
−→ Sh(φ1G, Y (C)φ1G)b1V b−1

1
.

This is finite and faithfully flat of degree

[b1V b
−1
1 Z(G)(Q) : b1gUg

−1b−11 Z(G)(Q)] = [V Z(G)(Q) : gUg−1Z(G)(Q)].

If V is sufficiently small, then so is b1V b
−1
1 and so this map is etale. If moreover

U C V , then we also see that

Sh(1, 1, 1) : Sh(G,ψ,C, U) −→ Sh(G,ψ,C, V )

is Galois with group V Z(G)(Q)/UZ(G)(Q) acting via v 7→ Sh(1, v, 1).
Next suppose that τ ∈ Aut (C). We define

(Φ(τ) : τSh(G,ψ,C, U) −→ Sh(G,ψ, τC,U))

=
∐

[(φ1,b1)]∈Label a(G,ψ,C)/∼

(
ΦE,a+(τ, φ, b) : τSh(G,ψ,C, U)(φ1,b1)

∼→ Sh(G,ψ, τC,U)(φφ1,bb1)

)
=

∐
[(φ1,b1)]∈Label a(G,ψ,C)/∼

(
ΦE,a+(τ, φ, b) : τSh(φ1G, Y (C)φ1G)b1Ub−1

1

∼→ Sh(φφ1G, Y (τC)φφ1G)bb1Ub−1
1 b−1

)
for any (τ, φ, b) ∈ Conj E,a(

φ1G, Y (C)φ1G). Note that τ,φY (C)φ1G = Y (τC)φφ1G. To see

that this is independent of the choice of (τ, φ, b) ∈ Conj E,a(
φ1G, Y (C)φ1G) we must

check that if γ ∈ G(E) and h ∈ φ1G(A∞), then

α(φφ1,bb1),((γφ)φ1,γbh−1b1) ◦ Φ(τ, φ, b) = Φ(τ, γφ, γbh−1),

i.e. that

Sh(conjγbb1(b
−1
1 h−1b1), conjγ) ◦ Φ(τ, φ, b) = Φ(τ, γφ, γbh−1).

However both sides equals Sh(1, conjγ)◦Φ(τ, φ, b)◦ τSh(h−1, 1). It is also independent

of the choice of representatives (φ1, b1) because, if γ ∈ G(E) and h ∈ ψG(A∞) then
(τ, conjγ ◦ φ, conjγ(b)) ∈ Conj E,a(

γφ1G, Y (C)γφ1G) and

Φ(τ, conjγ ◦ φ, conjγ(b)) ◦ τα(φ1,b1),(γφ1,γb1h−1) = α(φφ1,bb1),((conjγ◦φ)γφ1,γbb1h−1) ◦Φ(τ, φ, b).
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To see this, note that (conjγ ◦ φ)γφ1 = γ(φφ1) and decode the equality to

Φ(τ, conjγφ, γbγ
−1) ◦ τSh(conjγb1(h

−1), conjγ) = Sh(conjγbb1(h
−1), conjγ) ◦ Φ(τ, φ, b),

which holds because

Φ(τ, conjγφ, γbγ
−1) ◦ τSh(conjγb1(h

−1), conjγ)
= Sh(1, conjγ) ◦ Φ(τ, φ, b) ◦ τSh(conjb1(h

−1), 1)
= Sh(1, conjγ) ◦ Sh(conjbb1(h

−1), 1) ◦ Φ(τ, φ, b)
= Sh(conjγbb1(h

−1), conjγ) ◦ Φ(τ, φ, b).

We have Φ(1) = Id and Φ(τ ′τ) = Φ(τ ′) ◦ τ ′Φ(τ). The latter because if (τ, φ, b) ∈
Conj (φ1G, Y (C)φ

1G
) and (τ ′, φ′, b′) ∈ Conj (φφ1G, Y (τC)φφ1G), then (τ ′τ, φ′φ, b′b) ∈

Conj (φ1G, Y (C)φ1G) and

Φ(τ ′τ, φ′φ, b′b) = Φ(τ ′, φ′, b′) ◦ τ ′Φ(τ, φ, b).

We must check that Φ(τ)◦τSh(φ, g, f) = Sh(φ, g, f)◦Φ(τ). Consider the restriction
of both sides to

τSh(G1, ψ1, C1, U1)(φ1,b1) = τSh(φ1G1, Y (C1)φ1G1
)b1U1b

−1
1
.

Choose (φ′, b′) ∈ Conj (φ1G1, Y (C1)φ1G1
), so that (f◦φ′, f(b′)) ∈ Conj ((f◦φ1)φG2, Y (C2)(f◦φ1)φG2

).
then we are required to check that

Φ(τ, f ◦ φ′, f(b′)) ◦ τSh(1, f) = Sh(1, f) ◦ Φ(τ, φ′, b′)

as maps
τSh(φ1G1, Y (C1)φ1G1

)b1U1b
−1
1
−→ Sh((f◦(φ

′φ1))φG2, Y (C2)(f◦(φ′φ1))φG2
)f(b′b1)g−1U2gf(b′b1)−1

= Sh(G2, ψ2, C2)U2,((f◦(φ′φ1))φ,f(b′b1)g−1).

This is true.
In the setting of part III we define

αt : ShE,a+(G,ψ,C, U)
∼−→ ShD,a+D

(G, inf
D/E,t

(ψ), C, U)

to be the disjoint union of the maps

ShE,a+(G,ψ,C, U)(φ,b)
∼−→ ShD,a+D

(G, infD/E,t(ψ), C, U)(infD/E,t(φ),νφ(t)b)
|| ||

Sh(φG, Y (C)φG)bUb−1 = Sh(infD/E,t(φ)G, Y (C)infD/E,t(φ)G
)νφ(t)bUb−1νφ(t)−1).

(Recall that νφ(t) ∈ Z(ψG)(AE).) This is well defined because if γ ∈ G(E) and
h ∈ ψG(A∞), then

αt ◦ α(φ,b),(γφ,γbh−1) = α(inf3,D/E,t(φ),νφ(t)b),(
γ inf3,D/E,t(φ),γνφ(t)bh

−1) ◦ αt
as maps

ShE,a+(G,ψ,C, U)(φ,b) −→ ShD,a+D
(G, infD/E,t(ψ), C, U)(infD/E,t(γφ),νγφ(t)γbh−1)

= ShD,a+D
(G, infD/E,t(ψ), C, U)(γ infD/E,t(φ),γνφ(t)bh−1).
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To see this note that the equality decodes to

Sh(conjγb(h)−1, conjγ) = Sh(conjγνφ(t)b(h)−1, conjγ)

as maps

Sh(φG, Y (C)φG)bUb−1 −→ Sh(
γ infD/E,t(φ)G, Y (C)γ infD/E,t(φ)G

)γνφ(t)bh−1Uhb−1νφ(t)−1γ−1).

This is equivalent to the equality

Sh(bh−1b−1, 1) = Sh(νφ(t)bh−1b−1νφ(t)−1, 1)

as maps

Sh(φG, Y (C)φG)bUb−1 −→ Sh(infD/E,t(φ)G, Y (C)infD/E,t(φ)G
)νφ(t)bh−1Uhb−1νφ(t)−1),

which is clear as νφ(t) is central.
To see that αt is a natural isomorphism we must check that

αt ◦ ShE,a+(φ, g, f) = ShD,a+D
( inf
D/E,t

(φ),νφ(t)−1g, f) ◦ αt.

On ShE,a+(G1, ψ1, C1, U1)(φ1,b1) this equality becomes Sh(1, f) = Sh(1, f) as maps

ShE,a+(G1, ψ1, C1, U1)(φ1,b1) −→ ShE,a+(G2, ψ2, C2, U2)(infD/E,t((f◦φ1)φ),ν(f◦φ1)φ(t)f(b1)g
−1),

i.e. as maps from Sh(φ1G1, Y (C1)φ1G1
)b1U1b

−1
1

to

Sh((infD/E,t((f◦φ1)φ)G2, Y (C2)(infD/E,t((f◦φ1)φ)G2
)ν(f◦φ1)φ(t)f(b1)g

−1)U2(ν(f◦φ1)φ(t)f(b1)g
−1)−1 .

To verify that αt◦ΦE,a+(τ) = ΦD,a+D
(τ)◦αt, we must check that on τShE,a+(G,ψ,C, U)(φ1,b1)

we have

ΦE,a+(τ, φ, b) = ΦD,a+D
(τ, inf

D/E,t
φ,νφ(t)b)

as maps

τShE,a+(G,ψ,C, U)(φ1,b1) −→ ShD,a+D
(G,ψ, τC,U)(infD/E,t(φφ1),νφφ1 (t)bb1)

= ShD,a+D
(G, infD/E,t(ψ), τC,U)(infD/E,t(φ) infD/E,t(φ1),νφ(t)bνφ1 (t)b1),

i.e. as maps

τSh(φ1G, Y (C)φ1G)b1Ub−1
1
−→ Sh(infD/E,t(φφ1)G, Y (τC)infD/E,t(φφ1)G

)νφφ1 (t)bb1Ub
−1
1 b−1νφφ1 (t)

−1

= Sh(φφ1G, Y (τC)φφ1G)bb1Ub−1
1 b−1

= Sh(infD/E,t(φ)φ1G, Y (τC)infD/E,t(φ)φ1G
)νφ(t)bb1Ub−1

1 b−1νφ(t)−1 ,

where (τ, φ, b) ∈ Conj E,a(
φ1G, Y (C)φ1G), so that

(τ, inf
D/E,t

φ,νφ(t)b) ∈ ConjD,aD(infD/E,t φ1G, Y (C)infD/E,t φ1G
).

this is part (6) of theorem 3.5.
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To verify that αtηD/E(t′) = αt′◦αt we must check that if (φ1, b1) ∈ Label E,a(G,ψ,C, U),
then αtηD/E(t′) = αt′ ◦ αt as maps

ShE,a+(G,ψ,C, U)(φ1,b1)
−→ ShD′,a+

D′
(G, infD′/E,tηD/E(t′) ψ,C, U)(infD′/E,tηD/E(t′)(φ1),νφ1 (tηD/E(t

′))b1)

= ShD′,a+
D′

(G, infD′/D,t′ infD/E,t ψ,C, U)(infD′/D,t′ infD/E,t(φ1),νinfD/E,t(φ1)
(t′)νφ1 (t)b1)

.

Note that inf?D′/E,tηD/E(t′) = inf?D′/D,t′ ◦ inf?D/E,t and that locaD infD/E,t(φ1))|T2,D(AD) =

loca(φ1)|T2,D(AD) ◦ ηD/E. This is equivalent to checking that the composite of the two
identity maps

Sh(φ1G, Y (C)φ1G)conjb1 (U)

−→ Sh(infD/E,t φ1G, Y (C)infD/E,t φ1G
)conjνφ1 (t)b1

(U)

−→ Sh(infD′/D,t′ infD/E,t φ1G, Y (C)infD′/D,t′ infD/E,t φ1G
)conjνinfD/E,t φ1

(t′)νφ1 (t)b1
(U)

equals the identity map

Sh(φ1G, Y (C)φ1G)conjb1 (U)

−→ Sh(
infD′/E,tηD/E(t′) φ1G, Y (C)infD′/E,tηD/E(t′) φ1

G
)conjνφ1 (tηD/E(t′))b1

(U),

which of course it does.
If U is sufficiently small and (φ, b) ∈ Label a(G,ψ,C), then we define a map of

complex analytic spaces

π(φ,b) : φG(E)QR\(G̃E,ψ(A∞)/U × Y (C)φG) −→ Sh(G,ψ,C, U)(C)
(g̃, µ) 7−→ Sh(g̃−1)φG(Q)(bg̃Ug̃−1b−1, µ),

where

φG(Q)(bg̃Ug̃−1b−1, µ) ∈ Sh(G,ψ,C, g̃Ug̃−1)(φ,b)(C) = Sh(φG, Y (C)φG)bg̃Ug̃−1b−1(C).

Equivalently

π(φ,b)(g̃, µ) = φG(Q)(bg̃Ug̃−1b−1, µ)
∈ Sh(G,ψ,C, U)g̃−1(φ,b)(C)
= Sh(φG, Y (C)φG)bg̃Ug̃−1b−1(C).

To see it is well defined, suppose that γ ∈ φG(E)QR and ad γ has a lift γ̂ ∈ φG(R), so
that i(φ,b)(γ

−1) = (γ1, (b−1γ−1b, γ−1γ̂)). Then we must check that

Sh(γ1, (b−1γ−1b, γ−1γ̂), 1)(φG(Q)(b(b−1γb)g̃U g̃−1(b−1γb)−1b−1, conjγ̂ ◦ µ))

equals (φG(Q)(bg̃Ug̃−1b−1, µ)) in Sh(G,ψ,C, U)(C). Here

φG(Q)(b(b−1γb)g̃U g̃−1(b−1γb)−1b−1, conjγ̂ ◦ µ) ∈ Sh(G,ψ,C, b−1γbg̃Ug̃−1b−1γ−1b)(φ,b)(C)
= Sh(φG, Y (C)φG)γbg̃Ug̃−1b−1γ−1(C).
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The former expression equals

(φG(Q)(γbg̃Ug̃−1b−1γ−1, conjγ̂ ◦ µ)) ∈ Sh(G,ψ,C, g̃Ug̃−1)(γφ,γb)(C)
= Sh(

γφG, Y (C)γφG)γbg̃Ug̃−1b−1γ−1 ,

so we must check that

α(γφ,γb),(φ,b)(
φG(Q)(γbg̃Ug̃−1b−1γ−1, conjγ̂◦µ)) = (φG(Q)(bg̃Ug̃−1b−1, µ)) ∈ Sh(G,ψ,C, g̃Ug̃−1)(φ,b)(C),

i.e. that

Sh(1, conjγ−1)(φG(Q)(γbg̃Ug̃−1b−1γ−1, conjγ̂ ◦ µ)) = (φG(Q)(bg̃Ug̃−1b−1, µ))
∈ Sh(G,ψ,C, g̃Ug̃−1)(φ,b)(C)
= Sh(φG, Y (C)φG)bg̃Ug̃−1b−1 ,

which is clear.
We next prove that π(φ,b) is an isomorphism. If we write

G̃E,ψ(A∞) =
∐
i∈I

[(ζi, gi)]G̃E,ψ(A∞)1

then (by lemma 4.2)

I
∼−→ Label a(G,ψ,C)/ ∼

i 7−→ [(ζiφ, bg
−1
i )]

and
φGad (E)QR\(G̃E,ψ(A∞)/U × Y (C)φG)

=
∐

i∈I
φGad (E)QR\(G̃E,ψ(A∞)1/conjg−1

i
(U)× Y (C)φG)

=
∐

i∈I
φGad (E)QR\(φGad (E)QR

ψG(A∞)/Z(G)(Q)conjg−1
i

(U)× Y (C)φG)

=
∐

i∈I
φG(Q)\(ψG(A∞)/conjg−1

i
(U)× Y (C)φG).

The map π(φ,b) sends

[(gconjg−1
i

(U), µ)] ∈ φG(Q)\(ψG(A∞)/conjg−1
i

(U)× Y (C)φG)

to a point in

Sh([(ζ−1i , gg−1i )])−1Sh(G,ψ,C, gg−1i Ugig
−1)(φ,b)(C) = Sh(G,ψ,C, U)(ζiφ,bgg−1

i )(C)

= Sh(G,ψ,C, U)(ζiφ,bg−1
i (gigg

−1
i ))(C)

= Sh(G,ψ,C, U)(ζiφ,bg−1
i )(C).

Thus π(φ,b) is a disjoint union of maps

φG(Q)\(ψG(A∞)/conjg−1
i

(U)× Y (C)φG) −→ Sh(G,ψ,C, U)(ζiφ,bg−1
i )(C),

given by

[(gconjgi(U), µ)] 7−→ α(ζiφ,bgg
−1
i ),(ζiφ,bg

−1
i )Sh([(ζ−1i , gg−1i )])−1φG(Q)(bgg−1i Ugig

−1b−1, µ)

= Sh(conjbg−1
i

(gig
−1g−1i ))(φG(Q)(bgg−1i Ugig

−1b−1, µ))

= φG(Q)((bgb−1)bg−1i Ugib
−1, µ),
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where in the first line
φG(Q)(bgg−1i Ugig

−1b−1, µ) ∈ Sh(G,ψ,C, gg−1i Ugig
−1)(φ,b)(C) = Sh(φG, Y (C)φG)bgg−1

i Ugig−1b−1(C)

and in the second line
φG(Q)(bgg−1i Ugig

−1b−1, µ) ∈ Sh(G,ψ,C, U)(ζiφ,bgg−1
i )(C) = Sh(φG, Y (C)φG)bgg−1

i Ugig−1b−1(C)

and in the third line
φG(Q)((bgb−1)bg−1i Ugib

−1, µ) ∈ Sh(G,ψ,C, U)(ζiφ,bg−1
i )(C) = Sh(φG, Y (C)φG)bg−1

i Ugib−1(C).

Thus

π(φ,b) : φG(Q)\(ψG(A∞)/conjg−1
i

(U)× Y (C)φG)
∼−→ φG(Q)\(φG(A∞)/conjbg−1

i
(U)× Y (C)φG)

∼−→ Sh(φG, Y (C)φG)bg−1
i Ugib−1(C),

where the first map is conjugation by b. We conclude that π(φ,b) is indeed an isomor-
phism.

To verify 10 note that both sides equal

Sh(g̃1)Sh(g̃−12 )φG(Q)(bg̃2Ug̃
−1
2 b−1, µ) = Sh(g̃1g̃

−1
2 )φG(Q)(bg̃2g̃

−1
1 (g̃1Ug̃

−1
1 )g̃1g̃

−1
2 b−1, µ)

where
φG(Q)(bg̃2Ug̃

−1
2 b−1, µ) ∈ Sh(G,ψ,C, g̃2Ug̃

−1
2 )(φ,b)(C) = Sh(φG, Y (C)φG)bg̃2Ug̃−1

2 b−1(C).

To verify 11 we may (using part 10) suppose that g̃ = 1. In this case left hand side
is represented by

γφG(Q)(γbUb−1γ−1, conjγ(µ)) ∈ Sh(G,ψ,C, U)(γφ,γb)(C)
= Sh(

γφG, Y (C)γφG)γbUb−1γ−1(C),

while the right hand side is represented by
φG(Q)(bUb−1, µ) ∈ Sh(G,ψ,C, U)(φ,b)(C)

= Sh(φG, Y (C)φG)bUb−1(C).

Thus we need to verify that

Sh(1, conjγ)(
φG(Q)(bUb−1, µ)) =

γφG(Q)(γbUb−1γ−1, conjγ(µ))
∈ Sh(

γφG, Y (C)γφG)γbh−1Uhb−1γ−1(C),

which is clear.
To verify property 12 we may (using part 10) assume that g̃2 = 1 and that g̃1 =

[(ζ, g)]. In this case the left hand side is represented by
ζφG(Q)((bg−1)gUg−1(bg−1)−1, µ) ∈ Sh(G,ψ,C, U)g̃−1

1 g̃1(φ,b)
(C)

= Sh(φG, Y (C)φG)bUb−1 .

This equals
φG(Q)(bUb−1, µ) ∈ Sh(G,ψ,C, U)(φ,b)(C)

= Sh(φG, Y (C)φG)bUb−1 ,

which represents the right hand side.
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To verify the first half of property 13 note that the left hand side is represented by
the image under Sh(φ, g, f) of

ζ−1φ1G1(Q)(b1kU1k
−1b−11 , µ) ∈ Sh(G1, ψ1, C1, U1)(ζ−1φ1,b1k)(C)

= Sh(ζ
−1φ1G1, Y (C1)ζ−1φ1G1

)b1kU1k−1b−1
1
,

i.e. by

f(f(ζ
−1φ1)φG2(Q)(f(b1k)g−1U2gf(b1k)−1, f(µ))) ∈ Sh(G2, ψ2, C2, U2)(f(ζ−1φ1)φ,f(b1k)g−1)(C)

= Sh(f(ζ
−1φ1)φG2, Y (C2)f(ζ−1φ1)φG2

)f(b1k)g−1U2gf(b1k)−1 ,

which also represents the right hand side. In the case that [(ζ, k)] ∈ G̃E,ψ(A∞)f , this
also equals

f(f(φ1)φG2(Q)(f(b1)g
−1(gf(k)g−1)U2(gf(k)g−1)−1gf(b1)

−1, f(µ)))
∈ Sh(G2, ψ2, C2, U2)θ̃(φ,g,f)(k̂)−1(f(φ1)φ,f(b1)g−1)(C)

= Sh(f(φ1)φG2, Y (C2)f(φ1)φG2
)f(b1k)g−1U2gf(b1k)−1 ,

which is just π(f(φ1)φ,f(b1)g−1)([(θ̃(φ,g,f)(k̂), f ◦ µ)]), as desired.
To verify property (14) it suffices (by part 10) to treat the case g̃ = 1. Then

π(φ,b)(1, µ) is represented by T (Q)(U, µ) ∈ Sh(T, {µ})U = Sh(T, ψ, {µ}, U)(φ,b) and
Φ(τ) ◦ τ ◦ π(φ,b)(1, µ) is represented by

(T (Q)(U, τµ)) ∈ Sh(T, ψ, {µ}, U)(φτφ,bτ b) = Sh(T, {τµ})U .
This equals π(φτφ,bτ b)(1,

τµ).
To verify property 15, it suffices (by part 10) to show that

αt ◦ πE,a+;ρ,(φ,b)(1, µ) = πD,a+D;ρ,infD/E,t(φ,b)
(1, µ).

However both sides are represented by
infD/E,t(φ)G(Q)(bUb−1, µ) ∈ ShD,a+D

(G,ψ,C, U)(infD/E,t(φ),νφ(t)b)(C)

= Sh(infD/E,t(φ)G, Y (C)infD/E,t(φ)G
)νφ(t)bUb−1νφ(t)−1 .

4.5. The general case. First suppose that L is a number field embeddable into E.
If ρ : L ↪→ C then for any τ ∈ Aut (C/ρL) we have

Φ(τ) : τSh(G,ψ, ρC,U)
∼−→ Sh(G,ψ, ρC,U),

and these maps provide descent data, i.e. Φ(τ1τ2) = Φ(τ1) ◦ τ1Φ(τ2) for all τ1, τ2 ∈
Aut (C/ρL). Note that the automorphism group of Sh(G,ψ, ρC,U)(C) is finite and
that, by corollary 4.4, the set of C points of Sh(G,ψ, ρC,U) with finite orbit under
{Φ(τ) ◦ τ : τ ∈ Aut (C/L)} is Zariski dense. It follows from corollary 1.2 of [Mi2]
there is a unique model ShL,ρ(G,ψ,C, U)/L of Sh(G,ψ,C, U) over L (with respect
to ρ). (Note that if z ∈ C is fixed by a finite index subgroup of Aut (C), then z is
algebraic.)

The maps Sh(φ, g, f) and αt commute with Φ(τ) for τ ∈ Aut (C/ρL) and so descend
to maps ShL,ρ(φ, g, f) and αL,ρ,t. These satisfy properties I, III, 1, 2, 3, 4, 5, 6 and 9.
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If ρ′ : L′ ↪→ C and τ : L → L′, then we can find τ̃ ∈ Aut (C) with with ρ′τ = τ̃ ρ.
The element τ̃ is not unique, but the coset Aut (C/ρ′L)τ̃ is. Then

Φ(τ̃) : τSh(G,ψ, ρC,U)
∼→ Sh(G,ψ, ρ

′τC,U)

descends to

Φ(τ̃)ρ,ρ′ : τShL,ρ(G,ψ,C, U)
∼−→ ShL′,ρ′(G,ψ,

τC,U)

over L′. We have the following observations

• Φ(τ̃)ρ,ρ′ : τ ◦ ShL,ρ
∼→ ShL′,ρ′ ◦ τ is a natural isomorphism. It commutes with

the αt.
• Φ(τ̃ ′)ρ′,ρ′′ ◦ τ

′
Φ(τ̃)ρ,ρ′ = Φ(τ̃ ′τ̃)ρ,ρ′′ .

• If L′ = L and τ̃ ∈ Aut (C/ρL) then Φ(τ̃)ρ,ρ is the identity. (This follows from
the definition of Sh(G,ψ, ρC,U)ρ.)
• Φ(τ̃)ρ,ρ′ depends only on the coset Aut (C/ρ′L)τ̃ , and so we unambiguously

may denote it Φ(τ)ρ,ρ′ .

Using Φ(1)ρ,ρ′ we can identify ShL,ρ with ShL,ρ′ . These identifications are compatible
in triples. By ShL we shall mean any of the ShL,ρ identified in this way. If τ : L1 → L2

and ρi, ρ
′
i : Li ↪→ C then

Φ(1)ρ2,ρ′2 ◦ Φ(τ)ρ1,ρ2 = Φ(τ)ρ′1,ρ′2 ◦ Φ(1)ρ1,ρ′1 .

Thus we get a well defined natural isomorphism

Φ(τ) : ShL
∼−→ ShL′ .

It is easy to check that these satisfy parts 7 and 8.
Finally we treat the case of a general field L of characteristic 0. Any subfield L1 of L

embeddable into E will be contained in E ∩L. Thus, if ιL : E ∩L ↪→ L is the natural
inclusion, then RSD(ιL) : RSD(E, a;E ∩ L) → RSD(E, a;L) is an isomorphism of
categories (i.e. a functor which is bijective on objects and morphisms). We define
ShE,a+;L = ιL ◦ ShE,a+;E∩L ◦RSD(ιL)−1. If τ : L→ L′ then τ(E ∩L) ⊂ E ∩L′ and we
define ΦE,a+(τ) by

ΦE,a+(τ) ◦ ιL = ιL′ΦE,a+(τ |E∩L).

We also define αt by

αt ◦ ιL = ιL′ ◦ αt ◦ ι,

where ι : E ∩L ↪→ D∩L is the natural embedding. It is straight forward that all the
properties of the theorem are satisfied and that this last definition coincides with the
ones already made for C and for number fields embeddable into E.

This completes the proof of theorem 4.3.
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4.6. Local systems. If U ⊂ Z(G)(A∞) is an open compact subgroup we will write
Z(G)1U for the Zariski closure of Z(G)(Q) ∩ U . Moreover write

Z(G)1 =
⋂
U

Z(G)1U .

It is a torus, (Z(G)1U)0 = Z(G)1 for any U , and there exists U with Z(G)1 = Z(G)1U .
If V is a sufficiently small open compact subgroup of G(A∞) we will call it more

sufficiently small if Z(G)1 = Z(G)1V ∩Z(G)(A∞). Moreover if Z(G)(Q) denotes the

closure of Z(G)(Q) in Z(G)(A∞) we have

Z(G)(Q) = Z(G)(Q) ∩ UZ(G)(Q) = Z(G)(Q)1Z(G)(Q)

(because Z(G)(A∞)/(U ∩ Z(G)(A∞)) is discrete).
Suppose that (G,ψ,C, U) ∈ RSD(E, a;L) is a rational Shimura datum with U

more sufficiently small. Suppose moreover that W /A∞ is a finite free module and
that r : ψG/Z(G)1 → GL(W ) over A∞ is a representation. As V runs over normal
open subgroups of U we have continuous homomorphisms

lim←V Gal (Sh(G,ψ,C, V )/Sh(G,ψ,C, U)) ∼= U/(Z(G)(Q) ∩ U)
−→ (ψG/Z(G)1)(A∞)
r−→ GL(W )(A∞).

Thus we obtain a lisse etale A∞-sheaf Wr/Sh(G,ψ,C, U). The map (W , r) 7→Wr

extends to an exact A∞-linear tensor functor. In particular if g ∈ ψG(A∞), then

r(g)−1 : (W , r ◦ conjg)
∼→ (W , r) induces an isomorphism

g−1 : Wr◦conjg
∼−→Wr.

If (φ, g, f) : (G1, ψ1, C1, U1) → (G2, ψ2, C2, U2) is a morphism in RSD(E, a;L) and
if (W 2, r2) is a representation of ψ2G2 on a finite free A∞-module, then r2 ◦ conjg ◦ f
is a representation of ψ1G on W 2. Moreover

Sh(φ, g, f)∗Wr2 = Wr2◦conjg◦f .

Suppose that (ζ, g) ∈ G̃E,ψ(A∞), (G,ψ,C, U) ∈ RSD(E, a;L) and (W , r) is a
representation of ψG over A∞. Set

ζW = {w ∈W ⊗Q E : 1⊗σw = ζ(σ)−1w ∀σ ∈ Gal (E/Q)} = r(g)−1W,

a finite free A∞-module. Then r gives a map
ψG −→ GL(ζW /A∞)

over A∞ which we will denote ζr. Then we get a ψG-equivariant map

r(g)−1 : (W , r ◦ conjg)
∼−→ (r(g)−1W , r) = (ζW , r),

and hence a map
g−1 : Sh(ζ, g)∗Wr −→Wζr.
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This in turn gives

g−1 : Sh(ζ, g)∗(Wr ⊗Q E) −→ (Wr ⊗Q E).

For the rest of this section suppose that L = C. We will write Wan
r for the locally

constant sheaf of A∞-modules on Sh(G,ψ,C, U)(C) corresponding to Wr.
We define

Label E,a(G,ψ,C,W , r) = Label a(G,ψ,C,W , r)

to be the set of tuples (φ, b,W, r, α), where (φ, b) ∈ Label a(G,ψ,C), where W/Q is a
vector space, r : φG→ GL(W/Q) is a representation defined over Q and

α : W ⊗Q A∞ ∼−→W

over A∞ such that

r ◦ conj−1b = conjα ◦ r.
This set may be empty. If it is non-empty, we will call r rationalizable.

If (φ, b) ∈ Label a(G,ψ,C), if r is a representation of φG on a Q-vector space W ,
and if ζ ∈ Z1(Gal (E/Q), Z(G)(E)), then we set

ζW = {w ∈ W ⊗Q E : 1⊗σw = ζ(σ)−1w ∀σ ∈ Gal (E/Q)}.

It is preserved by the action of φG (via r). If γ ∈ φG(E)QR and i(φ,b)(γ) = (ζ, g), then

r(γ)W = ζ−1
W .

We will call two elements (φ, b,W, r, α) and (φ′, b′,W ′, r′, α′) ∈ Label (G,ψ,C,W , r)

equivalent if there exists (δ, (η, h)) ∈ G(E)×G̃ψ(A∞) and an isomorphism β : r◦ηW
∼→

W ′ of Q-vector spaces, such that

• (φ′, b′) = (δ,(η,h))(φ, b) = (δφη, δbh∞),
• and α ◦ r(bh∞b−1) = α′ ◦ β.

This implies that

• β ◦ r(γ) = r′(δγδ−1) ◦ β.

If ((δ′, (η′, h′)), β′) also exhibits the equivalence of (φ, b,W, r, α) and (φ′, b′,W ′, r′, α′),
then δ−1δ′ ∈ φG(E)QR and (η′, h′) = (η, h)i(φ,b)(δ

−1δ′) and β′ = β ◦ r(δ−1δ′).
Write Z(r) for the centralizer in GL(W ) of r. The set Label a(G,ψ,C,W , r) has

an action of Z(r)(A∞) via

z(φ, b,W, r, α) = (φ, b,W, r, z ◦ α).

This action preserves the equivalence relation ∼ and so descends to an action on
Label a(G,ψ,C,W , r)/ ∼.

Lemma 4.5. (1) The action of Z(r) on Label a(G,ψ,C,W , r)/ ∼ is transitive.
(2) The stabilizer in Z(r) of [(φ, b,W, r, α)] ∈ Label a(G,ψ,C,W , r)/ ∼ is conjα(Z(r)),

where Z(r) denotes the centralizer in GL(W ) of r.
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Proof: For the first part note that, as the action ofG(E)×G̃ψ(A∞) on Label a(G,ψ,C)
is transitive, it suffices to show that if (φ, b,W, r, α) and (φ, b,W ′, r′, α′) are in the

set Label a(G,ψ,C,W , r) then there is an isomorphism β : W
∼→ W ′ such that

conjβ ◦ r = r′. To see such a β exists chose an isomorphism of Q-vector spaces

f : W ′ ∼→ W and look at the Q-vector space H = Hom φG(W,W ′) together with the
polynomial function h 7→ det(f ◦ h). As the polynomial function does not vanish
identically on H ⊗Q A∞, it is not the zero polynomial and hence does not vanish
identically on Q, as desired.

For the second part, if (δ, (η, h)), β) exhibits an equivalence between (φ, b,W, r, α)

and (φ, b,W, r, zα), then δ ∈ φG(E)QR and (η, h) = i(φ,b)(δ) and β : r(δ)−1W
∼→ W

(i.e. βr(δ)−1 ∈ Z(r)) and α ◦ r(δ) = z ◦ α ◦ β, i.e. z = conjα(r(δ)β−1), as desired. �

If (φ, b,W, r, α) ∼ (φ′, b′,W ′, r′, α′) and this equivalence is exhibited by ((δ, (η, h)), β)

the conjβ : Z(r)
∼→ Z(r′). This isomprphism does not depend on the choice of

((δ, (η, h)), β). Thus if λ ∈ we may write without ambiguity Z(λ) for Z(r) for any
(φ, b,W, r, α) ∈ λ.

Construction Summary. Suppose that r is rationalizable and λ ∈ Label a(G,ψ,C,W , r)/ ∼.
Then there is a canonically defined locally constant sheaf of Q-modules Wr,λ on
Sh(G,ψ,C, U)(C) together with

• an isomorphism α̃λ :Wr,λ ⊗Q A∞ ∼→Wr;
• a decreasing (exhaustive and separating) filtration Fil i onWr,λ⊗QOSh(G,ψ,C,U)(C)

satisfying Griffiths transversality (i.e. (1 ⊗ d)Fil iWr ⊗Q OSh(G,ψ,C,U)(C) ⊂
Fil i−1Wr ⊗Q Ω1

Sh(G,ψ,C,U)(C)), which makes (Wr, {Fil i}) a variation of Hodge
structures with Wr ⊗Q R is polarizable.

Given λ ∈ Label E,a(G,ψ,C,W , r)/ ∼ and z ∈ Z(r) there is a unique isomorphism

(Wr,λ, {Fil }) ∼= (Wr,zλ, {Fil })

such that
Wr,λ

∼= Wr,zλ

α̃λ ↓ ↓ α̃zλ
Wr

−→
z Wr

commutes. (However the choice of z taking λ to λ′ = zλ is not unique.) Thus Wr,λ is
independent of λ, but only up to an isomorphism that is unique only up to composition
with an element of Z(λ).

To carry out this construction we must first give a more direct description of Wan
r .

Lemma 4.6. φG(E)QR\(G̃ψ(A∞)/Z(G)1(Q)× Y (C)φG) maps homeomorphically to

lim
←V

φG(E)QR\(G̃ψ(A∞)/V × Y (C)φG).
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Proof: Note that

φG(E)QR\(G̃ψ(A∞)/V × Y (C)φG) = φG(E)QR\(G̃ψ(A∞)/Z(G)1(Q)V × Y (C)φG),

so the map is well defined. It is continuous, and open by the definitions of the quotient
and inverse image topologies. It is clearly surjective, so we need only check it is

injective. So suppose that [(g1, µ1)] and [(g2, µ2)] ∈ φG(E)QR\(G̃ψ(A∞)/Z(G)1(Q) ×
Y (C)φG) have the same image in φG(E)QR\(G̃ψ(A∞)/V × Y (C)φG). We must show

that [(g1, µ1)] = [(g2, µ2)]. As they become equal in φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG)

then we can find γ ∈ φG(E)QR and u ∈ U with (γg1u, γµ1) = (g2, µ2). If γ′ ∈ φG(E)QR
and u′ ∈ U also have this property then γ−1γ′ ∈ φG(E)QR ∩ U fixes
mu1. As U is sufficiently small we deduce that γ−1γ′ ∈ Z(G)(E)∩U = Z(G)(Q)∩U .
Thus for any open subgroup V ⊂ U we have (γδV g1vV , γµ1) = (g2, µ2) for some
δV ∈ Z(G)(Q) and vV ∈ V so that

g−11 γ−1g2 ∈
⋂
V

Z(G)(Q)V = Z(G)(Q) = Z(G)1(Q)Z(G)(Q).

The result follows. �

As a consequence we see that, if (φ, b) ∈ Label a(G,ψ,C), then we have

Wan
r (Ω) = {f : Ω̃→W : f continuous, and f(xu−1) = r(u)f(x) ∀u ∈ U, x ∈ Ω̃},

where Ω̃ denotes the preimage of π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG) in the

space φG(E)QR\(G̃ψ(A∞)/Z(G)1(Q)× Y (C)φG). If (δ, (η, h)) ∈ G(E)× G̃ψ(A∞) then
π−1(δ,(η,h))(φ,b)

= ((η, h), conjδ)π
−1
(φ,b), and so the descriptions of Wan

r (Ω) for (φ, b) and
(δ,(η,h))(φ, b) are related by the identification of

{f : Ω̃→W : f continuous, and f(xu−1) = r(u)f(x) ∀u ∈ U, x ∈ Ω̃}

with

{f ′ : ((η, h), conjδ)Ω̃→W : f ′ continuous, and f ′(yu−1) = r(u)f ′(y) ∀u ∈ U,
y ∈ ((η, h), conjδ)Ω̃}

via

f ′(y) = f((η, h), conjδ)
−1y).

Lemma 4.7. If (φ, b) ∈ Label a(G,ψ,C), then we have a description of Wr given by

Wan
r (Ω) = {F : Ω̃→W ⊗Q E : F locally constant; and F ((ζ, g), µ) ∈ ζ−1

W ;

and F ((i(φ,b)(γ), conjγ)x) = r(b−1γb)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃},

with the obvious restriction maps, where Ω̃ denotes the preimage of

π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U×Y (C)φG) in the space G̃ψ(A∞)/Z(G)1(Q)U×Y (C)φG.



ON THE FORMALISM OF SHIMURA VARIETIES 73

If instead we use (δ,(η,h))(φ, b) we have

Wan
r (Ω) = {F ′ : ((η, h), conjδ)Ω̃→W ⊗Q E : F ′ locally constant; and

F ′((ζ, g), µ) ∈ r(g)W = ζ−1
W ;

and F ′((i(φ,b)(γ), conjγ)x) = r(b−1γb)F ′(x) ∀γ ∈ φG(E)QR, x ∈ Ω̃}.
The canonical identification of these two sets is via:

F ′(y) = r(h∞)F ((η, h), conjδ)
−1y).

Proof: We first reinterpret our first description of Wan
r as

Wan
r (Ω) = {f : Ω̃′ →W : f continuous; and f((i(φ,b)(γ), conjγ)xu

−1) = r(u)f(x)

∀u ∈ Z(G)1(Q)U, γ ∈ φG(E)QR, x ∈ Ω̃; },

where now Ω̃′ is the preimage of π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG) in

G̃ψ(A∞)× Y (C)φG. Using instead (δ,(η,h))(φ, b) we have

Wan
r (Ω) = {f ′ : ((η, h), conjδ)Ω̃

′ →W : f ′ continuous; and
f ′(((η, h)i(φ,b)(δ

−1γδ)(η, h)−1, conjγ)yu
−1) = r(u)f ′(y)

∀u ∈ Z(G)1(Q)U, γ ∈ δφηG(E)QR, y ∈ ((η, h), conjδ)Ω̃},
i.e.

Wan
r (Ω) = {f ′ : ((η, h), conjδ)Ω̃

′ →W : f ′ continuous; and
f ′(((η, h), conjδ)(i(φ,b)(γ), conjγ)((η, h)conjδ)

−1yu−1) = r(u)f ′(y)

∀u ∈ Z(G)1(Q)U, γ ∈ φG(E)QR, y ∈ ((η, h), conjδ)Ω̃}.
The canonical identification of these two descriptions is via

f ′(y) = f((η, h), conjδ)
−1y).

Writing

Ff ((ζ, g), µ) = r(g∞)f((ζ, g), µ)

we get an identification

Wan
r (Ω) = {F : Ω̃→W ⊗Q E : F continuous; and F ((ζ, g), µ) ∈ r(g)W = ζ−1

W ;

and F ((i(φ,b)(γ), conjγ)x) = r(b−1γb)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃},

where now Ω̃ is the preimage of π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG) in the

space G̃ψ(A∞)/Z(G)1(Q)U × Y (C)φG. Similarly using (δ,(η,h))(φ, b) we have

Wan
r (Ω) = {F ′ : ((η, h), conjδ)Ω̃→W ⊗Q E : F ′ continuous; and

F ′((ζ, g), µ) ∈ r(g)W = ζ−1
W ;

and F ′((i(φ,b)(γ), conjγ)x) = r(b−1γb)F ′(x) ∀γ ∈ φG(E)QR, x ∈ Ω̃}.
The canonical identification of these two sets is via:

F ′(y) = r(h∞)F ((η, h), conjδ)
−1y).
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Because G̃ψ(A∞)/Z(G)1(Q)U ×Y (C)φG is locally connected the lemma follows. �

Now suppose that (φ, b,W, r, α) ∈ Label a(G,ψ,C,W , r). We define a locally con-
stant sheaf W(φ,b,W,r,α) on Sh(G,ψ,C, U) by

W(φ,b,W,r,α)(Ω) = {F : Ω̃→ W ⊗Q E : F locally constant; and F ((ζ, g), µ) ∈ ζ−1
W ;

and F ((i(φ,b)(γ), conjγ)x) = r(γ)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃},

where Ω̃ is the preimage of π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG) in the space

G̃ψ(A∞)/Z(G)1(Q)U × Y (C)φG. The map F 7→ α ◦ F gives an isomorphism

α̃(φ,b,W,r,α) :W(φ,b,W,r,α) ⊗Q A∞ ∼−→Wan
r .

We must analyze how this construction depends on (φ, b,W, r, α). We claim that if
(φ′, b′,W ′, r′, α′) ∼ (φ, b,W, r, zα), then there is a (necessarilly unique) isomorphism
W(φ,b,W,r,α)

∼=W(φ′,b′,W ′,r′,α′) such that

W(φ,b,W,r,α)
∼= W(φ′,b′,W ′,r′,α′)

α̃(φ,b,W,r,α) ↓ ↓ α̃(φ′,b′,W ′,r′,α′)

Wr
−→
z Wr

commutes. Indeed if the equivalence of (φ, b,W, r, zα) and (φ′, b′,W ′, r′, α′) are equiva-
lent, and this equivalence is instanced by ((δ, (η, h)), β) then we define an isomorphism
between W(φ,b,W,r,α) and W(φ′,b′,W ′,r′,α′) by identifying

W(φ,b,W,r,α)(Ω) = {F : Ω̃→ W ⊗Q E : F locally constant; and F ((ζ, g), µ) ∈ ζ−1
W ;

and F ((i(φ,b)(γ), conjγ)x) = r(γ)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃}
with

W(φ′,b′,W ′,r′,α′)(Ω) = {F ′ : ((η, h), conjδ)Ω̃→ W ′ ⊗Q E : F ′ locally constant; and

F ′((ζ, g), µ) ∈ ζ−1
W ′; and

F ′(((η, h)i(φ,b)(δ
−1γδ)(η, h)−1, conjγ)((η, h), conjδ)x) = r′(γ)F ′(((η, h), conjδ)x)

∀γ ∈ δφηG(E)QR, x ∈ Ω̃},
i.e.

W(φ′,b′,W ′,r′,α′)(Ω) = {F ′ : ((η, h), conjδ)Ω̃→ W ′ ⊗Q E : F ′ locally constant; and

F ′((ζ, g), µ) ∈ ζ−1
W ′; and

F ′(((η, h), conjδ)(i(φ,b)(γ), conjγ)x) = r′(δγδ−1)F ′(((η, h), conjδ)x)

∀γ ∈ φG(E)QR, x ∈ Ω̃},
via

F ′(((η, h), conjδ)x) = β ◦ F (x).

Using lemma 4.7, it is easy to check that this identification makes the desired diagram
commute.



ON THE FORMALISM OF SHIMURA VARIETIES 75

Associated to Wr we have a locally free sheaf of OSh(G,ψ,C,U)(C)-modules with con-
nection

(Wr ⊗Q OSh(G,ψ,C,U)(C), 1⊗ d).

Here OSh(G,ψ,C,U)(C) denotes the sheaf of analytic functions on Sh(G,ψ,C, U)(C). Sim-
ilarly for W(φ,b,W,r,α). We have

(W(φ,b,W,r,α) ⊗Q OSh(G,ψ,C,U)(C))(Ω) = {F : Ω̃→ (W ⊗Q E)⊗Q C : F holomorphic; and

F ((ζ, g), µ) ∈ ζ−1
W ⊗Q C; and F ((i(φ,b)(γ), conjγ)x) = r(γ)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃},

where Ω̃ is the preimage of π−1(φ,b)Ω ⊂ φG(E)QR\(G̃ψ(A∞)/U × Y (C)φG) in the space

G̃ψ(A∞)/Z(G)1(Q)U × Y (C)φG.
If µ ∈ Y (C)φG and (φ, b,W, r, α) ∈ Label a(G,ψ,C,W , r) and ζ ∈ Z1(Gal (E/Q), Z(G))

we define a filtration Fil i(φ,b,W,r,α),µ on ζW ⊗Q C by setting

Fil i(φ,b,W,r,α),µ
ζW ⊗Q C

to be the sum of the j weight spaces for r ◦ µ for j ≤ −i. If ((δ, (η, h)), β) establishes
an equivalence between (φ, b,W, r, α) and (φ′, b′,W ′, r′, α′), then

βFil i(φ,b,W,r,α),µ
ζW ⊗Q C = Fil i(φ′,b′,W ′,r′,α′),conjδ◦µ

ζW ⊗Q C.
We define

Fil i(W(φ,b,W,r,α) ⊗Q OSh(G,ψ,C,U)(C))(Ω) = {F : Ω̃→ (W ⊗Q E)⊗Q C : F holomorphic; and

F ((ζ, g), µ) ∈ Fil i(φ,b,W,r,α),µ
ζ−1
W ⊗Q C; and

F ((i(φ,b)(γ), conjγ)x) = r(γ)F (x) ∀γ ∈ φG(E)QR, x ∈ Ω̃}.
We see immediately that this filtration is preserved under the canonical identifica-
tion of W(φ,b,W,r,α) and W(φ′,b′,W ′,r′,α′) and so we get a canonical decreasing filtration

Fil i(Wr,λ ⊗Q OSh(G,ψ,C,U)(C)) on Wr,λ ⊗Q OSh(G,ψ,C,U)(C). We claim that this defines
a variation of rational Hodge structures, with the associated variation of real Hodge
structures polarizable. Indeed this question is local and so reduces to the correspond-
ing question for Y (C)φG, where it is part of proposition 1.1.14 of [D2]. Finally, if
z ∈ Z(r), then the identifications of Wr,λ and Wr,zλ preserve these filtrations. Thus
we have completed the advertised construction.
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5. Relationship between rational Shimura varieties and some moduli
problems for abelian varieties

At the suggestion of Pol van Hoften we explain the connection between certain mod-
uli problems for abelian varieties with polarizations and endomorphisms considered
by Kottwitz and special cases of our rational Shimura varieties.

Following Kottwitz [K1] considers tuples (which we will call ‘PEL data’)

(B, ∗, V, ( , ), h)

where:

• B is a finite dimensional simple Q-algebra.
• ∗ is a positive involution on B.
• V is a finitely generated left B-module.
• ( , ) : V × V → Q is a non-degenerate alternating form such that (bx, y) =

(x, b∗y) for all b ∈ B and x, y ∈ V .
• h : C→ End B(V )⊗Q R is a map of R-algebras such that

– (h(z)x, y) = (x, h(cz)y) for all z ∈ C and x, y ∈ V ⊗Q R
– and the (necessarily) symmetric R-bilinear form ( , h(i) ) on V ⊗Q R is

positive definite.

Then V ⊗Q C = V1⊕ Vc, where h(z)⊗ 1 = 1⊗ z on V1 and h(z)⊗ 1 = 1⊗ cz on Vc
for all z ∈ C. Note that V1 and Vc are isotropic, and dual to each other under ( , ).
Kottwitz defines the ‘reflex field’ L(B, ∗, V, ( , ), h) ⊂ C to be the field of definition
of the isomorphism class of the B representation V1. He also defines a not necessarily
connected reductive group G = G(B,∗,V,( , ),h) over Q of B-linear automorphisms of V
which preserve ( , ) up to a scalar multiple. Thus there is a character ν : G → Gm

defined over Q such that (gx, gy) = ν(g)(x, y). We can define wt, µh ∈ X∗(G)(C)
by requiring that wt(z) acts by z on V , while µh(z) acts by z on V1 and by 1 on
Vc. Then wt is defined over Q and the geometric conjugacy class [µh]G is defined
over L(B, ∗, V, ( , ), h). (To see this suppose σ ∈ Aut (C/L(B, ∗, V, ( , ), h)). Then
σµh acts as z on 1⊗σV1 and as 1 on 1⊗σVc. By definition there is a B ⊗Q C-linear

isomorphism f : V1
∼→ 1⊗σV1. Then f ⊕ (f∨)−1 : V ⊗Q C ∼→ V ⊗Q C is B ⊗Q C-linear,

preserves ( , ) and takes V1 to 1⊗σV1 and Vc to 1⊗σVc. Thus f ⊕ (f∨)−1 ∈ G(C) and
σµh = conjf⊕(f∨)−1 ◦ µh, as desired.)

If U ⊂ G(A∞) Kottwitz further considers the moduli problem on locally noetherian
L(B, ∗, V, ( , ), h)-schemes, which sends S to the set of equivalence classes of 4-tuples
(A, λ, i, [η]), where

• A/S is an abelian scheme of dimension (1/2) dimQ V ,
• λ : A→ A∨ is a polarization,
• i : B ↪→ End (A/S)⊗Z Q such that

tr (i(b)|LieA) = tr ((b⊗ 1)|V1) ∈ L(B, ∗, V, ( , ), h)

for all b ∈ B,
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• and [η] is a U -level structure on (A, λ, i).

If S is connected and s is a geometric point of S, then by a U -level structure on
(A, λ, i) we mean a π1(S, s)-invariant U -orbit [η] of (B⊗QA∞)-linear isomorphisms η
from V ⊗QA∞ to the A∞-Tate module of As which takes ( , ) to an (A∞)× multiple
of the λ-Weil pairing. (Note that the pairing ( , ) is valued in A∞, while the λ-Weil
pairing is valued in A∞(1), but since we are only requiring one pairing to match
with the other up to (A∞)×-multiples, it doesn’t matter how we identify A∞ and
A∞(1).) This is canonically independent of the choice of geometric point s. If S is
simply locally noetherian, then it is the disjoint union of its connected components
and by a U -level structure on (A, λ, i)/S, we mean the choice of one on each connected
component of S.

We consider two 4-tuples (A, λ, i, [η]) and (A′, λ′, i′, [η′]) equivalent if there is a B-
linear isogeny β : A → A′ such that β∗[η] = [η′] and λ′ ◦ β = γ ◦ β∨ ◦ λ for some
γ ∈ Q×>0.

Kottwitz explains that if U is sufficiently small then this moduli problem is repre-
sented by a smooth quasi-projective scheme π : AU → SU = S(B, ∗, V, ( , ), h)U over
the field L(B, ∗, V, ( , ), h). If g ∈ G(A∞) and gU ′g−1 ⊂ U then there is a finite etale
map g : SU ′ → SU coming from the U structure on (Auniv, λuniv, iuniv)/SU ′ given as the
U orbit of ηuniv ◦ g−1. (Kottwitz actually works over a localization of OL(B,∗,V,( , ),h),
and this required him to replace our ‘trace condition’ with a ‘determinant condition’.
However his stronger results easily implies the results recalled here.)

If (A, λ, i, [η]) is a tuple representing a point of SU(C) then we may associate to it
a tuple (H1(A(C),Q), ( , )λ,Fil 1H1(A(C),Q)⊗Q C, [η∨,−1]), where

• H1(A(C),Q) is a finitely generated right B-module;
• ( , )λ is the λ-Weil pairing

H1(A(C),Q)×H1(A(C),Q) −→ (2πi)−1Q

which is a non-degenerate alternating pairing satisfying (xb, y)λ = (x, yb∗)λ)
for all b ∈ B and x, y ∈ H;
• Fil 1H1(A(C),Q)⊗Q C is a maximal isotropic B-invariant subspace such that

(Fil 1H1(A(C),Q) ⊗Q C) ∩ c(Fil 1H1(A(C),Q) ⊗Q C) = (0) and there is an
isomorphism of B ⊗Q C modules V ∨1

∼= Fil 1H1(A(C),Q)⊗Q C;
• if ( , )∨λ,gr−1 is the R-valued, R-bilinear pairing on

(Fil 1H1(A(C),Q)⊗Q C)∨ = (H1(A(C),Q)∨ ⊗Q C)/Fil 1(H1(A(C),Q)⊗Q C)⊥

induced by H1(A(C),Q)∨ ⊗Q R ∼→ (Fil 1H1(A(C),Q)C)∨ and ((2πi)( , )λ)
∨,

then the necessarily symmetric pairing ( , i )∨λ,gr−1 is positive definite;

• [η∨,−1] is a U -orbit of B ⊗Q A∞-linear isomorphisms η∨,−1 : V ∨ ⊗Q A∞ ∼→
Fil 1H1(A(C),Q) ⊗Q A∞ taking ( , )∨ to ( , )λ for some A∞ linear identifi-

cation A∞ ∼→ (2πi)−1A∞.
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We will write Gc = (µh
cµh)

−1,µ−1
h (−1)G, which is compact mod centre, and let C be

the Gc-conjugacy class of µh. Then Y (C)G = [µh]G(R). We will also write Gr for
the Grassmannian of maximal B-invariant isotropic subspaces W ⊂ V ∨ such that
W ∼= V ∨1 as B-modules. Then Gr = G/StabG((V ∨ ⊗Q C)µh(−1)=−1) = G/P−µh . (Note

that µh(−1) = −1 is equivalent to µh(z) = z−1 for all z ∈ Z×.) Thus there is a
natural embedding

Y (C)G ↪→ Gr(C)

sending µ to (V ∨⊗Q C)µ(−1)=−1. The map is a biholomorphic isomorphism of Y (C)G
with an open subset of Gr(C).

The centre Z(B) of B is a CM (possibly totally real) field with maximum totally
real subfield Z(B)+. Set d = [Z(B)+ : Q]. We have B⊗QR ∼= Mn×n(C)d or Mn×n(R)d

or Mn/2×n/2(H)d, where H denotes the Hamiltonian quaternions. These are referred
to as cases A, C and D respectively. For the rest of this section we assume we are in
case A or C, but not D. This ensures that G is connected. (See section 5 of [K1].)

Choose a finite Galois extension E/Q which is acceptable for E, and an ele-
ment a+ ∈ H(E/Q)+. Also choose an infinite place w∞ of E and a section s :
{1, cw∞}\Gal (E/Q)→ E loc(E/Q)∞,a. Define ψw∞ ∈ Z1

alg(WEw∞/R,a, G(Ew∞)) by

ψw∞|E×w∞ = wt

and

ψw∞(jw∞) = µh(−1).

Then define ψ∞ ∈ Z1
alg(E loc(E/Q)∞,a, G(E∞)) by

ψ∞(σ) =
∏

τ∈{1,cw∞}\Gal (E/Q)

s(τ)−1ψw∞(s(τ)σs(τσ)−1)

and

ψ = (1, ψ∞) ∈ Z1
alg(E loc(E/Q)a, G(AE)).

Then

(G,ψ, [µ]G, U) ∈ RSD(E, a;L(B, ∗, V, ( , ), h)).

Note that (1, 1) ∈ Label a(G,ψ, [µ]G). Write r for the representation of ψG on V ∨⊗Q
A∞. It is rationalizable. (By the representation r of G on V ∨.)

In the rest of this section we will prove the following theorem.

Theorem 5.1. Suppose that (B, ∗, V, ( , ), h) is PEL data of type A or C. Let G/Q
be the reductive group defined above and U ⊂ G(A∞) be a sufficiently small open
compact subgroup. Choose E/Q acceptable for G and a+ ∈ H(E/Q)+. Let

(G,ψ, [µ]G, U) ∈ RSD(E, a;C)

be as defined above. Then there is an isomorphism

S(B, ∗, V, ( , ), h)U
∼−→ Sh(G,ψ, [µ−1h ], U)
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(of varieties over C). If (A, λ, i, η) maps to y then there is an isomorphism of Hodge
structures

(H1(A,Q),Fil 1Fil 1H1(A(C),Q)⊗Q C) ∼= (Wr,y,Fil 1Wr,y ⊗Q C).

It should be routine to extend this theorem to an isomorphism of varieties over
L(B, ∗, V, ( , ), h) by keeping track of what happens at CM points, but we have
not carried out this exercise. The strategy of the proof will first be to exhibit a
bijection of C-points, then show the map is holomorphic and deduce from [B2] that
it is isomorphism of varieties.

Consider the set LAD (B, ∗, V, ( , ), h)U of tuples

(H, ( , )H ,Fil 1(H ⊗Q C), [ηH ])

where

• H is a finitely generated right B-module;
• ( , )H : H × H → (2πi)−1Q is a non-degenerate alternating form such that

(xb, y)H = (x, yb∗)H for all b ∈ B and x, y ∈ H;
• Fil 1(H ⊗Q C) ⊂ (H ⊗Q C) is a maximal isotropic B-invariant subspace such

that Fil 1(H ⊗Q C)∩ 1⊗cFil 1(H ⊗Q C) = (0) and such that there is an isomor-
phism of B ⊗Q C-modules V ∨1

∼= Fil 1(H ⊗Q C);
• if ( , )∨H,gr−1 is the R-valued, R-bilinear pairing on (Fil 1HC)∨ = (H∨ ⊗Q

C)/Fil 1(H ⊗Q C)⊥ induced by H∨ ⊗Q R ∼→ (Fil 1HC)∨ and ((2πi)( , )H)∨,
then the necessarily symmetric pairing ( , i )∨H,gr−1 is positive definite;

• [ηH ] is a U -orbit of B⊗QA∞-linear isomorphisms ηH : V ∨⊗QA∞
∼→ H⊗QA∞

taking ( , )∨ to ( , )H for some A∞ linear identification A∞ ∼→ (2πi)−1A∞.

We call two such triples (H, ( , )H ,Fil 0(H ⊗Q C), [ηH ]) and (H ′, ( , )H′ ,Fil 0(H ′⊗Q
C), [ηH′ ]) equivalent if there is an isomorphism of B-modules

β : H
∼−→ H ′

which takes ( , )H to a Q×>0-multiple of ( , )H′ and Fil 0(H ⊗Q C) to Fil 0(H ′ ⊗Q C)
and [ηH ] to [ηH′ ]. We write (H, ( , )H ,Fil 0(H⊗QC), [ηH ]) ∼ (H ′, ( , )H′ ,Fil 0(H ′⊗Q
C), [ηH′ ]).

Lemma 5.2. The map

(A, λ, i, [η]) 7−→ (H1(A(C),Q), ( , )λ,Fil 1H1(A(C),Q)⊗Q C, [η∨,−1])

induces a bijection

S(B, ∗, V, ( , ), h)U(C)
∼−→ LAD (B, ∗, V, ( , ), h)U/ ∼ .

Proof: We must first check that the given map is well defined. If β : A → A′ is
an isogeny giving an equivalence of (A, i, λ, [η]) and (A′, i′, λ′, [η′]), then β induces an
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isomorphism H1(A(C),Q)→ H1(A′(C),Q) giving an equivalence

(H1(A′(C),Q), ( , )λ,Fil 1H1(A′(C),Q)⊗Q C, [η′,∨,−1])
∼ (H1(A(C),Q), ( , )λ,→ H1(A(C),Q)⊗Q C, [η∨,−1]).

We can define a map in the other direction by choosing a lattice Λ ⊂ H∨ on
which ((2πi)−1( , )H)∨ is Z-valued, and sending (H, ( , )H ,Fil 0(H ⊗Q C), [ηH ]) to
[(A, i, λ, [η])], where

• A(C) = (H∨ ⊗Q C)/(Λ + (Fil 1H ⊗Q C)⊥),
• ( , )H is the λ-Weil pairing,
• and [η] is induced by [ηH ] and the identification of the Tate module of A with
H∨ ⊗Q A∞.

The equivalence class of (A, i, λ, [η]) does not depend on the choice of Λ, and only
depends on the equivalence class of (H, ( , )H ,Fil 0(H ⊗Q C), [ηH ]).

These two maps are easily checked to be two sided inverses to each other. �

We want to provide a reformulation of the data LAD (B, ∗, V, ( , ), h)U . First we
may replace ( , )H with 2πi( , )H , with the obvious modification of the conditions.
Secondly we may replace the choice of Fil 1(H ⊗Q C) with a homomorphism of R-
algebras hH : C → End B(H ⊗Q R) such that hH(z) acts as z on Fil 1(H ⊗Q C) and
as cz on cFil 1(H ⊗Q C). Then hH satisfies the following conditions:

• (x, hH(z)y)H = (hH(cz)x, y)H ,
• V ∨1 ∼= (H ⊗Q C)h(i)=i as B ⊗Q C-modules,
• ( , hH(i) )H , which is necessarily symmetric, is positive definite on H ⊗Q R.

Conversely if hH satisfies these conditions then Fil 1(H ⊗Q C) = (H ⊗Q C)hH(i)=i will
satisfy the conditions defining an element of LAD (B, ∗, V, ( , ), h)U . Moreover, by
lemma 4.2 of [?], these three conditions are equivalent to

• there is a B⊗Q R-linear isomorphism V ∨⊗Q R ∼→ H ⊗Q R which takes ( , )∨

to an R×>0 multiple of ( , )H and takes h∨ to hH .

Thus we may think of LAD (B, ∗, V, ( , ), h)U as the set of tuples (H, ( , )H , hH , [ηH ])
where:

• H is a finitely generated right B-module;
• ( , )H : H×H → Q is a non-degenerate alternating form such that (xb, y)H =

(x, yb∗)H for all b ∈ B and x, y ∈ H;
• hH : C → End B⊗QR(H ⊗Q R) such that there exists a B ⊗Q R-linear isomor-

phism V ∨ ⊗Q R ∼→ H ⊗Q R which takes ( , )∨ to an R×>0 multiple of ( , )H
and takes h∨ to hH ;
• [ηH ] is a U -orbit of B⊗QA∞-linear isomorphisms ηH : V ∨⊗QA∞

∼→ H⊗QA∞
taking ( , )∨ to a (A∞)×-multiple of ( , )H .



ON THE FORMALISM OF SHIMURA VARIETIES 81

Two such tuples (H, ( , )H , hH , [ηH ]) and (H ′, ( , )H′ , hH′ , [ηH′ ]) are equivalent if
and only if there is an isomorphism of B-modules

β : H
∼−→ H ′

which takes ( , )H to a Q×>0-multiple of ( , )H′ and hH to hH′ and [ηH ] to [ηH′ ].
If we write GH for the group of B-linear automorphisms of H which preserve ( , )H

up to scalar multiples, then we may replace hH by the induced map RSC
RGm →

GH over R which it induces. (This does not enlarge the collection of tuples we
are considering because the weights of hH on V ∨ must be (1, 0) and (0, 1).) Then
hH,C = (µ−1, cµ−1) where µ ∈ X∗(GH)(C) commutes with cµ. Thus we may also think
of LAD (B, ∗, V, ( , ), h)U as the set of tuples (H, ( , )H , µH , [ηH ]) where:

• H is a finitely generated right B-module;
• ( , )H : H×H → Q is a non-degenerate alternating form such that (xb, y)H =

(x, yb∗)H for all b ∈ B and x, y ∈ H;
• µH ∈ X∗(GH)(C) such that there exists a B ⊗Q R-linear isomorphism V ∨ ⊗Q
R ∼→ H ⊗Q R which takes ( , )∨ to an R×>0 multiple of ( , )H and takes µh
to µH ;
• [ηH ] is a U -orbit of B⊗QA∞-linear isomorphisms ηH : V ∨⊗QA∞

∼→ H⊗QA∞
taking ( , )∨ to a (A∞)×-multiple of ( , )H .

Two such triples (H, ( , )H , µH , [ηH ]) and (H ′, ( , )H′ , µH′ , [ηH′ ]) are equivalent if
and only if there is an isomorphism of B-modules

β : H
∼−→ H ′

which takes ( , )H to a Q×>0-multiple of ( , )H′ and µH to µH′ and [ηH ] to ηh′ ].

Lemma 5.3. Suppose we are in case A or C. Then LAD (B, ∗, V, ( , ), h)U is in
bijection with Sh(G,ψ,C, U)(C) via the map which sends π(1,1)[((ζ, g), µ)] to the tu-

ple [(ζ
−1

(V ∨), ζ
−1

( , )∨, µ, g∞U)], where ζ−1
( , )∨ is obtained from ( , )∨ and any

identification of ν◦ζ−1Q with Q.

Proof: Using π(1,1) we may replace Sh(G,ψ,C, U)(C) with G(E)QR\(G̃ψ(A∞)/U ×
Y (C)G). The given map is easily checked to be well defined. (One needs to notice

that, by lemma 4.1, ζ
−1
V ∨⊗QR = zV v⊗QR for some z ∈ Z(G)(C). If µ = conjk ◦µh

with k ∈ G(R), then zk : V ∨ ⊗Q R ∼→ ζ−1
V ∨ ⊗Q R takes ( , )∨ to an R×-multiple

of ζ−1
( , ) and µh to µ.) To see the map is injective suppose that ((ζ, g), µ) and

((ζ ′, g′), µ′) ∈ G̃ψ(A∞)× Y (C)G with

(ζ
−1

(V ∨), ζ
−1

( , )∨, µ, g∞U) ∼ (ζ
′,−1

(V ∨), ζ
′,−1

( , )∨, µ′, g′,∞U).

Then there must be β ∈ G(E) with βζ
−1
V ∨ = ζ′,−1

V ∨, so that ζ ′ζ−1(σ) = β−1σβ for
all σ ∈ Gal (E/Q). In particular β ∈ G(E)Q. Because the restriction to resC/Rζ

′ζ−1 ∈
H1(Gal (C/R), Z(G)) is trivial, we see that in fact β ∈ G(E)QR. Moreover µ′ =
conjβ ◦ µ.
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Finally we need to check surjectivity. So suppose that [(H, ( , )H , µH , [ηH ])] ∈
LAD (B, ∗, V, ( , ), h). Then there is an element φ ∈ ker1(Gal (E/Q), G(E)) with
(H, ( , )H) ∼= φ(V ∨, ( , )∨). By lemma 2.1 we may in fact choose φ to be the image
of some

ζ ∈ ker(Z1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), G(A∞E ))⊕H1(Gal (C/R), Z(G)(C))).

Without loss of generality we may assume that (H, ( , )H) = (ζ
−1
V ∨, ζ

−1
( , )∨).

Then ηH must arise from g∞ ∈ G(A∞E ) with ζ−1 = g∞1. Moreover there is z∞ ∈
Z(G)(C) with z∞V

∨ ⊗Q R = ζ−1
V ∨ ⊗Q R and resC/Rζ

−1 = z∞1. Then there is
k ∈ G(R) such that µH = conjz∞k ◦ µh = conjkµh, as desired. �

Corollary 5.4. There is a biholomorphic bijection

S(B, ∗, V, ( , ), h)U(C)
∼−→ Sh(G,ψ, [µ−1h ], U)(C).

Proof: We have exhibited a bijective map, so it is enough to show it is holomorphic,
which is a local question. Suppose that [(A, λ, i, [η])] maps to π(1,1)((ζ, g), µ). Then
for a sufficiently small simply connected neighbourhood Ω of [(A, λ, i, [η])], R1π∗Q is

constant on Ω and isomorphic to (ζ
−1
V ∨, ζ

−1
( , )∨) and η∨,−1x is identified with g∞

for all x ∈ Ω. The image of x ∈ Ω is (ζ
−1
V ∨, ζ

−1
( , )∨, µx, [g

∞]), where µx ∈ Y (C)G
is characterized by

Fil 1x(
ζ−1

V ∨ ⊗Q C) = (ζ
−1

V ∨ ⊗Q C)µx(−1)=−1.

As x 7→ Fil 1x(
ζ−1
V ∨ ⊗Q C) is a holomorphic map Ω → Gr(C), and µ 7→ (ζ

−1
V ∨ ⊗Q

C)µ(−1)=−1 embeds Y (C)G biholomorphically as an open subdomain in Gr(C), we see
that Ω→ Y (C)G given by x 7→ µx is holomorphic, as desired.�

It follows from [B2] that this map

S(B, ∗, V, ( , ), h)U(C)
∼−→ Sh(G,ψ, [µ−1h ], U)(C)

arises from a unique algebraic map

S(B, ∗, V, ( , ), h)U −→ Sh(G,ψ, [µ−1h ], U),

which is in fact an isomorphism by Zariski’s main theorem.
The final assertion of theorem 5.1 follows on unravelling the definitions.
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