
ON THE FORMALISM OF SHIMURA VARIETIES

JACK SEMPLINER AND RICHARD TAYLOR

1. Introduction

The formalism of Shimura varieties was laid out by Deligne [D1], [D2] and Lang-
lands [L] 45 years ago. The formalism they suggested seems to us to have a number
of possible shortcomings:

(1) Deligne’s ‘Shimura datum’, a pair (G,X) of a connected reductive group over
Q and aG(R) conjugacy class of homormorphisms h : RSR

CGm → G over R sat-
isfying certain axioms, paremtrizes not a (inverse system of) varieties Sh(G,X)
over some number field E(G,X), but the pair (Sh(G,X)/E(G,X), ρcan :
E(G,X) ↪→ C) of the Shimura variety together with an embedding of its
field of definition into C. Indeed the ‘same (inverse system of) varieties’ over
E can be parametrized by different Shimura data depending on the choice of
embedding E ↪→ C.

(2) The theory of conjugation of Shimura varieties conjectured by Langlands [L]
and established by Milne [Mi1] depends for its formulation on some unmoti-
vated, and somewhat non-canonical, choices of cocycles, which to the best of
our knowledge are written down only in [L]. This makes it quite hard to work
with, as does its reliance of choices of special points.

(3) In [D2], Deligne imposes an axiom that the group Gad should have no sim-
ple factor over Q, whose real points are compact. This allows him to use
strong approximation to explicitly understand the connected components of
his Shimura varieties, but it should be unnecessary for their existence and for
the study of their conjugation properties.

The third of these points is unrelated to the other two and will be easily remedied
in section 8.5. We will discuss it no further in this introduction.

As a simple illustration point (1), consider a non-Galois totally real cubic extension
F/Q. It has three different embeddings τi : F ↪→ R for i = 1, 2, 3. Write ∞i for the
infinite place of F corresponding to τi. Let Di/F denote the quaternion algebra
centre F ramified at exactly ∞j for j 6= i. Denote by Gi/Q the reductive groups
with Gi(Q) = D×i . These groups are not isomorphic over Q. We have Gi(R) ∼=
GL2(R) × H× × H×, where H denotes the Hamiltonian quaternions. Let Xi denote

1



2 JACK SEMPLINER AND RICHARD TAYLOR

the Gi(R)-conjugacy class of the morphism hi : RSC
RGm → Gi defined over R with

hi(a+ ib) =

(
a b
−b a

)
× 1× 1.

We have E(Gi, Xi) = τiF ⊂ C. Note that Gi × A∞ is independent of i. We will
denote the group Gi(A∞), which does not depend on i, simply as Γ. Deligne’s theory
of Shimura varieties gives us for each i an inverse system {Sh(Gi, Xi)U} of varieties
over τiF ⊂ C indexed by neat open compact subgroups of Γ and with an action
of Γ. However there is one such system {SU} of varieties over F indexed by neat
open compact subgroups of Γ and with an action of Γ, such that {τiSU} with its Γ-
action is identified with {Sh(Gi, Xi)U} with its Γ-action. It seems to us unnecessarily
cumbersome and confusing to index the one system {SU} over F by three different
Shimura data, depending on how one wants to view F as a subfield of C. It would
seem to be preferable to index {SU} by some other data D over F and then to
give a recipe that to D and any embedding τ : F ↪→ C attaches a Shimura datum
(GD,τ , XD,τ ) so that

(τSU)(C) = GD,τ\(GD,τ (A∞)/U ×XD,τ ).

It turns out that points (1) and (2) above are closely related. Indeed the second
only became apparent to us as we tried to understand the first, and once we felt we
understood the second, the first was easily remedied.

To us the key to understanding possible shortcomings (1) and (2) is, perhaps not
surprisingly, to make use of Kottiwitz’s cohomology groups B(G). However it will be
essential for us to work with 1-cocycles, not only 1-cohomology classes. This causes us
extensive problems because in Kottwitz’s original theory only the cohomology groups
are canonically defined. In fact more than two thirds of this paper is devoted to
understanding how to work with such cocyles.

In the rest of this introduction we will first recall Kottwitz’s theory in a way that
emphasizes cocycles not only cohomology classes. We will then explain our hopefully
more canonical reformulation of the theory of conjugation of Deligne’s Shimura vari-
eties. Finally we will state an alternative formulation which avoids the shortcoming
(1).

1.1. Algebraic cohomology. Kottwitz’s groups B(G) are defined by what we will
call algebraic cohomology. If E/F is a finite Galois extension of local or global fields
Kottwitz considers certain extensions E(E/F ) of Gal (E/F ) by certain abelian groups
E(E/F )0. The most familiar examples are the local and global Weil groups WE/F : ex-
tensions of Gal (E/F ) by E× in the local case and by A×E/E× in the global case. These
extensions are defined in terms of a canonical class [αE/F ] ∈ H2(Gal (E/F ), E(E/F )0),
but not by a canonical cocycle. It turns out (because H1(Gal (E/F ), E(E/F )0) = (0))
that E(E/F ) is unique up to an isomorphism, which is only unique up to composition
with conjugation by an element of E(E/F )0.
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Having defined these extensions E(E/F ) we will, following Kottwitz, consider what
we call the algebraic (non-abelian) cohomology H1

alg(E(E/F ), G), where G is a group
(often the E or AE points of an algebraic group) with an action of Gal (E/F ). To
define this cohomology we consider only the set Z1

alg(E(E/F ), G) ⊂ Z1(E(E/F ), G)

of cocycles whose restriction to E(E/F )0 lie in some chosen class of homomorphisms,
usually a class of homomorphisms coming from certain morphisms of algebraic groups.
These ‘algebraic’ cocycles will be preserved by the usual equivalence relation and
hence gives rise to a cohomology group H1

alg(E(E/F ), G). It is easy to verify that

despite the ambiguity in the definition of E(E/F ), the pointed set H1
alg(E(E/F ), G)

is well defined up to unique isomorphism. However Z1
alg(E(E/F ), G) is not.

If F is a local field there will be only one such extension of interest to us: E(E/F ) =
WE/F - the Weil group defined by the usual canonical class [αWE/F ] ∈ H2(Gal (E/F ), E×).

In this case, if G/F is an algebraic group with centre Z(G), then Z1
alg(WE/F , G(E))basic

will denote those cocycles which are given on E× by an algebraic character ν : Gm →
Z(G). These are sometimes called ‘basic algebraic cocycles’. (There is also a non-
basic version where one allows all characters ν : Gm → G, but this more general
definition will play little role in our story.)

However, when F is a global field, will need to consider several examples of these
groups E(E/F ), which we will now describe.

(1) We define E loc(E/F )0 =
∏

w∈VE E
×
w , where VE denotes the set of all places of

E. There is a unique class [αloc
E/F ] ∈ H2(Gal (E/F ),

∏
w∈VE Ew) whose image

in H2(Gal (Ew/Fw), E×w ) equals [αWEw/Fw ] for all w ∈ VE. We let E loc(E/F )

denote the corresponding extension of Gal (E/F ) by
∏

w∈VE E
×
w .

For an algebraic group G/F , basic algebraic cohomology of G(AE) will be
defined in terms of those cocycles whose restriction to E loc(E/F )0 are of the
form

∏
w νw, where νw : Gm → Z(G)/Fw is an algebraic character, non-trivial

for only finitely many w.
(2) We define T2,E/Q to be the protorus with character group Z[VE] with its

natural action of Gal (E/F ). Then we set E2(E/F )0 = T2,E(AE) and de-
fine E2(E/F ) as the pushout of E loc(E/F ) along the embedding

∏
w E

×
w ↪→∏

w A
×
E
∼= T2,E(AE), where we identify E×w inside inside the copy of A×E indexed

by w.
In this case, for an algebraic group G/F , basic algebraic cohomology of

G(AE) will be defined in terms of those cocycles whose restriction to E2(E/F )0

come from an algebraic character ν : T2,E → Z(G)/F . Thus there are natural
restriction maps Z1

alg(E2(E/F ), G(AE))basic → Z1
alg(E loc(E/F ), G(AE))basic.

(3) WE/F will denote the global Weil group, i.e. the extension of Gal (E/F ) by
A×E/E× coming from the usual canonical class [αWE/F ] ∈ H2(Gal (E/F ),A×E/E×).
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(4) We will write Eglob(E/F )0 for the subgroup of elements of T2,E(AE) whose im-
age in A×E/E× under any of the characters πw corresponding to w ∈ VE is inde-
pendent of w. It turns out (as observed by Nakayama and Tate), that there is

a unique class [αglob
E/F ] ∈ H2(Gal (E/F ), Eglob(E/F )0) which pushes forward to

[αWE/F ] ∈ H2(Gal (E/F ),A×E/E×) and to [αloc
E/F ] ∈ H2(Gal (E/F ), T2,E(AE)).

We write Eglob(E/F ) for the corresponding extension of Gal (E/F ) by Eglob(E/F )0.
In this case, for an algebraic group G/F , basic algebraic cohomology of

G(AE) will be defined in terms of those cocycles whose restriction to E2(E/F )0

come from an algebraic character ν : T2,E → Z(G)/F .
There are embeddings of extensions loca : Eglob(E/F ) ↪→ E2(E/F ) giving

rise to isomorphisms

loca = (loc∗a)
−1 : Z1

alg(Eglob(E/F ), G(AE))basic
∼−→ Z1

alg(E2(E/F ), G(AE))basic.

The map of extensions is only defined up to composition with conjugation by
an element of T2,E(AE); and the map of cocycles is canonically defined only
up to composition with the map from Z1

alg(E2(E/F ), G(AE))basic to itself given

by φ 7→ φ(t)φ for some t ∈ T2,E(AE).
(5) Finally we will write T3,E for the protorus over Q with character group Z[VE]0,

the subabelian group of Z[VE] consisting of elements
∑
mww for which

∑
mw =

0. We will write E3(E/F ) for the pushout of Eglob(E/F ) along Eglob(E/F )0 →
T3,E(E).

In this case, for an algebraic group G/F , basic algebraic cohomology of
G(E) will be defined in terms of those cocycles whose restriction to T3,E(E)
come from an algebraic character ν : T2,E → Z(G)/F . Thus there is a natural
morphism Z1

alg(E3(E/F ), G(E))basic → Z1
alg(Eglob(E/F ), G(AE))basic.

We have a diagram of morphisms of extensions:

E3(E/F ) � Eglob(E/F ) � WE/F

loca ↓
E loc(E/F ) ↪→ E2(E/F )⋃

WEw/Fv � E loc(E/F )|Gal (E/F )w

for any places w|v of E and F . A key observation is that, although individually the
extensions E(E/F ) we consider here have automorphisms, the diagram as a whole
does not. Thus if we fix such a diagram it makes sense to consider algebraic cocycles
and not just algebraic cohomology classes.

However we have not specified such a diagram uniquely. There are many choices for
the localization map loca. To the best of our knowledge there is no preferred choice.
The various choices form a set which we will denote H(E/F ), which comes with a
transitive action of T2,E(AE). It seems to us that choosing one element of H(E/F ) is
a bit like choosing one place of E above a given place of E: there are many choices,
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but for most purposes the choice is irrelevant. We will decorate the various extensions
E?(E/F ) with a subscript a to indicate it is the one uniquely determined up to unique
isomorphism by a. If a, a′ ∈ H(E/F ) and a′ = ta for some t ∈ T2,E(AE), then we get
isomorphisms

zt : Z1
alg(E?(E/F )a, G(AE))

∼−→ Z1
alg(E?(E/F )a′ , G(AE)),

where AE denotes E or AE. There may not be a unique choice of t and the isomor-
phism may depend on the t chosen. However, after one passes to cohomology groups,
it will no longer depend on the choice of t.

Given a choice a ∈ H(E/F ) we have maps

loca : Z1
alg(E3(E/F )a, G(E))basic −→ Z1

alg(E loc(E/F )a, G(AE))basic

and

res : Z1
alg(E loc(E/F )a, G(AE))basic −→

∏
w∈VE

Z1
alg(WEw/Fw,a, G(Ew))basic.

We will decorate res with an super (resp. sub) script S to denote projection to only
those w not in (resp. in) S. These induce maps in cohomology

loc : H1
alg(E3(E/F ), G(E))basic −→ H1

alg(E loc(E/F ), G(AE))basic

and

res : H1
alg(E loc(E/F ), G(AE))basic −→

∏
w∈VE

H1
alg(WEw/Fw , G(Ew))basic,

which are canonically independent of a. Moreover if E ′/F ′ is an extension of local
fields isomorphic (but not canonically so) to Ew/Fw, then there is a well defined map

resE′/F ′ : H1
alg(E loc(E/F ), G(AE))basic −→ H1

alg(WE′/F ′ , G(E ′))basic.

If F is local and φ ∈ Z1
alg(WE/F,a, G(E))basic or if F is global and φ ∈ Z1

alg(E3(E/F )a, G(E))basic,

then adφ ∈ Z1(Gal (E/F ), (G/Z(G))(E)) and we get an inner form φG of G over F .
If Z(G) is a torus then Kottwitz showed that

H1
alg(WE/F , G(E))basic � H1(Gal (E/F ), (G/Z(G))(E))

and

H1
alg(E3(E/F ), G(E))basic � H1(Gal (E/F ), (G/Z(G))(E))

are surjective.
We recall that when G is connected reductive, Kottwitz defined important maps

κG : H1
alg(E loc(E/F ), G(AE))basic −→ (Z[VE]⊗ ΛG)Gal (E/F )

and

κG : H1
alg(E3(E/F ), G(E))basic −→ (Z[VE]0 ⊗ ΛG)Gal (E/F ),
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where ΛG denotes the algebraic fundamental group of G. They are compatible in
that κG ◦ loc equals κG composed with the obvious map (Z[VE]0 ⊗ ΛG)Gal (E/F ) →
(Z[VE]⊗ ΛG)Gal (E/F ). We will also write

κG : H1
alg(E loc(E/F ), G(AE)) −→ ΛG,Gal (E/F )

for the composition of κG with the map

Z[VE]⊗ ΛG −→ ΛG∑
w xww 7−→

∑
w xw.

This theory is explained in sections 3, 4 and 5.
It turns out we need to fix slightly more than a ∈ H(E/F ). Although the Weil

group WE/F is only determined up to inner automorphism by an element of A×E/E×,
the absolute Weil group WF/F is much more rigid. It is determined up to conjugation

by an element of ker(WF/F → Gal (F/F )). The extra data we will add is roughly

speaking a collection of isomorphisms between WF/F/[WF/E,WF/E] and WE/F . One

might wonder why one works with WE/F at all, and not WF/F/[WF/E,WF/E] di-
rectly. The answer seems to be that, when D ⊃ E ⊃ F , the way we compare
Z1

alg(E?(E/F ), G(AE))basic and Z1
alg(E?(D/F ), G(AD))basic is not compatible with the

natural map

WF/F/[WF/D,WF/D]� WF/F/[WF/E,WF/E].

More precisely by complete rigidification data for a ∈ H(E/F ) we will mean the
choice for each place v of F and each F -linear embedding ρ : Eab ↪→ Fv (giving rise
to a place w(ρ) of E) a E×w(ρ)-conjugacy class [Γv,ρ] of isomorphisms of extensions

(0) −→ Gal (Eab/E) −→ Gal (Eab/F ) −→ Gal (E/F ) −→ (0)

Art E ↑ o Γ̃v,ρ ↓ o ||
(0) −→ A×E/(E×∞)0E× −→ WE/F,a/(E×∞)0E× −→ Gal (E/F ) −→ (0)

such that

(1) Γv,ρ lifts to an isomorphism of extensions

Γ̃v,ρ : WF/F/[WF/E,WF/E]
∼−→ WE/F,a

whose composition with the natural map

θρ : WF v/Fv
/[WFv/ρ(E)Fv

,WFv/ρ(E)Fv
] −→ WF/F/[WF/E,WF/E]

is equal to the composition of a canonical map

ιaw(ρ) : WEw(ρ)/Fv ,a −→ WE/F,a

with some isomorphism of extensions

Θ̃ : WF v/Fv
/[WFv/ρ(E)Fv

,WFv/ρ(E)Fv
]
∼−→ WEw(ρ)/Fv ,a;
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(2) and if σ ∈ Gal (Eab/F ) then [Γv,ρσ] is determined in an explicit way by [Γv,ρ]
and σ.

We will denote by H(E/F )+ the set pairs (a, {[Γv,ρ]}), where {[Γv,ρ]} is complete
rigidification data for a. The action of T2,E(AE) onH(E/F ) lifts to a transitive action
on H(E/F )+. One consequence of the choice of a+ ∈ H(E/F )+ is that if T/F is a
torus split by E, if µ ∈ X∗(T )(Fv) and if τ ∈ Aut (F v/F ), then we can associate an
important element

ba+,v,µ,τ ∈ T (AE)/T (F )T (F∞)0T (E)T (Ev).

We have
bta+,v,µ,τ = ba+,v,µ,τ

∏
ρ

(ρ
−1

µ)(tw(ρ)/tw(τρ)),

where ρ runs over F -linear embeddings E ↪→ Fv. This is all discussed in section 6.
Finally when D ⊃ E ⊃ F and a+

E ∈ H(E/F )+ and a+
D ∈ H(D/F )+ we need to com-

pare the sets Z1
alg(E(E/F )aE , G(AE))basic with the sets Z1

alg(E(D/F )aD , G(AD))basic;

and the elements ba+
E ,v,µ,τ

and ba+
D,v,µ,τ

. It turns out that a+
D and a+

E can be related by

certain elements t ∈ T2,E(AD) and the choice of such an element both gives rise to
maps

?

inf
D/E,t

: Z1
alg(E?(E/F )aE , G(AE)) −→ Z1

alg(E?(D/F )aD , G(AD))

and to equalities

ba+
D,v,µ,τ

= ba+
E ,v,µ,τ

∏
ρ

(ρ
−1

µ)(tw(ρ)/tw(τρ)),

where again ρ runs over F -linear embeddings E ↪→ Fv.

1.2. Some algebraic cohomology classes. We must introduce some algebraic co-
homology classes needed for our discussion of Shimura varieties. First we consider
the algebraic cohomology of WC/R and its relation to cocharacters. For details of this
see section 3.4.

Recall that
WC/R = 〈C×, j : jzj−1 = cz and j2 = −1〉.

To a character µ : Gm → G/C such that µcµ is central we can associate a cocycle

λ̂G(µ) ∈ Z1
alg(WC/R, G(C))basic defined by λ̂G(µ)(z) = (µcµ)(z) and λ̂G(µ)(j) = µ(−1).

(This depends on a choice of j ∈ WC/R.) The class λ̂G(µ) ∈ H1
alg(WC/R, G(C))basic

of λ̂G(µ) only depends on the G(R) conjugacy class of µ (and is independent of the

choice of j). We will denote it λ̂G([µ]G(R)). If G is connected reductive then κGλ̂G(µ)
equals the image of µ in ΛG,Gal (C/R).

If G/R is connected reductive, we will call a G(R)-conjugacy class Y of cochara-
caters of G compactifying if

• if µ ∈ Y , then µcµ is central;
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• and adµ(−1) is a Cartan involution.

In this case λ̂(Y ) determines Y .
If G is connected reductive and Gad (R) is compact, then any G(C)-conjugacy class

C of morphisms µ : Gm → G/C contains a unique G(R)-conjugacy class of characters

µ with µcµ central. In this case we can define λ̃G(C) = [λ̂G(µ−1)] for any such

µ ∈ C. (Note the possibly confusing choice of sign.) The group λ̃G(C)G, which is well

defined up to conjugation by elements of λ̃G(C)G(R), comes equipped with a canonical

compactifying λ̃G(C)G(R)-conjugacy class of cocharacters Y (C)λ̃G(C)G
contained in C.

Now suppose that Y is a compactifying G(R)-conjugacy class of cocharacters of G
and that C is a G(C)-conjugacy class of cocharacters of G. We set

λ̂G(Y − C) = λ̃λ̂G(Y )G
(C)[λ̂G(Y )] ∈ H1

alg(WC/R, G)basic.

It comes equipped with a canonical compactifying λ̂G(Y−C)G(R)-conjugacy class of
cocharacters Y (C)λ̂G(Y−C)G

.
Now suppose that G/Q is a connected reductive group, that E/Q is a sufficiently

large finite Galois extension, and that Y is a compactifying G(R)-conjugacy class of
cocharacters of G defined over C. If τ ∈ Aut (C), then by an important theorem of
Kottwitz there is a unique class φG,Y,τ ∈ H1

alg(E3(E/Q), G(K))basic such that

• κG(φG,Y,τ ) = (v(ρ)− v(τρ))⊗ λG(Y ), where ρ : E ↪→ C and v(ρ) denotes the
corresponding infinite place of E (this is independent of the choice of ρ);

• and resC/RlocφG,Y,τ = λ̂G(Y − τ [Y ]G(C)).

In this case res∞locφG,Y,τ = 1. If φ ∈ φG,Y,τ , then φG comes equipped with a

canonical compactifying φG(R)-conjugacy class Y (τ [Y ]G(C))φG of cocharacters, which
we will simply denote τ,φY .

1.3. Conjugation of Deligne’s Shimura varieties. One can define a Shimura
datum (in the sense of Deligne) to be a pair (G, Y ), where G/Q is a connected reduc-
tive group and Y is a compactifying G(R)-conjugacy class of miniscule cocharacters
µ : Gm → G/C. It is more common to consider instead of Y a G(R)-conjugacy class

of morphisms h : RSC
RGm → G/R satisfying certain properties, but these two notions

are easily seen to be equivalent. (To a µ as above we associate hµ which is the descent
from C to R of (µ, cµ).) Also note that Deligne assumes that Gad has no simple factor
over Q whose real points are compact. However, as we will see, everything (that we
will be discussing) remains true without this assumption.

To the Shimura datum (G, Y ) and a neat open compact subgroup U ⊂ G(A∞),
Deligne associates a smooth quasi-projective variety Sh(G, Y )U/C (called a Shimura
variety) together with an identification of complex manifolds

G(Q)\(G(A∞)/U × Y )
∼−→ Sh(G, Y )U(C).
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The system of these Shimura varieties as U varies has an action of G(A∞) (by right
translation). If f : (G, Y )→ (G′, Y ′) is a morphism of Shimura data (i.e. a morphism
f : G→ G′ of algebraic groups over Q which carries Y to Y ′) then there is an induced
maps of Shimura varieties. Deligne defines the reflex field E(G, Y ) ⊂ C to be the
number field which is the fixed field of all automorphsims of C which fix the G(C)
conjugacy class [Y ]G(C) of cocharacters of G, which conatins Y . He conjectured that
Sh(G, Y )U has a model over E(G, Y ) satisfying certain additional properties, which
determine it uniquely. He proved this in many cases and Milne proved it in all cases.
Langlands conjectured a rather complicated and apparently ad hoc formula for the
conjugate of Sh(G, Y )U by any automorphism of C. This was also proved by Milne.

Fix a sufficiently large finite Galois extension E/Q and a+ ∈ H(E/Q)+. If (G, Y )
is a Shimura datum and φ ∈ φG,Y,τ , then (φG, τ,φY ) is another Shimura datum. If

moreover b ∈ G(A∞E ) with res∞locaφ = b1, then we will define an isomorphism

Φa+(τ, φ, b) : τSh(G, Y )U
∼−→ Sh(φG, τ,φY )bUb−1 .

These maps commute with the action of G(A∞) (using the identification conjb :

G(A∞)
∼→ φG(A∞)) and with the action of morphisms f : (G, Y ) → (G′, Y ′) of

Shimura data. One has a cocycle relation

Φa+(τ1τ2, φ1φ2, b1b2) = Φa+(τ1, φ1, b1) ◦ τ1Φa+(τ2, φ2, b2).

In the case where G = T is a torus there is an explicit formula for the Φa+(τ, φ, b).
These properties together completely (over) characterize the maps Φa+(τ, φ, b). We
also explain how the maps Φa+(τ, φ, b) depend on E and a+. (See theorem 8.5 for all
this.)

In particular the maps Φa+(τ, 1, 1) for τ ∈ Aut (C) fixing E(G, Y ) provide descent
data for Sh(G, Y )U from C to E(G, Y ), which yields the canonical model of Sh(G, Y )U
over E(G, Y ).

The conjugation morphisms, whose existence was conjectured by Langlands and
proved by Milne, are special cases of our maps Φa+(τ, φ, b) in which φ and b factor
through a suitable maximal torus in G and take a very particular form. Indeed our
theorem follows easily from Milne’s theorem, once we were able to discover the correct
formulation (and unravel Langlands definitions).

This is all discussed in section 8.

1.4. Rational Shimura varieties. Finally we propose an alternative formalism,
which we feel is better suited to keeping track of the rationality properties of Shimura
varieties.

Fix a sufficiently large Galois extension E/Q and a+ ∈ H+(E/Q). The theory we
describe is independent of these choices, in a way that is described precisely in the
body of the paper.

By a rational Shimura datum over a field L of characteristic 0 we mean a triple
(G,ψ,C), whereG/Q is a connected reductive group; ψ ∈ Z1

alg(E loc(E/Q)a, G(AE))basic;



10 JACK SEMPLINER AND RICHARD TAYLOR

and C is a conjugacy class of miniscule cocharacters of G (considered as a variety)
defined over L; such that

• resC/RψGad (R) is compact

• and κG(ψ) equals the image of ρ−1
C in ΛG,Gal (E/Q), where ρ : L ↪→ C. (This

is independent with the choice of ρ.)

The group G plays very little role except as a basis point to identify the class of
extended pure inner forms with which we are working. One gets a completely equiv-
alent theory if one replaces G by φG for φ ∈ Z1

alg(E3(E/Q)a, G(E))basic. Thus, in
the case that Z(G) is connected, we may assume without loss of generality that G is
quasi-split.

To a rational Shimura datum (G,ψ,C) over L and a neat open compact subgroup
U ⊂ ψG(A∞), where ψG is the inner form of G over A defined by ψ, we associate a
smooth quasi-projective variety Sh(G,ψ,C)U/L. As U varies the system of varieties
has an action of ψG(A∞). (Note that ψG/A may well not arise from a group over Q,
it is what one might call ‘incoherent’.)

These rational Shimura varieties are not exactly equal to canonical models of
Deligne’s Shimura varieties, rather they are finite unions of isomorphic copies of a
single such canonical model. Thus they carry the same information. Indeed when
one describes Shimura varieties as moduli spaces over rings of mixed characteristics
it is these rational Shimura varieties that arise, as has long been observed. (See for
example [K2] and [HT].) An additional benefit is that these rational Shimura vari-
eties actually have an action of a larger group than ψG(A∞), a group that transitively
permutes the constituent Deligne Shimura varieties. More precisely let Γ denote the
abelian group

{(ζ, g) ∈ Z1(Gal (E/Q), Z(G)(E))× ψG(AE) : (locaζ)gψ = ψ}

with componentwise multiplication. There are embeddings

ψG(A) ↪→ Γ
g 7−→ (1, g)

and
Z(G)(E) ↪→ Γ

δ 7−→ ((e 7→ δ/eδ), δ−1).

We define

G̃E,ψ(A∞) = Γ/Z(G)(E)Z(G)(Q)ψG(R).

(The notation is not meant to suggest that G̃E,ψ(A∞) is the A∞ points of any algebraic
group.) Then we have an exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃E,ψ(A∞) −→
ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE))) −→ (0).
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The action of ψG(A∞) on the system of the {Sh(G,ψ,C)U}U extends to an action of

G̃E,ψ(A∞), which permutes transitively the constituent Deligne Shimura varieties.
The action of Galois on Shimura varieties for rational Shimura data becomes com-

pletely transparent. If τ : L → L′ then {τSh(G,ψ,C)U}U = {Sh(G,ψ, τC)U}U (with

their G̃E,ψ(A∞)-actions).
Shimura varieties for rational Shimura data are also functorial in the rational

Shimura data in the following sense: By a morphism (φ, g, f) : (G1, ψ1, C1) →
(G2, ψ2, C2) of rational Shimura data over L, we mean

• a cocycle φ ∈ Z1
alg(E3(E/Q)a, G2(E))basic,

• an element g ∈ G2(AE),

• and a morphism f : G1 → φG2 defined over Q, such that f ◦ψ1 = g−1
ψ2locaφ

−1

and f(C1) ⊂ C2.

Given such a morphism we obtain a morphism a morphism of inverse systems of
varieties over E:

Sh(φ, g, f) : {Sh(G1, ψ1, C1)U}U −→ {Sh(G2, ψ2, C2)V }V .

(The case φ = 1 and f = 1 recovers the action of ψG(A∞).) We have

Sh(φ1, g1, f1) ◦ Sh(φ1, g2, f2) = Sh(f1(φ2)φ1, g1f1(g2), f1 ◦ f2).

If φ ∈ Z1
alg(E3(E/Q)a, G(E))basic, then Sh(φ, 1, 1) gives a canonical isomorphism

between the the tower {Sh(G,ψ,C)U}U with its G̃ψ(A∞)-action and the alternative

tower {Sh(φG,ψlocaφ
−1, C)U}U with its φ̃Gψlocaφ−1(A∞) = G̃G,ψ(A∞)-action. Thus,

as we have already mentioned, the exact choice of G amongst its class of inner forms
is not so important.

For any g ∈ G(AE) the map Sh(1, g, 1) gives an isomorphism between the system

{Sh(G,ψ,C)U}U with its G̃E,ψ(A∞)-action and {Sh(G, gψ,C)V }V with its G̃E,gψ(A∞)-

action, where we use conjugation by g to identify G̃ψ(A∞) and G̃gψ(A∞). Thus in a
sense {Sh(G,ψ,C)U}U only depends on [ψ] ∈ H1

alg(E loc(E/Q), G(AE))basic. However
the identification is not canonical - it depends on the choice of g taking ψ to gψ. This
is why we have to work with cocycles and not only cohomology classes.

There is of course a theory of complex uniformization for rational Shimura vari-
eties. If ρ : L ↪→ C, then ρSh(G,ψ,C)U(C) admits a uniformization by an Her-
mitian symmetric space, but this depends on auxiliary choices. We must choose

φ ∈ Z1
alg(E3(E/Q), G(E))basic and b ∈ G(A∞E ) with resC/Rloc[φ] = λ̃ψG(C)resC/R[ψ]

and res∞locaφ = bres∞ψ. We will write φGad (Q)E,R for the subgroup of elements of
φGad (Q) which can be lifted to both φG(R) and φG(E). Then φGad (R)E,R acts on

Y (τC) and there is an embedding φGad (Q)E,R ↪→ G̃E,ψ(A∞). There is an isomorphism
of complex manifolds

πρ,(φ,b) : φGad (Q)E,R\(G̃E,ψ(A∞)/U × Y (τC))
∼−→ ρSh(G,ψ,C)U(C).
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Finally in the case that G = T is a torus the action of Galois can be made explicit:
if ρ : L ↪→ C and τ ∈ Aut (C) then

(τ ◦ πρ,(φ,b))(g̃, µ) = πτρ,(φτφ,bτ b)(g̃,
τµ),

for any φτ ∈ φT,{ρµ},τ and bτ ∈ T (A∞E )/T (Q) such that res∞locaφτ = bτ1 and the

image of bτ in T (A∞E )/T (Q)T (E) is ba+,∞,µ,τ .
This is discussed in section 9. For a complete statement of the main theorem results

mentioned here see theorem 9.1.
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2. Algebraic background

2.1. Notations. For simplicity we will assume all fields we consider in this paper
will be assumed to be perfect unless we specifically say otherwise.

If F is a field we will write F for an algebraic closure of F and F ab for a maximal
abelian Galois extension of F .

If F is a local field of characteristic 0 we will write Art F : F× → Gal (F ab/F ) for
the Artin map. (Normalized to take uniformizers to geometric Frobenius elements.)

If F is an algebraic extension of Q we will write VF for the set of places of F and
AF for the ring of adeles of F . (In the case that F is an infinite extension of Q then
AF = lim→E AE, where E runs over subfields of F finite over Q.) If v is a place of F
then by Fv we will mean lim→E Ev as E runs over subextensions of F/Q which are
finite over Q. (So Fv may not be complete, but it is algebraic over Qv.) If F is a

number field will write Art F : A×F/F×(F×∞)0 ∼→ Gal (F ab/F ) for the Artin map.
If E/F is an algebraic extension of fields with F a number field and if S ⊂ VF we

will write SE for the set of places of E above a place in S, and AE,S for the ring of
adeles of E supported at the primes in S. (If E is also a number field then AE,S is
the restricted product

∏′
w: w|F∈S E

×
w .) Moreover AS

E = AE,VF−S.

We will write Z[VE,S] for the free ablelian group on VE,S and Z[VE,S]0 for the
subabelian group consisting of elements

∑
wmww with

∑
wmw = 0. If E/F is Galois,

both groups have a natural action of Gal (E/F ) via σ
∑

wmww =
∑

wmw(σw) =∑
wmσ−1ww.

If F is an algebraic extension of Q and K is a local field and ρ : F ↪→ K, then we
will write v(ρ) or w(ρ) or u(ρ) for the place of F induced by ρ. (We will tend to use
v(ρ) when the field is denoted F , w(ρ) when it is denoted E and u(ρ) otherwise.) If
moreover F/Q is Galois and τ ∈ Aut (K), then we will write τ ρ = ρ−1τρ ∈ Gal (F/Q).

If E/F is a Galois extension with F a number field, and if v is a real place of F we
will write [cv] for the conjugacy class in Gal (E/F ) consisting of complex conjugations
at places above v. If F = Q and v =∞ we will simply write [c].

2.2. Conjugation of schemes. We recall some standard facts about the action of
Galois groups on varieties. Suppose that E ⊃ F are fields. We will write Aut (E)
for the group of automorphisms of E and Aut (E/F ) for the subgroup of elements
fixing F . If E/F is Galois we shall usually write Gal (E/F ) for Aut (E/F ). If
X/SpecE is a scheme and τ ∈ Aut (E) then by τX we mean X ×SpecE,Spec τ SpecE.
Thus there is a natural identification τ1τ2X = τ1(τ2X). Note that the isomorphism

τ × 1 : E[T1, .., Tn] ⊗E,τ E
∼→ E[T1, ..., Tn] gives an identification Affn

∼→ τAffn. If
X ⊂ Affn is the affine subscheme cut out by polynomials f1, ..., fr then this identifies
τX with the variety cut out by the polynomials τf1, ...,

τfr.
If X is again any variety over E then there is a natural bijection

τ : X(E)
∼−→ (τX)(E)

P 7−→ P × Spec (τ−1).
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In the special case that X is an affine variety cut out by equations f1, ..., fr in n
variables, the map τ is just given by applying τ to the coordinates.

If ψ : X → Y over SpecE then τψ = ψ ×SpecE,Spec τ SpecE : τX → τY . We have
(τψ)(τP ) = τ (ψ(P )).

Suppose that X0/F is a variety, and let X = X0 ×SpecF SpecE. If τ ∈ Aut (E/F )
we get a natural identification

φX0
τ : τX = (X0 ×SpecF SpecE)×SpecE,Spec τ SpecE

∼−→ X0 ×SpecF SpecE = X.

Under the natural identification τ1(τ2X) = τ1τ2X we see that φX0
τ1

τ1φX0
τ2

= φX0
τ1τ2

. We
also have a natural identification X(E) ∼= X0(E). Under these identifications the

map φX0
τ ◦ τ : X(E)

∼→ X(E) becomes identified with the map τ : X0(E)
∼→ X0(E)

which sends P to P ◦ Spec τ−1. If f0 : X0 → Y0 over F and f = f0 ×SpecF SpecE
then f ◦ φX0

τ = φY0
τ ◦ f .

Suppose either that E/F is algebraic and Galois, or that E is algebraically closed
of infinite transcendence degree over F . If X/SpecE is a variety, then by descent
data for X over F we mean the choice for all τ ∈ Aut (E/F ) of an isomorphism

φτ : τX
∼−→ X

such that φτ1
τ1φτ2 = φτ1τ2 for all τ1, τ2 ∈ Aut (E/F ). We call a point x ∈ X(E) with

respect to {φτ} formally defined over an intermediate field E ′ if φτ (τx) = x for all
τ ∈ Aut (E/E ′). We call the descent data {φτ} effective if there is a variety X0/SpecF

together with an isomorphism ψ : X0×SpecF SpecE
∼→ X such that φτ ◦ τψ = ψ ◦φX0

τ

for all τ ∈ Aut (E/F ). In this case we also have ψ◦τ ◦ψ−1 = (τ ◦φτ ) : X(E)→ X(E).
Moreover if X ′0 and ψ′ also have this property, then there is a unique isomorphism
f : X0

∼→ X ′0 over F such that ψ′ ◦ (f ×SpecF SpecE) = ψ. If {φ′τ} is effective descent
data for Y over F , which gives rise to a pair (Y0, ψ

′), and if f : X → Y satisfies
φ′τ

τf = fφτ for all τ ∈ Aut (E/F ) then there is a unique f0 : X0 → Y0 such that
ψ′ ◦ (f0 ×SpecF SpecE) = f ◦ ψ. If σ ∈ Aut (E), then σX0/Spec σF corresponds to
σX and the descent data over σF given by

τ 7−→ σφσ−1τσ.

If X and Y are two varieties over E and if {φτ} is effective descent data for X over
F and if {φ′τ} is effective descent data for Y over σF , then giving a map

f0 : σX0 −→ Y0

over σF is the same as giving a map f : σX → Y such that

φ′τ ◦ τf = f ◦ σφσ−1τσ

for all τ ∈ Aut (E/σF ).
It is important to know when descent data is effective. We recall four criteria each

of which guarantees that {φτ} is effective:
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(1) X is quasi-projective and there is an intermediate field E ⊃ E ′ ⊃ F with E ′

finitely generated over F such that {φτ}τ∈Aut (E/E′) is effective.
(2) X is quasi-projective and E/F is finite Galois.
(3) X is quasi-projective and there are points xi ∈ X(E) and an intermediate

field E ⊃ E ′ ⊃ F with E ′ finitely generated over F such that
(a) the identity is the only automorphism of X fixing each xi,
(b) and each xi is formally defined over E ′.

(4) X is quasi-projective, Aut (X) is finite and the set of points of X(E) formally
defined over a finitely generated subfield of E is Zariski dense in X.

For the first criterion follows from theorems 3 and 6 of [W2] as in the proof of theorem
1.1 of [Mi2]. (In the case E/F is Galois theorem 6 of [W2] is not required.) The second
criterion clearly follows from the first (or directly from theorem 3 of [W2]). The third
criterion also follows from the first. Indeed we may assume (after enlarging E ′) that
X has some model X1 over E ′, that each xi is formally defined over E ′ and that each
xi ∈ X1(E ′) . Then, for τ ∈ Aut (E/E ′) we have φτ = ατ ◦ φX1

τ with ατ ∈ Aut (X).
We see that each ατ fixes each xi and so must be the identity. Thus {φτ}τ∈Aut (E/E′)

is effective. The fourth criterion follows from the third.

2.3. Algebraic groups. We will first recall some facts about algebraic groups over
fields of characteristic 0.

If G is an (algebraic) group then Z(G) will denote its centre and Gad will denote
G/Z(G). Moreover Gder will denote its commutator subgroup and C(G) = Gab will
denote it co-center/abelianization G/Gder. If H ⊂ G is a subgroup we will write
NG(H) for its normalizer and ZG(H) its centralizer. If H has finite index, we will
also write tr G/H : Gab → Hab for the transfer map. If G acts on X we will write [x]G
for the G orbit of x ∈ X and ZG(x) for the centralizer of x in G. If G is an algebraic
group acting on a variety X over a field F and x ∈ X(F ), then [x]G is a variety, and
[x]G(F ) ⊃ [x]G(F ), but these two sets may not be equal.

If F is a field, if E1,...,Er are fields containing F , and if G/F is an algebraic group;
then we will write Gad (F )E1,...,Er for the subgroup of G(F ) consisting of elements
which admit lifts to each G(Ei).

If G is an affine algebraic group over F then there a scheme X∗(G), smooth and
separated over F , and a homomorphism µuniv : Gm ×F X∗(G) → G ×F X∗(G), such
that if S is any F -scheme and µ : Gm,S → GS is a homomorphism, then there is a
unique morphism S → X∗(G) under which µuniv pulls back to µ. Moreover

G×X∗(G) −→ X∗(G)×X∗(G)
(g, µ) 7−→ (conjg ◦ µ, µ)

is smooth; and

X∗(G)F =
∐

[µ]∈G(F )\X∗(G)(F )

G/ZG(µ).
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(See sections 4 and 5 of exposé XI in [SGA3].) If G is geometrically connected, then
the G/ZG(µ) are the connected components of X∗(G). Moreover if µ ∈ X∗(G)(F ) and
if F ([µ]) denotes the fixed field of ZGal (F/F )([µ]G(F )), then X∗(G)F ([µ]) has a (unique)

connected component [µ] such that [µ](F ) = [µ]G(F ). (Use lemma 33.7.18 of [Stacks].)
We will require all our reductive groups to be geometrically connected, i.e. by the

term ‘reductive group’ we will mean what is often referred to as ‘connected reductive
group’. If G/F is a reductive group then G(F ) is Zariski dense in G. (See theorem
2.2 of [PR].) We will write GSC for the simply connected semi-simple cover of Gder.
If T is a maximal torus of G we will write T ad for the image of T in Gad (a maximal
torus in Gad ) and T der = (Gder ∩ T ) (which is a maximal torus in Gder, see remark
3.5 of [Co]) and T SC for the preimage of T in GSC (which is a maximal torus in GSC,
see for instance proposition 4.1 of [Co]). We have T = ZG(T ). We will also write WT

for the Weyl group NG(T )/T , which we think of a a finite algebraic group. It acts
faithfully on T . We will also write WT,F for NG(T )(F )/T (F ) ⊂ WT (F ). If T is split
over F , then we have equalities WT (F ) = WT (F ) = WT,F . Moreover any two split
maximal tori in G over F are conjugate by G(F ). (See section 2.1.14 of [PR].)

We remark that if T ⊂ G is a maximal torus and µ1, µ2 ∈ X∗(T ) are conjugate
under G(F ) then they are conjugate under WT (F ). (This is probably well known, but
as we don’t know a reference we will sketch the proof. Let H denote the connected
component of the identity of the centralizer of µ1(Gm) in G. It is reductive. (See
theorem 2.1 of [Co].) Suppose that µ1 = gµ2g

−1. Then µ1(Gm) ⊂ gTg−1 so that T
and gTg−1 are both maximal tori in H. Hence we have gTg−1 = hTh−1 for some
h ∈ H. Then h−1g ∈ NG(T ) and µ1 = h−1gµ2g

−1h, as desired.)
We will let ΛG denote the algebraic fundamental group of G, i.e. X∗(T )/X∗(T

SC)
for any maximal torus T of G. Note that the Weyl group WT acts trivially on
X∗(T )/X∗(T

SC). Any two maximal tori T and T ′ defined over F are conjugate over
the separable closure F of F by g ∈ G(F ) with gNG(T ) uniquely defined. Then

conjg induces an isomorphism X∗(T )/X∗(T
SC)

∼→ X∗(T
′)/X∗(T

′SC). If we alter g by

an element h ∈ NG(T )(F ) then this isomorphism changes by an element of WT (F ),
i.e. is in fact unchanged. Thus ΛG is canonically defined independent of the choice
of T . In particular it has a canonical action of Gal (F/F ). (If T ′ = conjgT and

σ ∈ Gal (F/F ), then σ◦conjg = conjg◦σ◦conjwσ on X∗(T ) for some wσ ∈ WT (F ), and
so σ◦conjg = conjg ◦σ on ΛT .) If [µ] is a conjugacy class of cocharacters µ : Gm → G,

then [µ] gives rise to well defined element λG([µ]) ∈ ΛG. If σ ∈ Gal (F/F ) then
λG(σ[µ]) = σλG([µ]).

Now suppose that F is a number field and G/F is a connected algebraic group.
Then G(F ) is dense in

∏
v∈VF,∞ G(Fv). (See theorem 7.7 of [PR].) Suppose further

that S is any finite set of places of F and that Tv ⊂ G × SpecFv is a maximal
torus for all v ∈ S. Then there is a maximal torus T ⊂ G such that T × SpecFv is
G(Fv)-conjugate to Tv for all v ∈ S. (See corollary 3 to proposition 7.3 of [PR].)
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2.4. Real groups. Suppose that G/R is a reductive group. If either G is simply
connected semi-simple or G(R) compact, then G(R) is connected. (See corollary
1 to theorem 3.6 and proposition 7.6 of [PR].) If G/R is a reductive group and
H is a normal subgroup defined over R with (G/H)(R) compact, then G(R) �
(G/H)(R). (The image is open by the open mapping theorem, but we have just seen
that (G/H)(R) is connected.) We will write G(R)+ for the connected component of
the identity in G(R) in the archimedean topology. Because G(R) is Zariski dense in
G, we see that ZG(G) = ZG(G(R)) and that G(R)ad naturally embeds in Gad (R)
(and Gad (R)ad ⊃ Gad (R)+.) If F ⊂ R is a subfield and G is defined over F we write
G(F )+ for G(F ) ∩G(R)+.

If G/R is reductive then a maximal torus T ⊂ G/R is called fundamental if its split
rank is minimal among the split ranks of all maximal tori. All fundamental maximal
tori are conjugate by G(R). (See [BW] section I.7.1.) If G′ is an inner form of G,
then fundamental maximal tori in G and G′ are isomorphic. (See lemma 2.8 of [Sh].)
If T is a fundamental torus and if T ad (R) is compact (or equivalently if c acts by
−1 on X∗(T

ad )) then WT (R) = WT (C). Moreover if T is a fundamental torus, then
T ad (R) is compact if and only if G has an inner form G′ with G′,ad (R) compact. (See
proposition 3 of [LS].)

IfGad (R) is compact then all maximal tori T are fundamental, and hence conjugate.
Moreover, in this case, WT,R = WT (R) = WT (C), so that any two embeddings i, i′ :
T ↪→ G are conjugate under G(R). (In the case that G(R) is compact the equality
WT,R = WT (R) is well known, see for instance theorem 11.36 of [H]. The more general
case Gad (R) compact reduces to this because G(R)� Gad (R).)

If µ ∈ X∗(G)(C) then the image of µ commutes with that of cµ if and only if
µ factors through a maximal torus T ⊂ G which is defined over R. (To see the
forward implication look at a maximal torus in ZG(µ) containing the image of cµ.)
We will call such cocharacters commuting. Being a commuting is preserved under
G(R)-conjugacy.

If µ ∈ X∗(G)(C) then we will call µ basic if µcµ factors through Z(G). Being basic is
preserved under G(R)-conjugacy; and basic cocharacters are commuting. If µ is basic,
then µ factors through a fundamental maximal torus. (To see this work in Gad . Then
(Imµ)(R) is compact and so contained in some maximal compact subgroup of Gad (R).
Hence it is contained in a maximal compact torus, and so in a fundamental torus.
See section I.7.1 of [BW].) If Gad (R) is compact then any commuting cocharacter
µ ∈ X∗(G)(C) is basic (because if µ factors through a maximal torus T defined over
R, then c acts on X∗(T

ad ) by −1).
If µ ∈ X∗(G)(C) then we will call µ compactifying if µ is basic and adµ(−1) ∈

Gad (R) is a Cartan involution (i.e. Gad (C)conjµ(−1)◦c=1 is compact). (See for instance
section 2 of [BC] for basic facts about Cartan involutions.) Being basic is preserved
under G(R)-conjugacy. If G admits a compactifying cocharacter, then Gad has a
compact inner form.
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Lemma 2.1. Suppose that G/R is a reductive group and that Gad (R) is compact.
Any G-conjugacy class C ⊂ X∗(G) contains a unique G(R)-conjugacy class Y (C)
consisting of commuting cocharacters in X∗(G)(C). The elements of Y (C) are in fact
basic.

Proof: Any µ ∈ C(C) factors through some maximal torus and hence is conjugate
to a cocharacter factoring through any other maximal torus, for instance one defined
over R. If µ, µ′ ∈ C(C) factor through maximal tori defined over R, then replacing µ′

by a G(R)-conjugate, we may assume it factors through the same maximal torus T
(defined over R) as µ. Then µ and µ′ are conjugate by an element of WT (C) = WT,R,
i.e. µ and µ′ are NG(T )(R)-conjugate. �

2.5. Cohomology. If G/F is an algebraic group and E/F is a Galois extension
then we will write H1(Gal (E/F ), G(E)) for the first Galois cohomology. More
precisely, by a 1 cocycle of Gal (E/F ) we will mean a locally constant map φ :
Gal (E/F ) → G(E) such that φ(σ1σ2) = φ(σ1)σ1φ(σ2). We denote the set of 1 co-
cycles Z1(Gal (E/F ), G(E)). If φ ∈ Z1(Gal (E/F ), G(E)) and g ∈ G(E) we define
gφ ∈ Z1(Gal (E/F ), G(E)) by (gφ)(σ) = gφ(σ)σg−1. We call two cocycles φ1 and φ2

equivalent if there is a g ∈ G(E) such that φ2 = gφ1. Then H1(Gal (E/F ), G(E)) is
the set of equivalence classes of cocycles. It is a pointed set with neutral element repre-
sented by the trivial cocycle (identically 1). If G is abelian then H1(Gal (E/F ), G(E))
is an abelian group. (In the case E = F , then we will also denote these sets H1(F,G)
and Z1(F,G).)

If H is an algebraic subgroup of an algebraic group G, both defined over a field F ,
and if g ∈ (H\G)(F ) (resp. g ∈ (G/H)(F )) one can define a class o(g) ∈ H1(F,H)
such that g lifts to an element of G(F ) if and only if o(g) is trivial. (If g̃ is any lift of
g to G(F ) then o(g) is represented by the cocyle σ 7→ g̃σg̃−1.) In particular there is
a bijection

Gad (F )/G(F )ad ∼−→ ker(H1(F,Z(G))→ H1(F,G)).

In this instance it is easily verified that both sides are groups and that the bijection
is an isomorphism of abelian groups.

If F is a local field of characteristic 0, then there is a finite Galois extension E/F
such that every element of Gad (F ) can be lifted to G(E). (It is enough to see there
is such an extension such that H1(Gal (F/F ), Z(G)) → H1(Gal (F/E), Z(G)) is the
zero map. Choose E1/F such that Z(G)0 splits over E1 and π0(Z(G)) has a trivial
Gal (F/E1) action, and then choose E/E1 Galois over F such that the finitely many
elements of Hom (Gal (F/E1), π0(Z(G))) vanish on Gal (F/E).)

If G/F is an algebraic group and φ ∈ Z1(Gal (E/F ), Gad ) then we can define φG
to be the algebraic group over F obtained by descending G×F E to F via the action

σ 7−→ conjφ(σ) ◦ (1× σ).
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Then (φG)×F E = G×F E. If g ∈ G(E), then

conjg : φG
∼−→ gφG

over F . Thus φG only depends on [φ] ∈ H1(Gal (E/F ), Gad ), but up to an iso-
morphism that is only unique up to composition with conjugation by an element of
Gad (F ).

If G/F is an algebraic group, then by an inner form of G we mean a pair (H, [i]),
where H/F is another algebraic groups and [i] is a G-conjugacy class defined over F

of isomorphisms i : G
∼→ H. (Then [i] has the structure of a variety over F , but may

have no F -points.) By an isomorphism of inner forms (H1, [i1]) and (H2, [i2]) we mean
an isomorphism of H1 and H2 over F which takes [i1] to [i2]. Such an isomorphism
is unique up to Had

1 (F )-conjugacy. The construction of the previous paragraph sets
up a bijection between H1(F,Gad ) and (isomorphism classes of) inner forms of G. A
pair (H, [i]) is sent to the class inv (H, [i]) of the cocycle σ 7→ i−1 ◦ σi.

If φ ∈ Z1(F,G) then there is a bijection

Z1(F, φG)
∼−→ Z1(F,G)

ψ 7−→ ψφ

which induces an isomorphism

H1(F, φG)
∼−→ H1(F,G)

under which the trivial element maps to [φ]. If φ1, φ2 ∈ Z1(F,G) and [φ1] = [φ2] ∈
H1(F,Gad ), then we can find g ∈ G(F ) and ζ ∈ Z1(F,Z(G)) such that

φ2 = ζgφ1.

If (H, [i]) is an inner form of G, then it is elementary to see that all elements of [i]

induce the same isomorphism Z(G)
∼→ Z(H) which is thus defined over F . Hence we

will identify Z(G) and Z(H) without further comment. If [µ]G is a G-conjugacy class
of cocharacters µ : Gm → G, then one can associate an H-conjugacy class [µ](H,[i]) of
cocharacters Gm → H. Indeed

[µ](H,[i]) = {i′ ◦ µ : µ ∈ [µ]G and i ∈ [i]}.

If σ ∈ Gal (F/F ) then (σ[µ]G)(H,[i]) = σ([µ](H,[i])).
If G is a reductive group over F and (H, [i]) is an inner form of G, then the same

argument that shows ΛG with its Gal (F/F )-action is well defined shows that there
is a canonical Gal (F/F )-invariant isomorphism ΛG

∼= ΛH .
Suppose that G/F is a reductive group and that T ⊂ G/F is a maximal torus.

Suppose that φ ∈ Z1(F,G) and defineH1(F, T )φ to be the preimage of [φ] inH1(F, T ).
Then there is a bijection between H1(F, T )φ and the set of φG(F )-conjugacy classes [j]
of embeddings j : T ↪→ φG over F conjugate over F to the given inclusion T ↪→ G/F .

More precisely any embedding T ↪→ φG is of the form t 7→ gtg−1 for some g ∈ G(F )
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such that gφ(σ)σg−1 ∈ T (F ) for all σ ∈ Gal (F/F ). This sets up a bijection between
the set of φG(F )-conjugacy classes [j]

{g ∈ T (F )\G(F )/φG(F ) : gφ(σ)σg−1 ∈ T (F ) ∀σ ∈ Gal (F/F )}.

This set is in turn in bijection with H1(F, T )φ via the map sending g to the cocyle
σ 7→ gφ(σ)σg−1.

IfG is an algebraic group over a number field F , we setH1(AF , G) = H1(Gal (F/F ), G(AF )).
We have that

H1(AF , G) ∼=
′∏
v

H1(Fv, G),

where the product is restricted with respect to {Im (H1(Gal (F nr
v /Fv), G(OFnr

v
)) →

H1(Fv, G))}. If G is connected then this becomes

H1(AF , G) ∼=
⊕
v

H1(Fv, G),

where the
⊕

v of pointed sets means elements of the product that are at all but finitely
many v equal to the neutral element. (See the corollary to theorem 6.8 of [PR].)

If E/F is Galois and φ ∈ Z1(Gal (E/F ), Gad (AE)) then we can define φG/AF to
be the algebraic group defined by descending G×F AE to AF via the action

σ 7−→ conjφ(σ) ◦ (1× σ).

If g ∈ G(AE), then

conjg : φG
∼−→ gφG

over AF . Thus φG depends only on [φ] ∈ H1(Gal (E/F ), G(AE)), but up to an
isomorphism that is only unique up to composition with conjugation by an element
of Gad (AF ).

There is a natural map

H1(F,G) −→ H1(AF , G)

and we will denote the kernel ker1(F,G). If G is reductive then ker1(F,G) is finite. It
vanishes if G is semi-simple and either adjoint or simply connected. (See for instance
section 4 of [K1] and note that the ‘no E8-factors’ restriction is no longer necessary
because the Hasse principle is now known for all simply connected semi-simple groups
by [Ch]. For finiteness see [BS] Theoreme 7.1.)

2.6. Group extensions. We recall some of the general theory of group extensions.
Suppose that A is an abelian group and G is a finite group that acts on A. A 2-cocyle
α ∈ Z2(G,A) is a function G×G→ A satisfying the relation

g1α(g2, g3)α(g1, g2g3) = α(g1g2, g3)α(g1, g2).
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(We record that this implies that α(1, g) = α(1, 1) and α(g, 1) = gα(1, 1).) If α is a
2-cocycle and β : G→ A is any function then

βα(g1, g2) = α(g1, g2)β(g1g2)β(g1)−1g1β(g2)−1

is another 2-cocycle. If α is a 2-cocycle we obtain an extension

0 −→ A −→ Eα −→ G −→ 0
a 7−→ aα(1, 1)−1e(1)

ae(g) 7−→ g,

where Eα is the group with elements ae(g) with a ∈ A and g ∈ G with the multipli-
cation rule

a1e(g1)a2e(g2) = a1
g1a2α(g1, g2)e(g1g2).

There is an isomorphism of extensions

iβ : Eα
∼−→ Eβα

aeα(g) 7−→ aβ(g)eβα(g)

for any map β : G→ A. Thus the isomorphism class of the extension Eα only depends
on [α] ∈ H2(G,A), but not canonically. If a ∈ A we set (aβ)(g) = β(g)a/ga, and we
have

iaβ = conja ◦ iβ.
Any element β ∈ Z1(G,A) gives rise to a map of extensions iβ : Eα → Eα, and in
fact this establishes an isomorphism between Z1(G,A) and the automorphisms of the
extension Eα. The automorphism arises as conjugation by an element of A if and
only if β is a coboundary. Thus, if H1(G,A) = (0), then every automorphism of the
extension Eα arises by conjugation by an element of A. Every extension of G by A
arises from some α ∈ Z2(G,A).

If h : G→ G′ and f : A→ A′ are morphisms such that

f(ga) = h(g)f(a)

and if α ∈ Z2(G,A) and α′ ∈ Z2(G′, A′) satisfy

f(α(g1, g2)) = α′(h(g1), h(g2))

then there is a morphism

(f, h) : Eα −→ Eα′
ae(g) 7−→ f(a)e′(h(g))

such that
0 −→ A −→ Eα −→ G −→ 0

f ↓ (f, h) ↓ h ↓
0 −→ A′ −→ Eα′ −→ G′ −→ 0

commutes.
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If h : G′ → G and E is an extension of G by A, then we can form a pull-back
extension

E|G′ = E|G′,h = E ×G,h G′ = {(e, g′) : e and g′ have the same image in G} ⊂ G′ × E

of G′ by A. If E arises from α ∈ Z2(G,A) then E|G′,h arises from h∗α = α ◦ h.
Similarly if f : A→ A′ is a map of G-modules we can form a push-out extension

f∗E = (A′ o E)/A

of A′ by G. Here E acts on A′ via its projection to G and we embed A as a normal
subgroup of A′ o E via a 7→ (f(a), a). If E arises from α ∈ Z2(G,A) then f∗E arises
from f∗α = f ◦ α.

2.7. Local Weil Groups. We recall the theory of Weil groups for p-adic fields. See
[T1].

First suppose that F is a p-adic field and that F is an algebraic closure. If k denotes
the residue field of F , there is an exact sequence

(0) −→ IF −→ Gal (F/F ) −→ Gal (k/k) −→ (0).

We denote by WF/F the preimage of FrobZ
k ⊂ Gal (k/k) and endow it with a topology

decreeing that IF should be an open subgroup with its usual topology. If σ : F
∼→ F

′

is a continuous automorphism with σF = F ′, then there is a canonical isomorphism

conjσ : WF/F
∼−→ WF

′
/F ′

τ 7−→ στσ−1.

Note that there is a canonical map ϕF/F : WF/F → Gal (F/F ) with dense image.

If E is an intermediate field between F and F we will writeWF/E = ϕ−1

F/F
Gal (F/E).

For E/F finite, there are canonical isomorphisms

rE : E×
∼−→ W ab

F/E

with the following properties:

• ϕF/F ◦ rE = Art E.

• If σ ∈ Gal (F/F ), then conjσ ◦ rE = rσE ◦ σ.
• If E ′ ⊂ E then tr E/E′◦rE′ equals rE composed with the inclusion (E ′)× ↪→ E×,

where tr E/E′ : W ab
F/E′

→ WF/E is the transfer map.

• WF/F
∼= lim←EWF/F/[WF/E,WF/E] as topological groups.

These properties imply that

• If E ′ ⊂ E then rE′ ◦ NE/E′ equals rE followed by the map W ab
F/E
→ W ab

F/E′

induced by the inclusion WF/E ⊂ WF/E′ .
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There are no non-identity automorphisms of WF/F compatible with ϕF/F .

If F ∼= C we set WF/F = F×. If F ∼= R and F is an algebraic closure we set

WF/F = 〈F×, j : j2 = −1, jzj−1 = cz〉. If F = R or C there is a natural map

ϕF/F : WF/F � Gal (F/F )

with kernel F
×

. If E is an intermediate field between F and F we will write WF/E =

ϕ−1

F/F
Gal (F/E). For E/F finite, there are canonical isomorphisms

rE : E×
∼−→ W ab

F/E

which are the identity if E ∼= C and induced by −1 7→ j and x 7→
√
x if x > 0.

These structures share the properties itemized above for p-adic fields. Again these
constructions are functorial in the pair F/F . In the case F ∼= C the group WF/F

has no automorphisms compatible with rF . On the other hand, if F ∼= R then
WF/F does have automorphisms compatible with ϕF/F and rF and rF , namely the

inner automorphisms conjz for z ∈ F×. However the only ones compatible with the
functoriality WF → WF induced by c : F → F are the identity and conj√−1.

If F is either a p-adic field or isomorphic to R or C, and if F is an algebraic closure
of F and if E is an intermediate field finite and Galois over F , then we write

WEab/F = WF/F/[WF/E,WF/E]

so that there is a short exact sequence

(0) −→ E×
rE−→ WEab/F −→ Gal (E/F ) −→ (0)

which determines a class

[αE/F ] ∈ H2(Gal (E/F ), E×)

called the canonical class. It depends only on E/F , i.e. not on F . If D ⊃ E is
another finite extension Galois over F then

• inf
Gal (D/F )
Gal (E/F ) [αE/F ] = [D : E][αD/F ] ∈ H2(Gal (D/F ), D×),

• res
Gal (D/F )
Gal (D/E)[αD/F ] = [αD/E] ∈ H2(Gal (D/E), D×),

• and cor
Gal (D/F )
Gal (E/F ) [αD/E] = [E : F ][αD/F ] ∈ H2(Gal (D/F ), D×).

(See for instance section XI.3 of [Se]. The last two formulae do not require E/F to
be Galois.)

If D ⊃ E ⊃ F are finite Galois extensions of F in F then there is an obvious map

WDab/F � WEab/F
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which fits into a commutative diagram

(0) −→ D× −→ WDab/F −→ Gal (D/F ) −→ (0)
ND/E ↓ ↓ ↓

(0) −→ E× −→ WEab/F −→ Gal (E/F ) −→ (0).

We will denote this map σ 7→ σ|Eab . However another method of comparing WDab/F

and WEab/F will be important to us. We start with the following abstract lemma:

Lemma 2.2. Suppose that π : G� H is a surjective group homomorphism, and that
ACG and BCH are normal subgroups with πA ⊂ B. Then there is an isomorphism
of groups

(B oG)/A
∼−→ H ×H/B G/A

[(b, g)] 7−→ (bπ(g), gA).

Here
A −→ B oG
a 7−→ (π(a)−1, a).

Proof: The map
φ : B oG

∼−→ H ×H/B G/A
(b, g) 7−→ (bπ(g), gA)

is easily checked to be a group homomorphism. We have (b, g) ∈ kerφ if and only
if g ∈ A and b = π(g)−1, i.e. (b, g) is in the image of A. It remains to check
that φ is surjective. Suppose (h, gA) ∈ H ×H/B G/A. Then hπ(g)−1 ∈ B and
φ(hπ(g)−1, g) = (h, g), as desired.�

If we map
D× −→ E× oWDab/F

a 7−→ (ND/E(a)−1, rD(a)),

then we see that there is an isomorphism of extensions

(E× oWDab/F )/D×
∼−→ WEab/F |Gal (D/F ) = WEab/F ×Gal (E/F ) Gal (D/F )

[(a, τ)] 7−→ (rE(a)τ |Eab , τ |D).

(Note that rD(b)|Eab = rE(ND/E(b)).) We see that we have maps of extensions

(0) −→ D× −→ WDab/F −→ Gal (D/F ) −→ (0)
ND/E ↓ ↓ ||

(0) −→ E× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)
|| ↓ ↓

(0) −→ E× −→ WEab/F −→ Gal (E/F ) −→ (0),

whose composite is the natural surjection WDab/F � WEab/F , and where the middle
row can either be obtained as a pushout from the top row or a pullback from the
bottom row. We deduce that

ND/E,∗[αD/F ] =
Gal (D/F )

inf
Gal (E/F )

[αE/F ] ∈ H2(Gal (D/F ), E×).
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We define a pushout

WEab/F,D = (D× oWEab/F |Gal (D/F ))/E
×,

where
E× −→ D× oWEab/F |Gal (D/F )

a 7−→ (a−1, (rE(a), 1)).

From the above discussion we see that this has a second description as (D× o
WDab/F )/D×, where

D× ↪→ D× oWDab/F

a 7−→ ((ND/Ea)−1, rD(a)).

It corresponds to the class

Gal (D/F )

inf
Gal (E/F )

[αE/F ] = ND/E,∗[αD/F ] ∈ H2(Gal (D/F ), D×).

We have a commutative diagram of extensions

(0) −→ E× −→ WEab/F −→ Gal (E/F ) −→ (0)
|| ↑ ↑

(0) −→ E× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)⋂
↓ ||

(0) −→ D× −→ WEab/F,D −→ Gal (D/F ) −→ (0)
ND/E ↑ ↑ ||

(0) −→ D× −→ WDab/F −→ Gal (D/F ) −→ (0).

2.8. Global Weil groups. We now recall the theory of Weil groups for number fields
fields. See [T1].

Now suppose that F is a number field and that F is an algebraic closure of F . One
can associate to F/F a topological group WF/F together with:

• A map ϕF/F : WF/F � Gal (F/F ). If E is an intermediate field we set

WF/E = ϕ−1

F/F
Gal (F/E).

• For each intermediate field finite over F a map

rE : A×E/E
× ∼−→ W ab

F/E

such that ϕF/F ◦ rE = Art E.

These maps also satisfy:

• If w ∈ WF/F , then conjw ◦ rE = rϕ
F/F

(w)
E
◦ ϕF/F (w).

• If E ′ ⊂ E then tr E/E′◦rE′ equals rE composed with the inclusion A×E′/(E ′)× ↪→
A×E/E×, where tr E/E′ = trWF/E′/WF/E

is the transfer map.

• WF/F
∼= lim←EWF/F/[WF/E,WF/E] as topological groups. We will write

WEab/F = WF/F/[WF/E,WF/E].

These properties imply that
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• If E ′ ⊂ E then rE′ ◦ NE/E′ equals rE followed by the map W ab
F/E
→ W ab

F/E′

induced by the inclusion WF/E ⊂ WF/E′ .

The only automorphisms of WF/F compatible with ϕF/F and the rE are the inner

automorphisms conjw for w ∈ WF/F . The structure (WF/F , ϕF/F , {rE}) is unique up
to isomorphism. However we do not know how to make the isomorphism canonical.
(If it can be made canonical.)

The image of WF/F in WEab/F is E×(E×∞)0/E× = ker Art E. We will denote it ∆E.

Lemma 2.3. (1) For i > 0 there is an isomorphism H i(Gal (E/F ),
∏

v|∞E
×
v )

∼−→
H i(Gal (E/F ),∆E). Moreover H i(Gal (E/F ),

∏
v|∞E

×
v ) ∼=

∏
wH

i(Gal (E/F )w, E
×
w ),

where w runs over one place of E above each real place of F which does not
split completely in E.

(2) NE/F∆E = ∆F .

(3) If E is totally imaginary, then ∆
Gal (E/F )
E = F×F×∞/F

×.
(4) Art E : A×F/F× � Gal (Eab/E)Gal (E/F ).

Proof: The first three parts are proved in section III of [W1]. The fourth part follows
because H1(Gal (E/F ),∆E) = (0) (because in turn H1(Gal (C/R),C×) = (0)). �

If u is a place of F then there is a continuous homomorphism

θu : WFu/Fu
−→ WF/F

such that

• ϕF/F◦θu equals the composite of ϕFu/Fu with the canonical map Gal (F u/Fu)
∼→

Gal (F/F )u;
• and, for E a finite intermediate field, θu ◦ rEu equals the composite of rE with

the canonical map E×u → A×E/E×.

The map θu is determined up to conjugation by an element of WF/F . The images
of conja ◦ θu, for any a ∈ WF/F , are referred to as decomposition groups for u. The

closure of the image under ϕF/F of any decomposition group for u is Gal (F/F )u. If
σ ∈ WF/F , then

θϕF/F (σ)u ◦ conjϕF/F (σ) = conjσ ◦ θu,
up to conjugation by an element of WF/F .

If v is a place of F and if ρ : F → Fv is F -linear, then we write u(ρ) for the place
of F induced by ρ and define

θρ = θu(ρ) ◦ ρ∗ : WFv/Fv
−→ WF/F

(where ρ∗ : WFv/Fv

∼→ WFu(ρ)/Fv
).

(1) If σ ∈ WF/F , then θρσ = conjσ−1 ◦θρ up to conjugation by an element of WF/F .

(2) If τ ∈ Gal (Fv/Fv), then θτρ = θρ ◦ conjτ−1 .
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(3) If E is an intermediate field finite over F , then θρ ◦ rρ(E)Fv equals the compo-

sition of rE with (ρ(E)Fv)
× ∼→ E×u(ρ) → A×E/E×, where the first map is the

inverse of the continuous extension of ρ.

We get an induced map

θρ : W(ρ(E)Fv)ab/Fv −→ WEab/E,

defined up to conjugation by an element of ∆E. Up to this ambiguity, it only depends
ρ|Eab .

If E is an intermediate field, finite and Galois over F , the short exact sequence

(0) −→ A×E/E
× rE−→ WEab/F −→ Gal (E/F ) −→ (0)

which determines a class

[αWE/F ] ∈ H2(Gal (E/F ),A×E/E
×)

called the canonical class. This class depends only on E/F . If ıw : E×w → A×E/E×,
then we have

res[αWE/F ] = ıw,∗[αEw/Fv ] ∈ H2(Gal (E/F )w,A×E/E
×).

(See formula (12) in [T2].) If D ⊃ E is another finite Galois extension of F , then

res
Gal (D/F )
Gal (D/E)[α

W
D/F ] = [αWD/E] ∈ H2(Gal (D/E),A×D/D

×)

and
Gal (D/F )

inf
Gal (E/F )

[αWE/F ] = [D : E][αWD/F ] ∈ H2(Gal (D/F ),A×D/D
×).

Now suppose that D ⊃ E ⊃ F are finite Galois extensions of F in F . We have a
natural map

WDab/F � WEab/F

which we will denote σ 7→ σ|Eab . Lemma 2.2 tells us there is an isomorphism

(A×E/E× oWDab/F )/(A×D/D×)
∼−→ WEab/F |Gal (D/F ) = WEab/F ×Gal (E/F ) Gal (D/F )

[(a, τ)] 7−→ (rE(a)τ |Eab , τ |D),

where
A×D/D× −→ A×E/E× oWDab/F

a 7−→ (ND/E(a)−1, rD(a)).

We see that we have maps of extensions

(0) −→ A×D/D× −→ WDab/F −→ Gal (D/F ) −→ (0)
ND/E ↓ ↓ ||

(0) −→ A×E/E× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)
|| ↓ ↓

(0) −→ A×E/E× −→ WEab/F −→ Gal (E/F ) −→ (0),
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whose composite is the natural surjection WDab/F � WEab/F , and where the middle
row can either be obtained as a push-out from the top row or a pullback from the
bottom row. Thus

Gal (D/F )

inf
Gal (E/F )

[αWE/F ] = ND/E,∗[α
W
D/F ] ∈ H2(Gal (D/F ),A×E/E

×).

We define a pushout

WEab/F,D = (A×D/D
× oWEab/F |Gal (D/F ))/(A×E/E

×),

where
A×E/E× −→ A×D/D× oWEab/F |Gal (D/F )

a 7−→ (a−1, (rE(a), 1)).

From the above discussion we see that this has a second description as (A×D/D× o
WDab/F )/A×D, where

A×D/D× ↪→ A×D/D× oWDab/F

a 7−→ ((ND/Ea)−1, rD(a)).

It corresponds to the class

Gal (D/F )

inf
Gal (E/F )

[αWE/F ] = ND/E,∗[α
W
D/F ] ∈ H2(Gal (D/F ),A×D/D

×).

We have a commutative diagram of extensions

(0) −→ A×E/E× −→ WEab/F −→ Gal (E/F ) −→ (0)
|| ↑ ↑

(0) −→ A×E/E× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)⋂
↓ ||

(0) −→ A×D/D× −→ WEab/F,D −→ Gal (D/F ) −→ (0)
ND/E ↑ ↑ ||

(0) −→ A×D/D× −→ WDab/F −→ Gal (D/F ) −→ (0).

The group WEab/F |Gal (D/F ) acts on WEab/F,D by conjugation.

We will also write Gal (Eab/F )D for

(Gal (Dab/D) o Gal (Dab/F ))/Gal (Dab/D)
∼= (Gal (Dab/D) o (Gal (Eab/F )×Gal (E/F ) Gal (D/F )))/Gal (Eab/E),

where on the left hand side

Gal (Dab/D) −→ Gal (Dab/D) o Gal (Dab/F )
τ 7−→ (tr E/F (τ |Eab)−1, τ),

and on the right hand side

Gal (Eab/E) −→ Gal (Dab/D) o (Gal (Eab/F )×Gal (E/F ) Gal (D/F ))
τ 7−→ (tr E/F (τ)−1, (τ, 1)).
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It follows from the snake lemma that there is an exact sequence

(0) −→ ker ArtD −→ WEab/F,D −→ Gal (Eab/F )D −→ (0).

Note that
Gal (Dab/F ) � Gal (Eab/F )

↘ ↙
Gal (Eab/F )D

commutes.
Also note that Gal (Dab/F ) acts ‘by conjugation’ on Gal (Eab/F )D, i.e.

conjσ[(τ1, τ2)] = [(στ1σ
−1, στ2σ

−1)]

and
conjσ[(τ1, (τ2, τ3))] = [(στ1σ

−1, (στ2σ
−1, στ3σ

−1))].

If ρ : D ↪→ F v is F -linear we will write w(ρ) (resp. u(ρ)) for the place of E (resp.
D) induced by ρ. We define

W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
= W(ρ(E)Fv)ab/Fv ×Gal (ρ(E)Fv/Fv),ρ∗ Gal (D/F )w(ρ),

where
ρ∗ : Gal (D/F )w(ρ) � Gal (ρ(E)Fv/Fv)

is defined by ρ∗(σ) ◦ ρ|E = ρ|E ◦ σ. If σ ∈ Gal (D/F ) then

cρ,ρσ = conj1×σ−1 : W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

∼−→ W(ρ(E)Fv)ab/Fv |ρσ,Gal (D/F )w(ρσ)
.

This depends only on ρ and ρσ. It fits into a commutative diagram

(0) −→ (ρ(E)Fv)
× −→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

−→ Gal (D/F )w(ρ) −→ (0)
|| cρ,ρσ ↓ conjσ−1 ↓

(0) −→ ((ρσ)(E)Fv)
× −→ W((ρσ)(E)Fv)ab/Fv |ρσ,Gal (D/F )w(ρσ)

−→ Gal (D/F )w(ρσ) −→ (0).

This group has a second description. Define a semidirect product

((ρ(E)Fv)
× ×Gal (D/E)) oW(ρ(D)Fv)ab/Fv

where W(ρ(D)Fv)ab/Fv acts on Gal (D/E) by the composition of conjugation with the
morphism ρ−1

∗ : W(ρ(D)Fv)ab/Fv � Gal (D/F )u(ρ). There is a homomorphism

φ : ((ρ(E)Fv)
× ×Gal (D/E)) oW(ρ(D)Fv)ab/Fv −→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

((a, σ), τ) 7−→ (rρ(E)Fv(a)τ |(ρ(E)Fv)ab , σρ−1
∗ (τ)).

The homomorphism φ is surjective. Indeed if (σ, τ) ∈ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
then

we may write τ = σ1ρ
−1
∗ (τ1) with σ1 ∈ Gal (D/E) and τ1 ∈ W(ρ̃(D)Fv)ab/Fv . Moreover

τ1|(ρ(E)Fv)ab = rρ(E)Fv(a)σ, for some a ∈ (ρ(E)Fv)
×. Then ((a, σ1), τ1) maps to (σ, τ).

An element ((a, σ), τ) lies in the kernel of φ if and only if ρ−1
∗ (τ) = σ−1 (so that in

particular τ ∈ W(ρ(D)Fv)ab/(ρ(E)Fv)) and τ |(ρ(E)Fv)ab = rEw(ρ)
(a)−1. We conclude that

we have an isomorphism

(((ρ(E)Fv)
× ×Gal (D/E)) oW(ρ̃(D)Fv)ab/Fv )/W(ρ̃(D)Fv)ab/(ρ(E)Fv)

∼−→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

[((a, σ), τ)] 7−→ (rρ(E)Fv (a)τ |(ρ(E)Fv)ab , σρ
−1
∗ (τ)),
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where

W(ρ̃(D)Fv)ab/(ρ(E)Fv) −→ ((ρ(E)Fv)
× ×Gal (D/E)) oW(ρ̃(D)Fv)ab/Fv

τ 7−→ ((r−1
ρ(E)Fv

(τ |−1
(ρ(E)Fv)ab), ρ̃−1

∗ (τ |−1
ρ̃(D)Fv

)), τ).

If in addition ρ′ : Eab → Fv with ρ′|E = ρ|E, then we obtain a map

θ(ρ′,ρ) : W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
−→ WEab/F |Gal (D/F )

(σ, τ) 7−→ (θρ′(σ), τ).

It fits into a commutative diagram

(0) −→ (ρ(E)Fv)
× −→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

−→ Gal (D/F )w(ρ) −→ (0)
ρ−1 ↓ θ(ρ′,ρ) ↓

⋂
(0) −→ A×E/E× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)

and we have a commutative square

W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
−→ W(ρ(E)Fv)ab/Fv

θ(ρ′,ρ) ↓ θρ′ ↓
WEab/F |Gal (D/F ) −→ WEab/F .

It satisfies
θ(ρ′,ρ)σ = conjσ−1 ◦ θ(ρ′,ρ) ◦ cρσ,ρ

if σ ∈ WEab/F |Gal (D/F ).

Alternatively, if ρ̃ : Dab ↪→ Fv extends both ρ′ and ρ, then θ(ρ′,ρ) may be given as:

(((ρ(E)Fv)
× ×Gal (D/E)) oW(ρ̃(D)Fv)ab/Fv )/W(ρ̃(D)Fv)ab/(ρ(E)Fv) −→ (A×E/E× oWDab/F )/(A×D/D×)

[((a, σ), τ)] 7−→ [((ρ′)−1(a)b−1, σ̃θρ̃(τ))],

where σ̃ ∈ WDab/E is a lift of σ and σ̃|Eab = rE(b). In this case we also have a
commutative square

W(ρ̃(D)Fv)ab/Fv −→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)

θρ̃ ↓ θ(ρ′,ρ) ↓
WDab/F −→ WEab/F |Gal (D/F ).

If ρ : D ↪→ Fv is F -linear, we define

W(ρ(E)Fv)ab/Fv ,ρ,D = (D×w(ρ) oW(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
)/(ρ(E)Fv)

×,

where a ∈ (ρ(E)Fv)
× maps to (ρ−1(a)−1, rρ(E)Fv(a)). Thus we have exact sequences

(0) −→ D×w(ρ) −→ W(ρ(E)Fv)ab/Fv ,ρ,D −→ Gal (D/F )w(ρ) −→ (0)

and

(0) −→
∏

u(ρ)6=u|w(ρ)

D×u −→ W(ρ(E)Fv)ab/Fv ,ρ,D|Gal (D/F )u(ρ)
−→ W(ρ(E)Fv)ab/Fv ,ρ(D)Fv −→ (0).

If ρ2 = ρ1σ, then we also have canonical isomorphisms

cρ1,ρ2 = σ−1 o cρ1,ρ2 : W(ρ1(E)Fv)ab/Fv ,ρ1,D
∼−→ W(ρ2(E)Fv)ab/Fv ,ρ2,D,
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which fits into a commutative diagram

(0) −→ D×w(ρ1) −→ W(ρ(E)Fv)ab/Fv ,ρ1,D −→ Gal (D/F )w(ρ1) −→ (0)

σ−1 ↓ cρ1,ρ2 ↓ conjσ−1 ↓
(0) −→ D×w(ρ2) −→ W(ρ(E)Fv)ab/Fv ,ρ2,D −→ Gal (D/F )w(ρ2) −→ (0).

Moreover θ(ρ′,ρ) extends to a map

θ(ρ′,ρ) : W(ρ(E)Fv)ab/Fv ,ρ,D −→ WEab/F,D

which fits into commutative diagrams

(0) −→ D×w(ρ) −→ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
−→ Gal (D/F )w(ρ) −→ (0)

↓ θ(ρ′,ρ) ↓
⋂

(0) −→ A×D/D× −→ WEab/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)

and

W(ρ(E)Fv)ab/Fv ,ρ,D ←↩ W(ρ(E)Fv)ab/Fv |ρ,Gal (D/F )w(ρ)
−→ W(ρ(E)Fv)ab/Fv

θ(ρ′,ρ) ↓ θ(ρ′,ρ) ↓ θρ′ ↓
WEab/F,D ←↩ WEab/F |Gal (D/F ) −→ WEab/F .

It also satisfies
θ(ρ′,ρ)σ = conjσ−1 ◦ θ(ρ′,ρ) ◦ cρσ,ρ

if σ ∈ WEab/F |Gal (D/F ). If ρ̃ : Dab ↪→ Fv extends both ρ′ and ρ, then

W(ρ̃(D)Fv)ab/Fv −→ W(ρ(E)Fv)ab/Fv ,ρ,D

θρ̃ ↓ θ(ρ′,ρ) ↓
WDab/F −→ WEab/F,D

commutes. In fact we may describe θ(ρ̃|D,ρ̃|Eab ) as the map

((D×w(ρ̃) ×Gal (D/E)) oW(ρ̃(D)Fv)ab/Fv)/W(ρ̃(D)Fv)ab/(ρ̃(E)Fv)) −→ (A×D/D× oWDab/F )/(A×D/D×)

[((a, σ), τ)] 7−→ [(ar−1
E (σ̃|−1

Eab), σ̃θρ̃(τ))],

where σ̃ ∈ WDab/E lifts σ.
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3. Kottwitz cohomology: the local case

3.1. Generalities on algebraic cohomology. We will need a modification of the
Galois cohomology of reductive group, which is described in section 12 of [K3]. Sup-
pose that we are given the following data

(1) An extension
(0) −→ E0 −→ E −→ Γ −→ (0)

where E0 is an abelian group and Γ is a group. Note that E0 has a Γ-action
by conjugation.

(2) A group G with an action of Γ. Note that the conjugation action of G and
the Γ-action on G, piece together to give a GoΓ action on G. This, together
with the G action on E0, gives a Go Γ-action on Hom (E0, G).

(3) A set N with an action of Go Γ.
(4) A Go Γ-equivariant map

N −→ Hom (E0, G)
ν 7−→ ν,

such that if e ∈ E0 and ν ∈ N , then

ν(e)ν = ν.

We will refer to N as an pre-algebraicity condition. In most but not all cases we will
have N ⊂ Hom (E0, G).

We define pointed sets

Z1
N (E , G) = {(ν, φ) ∈ N × Z1(E , G) : φ|E0 = ν and φ(e)−1

ν = eν ∀e ∈ E}.
We refer to elements of this pointed set as algebraic cocycles. In cases where N is
contained Hom (E0, G) we will often use φ to denote a cocycle (ν, φ) (as ν = φ|E0).
The group G acts on Z1

N (E , G) by
g(ν, φ) = (gν, gφ).

We define H1
N (E , G) to be the quotient of Z1

N (E , G) by G. We refer to this as the
algebraic cohomology.

There is a left exact sequence (of pointed sets)

(0) −→ H1(Γ, G) −→ H1
N (E , G)

ν−→ (G\N )Γ

(ν, φ) 7−→ [ν].

If Γ = {1}, then

Z1
N (E , G)

∼−→ N
and

H1
N (E , G)

∼−→ G(AE)\N .
These sets of cocycles and cohomology sets satisfy various natural functorialities,

which are a bit tedious to spell out:
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(A) Suppose first that we have a Γ-equivariant map h : G1 → G2, pre-algebraicity
conditions Ni for (E , Gi) and a G o Γ-equivariant map map n : N1 → N2 such
that

n(ν) = h ◦ ν
for all ν ∈ N . Then we obtain a natural map

h∗ = (h, n)∗ : Z1
N1

(E , G1) −→ Z1
N2

(E , G2)
(ν, φ) 7−→ (n(ν), h ◦ φ),

which induces a map

h∗ = (h, n)∗ : H1
N1

(E , G1) −→ H1
N2

(E , G2).

(B) Second suppose that we have maps of extensions

(0) −→ E0
1 −→ E1 −→ Γ1 −→ (0)
↓ f ↓ f ↓

(0) −→ E0
2 −→ E2 −→ Γ2 −→ (0),

a group homomorphism h : G2 → G1, pre-algebraicity conditions Ni for (Ei, Gi)
and a map n : N2 → N1 such that

• h(f(σ)a) = σh(a),
• n(gν) = h(g)n(ν),

• n(f(σ)ν) = σn(ν)

• and n(ν) = h ◦ ν ◦ f .
Then we obtain a natural map

f ∗ = (f, h, n)∗ : Z1
N2

(E2, G2) −→ Z1
N1

(E1, G1)
(ν, φ) 7−→ (n(ν), h ◦ φ ◦ f),

which induces a map

f ∗ = (f, h, n)∗ : H1
N2

(E2, G2) −→ H1
N1

(E1, G1).

(This is a minor generalization of Kottwitz’s map Ψ(n, f), which he defines in
the special case G1 = G2 and h = IdG. In the special case f = Id we recover the
map in part A.)

(If we take E1 = E2 and G1 = G2 and N1 = N2, and also take f = conje and
h = e−1 and n = e−1 with e ∈ E ; then

conj∗e(ν, φ) =
e−1

φ(e)(ν, φ).

In particular conj∗e is the identity on H1
N1

(E1, G1).)
We have (f1, h1, n1)∗ ◦ (f2, h2, n2)∗ = (f2 ◦ f1, h1 ◦ h2, n1 ◦ n2)∗.

(C) Thirdly suppose that we have maps of extensions

(0) −→ E0
1 −→ E1 −→ Γ −→ (0)
↓ f ↓ ||

(0) −→ E0
2 −→ E2 −→ Γ −→ (0),
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and a Γ-equivariant group homomorphism h : G1 → G2 and pre-algebraicity
conditions Ni for (Ei, Gi) and a map n : N1 → N2 such that
• n(gν) = gn(ν),
• n(σν) = σn(ν),

• and h ◦ ν = n(ν) ◦ f .
Then we obtain a natural map

f∗ = (f, h, n)∗ : Z1
N1

(E1, G1) −→ Z1
N2

(E2, G2)

(ν, φ) 7−→ (n(ν), φ̃),

where φ̃ is defined by φ̃(tf(e)) = n(ν)(t)(h ◦ φ(e)) for any t ∈ E0
2 and e ∈ E1.

This induces

f∗ = (f, h, n)∗ : H1
N1

(E1, G) −→ H1
N2

(E2, G).

(Kottwitz denotes this map Φ(h, n, f). The map in part A is a special case of
this map in which f is the identity.)

We see that (f1, h1, n1)∗ ◦ (f2, h2, n2)∗ = (f1 ◦ f2, n1 ◦ n2)∗.
Suppose that we are given commutative diagrams

E2
f←− E1

f2 ↓ ↓ f1

E ′2
f ′←− E ′1

and

G2
h−→ G1

h2 ↓ ↓ h1

G′2
h′−→ G′1

and
N2

n−→ N1

n2 ↓ ↓ n1

N ′2
n′−→ N ′1

such that (f, h, n) and (f ′, h′, n′) are as in part B, while (f1, h1, n1) and (f2, h2, n2)
are as in this part. Then

Z1
N2

(E2, G2)
(f,h,n)∗−→ Z1

N1
(E1, G1)

(f2, h2, n2)∗ ↓ ↓ (f1, h1, n1)∗

Z1
N ′2

(E ′2, G′2)
(f ′,h′n′)∗−→ Z1

N ′1
(E ′1, G′1)

commutes.
(D) Suppose that ∆ ⊂ Γ is a subgroup. If X is a set with an action of ∆ we will

write Ind Γ
∆X for the set of functions ϕ : Γ→ X satisfying

ϕ(τσ) = τϕ(σ)
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for all τ ∈ ∆ and σ ∈ Γ. It has an action of Γ via

(σϕ)(σ′) = ϕ(σ′σ).

If X is a group and ∆ acts via group automorphisms, then Ind Γ
∆X is a group via

(ϕϕ′)(σ) = ϕ(σ)ϕ′(σ),

and its Γ action is via group automorphisms. The map

ε : Ind Γ
∆X � X

ϕ 7−→ ϕ(1)

is ∆-linear.
Suppose we have an extension

(0) −→ E0 −→ E −→ ∆ −→ (0)

and a group G with a ∆-action and a set N with a Go ∆-action, together with
a G o ∆-invariant map : N → Hom (E0, G) such that ν(e)ν = ν for all e ∈ E0

and ν ∈ N . Suppose moreover that we are given a second extension

(0) −→ Ind Γ
∆E0 −→ Ẽ −→ Γ −→ (0)

such that if Ẽ |∆ denotes the preimage of ∆ in Ẽ , then there is a map of extensions

(0) −→ Ind Γ
∆E0 −→ Ẽ|∆ −→ ∆ −→ (0)
ε ↓ ε̃ ↓ ||

(0) −→ E0 −→ E −→ ∆ −→ (0).

We will write i for the natural inclusion Ẽ |∆ ↪→ Ẽ . Note that if we think of N as

a pre-algebraicity condition for (Ẽ |∆, G) with the new ν equal to ν ◦ ε for ν ∈ N ,
then

ε̃∗ : Z1
N (Ẽ |∆, G)

∼−→ Z1
N (E , G)

and

ε̃∗ : H1
N (Ẽ |∆, G)

∼−→ H1
N (E , G),

with inverse ε̃∗.
Note that Ind Γ

∆N has an action of (Ind Γ
∆G) o Γ, where

(ϕν)(σ) = ϕ(σ)(ν(σ))

for ϕ ∈ Ind Γ
∆G and ν ∈ Ind Γ

∆N . If ν ∈ Ind Γ
∆N we define ν ∈ Hom (Ind Γ

∆E0, Ind Γ
∆G)

by

ν(ϕ)(σ) = ν(σ)(ϕ(σ)).

It is easy to check that this makes Ind Γ
∆N a pre-algebraicity condition for

(Ẽ , Ind Γ
∆G). Combining lemma 12.10 of [K3] with the observation of the last

paragraph we get the following result.
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Lemma 3.1. In the above situation the composite

H1
Ind Γ

∆N
(Ẽ , Ind Γ

∆G)
(i,ε,ε)∗−→ H1

N (Ẽ |∆, G)
ε̃∗−→ H1

N (E , G)

is an isomorphism.

It will be convenient for us to work with pre-algebraicity conditions N with slightly
more structure. Namely we will assume thatN is endowed with a subsetNbasic ⊂ NG,
an abelian group structure on Nbasic and an action of Nbasic on N extending the action
of Nbasic on itself by translation; such that the following properties hold:

• Γ preserves Nbasic and acts on it via group automorphisms.
• The action of GoΓ on N commutes with the action of Nbasic, i.e. g(νµ) = ν gµ

and σ(νµ) = σν σµ for all ν ∈ Nbasic, µ ∈ N , g ∈ G and σ ∈ Γ.
• If ν ∈ Nbasic, then ν factors through Z(G).
• νµ = ν µ.

We will refer to this additional data as an algebraicity condition. Note that in this case
both N and Nbasic are pre-algebraicity conditions. We will often write Z1

N (E , G)basic

and H1
N (E , G)basic, instead of Z1

Nbasic
(E , G) and H1

Nbasic
(E , G). We refer to these as the

set of basic algebraic cocycles and the basic algebraic cohomology.
If G is abelian then Z1

N (E , G)basic and H1
N (E , G)basic are naturally abelian groups.

There is a natural map

ad : Z1
N (E , G)basic −→ Z1(Γ, Gad )

which induces a map in cohomology. If (ν, ζ) ∈ Z1
Nbasic

(E , Z(G)) and (µ, φ) ∈ Z1
N (E , G)

then (νµ, ηφ) ∈ Z1
N (E , G). This induces maps

(ν, ζ) : Z1
N (E , G)basic −→ Z1

N (E , G)basic

and

(ν, ζ) : H1
N (E , G) −→ H1

N (E , G)

and

(ν, ζ) : H1
N (E , G)basic −→ H1

N (E , G)basic.

This gives actions of Z1
Nbasic

(E , Z(G)) on Z1
N (E , G) and Z1

N (E , G)basic; and ofH1
Nbasic

(E , Z(G))

on H1
N (E , G) and H1

N (E , G)basic. The map H1
N (E , G) → H1

N (E , Gad ) is constant on
H1
Nbasic

(E , Z(G))-orbits.
We have the following additions to our various functorialities:

(A) In the situation of A if n(N1,basic) ⊂ N2,basic then (h, n)∗ takes basic cocycles or
cohomology classes to basic ones.

(B) In the situation of B if n(N2,basic) ⊂ N1,basic then (f, h, n)∗ takes basic cocycles
or cohomology classes to basic ones.

(C) In the situation of C if n(N1,basic) ⊂ N2,basic then (f, h, n)∗ takes basic cocycles
or cohomology classes to basic ones.
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(D) In the situation of D if (N ,Nbasic) is an algebraicity condition for (E , G), then

(Ind Γ
∆N , Ind Γ

∆Nbasic) is one for (Ẽ , Ind Γ
∆G), and lemma 3.1 is also true for the

basic algebraic cohomology.
(E) Suppose that G is abelian and that ∆ ⊂ Γ is a subgroup of finite index. Let
R ⊂ E be a set of representatives for E|∆\E . Then we obtain a natural map

corR : Z1
N (E|∆, G)basic −→ Z1

N (E , G)basic

(ν, φ) 7−→ (
∏

r∈R
r−1
ν, φ̃),

where

φ̃(e) =
∏
r∈R

r−1

(φ(res−1))

with each s ∈ R chosen such that res−1 ∈ E ′. It induces a map

cor : H1
N (E|∆, G)basic −→ H1

N (E , G)basic

which is independent of the choice of R.
If E = Eα with α ∈ Z2(Γ, E0) and ∆ = {1}, then we may take R = Rα =
{eα(σ) : σ ∈ Γ} and we will write

cor α = corRα : Nbasic −→ Z1
N (Eα, G)basic.

Note that

(cor αν)(eα(σ)) =
∏
η∈Γ

η−1ν(α(η, σ)).

If β : Γ→ E0 and if iβ : Eα
∼→ Eβα is the canonical isomorphism sending eα(σ) to

β(σ)eβα(σ) then it is easily verified that

i∗β(cor βαν) =
∏
η∈Gal (E/F ) η

−1ν(β(η))−1

cor αν.

(Indeed, both sides are of the form (
∏

η∈Γ
ην, φ) for some φ. Moreover

(i∗βcor βα(ν))(eα(σ))
= cor βα(ν)(β(σ)eβα(σ))
=

∏
η∈Γ

ην(β(σ))
∏

η∈Γ η
−1ν(βα(η, σ))

=
∏

η∈Γ
ην(β(σ))

∏
η∈Γ η

−1ν(α(η, σ)β(ησ)β(η)−1ηβ(σ)−1)
=

∏
η∈Γ

ην(β(σ))cor α(ν)(eα(σ))
∏

η∈Γ η
−1ν(β(ησ))∏

η∈Γ η
−1ν(β(η))−1

∏
η∈Γ

η−1
ν(β(σ))−1

= cor α(ν)(eα(σ))σ
∏

η∈Γ η
−1ν(β(η))/

∏
η∈Γ η

−1ν(β(η)).)

Now consider the case that Γ = Gal (E/F ) and G = H(AE), where

• E/F is a finite Galois extension of fields;
• H/F is an algebraic group;
• and AE = A⊗F E for some F -algebra A.
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If (ν, φ) ∈ Z1
N (E , G(AE))basic then we define φG/A to be the etale descent of G× AE

to G× A via the action

σ 7−→ conjφ(e) ◦ σ,
where e ∈ E is any lift of σ. Thus φG×AF AE = G×F AE. If g ∈ G(AE) then

conjg : φG
∼−→ gφG.

Thus φG depends only on [(ν, φ)] up to an isomorphism that is unique up to composi-
tion conjugation by an element of (φG)(A). (Note that we have φG(A) here and not
φGad (A). This is an important point.) When we are only concerned with properties
of φG for which this ambiguity does not matter, we may write [(ν,φ)]G. There is a
bijection

Z1
N (E , φG(AE))

∼−→ Z1
N (E , G(AE))

(µ, ψ) 7−→ (µν, ψφ)

which takes basic subset to basic subset, and induces isomorphisms in cohomology.
Note that

gh((µ, ψ)(ν, φ)) = conjg(
h(µ, ψ))g(ν, φ).

If φ ∈ H1
N (E , G(AE))basic then

{ζ ∈ H1
Nbasic

(E , Z(G)(AE)) : ζφ = φ} = ker(H1
Nbasic

(E , Z(G)(AE))→ H1
N (E , φG(AE)))

is a subgroup of H1
Nbasic

(E , Z(G)(AE)).

3.2. Kottwitz cohomology for local Weil groups. Suppose that F is a local
field of charcateristic 0 and E/F is a finite Galois extension. If α ∈ [αE/F ] ⊂
Z2(Gal (E/F ), E×), then we get a well defined extension

0 −→ E× −→ WE/F,α −→ Gal (E/F ) −→ 0.

As H1(Gal (E/F ), E×) = (0) the only automorphisms of this extension are conju-
gation by an element of E×. If α′ is a second element of [αE/F ], then there is an
isomorphism of extensions

0 −→ E× −→ WE/F,α −→ Gal (E/F ) −→ 0
|| ↓ o ||

0 −→ E× −→ WE/F,α′ −→ Gal (E/F ) −→ 0.

However it is only unique up to composition with conjugation by an element of E×. In
particular, if F is an algebraic closure of F containing E, then the extension WE/F,α

is isomorphic to WEab/F , but this isomorphism is only unique up to composition with
conjugation by an element of E×.

Let G/F denote an algebraic group. We will consider the algebraicity conditions
N = X∗(G)(E) and Nbasic = X∗(Z(G))(E). We will denote the corresponding alge-
braic cocycles, basic cocycles, cohomology and basic cohomology as Z1

alg(WE/F,α, G(E)),

Z1
alg(WE/F,α, G(E))basic, H

1
alg(WE/F , G(E)), and H1

alg(WE/F , G(E))basic respectively.
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As the notation suggest the two cohomology groups are canonically independent of
the choice of α ∈ [αE/F ].

We will call φ ∈ H1
alg(WE/F , G(E))basic compact if φGad (F ) is compact, and we will

writeH1
alg(WE/F , G(E))compact

basic for the set of compact elements inH1
alg(E(E/F ), G(E))basic.

Suppose that D/E is another finite extension, Galois over F . Choose representa-
tives αE/F ∈ [αE/F ] and αD/F ∈ [αD/F ] and γD/E : Gal (D/F ) → D× such that

α
[D:E]
D/F = γD/EαE/F ∈ Z2(Gal (D/F ), D×). If we write WE/F,αE/F ,D for the push

out of WE/F,αE/F |Gal (D/F ) along E× −→ D×; then iγE/F gives an isomorphism from

WE/F,αE/F ,D to the pushout of WD/F,αD/F along the [D : E]th-power map D× → D×.
Thus there is a commutative diagram

(0) −→ D× −→ WD/F,αD/F −→ Gal (D/F ) −→ (0)
[D : E] ↓ ηD/E,γD/E ↓ ||

(0) −→ D× −→ WE/F,αE/F ,D −→ Gal (D/F ) −→ (0)
↑ ↑ ||

(0) −→ E× −→ WE/F,αE/F |Gal (D/F ) −→ Gal (D/F ) −→ (0)
|| ↓ ↓

(0) −→ E× −→ WE/F,αE/F −→ Gal (E/F ) −→ (0).

Using successively functorialities (B) then (C) then (B) again from the end of section
3.1, we obtain a map

infD/E,γD/E : Z1
alg(WE/F,αE/F , G(E)) −→ Z1

alg(WE/F,αE/F |Gal (D/F ), G(D)) −→ Z1
alg(WE/F,αE/F ,D, G(D))

−→ Z1
alg(WD/F,αD/F , G(D)).

(Where we use the algebraicity conditions N = X∗(G)(D) and Nbasic = X∗(Z(G))(D)
for the middle two sets of cocycles.) All these maps take basic elements to basic

elements. The composite sends (ν, φ) to (ν [D:E], φ̃), where, if ηD/E,γD/E(e) = de′ with

d ∈ D× and e′ ∈ WE/F,αE/F |Gal (D/F ) then

φ̃(e) = ν(d)φ(e′)

where e′ denotes the image of e′ in WE/F,αE/F . This composite is injective. The map
γE/D can only be replaced by

dγD/E : σ 7→ γD/E(σ)d/σd,

for some d ∈ D×. (As H1(Gal (D/F ), D×) = (0).) We have

ηD/E,dγD/E = conjd−1 ◦ ηD/E,γD/E ,

and so the induced map

inf
D/E,γD/E

: H1
alg(WE/F , G(E)) −→ H1

alg(WD/F , G(D))
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is independent of the choice of γD/E and so we will denote it simply infD/E. The maps

infD/E : H1
alg(WE/F,αE/F , G(E)) −→ H1

alg(E ′, G(D)) −→ H1
alg(WE/F,αE/F ,D, G(D))

−→ H1
alg(WD/F,αD/F , G(D))

are all injective. (The first because the usual inflation map is injective on H1, and
the second and third immediately from the definitions.)

Kottwitz defines

B(F,G) = lim
→E

H1
alg(WE/F , G(E))

and

B(F,G)basic = lim
→E

H1
alg(WE/F , G(E))basic.

If φ1,φ2 ∈ H1
alg(WE/F , G(E)) have the same image in H1(WE/F , G

ad (E)), then we

can find a finite extension D/E Galois over F such that inf φi ∈ H1
alg(WD/F , G(D))

can be represented by cocycles φi with adφ1 = adφ2. (If φ′i is a representative of
φi and if g ∈ Gad (E) with gadφ′1 = adφ′2, then we may choose such a field D
and a g̃ ∈ G(D) lifting g. Then g̃ inf φ′1 and inf φ′2 will do.) Thus inf φ1, inf φ2 ∈
H1

alg(WD/F , G(D)) differ by an element of H1
alg(WD/F , Z(G)(D)).

3.3. Reductive groups. If T/F is a torus split by a finite Galois extension E/F ,
then Kottwitz shows that

cor : X∗(T )Gal (E/F )
∼−→ H1

alg(WE/F , T ).

Moreover if G is any reductive group which splits over E, then Kottwitz constructs a
map

κG : H1
alg(WE/F , G(E)) −→ ΛG,Gal (E/F )

with the following properties

• it is functorial in G;
• if G = T is a torus, then κT = cor −1 is an isomorphism;
• if D/E is a finite extension Galois over F , then

H1
alg(WE/F , G(E))

κG−→ ΛG,Gal (F/F )

infD/E ↓ κG ↗
H1

alg(WD/F , G(D))

commutes.

(See [K3].)In the limit Kottwitz obtains a map

κG : B(F,G) −→ ΛG,Gal (F/F ).

Lemma 3.2. If φ ∈ H1
alg(WE/F , G)basic and ψ ∈ H1

alg(WE/F ,
φG) then

κG(ψφ) = κφG(ψ)κG(φ).
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Proof: This follows easily from the construction of κG in section 9.3 of [K3]. If G
is a torus it simply expresses the fact that cor is an abelian group homomorphism in
this case. If Gder is simply connected it follows for the corresponding fact for C(G).
In the general case it follows from the corresponding fact for a suitable z-extension
of G. �

If T ⊂ G is a maximal torus then we define H1
alg(WE/F , T (E))G−basic to be those ele-

ments [(ν, φ)] where ν factors through Z(G). If F = R suppose that T is fundamental,
while if F is p-adic assume that E is elliptic. If E splits T then

H1
alg(WE/F , T (E))G−basic � H1

alg(WE/F , G(E))basic.

(See proposition 13.1 and lemma 13.2 of [K3].) We deduce that if E splits an elliptic
(in the p-adic case) or fundamental (in the real case) torus, then

H1
alg(WE/F , G(E))basic

∼→ B(F,G)basic.

We further deduce that for E sufficiently large the quotient of H1
alg(WE/F , G(E))basic

by its action of H1
alg(WE/F , Z(G)(E)) embeds into H1

alg(WE/F , G
ad (E))basic. (First

choose E0 such that H1
alg(WE/F , G(E))basic

∼→ B(F,G)basic for any E ⊃ E0, and then

E ⊃ E0 such that every element of Gad (E0) has a lift in G(E). If Z(G) is a torus
then we may take E = E0.)

If F is a p-adic field then κG is infact a bijection

κG : B(F,G)basic
∼−→ ΛG,Gal (F/F ).

and so B(F,G)basic becomes an abelian group. (See proposition 13.1 of [K3].) We
deduce that if E splits some maximal torus of G defined over F , then

κG : H1
alg(WE/F , G(E))basic

∼−→ ΛG,Gal (F/F ).

In particular if G is semi-simple, simply connected, then H1
alg(WE/F , G(E))basic = {1}.

If G is semisimple then

κG : H1(F,G)
∼−→ B(F,G)basic

∼−→ ΛG,Gal (F/F ).

If F = C then WC/C = C×, H1(C, G) = (0) and B(C, G)basic = X∗(Z(G)) and
κG : B(C, G)basic = X∗(Z(G)) ↪→ ΛG.

3.4. The real case. Now suppose that F = R. Choose a representative α0
C/R for

[αC/R] defined by

α0
C/R(σ1, σ2) =

{
−1 if σ1 = σ2 = c
1 otherwise.

Then

WC/R,α0
C/R
∼= 〈C×, j : j2 = −1 and jzj−1 = cz〉,
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with e(1) = 1 and e(c) = j. Thus an element of Z1
alg(WC/R,α0

C/R
, G(C)) is a pair (ν, J)

where ν ∈ X∗(G) and J ∈ G(C) satisfy

ν = J cνJ−1

and

J cJ = ν(−1).

Moreover [(ν, J)] = [(ν ′, J ′)] ∈ H1
alg(WC/R, G(C)) if there exists g ∈ G(C) such that

ν ′ = gνg−1

and

J ′ = gJ cg−1.

If µ ∈ X∗(G) and the image of µ commutes with that of cµ, then we obtain an

element λ̂G(µ) ∈ Z1
alg(WC/R,α0

C/R
, G(C)) defined by

λ̂G(µ) = (µcµ, µ(−1)).

Note that κGλ̂G(µ) equals the image of µ in ΛG,Gal (C/R). (To see this note that it

suffices to treat the case that G = T is a torus, in which case λ̂G(µ) = cor α0
C/R
µ.)

If µcµ factors through Z(G), then λ̂G(µ) ∈ Z1
alg(WC/R,α0

C/R
, G(C))basic. This induces

maps

λ̂G : G(R)\{µ ∈ X∗(G) : the images of µ and cµ commute} −→ H1
alg(WC/R, G(C))

and

λ̂G : G(R)\{µ ∈ X∗(G) : cµ = µ−1 ∈ X∗(Gad )} −→ H1
alg(WC/R, G(C))basic.

The image λ̂G(µ) depends only on the G(R)-conjugacy class of µ, so we will sometimes

write λ̂G([µ]G(R)).
If Y ⊂ X∗(G) is a basic G(R)-conjugacy class then for any µ ∈ Y we have µcµ =

cµµ ∈ X∗(Z(G)), and this homomorphism is independent of the choice of µ ∈ Y . We
will denote it νY . We have νλ̂G(Y ) = νY .

The group λ̂G(µ)G comes with basic λ̂G(µ)G(R)-conjugacy classes [µ]λ̂G(µ)G(R)
and

[µ−1]λ̂G(µ)G(R)
. If g ∈ G(R) then conjg : λ̂G(µ)G

∼→ λ̂G(conjg◦µ)G and it takes [µ]λ̂G(µ)G(R)

to [conjg ◦µ]λ̂G(conjg◦µ)G(R)
and [µ−1]λ̂G(µ)G(R)

to [conjg ◦µ−1]λ̂G(conjg◦µ)G(R)
. We will write

Y ([µ]G(R))λ̂G(µ)G
and Y ([µ−1]G(R))λ̂G(µ)G

for the corresponding λ̂G(µ)G(R)-conjugacy

classes in X∗(
λ̂G(µ)G). (This makes sense as much as λ̂G(µ)G does. More precisely, if

φ ∈ λ̂G(µ) then Y ([µ±1]G(R))φG are well defined φG(R)-conjugacy classes; and if g ∈
G(C), then conjgY ([µ±1]G(R))φG = Y ([µ±1]G(R))gφG.) Note that λ̂λ̂G(Y )G

(Y (Y ±1)λ̂G(µ)G
) =

λ̂G(Y )±1.
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If G/R is reductive and Gad (R) is compact, then any G-conjugacy class C of
cocharacters contains a unique basic G(R)-conjugacy class C0. In this case we define

λ̃G(C) = λ̂G((C0)−1) and Y (C)λ̃G(C)G
for Y (C0)λ̂G(C0,−1)G

, a λ̃G(C)G(R)-conjugacy

class in X∗(
λ̃G(C)G). We have

λ̂λ̃G(C)G
(Y (C)λ̃G(C)G

) = λ̃G(C)−1

and

κG(λ̃G(C)) = λG(C)−1.

Now suppose that G/R is reductive, that Y ⊂ X∗(G) is a compactifying G(R)-
conjugacy class and that C is a G-conjugacy class in X∗(G). Then C is canonically a
λ̂G(Y )G-conjugacy class inX∗(

λ̂G(Y )G), and so we have λ̃λ̂G(Y )G
(C) ∈ H1

alg(WC/R,
λ̂G(Y )G)basic.

We set

λ̂G(Y − C) = λ̃λ̂G(Y )G
(C)λ̂G(Y ) ∈ H1

alg(WC/R, G)basic.

The group λ̂G(Y−C)G comes with a λ̂G(Y−C)G(R)-conjugacy class of cocharacters

Y (C)λ̂G(Y−C)G
= Y (C)λ̃

λ̂G(Y )G
(C)

(λ̂G(Y )G)
.

Note that

λ̂λ̂G(Y−C)G
(Y (C)λ̂G(Y−C)G

) = λ̃λ̂G(Y )G
(C)−1

and

κG(λ̂G(Y − C)) = λG(Y )/λG(C)

and

νλ̂G(Y−C) = νY /νC0 .

Moreover if Gad (R) is compact, then

λ̂λ̃G(C1)G
(C2 − Y (C1)λ̃G(C1)G

)λ̃G(C1) = λ̃G(C2)

and

Y (C2)λ̂
λ̃G(C1)G

(C2−Y (C1)
λ̃G(C1)G

)
(λ̃G(C1))

= Y (C2)λ̃G(C2)G
.

More concretely choose µ ∈ Y and µ′ ∈ C such that (conjµ(−1) ◦ cµ′)µ′ is central,
and set

λ̂G(µ− µ′) = λ̂λ̂G(µ)G
((µ′)−1)λ̂G(µ) ∈ Z1

alg(WE/F , G(E))basic

and

Y (µ′)λ̂G(µ−µ′)G
= [µ′]λ̂G(µ−µ′)G(R)

.

We can replace µ′ by conjh ◦ µ′ for any h ∈ G(C) with conjµ(−1)−1(ch) = h. We can
also replace µ by conjg ◦µ with g ∈ G(R) as long as we replace conjh◦µ′ by conjgh◦µ′.
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This is the only freedom we have in the choice of µ and µ′. Then

λ̂G(conjg ◦ µ− conjgh ◦ µ′) = λ̂gλ̂G(µ)G
((conjghg−1 ◦ conjg ◦ µ′)−1)gλ̂G(µ)

= conjg(λ̂λ̂G(µ)G
((conjh ◦ µ′)−1))gλ̂G(µ)

= conjg(
hλ̂λ̂G(µ)G

((µ′)−1))gλ̂G(µ)

= ghλ̂G(µ− µ′),
so that

conjgh : (λ̂G(µ−µ′)G, Y (µ′)λ̂G(µ−µ′)G
)
∼−→ (λ̂G(conjg◦µ−conjgh◦µ′)G, Y (conjgh◦µ′)λ̂G(conjg◦µ−conjgh◦µ′)G

).
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4. Kottwitz cohomology: the adelic case

4.1. The extension E loc(E/F ). Suppose that E/F is a finite Galois extension of
number fields and that S a set of places of F . We set

E loc(E/F )0
S =

∏
v∈S

E×v =
∏
w∈SE

E×w .

There is a unique class

[αloc
E/F,S] ∈ H2(Gal (E/F ),

∏
v∈S

E×v ) ∼=
∏
v∈S

H2(Gal (E/F ), E×v ) ∼=
∏
v∈S

H2(Gal (Ew/Fv), E
×
w )

corresponding to
∏

v∈S[αEw/Fv ], where for each v ∈ S we choose a place w of E above
v, and where the latter isomorphism arises from Shapiro’s lemma. By the functoriality
of [αEw/Fv ] under morphisms of fields, this is independent of the choices of w|v. If
D/E is a finite extension Galois over F then we have

η0
D/E,∗[α

loc
D/F,S] = inf[αloc

E/F,S] ∈ H2(Gal (D/F ),
∏
v∈S

D×v ),

where
η0
D/E :

∏
v∈S D

×
v −→

∏
v∈S D

×
v

(xv) 7−→ (x
[Du:Ew]
v ),

with u|w|v.
If α ∈ [αloc

E/F,S], we get an extension

0 −→
∏
v∈S

E×v −→ E loc(E/F )S,α −→ Gal (E/F ) −→ 0.

If α′ ∈ [αloc
E/F,S] then the extensions E loc(E/F )S,α and E loc(E/F )S,α′ are isomor-

phic. However the isomorphism is not unique. Because H1(Gal (E/F ),
∏

v∈S E
×
v ) ∼=∏

v∈S H
1(Gal (Ew/Fv), E

×
w ) ∼= (0), we see that the isomorphism is unique up to conju-

gation by an element of
∏

v∈S E
×
v . If S = VF , the set of all places of F , we will drop it

from the notation. If S = VF −S ′ we will sometimes replace a lower S by an upper S ′.
An element α ∈ [αloc

E/F ] gives rise (under the map induced by
∏

v∈VF Ev×�
∏

v∈S E
×
v )

to a classe αS ∈ Z2(Gal (E/F ),
∏

v∈S E
×
v ) representing [αloc

E/F,S]; and gives rise (under

the map induced by Gal (Ew/Fv) ↪→ Gal (E/F ) and
∏

v∈VF E
×
v → E×w ) to a class

αw ∈ Z2(Gal (Ew/Fv), E
×
w ) representing [αEw/Fv ]. If S ′ ⊂ S we get a natural map of

extensions
E loc(E/F )S,αS −→ E loc(E/F )S′,αS′

with composite the identity. Moreover if w|v ∈ S then there is a natural map of
extensions

E loc(E/F )S,αS |Gal (Ew/Fv) −→ WEw/Fv ,αw .

It will be useful to us to have a more explicit form for a 2-cocyle defining E loc(E/F )S,
although this of course depends on a number of choices. So, for each place v ∈ S
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fix a place w of E above each v, a 2-cocycle αw representing [αEw/Fv ], and a section
sw : Gal (E/F )/Gal (Ew/Fv)→ Gal (E/F ) with sw(1) = 1. Then

α(σ1, σ2) =
∏
v∈S

∏
η∈Gal (E/F )/Gal (Ew/Fv)

sw(η)αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η))

is a representative of [αloc
E/F,S]. (If one restricts the class to Gal (Ew/Fv) and projects

to E×w one certainly recovers αw, so the only thing to check is that α(σ1, σ2) is a
2-cocycle. Writing out the cocycle relation and changing the variable from η to σ1η
in one of the terms, what we need to check is that

(sw(η)−1σ1sw(σ−1
1 η))αw(sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η), sw(σ−1
2 σ−1

1 η)−1σ3sw(σ−1
3 σ−1

2 σ−1
1 η))

αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2σ3sw(σ−1
3 σ−1

2 σ−1
1 η))

= αw(sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η), sw(σ−1
2 σ−1

1 η)−1σ3sw(σ−1
3 σ−1

2 σ−1
1 η))

αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η)),

which is just the cocycle relation for αw.)
We will be interested in algebraicity conditions

NS = {(νw)w∈SE : νw ∈ X∗(G)(Ew) and νw = 1 for all but finitely many w}
and

NS,basic = {(νw) ∈ NS : νw factors through Z(G) ∀w ∈ SE}.
If α ∈ [αloc

E/F,S], we will write Z1
alg(E loc(E/F )S,α, G(AE,S)) and Z1

alg(E loc(E/F )S,α, G(AE,S))basic

andH1
alg(E loc(E/F )S, G(AE,S)) andH1

alg(E loc(E/F )S, G(AE,S))basic for the correspond-
ing pointed sets of cocycles and cohomology classes. Note that the cohomology sets
are canonically independent of the choice of α.

If S ′ ⊃ S and α ∈ [αloc
E/F,S′ ], then there are natural maps

Z1
alg(E loc(E/F )S,αS , G(AE,S)) −→ Z1

alg(E loc(E/F )S′,α, G(AE,S′))
resS−→ Z1

alg(E loc(E/F )S,αS , G(AE,S))

and

H1
alg(E loc(E/F )S,αS , G(AE,S)) −→ H1

alg(E loc(E/F )S′,α, G(AE,S′))
resS−→ H1

alg(E loc(E/F )S,αS , G(AE,S))

which preserves the basic subsets, and with composite the identity. These give an
isomorphisms

Z1
alg(E loc(E/F )S,α, G(AE,S))

∼−→
∏
v∈S

′
Z1

alg(E loc(E/F ){v},α{v} , G(Ev))

and

H1
alg(E loc(E/F )S, G(AE,S))

∼−→
∏
v∈S

′
H1

alg(E loc(E/F ){v}, G(Ev))

where the product is restricted with respect to the subsets (defined for almost all
v) Z1(Gal (E/F ), G(OE,v)) and H1(Gal (E/F ), G(OE,v)) respectively. If G is con-
nected, the right hand side of the second of these isomorphisms becomes simply
⊕v∈SH1

alg(E loc(E/F ){v},α{v} , G(Ev)). (See the corollary to theorem 6.8 of [PR].)
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If w|v ∈ S is a place of E, then we get a map

resw : Z1
alg(E loc(E/F )S,αS , G(Ev)) −→ Z1

X∗(G)(Ew)(E loc(E/F )S,αS |Gal (Ew/Fv), G(Ew))

−→ Z1
alg(WEw/Fv ,αw , G(Ew))

as in D. This induces

resw : H1
alg(E loc(E/F )S, G(AE,S) −→ H1

alg(WEw/Fv , G(Ew)).

Both these maps preserve basic subsets. It follows from lemma 3.1 that if w|v then

resw : H1
alg(E loc(E/F ){v}, G(Ev)

∼−→ H1
alg(WEw/Fv , G(Ew)),

and similarly for basic subsets. Note that resσw = σ∗ ◦ resw. We deduce that if E0
v/Fv

is a finite extension abstractly isomorphic to Ew/Fv for any, and hence all, w|v ∈ S,
then we obtain a natural map

resE0
v

: H1
alg(E loc(E/F )S, G(Ev)) −→ H1

alg(WE0
v/Fv

, G(E0
v)),

defined as τ∗ ◦ resw for any w|v and any τ : Ew
∼→ E0

v . (The point being that resE0
w

does not depend on the choice of w or τ .) This preserves basic subsets and is an
isomorphism if S = {v}. If G is connected, then

H1
alg(E loc(E/F )S, G(AE,S))

∼−→
⊕
v∈S

H1
alg(WE0

v/Fv
, G(E0

v)).

Suppose that D ⊃ E is also a finite Galois extension of F . Choose representatives
αE ∈ [αloc

E/F,S] and αD ∈ [αloc
D/F,S]. Write E loc(E/F )|Gal (D/E) for the pull back of

E loc(E/F )S,αE/F along Gal (D/F ) � Gal (E/F ), and E loc(E/F )S,αE ,D for the push

out of E loc(E/F )|Gal (D/E) along
∏

v∈S E
×
v −→

∏
v∈S D

×
v . Define

η0
D/E,S :

∏
v∈S D

×
v −→

∏
v∈S D

×
v

(xv) 7−→ (x
[Du:Ew]
v )

where u|w|v. We can choose γ : Gal (D/F ) →
∏

v∈S D
×
v such that η0

D/E,SαD/F =
γαE/F ∈ Z2(Gal (D/F ),

∏
v∈S D

×
v ) which gives us a map of extensions

ηD/E,S,γ : E loc(D/F )S,αD −→ E loc(E/F )S,αE ,D

extending η0
D/E,S. As

H1(Gal (D/F ),
∏
v∈S

D×v ) ∼=
∏
v∈S

H1(Gal (Du/Fv), D
×
u ) = (0)

we may only replace γ by dγ for some d ∈
∏

v∈S D
×
v . Thus, if we vary γ, then ηD/E,S,γ

varies by post-composition with conjugation by an element of
∏

v∈S D
×
v . We have a
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commutative diagram

(0) −→
∏

v∈S D
×
v −→ E loc(D/F )S,αD −→ Gal (D/F ) −→ (0)

η0
D/E ↓ ηD/E,S,γ ↓ ||

(0) −→
∏

v∈S D
×
v −→ E loc(E/F )S,αE ,D −→ Gal (D/F ) −→ (0)

↑ ↑ ||
(0) −→

∏
v∈S E

×
v −→ E loc(E/F )|Gal (D/E) −→ Gal (D/F ) −→ (0)

|| ↓ ↓
(0) −→

∏
v∈S E

×
v −→ E loc(E/F )S,αE −→ Gal (E/F ) −→ (0).

Using successively functorialities (B) then (C) then (B) from the end of section 3.1
we obtain a map Then there is an injective map

inf
D/E,S,γ

: Z1
alg(E loc(E/F )S,αE , G(AE,S)) −→ Z1

alg(E loc(D/F )S,αD , G(AD,S))

which sends ({νw}w, φ) to ({ν [Du:Eu|E ]

u|E }u, φ′), where, if ηD/E,γ(e) = de′ with d ∈∏
w|v∈S D

×
w and e′ ∈ E ′ then

φ′(e) =
∏
w

νw(dw)φ(e′)

where e′ denotes the image of e′ in E loc(E/F )S,αE . This map takes basic elements to
basic elements and induces maps in cohomology. The map

inf
D/E,S,γ

: H1
alg(E loc(E/F )S, G(AE,S)) −→ H1

alg(E loc(D/F )S, G(AD,S))

is independent of the choice of αE, αD and γ, so we will denote it simply infD/E,S.
As in the local case, this map is injective. We have a commutative diagram

Z1
alg(E loc(E/F )S′,αE,S′ , G(AE,S′ )) −→ Z1

alg(E loc(E/F )S,αE , G(AE,S)) −→ Z1
alg(E loc(E/F )S′,αE,S′ , G(AE,S′ ))

↓ ↓ ↓
Z1

alg(E loc(D/F )S′,αD,S′ , G(AD,S′ )) −→ Z1
alg(E loc(D/F )S,αD , G(AD,S)) −→ Z1

alg(E loc(D/F )S′,αD,S′ , G(AD,S′ ))

where we use γS′ induced from γ via projection. We also have a commutative diagram

Z1
alg(E loc(E/F ){v},αE , G(Ev)) −→ Z1

alg(WEw/Fv ,αEw
, G(E0

v))
↓ ↓

Z1
alg(E loc(D/F ){v},αD , G(Dv)) −→ Z1

alg(WDu/Fv ,αDu
, G(D0

v))

where u|w|v and where the vertical maps are defined by γ and its restriction γw.
We define

Bloc(F,G)S = lim
→E

H1
alg(E loc(E/F )S, G(AE,S))

and

Bloc(F,G)S,basic = lim
→E

H1
alg(E loc(E/F )S, G(AE,S))basic

If S ′ ⊃ S we obtain maps

Bloc(F,G)S −→ Bloc(F,G)S′ −→ Bloc(F,G)S
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with composite the identity, and which preserve basic elements. Moreover restriction
gives a well defined isomorphism

Bloc(F,G){v}
∼−→ B(Fv, G).

Note that

Bloc(F,G)S
∼−→
∏
v∈S

′
Bloc(Fv, G)v,

where the product is restricted with respect to {H1(Gal (F nr
v /Fv), G(OFnr

v
))}, where

F nr
v denotes the maximal unramified extension of Fv. If G is connected, then

Bloc(F,G)S
∼−→
⊕
v∈S

Bloc(Fv, G)v.

Suppose that G is reductive. Suppose also that

• G contains a maximal torus (defined over F ) which splits over E,
• and E is totally complex.

In this case we see that

H1
alg(E loc(E/F )S, G(AE,S))

∼−→ Bloc(F,G)S.

Moreover, if E0
v/Fv is an extension abstractly isomorphic to Ew/Fv for any w|v, we

get a map

κG,v : H1
alg(E loc(E/F )S, G(AE)S) −→ H1

alg(WE0
v/Fv

, G(E0
v))

κG−→ ΛG,Gal (E0
v/Fv).

Thus we get a well defined map

κG : H1
alg(E loc(E/F )S, G(AE,S)) −→

⊕
v∈S

ΛG,Gal (E0
v/Fv) = (

⊕
w∈SE

ΛG)Gal (E/F ).

We also define

κG : H1
alg(E loc(E/F ), G(AE)) −→ ΛG,Gal (E/F )

x 7−→
∑

w κG(x)w.

We have the following technical lemma.

Lemma 4.1. Suppose that T/F is a torus split by a finite Galois extension E/F ,
and that for all w ∈ VE we have a character χw : Gm → T with χw = 1 for all but
finitely many w. Then χ =

∏
w χw :

∏
w E

×
w → T (AE). Suppose that α ∈ [αloc

E/F ]

gives rise to αw ∈ [αEw/Fv ]. Now fix w|v and let H denote a set of representatives for
Gal (E/F )/Gal (Ew/Fv). Then

reswcor αχ = y−1

cor αw
∏
η∈H

(η
−1

χηw)

where
y =

∏
η∈H

∏
ξ∈Gal (Ew/Fv)

ξ−1η−1χηw(α(η, ξ)ηw).



50 JACK SEMPLINER AND RICHARD TAYLOR

In particular

resw[corχ] = [cor
∏
η∈H

(η
−1

χηw)].

Proof: If x ∈ E×w , then

(cor αχ)(x)w =
∏

η∈Gal (E/F )(
ηχ)(x)w

=
∏

η∈Gal (E/F )(
ηχη−1w)(x)

= (cor αw(v)/v

∏
η∈H

ηχη−1w)(x).

Moreover, if τ ∈ Gal (Ew/Fv) then

(cor αχ)(e(τ))w
=

∏
η∈Gal (E/F ) η

−1χ(α(η, τ))ηw
=

∏
η∈Gal (E/F ) η

−1χηw(α(η, τ)ηw)

=
∏

η∈Gal (E/F )/Gal (Ew/Fv)

∏
ξ∈Gal (Ew/Fv) ξ

−1η−1χηw(α(ηξ, τ)ηw)

=
∏

η∈H
∏

ξ∈Gal (Ew/Fv) ξ
−1η−1χηw((ηα(ξ, τ)w)α(η, ξτ)ηw/α(η, ξ)ηw)

=
∏

η∈H
∏

ξ∈Gal (Ew/Fv) ξ
−1η−1χηw(ηα(ξ, τ)w)∏

ξ∈Gal (Ew/Fv) ξ
−1η−1χηw(α(η, ξτ)ηw)/

∏
ξ∈Gal (Ew/Fv) ξ

−1η−1χηw(α(η, ξ)ηw)

=
∏

η∈H
∏

ξ∈Gal (Ew/Fv) ξ
−1(η

−1
χηw)(α(ξ, τ)w)∏

ξ∈Gal (Ew/Fv) τξ
−1η−1χηw(α(η, ξ)ηw)/

∏
ξ∈Gal (Ew/Fv) ξ

−1η−1χηw(α(η, ξ)ηw)

= (cor αw
∏

η∈H(η
−1
χηw))(e(τ))

(τ−1)
∏

η∈H)

∏
ξ∈Gal (Ew/Fv) ξ

−1η−1χηw(α(η, ξ)ηw).

The lemma follows. �

4.2. Some pro-tori. Suppose that E/F is a Galois extension of algebraic extensions
of Q and that S is a set of places of F . We define pro-tori T2,E,S and T3,E,S over F
by specifying their character groups to be

X∗(T2,E,S) = Z[VE,S] and X∗(T2,E,S) = Z[VE,S]0.

If S = VF we will write simply T2,E and T3,E. The short exact sequence

(0) −→ Z[VE,S]0 −→ Z[VE,S] −→ Z −→ (0)∑
wmww 7−→

∑
wmw

gives an exact sequence

(0) −→ Gm −→ T2,E,S −→ T3,E,S −→ (0).

For each place w ∈ VE,S there are natural maps (defined over E) ιw : Gm → T2,E,S and
πw : T2,E,S → Gm such that πwιw = Id. (X∗(ιw)(

∑
mvv) = mw and X∗(πw)(m) =

mw.) For any F -algebra A, this gives an identification

T2,E,S(AE)
∼−→

∏
w∈SE

A×E
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where AE = A⊗F E, but with the twisted Galois action

σ(xw)w∈SE = ((1⊗ σ)xσ−1w)w∈SE .

If S ′ ⊃ S there are natural maps

T2,E,S ↪→ T2,E,S′ � T2,E,S

with composite the identity.
If D ⊃ E is an extension, Galois over F , then the map

Z[VD,S] −→ Z[VE,S]∑
umuu 7−→

∑
umuu|E

gives rise to a commutative diagram

(0) −→ Gm −→ T2,E,S −→ T3,E,S −→ (0)
|| ι0D/E ↓ ↓ ι0D/E

(0) −→ Gm −→ T2,D,S −→ T3,D,S −→ (0).

If further D/E is finite, then the map

Z[VE,S] −→ Z[VD,S]∑
wmww 7−→

∑
u[Du : Eu|E ]mu|Eu

gives rise to a commutative diagram

(0) −→ Gm −→ T2,D,S −→ T3,D,S −→ (0)
[D : E] ↓ η0

D/E ↓ ↓ η0
D/E

(0) −→ Gm −→ T2,E,S −→ T3,E,S −→ (0),

and

η0
D/E ◦ ι0D/E = [D : E].

There is a natural Gal (E/F )-equivariant map

ι :
∏
w∈VE

E×w ↪→ T2,E(AE)

which maps (aw) to (aw) where we think of E×w ⊂ A×E in the w-component.

Lemma 4.2. Suppose that D ⊃ E ⊃ F are number fields with D and E Galois over
F . For each place v of F choose places u(v)|w(v)|v of D and E respectively.

(1) H i(Gal (D/F ), T2,E(D)) ∼=
∏

v∈VF H
i(Gal (D/F )w(v), D

×) and H1(Gal (D/F ), T2,E(D)) =
(0).

(2) H i(Gal (D/F ), T2,E(AD)) ∼=
∏

v∈VF H
i(Gal (D/F )w(v),A×D) and H1(Gal (D/F ), T2,E(AD)) =

(0).
(3) H i(Gal (D/F ), T2,E(AD)/T2,E(D)) ∼=

∏
v∈VF H

i(Gal (D/F )w(v),A×D/D×) and

H1(Gal (D/F ), T2,E(AD)/T2,E(D)) = (0).
(4) H1(Gal (D/F ), T3,E(D)) = (0).
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Proof: The first part is an application of Shapiro’s lemma

H i(Gal (D/F ), T2,E(AD)) ∼=
∏
v∈VF

H i(Gal (D/F ),
∏

w∈{v}E

A×D) ∼=
∏
v∈VF

H i(Gal (D/F )w(v), A
×
D)

combined with Hilbert’s theorem 90.
The second and third parts are proved similarly using the vanishing ofH1(Gal (D/E)w(v),A×D)

and H1(Gal (D/E)w(v),A×D/D×).
Consider the fourth part. As D splits T2,E there is an exact sequence

(0) −→ D× −→ T2,E(D) −→ T3,E(D) −→ (0),

and so it suffices to show that

H2(Gal (D/F ), D×) −→ H2(Gal (D/F ), T2,E(D)) ∼=
∏
v∈VF

H2(Gal (D/F )w(v), D
×)

is injective. In fact it suffices to show that the composite with the map∏
v∈VF

H2(Gal (D/F )w(v), D
×) −→

∏
v∈VF

H2(Gal (D/F )u(v), D
×
u(w))

is injective. However this injectivity follows from the fact that the Brauer group of F
(of which H2(Gal (D/F ), D×) is a subgroup) injects into the product of the Brauer
groups of all completions of F . �

4.3. The extension E2(E/F ). If α ∈ [αloc
E/F ], then Kottwitz defines an extension

0 −→ T2,E(AE) −→ E2(E/F )α −→ Gal (E/F ) −→ 0

by pushing out E loc(E/F ) along

ι :
∏
w∈VE

E×w ↪→ T2,E(AE).

If α′ ∈ [αloc
E/F ], then E2(E/F )α and E2(E/F )α′ are isomorphic extensions, but the

isomorphism is only unique up to conjugation by an element of
∏

w∈VE E
×
w ⊂ T2,E(AE).

We will consider the following algebraicity conditions for the cohomology of E2(E/F ):

N = {ν ∈ Hom (T2,E, G)(AE) : ν is G(AE)−conjugate to an element of Hom (T2,E, G)(E)}
and

Nbasic = Hom (T2,E, Z(G))(E).

We denoted the corresponding pointed sets of cocycles and cohomology classes Z1
alg(E2(E/F )α, G(AE))

and Z1
alg(E2(E/F )α, G(AE))basic andH1

alg(E2(E/F ), G(AE)) andH1
alg(E2(E/F ), G(AE))basic.

The latter two are canonically independent of the choice of α ∈ [αloc
E/F ]. We get maps

resS : Z1
alg(E2(E/F )α, G(AE)) −→ Z1

alg(E loc(E/F )S,αS , G(AE,S))

and
resw : Z1

alg(E2(E/F )α, G(AE))→ Z1
alg(WEw/Fv ,αw , G(Ew)).
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These maps respect basic elements and pass to cohomology. If E0
v/Fv is abstractly

isomorphic to Ew/Fv for any w|v, then we also get a well defined map

resE0
v

: H1
alg(E2(E/F ), G(AE))→ H1

alg(WE0
v/Fv

, G(E0
v)).

Suppose thatD ⊃ E is also a finite Galois extension of F . We write E2(E/F )α|Gal (D/F )

for the pull back of E2(E/F )α along Gal (D/F )� Gal (E/F ) and E2(E/F )α,D for the
push out of E2(E/F )α|Gal (D/F ) along T2,E(AE) −→ T2,E(AD). If αD ∈ [αloc

D/F ], then we

can find γ : Gal (D/F )→
∏

vD
×
v such that η0

D/EαD = γα ∈ Z2(Gal (D/F ),
∏

vD
×
v ).

The choice of γ gives rise to a map of extensions ηD/E,γ : E2(D/E)αD → E2(E/F )α,D
extending η0

D/E. If we make a different choice of γ then ηD/E,γ changes by post

composition with conjugation by an element of
∏

vD
×
v . We obtain a commutative

diagram

(0) −→ T2,D(AD) −→ E2(D/F )αD −→ Gal (D/F ) −→ (0)
η0
D/E ↓ ηD/E,γ ↓ ||

(0) −→ T2,E(AD) −→ E2(E/F )α,D −→ Gal (D/F ) −→ (0)
↑ ↑ ||

(0) −→ T2,E(AE) −→ E2(E/F )α|Gal (D/F ) −→ Gal (D/F ) −→ (0)
|| ↓ ↓

(0) −→ T2,E(AE) −→ E2(E/F )α −→ Gal (E/F ) −→ (0).

The map ηE/F is determined up to composition with conjugation by an element of∏
w∈SE D

×
w . Making use successively of functorialities (B) then (C) then (B) again

from the end of section 3.1, we obtain a map

inf
D/E,γ

: Z1
alg(E2(E/F )α, G(AE)) −→ Z1

alg(E2(D/F )αD , G(AD))

which sends (ν, φ) to (ν ◦ η0
D/E, φ

′), where, if ηD/E,γ(e) = de′ with d ∈ T2,E(AD) and

e′ ∈ E ′ then

φ′(e) = ν(d)x(e′)

where e′ denotes the image of e′ in E2(E/F )αE . This map takes basic elements to
basic elements and induces maps in cohomology. The latter is independent of the
choice of α, αD and γ, so we write simply

inf
D/E

: H1
alg(E2(E/F ), G(AE)) −→ H1

alg(E2(D/F ), G(AD))

We have commutative diagrams

Z1
alg(E2(E/F )α, G(AE))

infD/E,γ−→ Z1
alg(E2(D/F )αD , G(AD))

resS ↓ ↓ resS

Z1
alg(E loc(E/F )S,α, G(AE,S))

infD/E,γ−→ Z1
alg(E loc(D/F )S,αD , G(AD,S))
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and, if u|w|v,

Z1
alg(E2(E/F )α, G(AE))

infD/E,γ−→ Z1
alg(E2(D/F )αD , G(AD))

resw ↓ ↓ resu

Z1
alg(WEw/Fv ,αw , G(Ew))

infD/E,γ−→ Z1
alg(WDu/Fv ,αu , G(Du)).

If D0
v/E

0
v/Fv is a tower of extensions abstractly isomorphic to Du/Ew/Fv for any

u|w|v, then

H1
alg(E2(E/F ), G(AE))

infD/E−→ H1
alg(E2(D/F ), G(AD))

resE0
v
↓ ↓ resD0

u

H1
alg(WE0

v/Fv
, G(E0

v))
infD/E−→ H1

alg(WD0
v/Fv

, G(D0
v))

also commutes.
We define

B(AF , G) = lim
→E

H1
alg(E2(E/F ), G(AE))

and
B(AF , G)basic = lim

→E
H1

alg(E2(E/F ), G(AE))basic.

We obtain maps (independent of choices)

resS : B(AF , G) −→ Bloc(F,G)S,

and
resv : B(AF , G) −→ Bloc(Fv, G)

which preserve basic elements.
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5. Kottwitz cohomology: the global case

5.1. The extensions Eglob(E/F ) and E3(E/F ). If E/F is a finite Galois extension
of number fields and if α ∈ [αWE/F ] ⊂ Z2(Gal (E/F ),A×E/E×), then we obtain a well-
defined extension:

(0) −→ A×E/E
× −→ WE/F,α −→ Gal (E/F ) −→ (0).

As H1(Gal (E/F ),A×E/E×) = (0) the only automorphisms of this extension are con-
jugation by elements of A×E/E×. If α′ is a second element of [αE/F ], then there is an
isomorphism of extensions

0 −→ A×E/E× −→ WE/F,α −→ Gal (E/F ) −→ 0
|| ↓ o ||

0 −→ A×E/E× −→ WE/F,α′ −→ Gal (E/F ) −→ 0.

However it is only unique up to composition with conjugation by an element of
A×E/E×. In particular, if F is an algebraic closure of F containing E, then the
extension WE/F,α is isomorphic to WEab/F , but this isomorphism is only unique up to

composition with conjugation by an element of A×E/E×.
Define

Eglob(E/F )0 = T2,E(AE)×T2,E(AE)/T2,E(E) A×E/E×
= {a ∈ T2,E(AE) : πw(a) mod E× is independent of w}.

Thus there are exact sequences

(0) −→ A×E −→ E
glob(E/F )0 −→ T3,E(E) −→ (0)

and

(0) −→ Eglob(E/F )0 −→ T2,E(AE)× A×E/E× −→ T2,E(AE)/T2,E(E) −→ (0)
((tw)w∈VE , tE

×) 7−→ (twt
−1)w∈VE .

From the first and lemma 4.2, we deduce that H1(Gal (E/F ), Eglob(E/F )0) = (0).
From the second and lemma 4.2, we deduce that there is a left exact sequence

(0) −→ H2(Gal (E/F ), Eglob(E/F )0) −→ H2(Gal (E/F ), T2,E(AE))⊕H2(Gal (E/F ),A×E/E×)
−→

∏
v∈VF H

2(Gal (Ew(v)/Fv),A×E/E×),

where we choose a place w(v) of E above each place v of F . Tate [T2] remarks that by
the above mentioned funtoriality ([αloc

E/F ], [αWE/F ]) maps to 0 in
∏

v∈VF H
2(Gal (Ew/Fv),

and so lifts to a unique class [αglob
E/F ] ∈ H2(Gal (E/F ), Eglob(E/F )0).

If αglob ∈ [αglob
E/F ], we get an extension

0 −→ Eglob(E/F )0 −→ Eglob(E/F )αglob −→ Gal (E/F ) −→ 0

and a natural map

Eglob(E/F )αglob � WE/F,αglob .
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which is well defined up to conjugation by Eglob(E/F )0. If further αloc ∈ [αloc
E/F ] and

β : Gal (E/F )→ T2,E(AE) with

βαloc = αglob ∈ Z2(Gal (E/F ), T2,E(AE)),

then we get a map

locβ : Eglob(E/F )αglob ↪→ E2(E/F )αloc

characterized by

locβeαglob(σ) = β(σ)−1eαloc(σ).

Note that if t ∈ T2,E(AE), then loctβ = conjt−1 ◦ locβ. Kottwitz further defines
E3(E/F )αglob to be the pushout of Eglob(E/F )αglob along the map Eglob(E/F )0 →
T3,E(E), so that we have the extension

0 −→ T3,E(E) −→ E3(E/F )αglob −→ Gal (E/F ) −→ 0.

Thus to the triple α = (αglob, αloc, β) with

• αglob ∈ [αglob
E/F ],

• αloc ∈ [αloc
E/F ],

• and β : Gal (E/F )→ T2,E(AE) with

βαloc = αglob ∈ Z2(Gal (E/F ), T2,E(AE)),

we can associate a diagram of extensions

E3(E/F )α � Eglob(E/F )α � WE/F,α

locα ↓
E loc(E/F )α ↪→ E2(E/F )α⋃

WEw/Fv ,α � E loc(E/F )α|Gal (E/F )w

together with distinguished elements eloc
α (σ) ∈ E loc(E/F ) and eglob

α (σ) ∈ Eglob(E/F )
for all σ ∈ Gal (E/F ). We will write Z(E/F ) for the set of such triples α.

The set Z(E/F ) has various actions we will consider:

(1) We will write B(E/F ) for the abelian group consisting of pairs γ = (γglob, γloc)
where γglob : Gal (E/F ) → Eglob(E/F )0 and γloc : Gal (E/F ) →

∏
w∈VE E

×
w ;

with pointwise multiplication. Then B(E/F ) acts on Z(E/F ) via

(γglob,γloc)(αglob, αloc, β) = (γ
glob

αglob, γ
loc

αloc, γglobβ(γloc)−1).

We write H(E/F ) for the set of orbits of B(E/F ) on Z(E/F ). We will call
two elements of Z(E/F ) in the same orbit equivalent.

(2) T2,E(AE) acts on Z(E/F ) via

t(αglob, αloc, β) = (αglob, αloc, tβ).
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This action commutes with the action of B(E/F ), and the induced action of
B(E/F )×T2,E(AE) is transitive. The stabilizer in B(E/F )×T2,E(AE) of any
α is the group of

((a1, b1), bc/a)

with a ∈ Eglob(E/F )0 and b ∈
∏

w∈VE E
×
w and c ∈ T2,E(AF ). (This is because

H1(Gal (E/F ), Eglob(E/F )0) = (0) and H1(Gal (E/F ),
∏

w∈VE E
×
w ) = (0).)

Lemma 5.1. (1) If w1 6= w2 then the intersection of the images of E×w1
and E×w2

in A×E/E× is trivial. Thus Eglob(E/F )0 ∩
∏

w E
×
w = {1}.

(2) If t ∈ Eglob(E/F )0 and s ∈
∏

w E
×
w and st ∈ T2,E(AF ), then s and t ∈

T2,E(AF ).

Proof: For the first part if ti ∈ E×wi have the same image in A×E/E× for i = 1, 2,

then t1/t2 ∈ E× ∩ E×w1
E×w2

= {1} and so t1 = t2 = 1. Then Eglob(E/F )0 ∩
∏

w E
×
w =

T2,E(E) ∩
∏

w E
×
w = {1}.

For the second part, write t = (tw) and s = (sw) as w runs over places of E. Also
write t for the common image of the tw in A×E/E×. We see that for all σ ∈ Gal (E/F )
we have

σtσ−1w ≡ tw mod E×w .

From the first part of the lemma we see that σt/t = 1, and so

t ∈ (A×E/E
×)Gal (E/F ) = A×F/F

×.

Thus we may write tw = t0t
′
w with t0 ∈ A×F independent of w and t′w ∈ E×. If

σ ∈ Gal (E/F ), then

σ(t′w)/(t′w) = (sw)/σ(sw) ∈
∏
w

E× ∩
∏
w

E×w ⊂
∏
w

A×E,

from which we can conclude that σ(t′w) = (t′w) and σ(sw) = (sw). The lemma follows.
�

Corollary 5.2. If α and α1 ∈ Z(E/F ) are equivalent, then there are unique func-
tions γglob : Gal (E/F )→ Eglob(E/F )0 and γloc : Gal (E/F )→

∏
w∈VE E

×
w with

(αglob
1 , αloc

1 , β1) = (γ
glob

αglob, γ
loc

αloc, γglobβ(γloc)−1).

Proof: Any other such pair must be of the form aγglob and bγloc with a ∈ Eglob(E/F )0

and b ∈
∏

w∈VE E
×
w and a/b ∈ T2,E(AF ). Thus, by the lemma, a, b ∈ T2,E(AF ) so that

aγglob = γglob and bγloc = γloc. �

Corollary 5.3. The stabilizer in T2,E(AE) of a class a ∈ H(E/F ) is E loc(E/F )0Eglob(E/F )0T2,E(AF ).
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Proof: Suppose α = (αglob, αloc, β) ∈ a. If ta = a, then

(αglob, αloc, tβ) = (γ
glob

αglob, γ
loc

αloc, γglobβ(γloc)−1)

for some γ = (γglob, γloc) ∈ B(E/F ). Then γglob = a1 for some a ∈ Eglob(E/F )0

(because H1(Gal (E/F ), Eglob(E/F )0) = (0)) and γloc = b1 for some b ∈ E loc(E/F )0

(because H1(Gal (E/F ), E loc(E/F )0) = (0)) and tβ = a/bβ, so that tb/a ∈ T2,E(AF )
and t ∈ E loc(E/F )0Eglob(E/F )0T2,E(AF ). The converse is easier. �

It follows from the first corollary above that up to canonical isomorphism the
extensions WEw/Fv ,a, E loc(E/F )a, E2(E/F )a, WE/F,a, Eglob(E/F )a, E3(E/F )a and the
diagram

E3(E/F )a � Eglob(E/F )a � WE/F,a

loca ↓
E loc(E/F )a ↪→ E2(E/F )a⋃

WEw/Fv ,a � E loc(E/F )a|Gal (E/F )w .

only depends on a class a ∈ H(E/F ).
Suppose that α = (αglob, αloc, β) ∈ Z(E/F ) and that w is a place of E above a

place v of F . Then

πwα
glob|Gal (E/F )2

w
= πwβ|Gal (E/F )wαloc

w ∈ H2(Gal (E/F )w,A×E).

Pushing out Eglob
α (E/F )|Gal (E/F )w along πw gives an extension, which fits into a dia-

gram

(0) −→ E×w −→ WEw/Fv ,α −→ Gal (Ew/Fv) −→ (0)
↓ ιαw ↓ ||

(0) −→ A×E −→ πw,∗Eglob
α (E/F )|Gal (E/F )w −→ Gal (E/F )w −→ (0)

↓ ↓ ||
(0) −→ A×E/E× −→ WE/F,α|Gal (E/F )w −→ Gal (E/F )w −→ (0),

where
ιαw(eloc

α (σ)) = πw(β(σ))eglob
α (σ).

One sees immediately that ιαw, up to the canonical identifications, only depends on
the image a of α ∈ H(E/F ), so we will denote it

ιaw : WEw/Fv ,a −→ πw,∗Eglob
a (E/F )|Gal (E/F )w −→ WE/F,a.

Any other map of extensions

(0) −→ E×w −→ WEw/Fv ,α −→ Gal (Ew/Fv) −→ (0)
↓ i ↓ ||

(0) −→ A×E/E× −→ WE/F,α|Gal (E/F )w −→ Gal (E/F )w −→ (0)

must be of the form conja◦ιaw for some a ∈ A×E/E×. (If i(eαloc
w

(σ)) = πw(β(σ))γ(σ)eglob(σ),

then γ ∈ Z1(Gal (E/F )w,A×E/E×) and hence is of the form γ(σ) = a/σa.) If
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ϕ : WE/F,a
∼→ WEab/F and ϕw : WEw/Fv ,a

∼→ WEab
w /Fv are isomorphisms of extensions,

and if u is a place of Eab above w, then we conclude that ϕ ◦ ιaw = conja ◦ θu ◦ ϕw for
some a ∈ A×E/E×. Thus conj−1

a ◦ ϕ ◦ ιaw and θu have the same image. In particular
the image of ϕ ◦ ιaw is the decomposition group for some place of Eab above w. This
suggests that the choice of a is not dissimilar from the choice of a place of Eab above
each place of E.

Lemma 5.4. If τ ∈ Gal (E/F ), then conje
αloc (τ) induces an isomorphism WEw/Fv ,α

∼→
WEτw/Fv ,α, and conje

αglob (τ) induces a map WE/F,α|Gal (E/F )w
∼→ WE/F,α|Gal (E/F )τw .

Moreover

ιaτw ◦ conje
αloc (τ) = conjπτwβ(τ) ◦ conje

αglob(τ)
◦ ιaw : WEw/Fv ,α −→ WE/F,α|Gal (Eτw/Fv).

Proof: Both maps send x ∈ E×w to τx ∈ E×τw.
If σ ∈ Gal (Ew/Fv), then conje

αloc (τ)(eαloc(σ)) is the image of

eαloc(τ)eαloc(σ)eαloc(τ)−1

= eαloc(τ)eαloc(σ)eαloc(τ−1)(eαloc(τ)eαloc(τ−1))−1

= αloc(τ, σ)αloc(τσ, τ−1)eαloc(τστ−1)(αloc(τ, τ−1)αloc(1, 1))−1

and so

conje
αloc (τ)(eαloc(σ)) = πτw(αloc(τ, σ)αloc(τσ, τ−1)/τστ

−1

(αloc(τ, τ−1)αloc(1, 1)))eαloc(τστ−1).

Thus

(ιaτw ◦ conje
αloc (τ))(eαloc(σ))

= πτw(αloc(τ, σ)αloc(τσ, τ−1)β(τστ−1)/τστ
−1

(αloc(τ, τ−1)αloc(1, 1)))eαglob(τστ−1).

On the other hand

(conjπτwβ(τ) ◦ conje
αglob(τ)

◦ ιaw)(eαloc(σ))

= πτw(β(τ))τπw(β(σ))eαglob(τ)eαglob(σ)eαglob(τ)−1πτw(β(τ))−1

= πτw(β(τ)τβ(σ)/τστ
−1
β(τ))eαglob(τ)eαglob(σ)eαglob(τ)−1

= πτw(β(τ)τβ(σ)/τστ
−1
β(τ))eαglob(τ)eαglob(σ)eαglob(τ−1)(eαglob(τ)eαglob(τ−1))−1

= πτw(β(τ)τβ(σ)αglob(τ, σ)αglob(τσ, τ−1)/τστ
−1
β(τ))eαglob(τστ−1)πτw(αglob(τ, τ−1)αglob(1, 1))−1.

Thus to prove the lemma it suffices to check that

αloc(τ, σ)αloc(τσ, τ−1)β(τστ−1)/τστ
−1

(αloc(τ, τ−1)αloc(1, 1))

= β(τ)τβ(σ)αglob(τ, σ)αglob(τσ, τ−1)/τστ
−1

(β(τ)αglob(τ, τ−1)αglob(1, 1)),

or equivalently that

β(τστ−1)

= β(τ)τβ(σ)β(τσ)β(τστ−1)τστ
−1

(β(τ)τβ(τ−1)β(1)2)/β(τ)τβ(σ)β(τσ)τσβ(τ−1)τστ
−1

(β(τ)β(1)2),

which is clear. �
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By a decomposition group in WE/F,a we mean a subgroup conjugate to the image of
some ιaw. By the lemma we need only consider one place w above each place v of F .

If a, a′ ∈ H(E/F ), then a′ = ta for some t ∈ T2,E(AE) which is well defined modulo
T2,E(AF )Eglob(E/F )0

∏
w E

×
w . Then we may choose representatives (αglob, αloc, β) ∈ a

and (αglob, αloc, tβ) ∈ a′. This gives identifications

zt : E loc(E/F )a ∼= E loc(E/F )αloc
∼= E loc(E/F )a

and similarly for WEw/Fv ,a and E2(E/F )a; i.e. we get a commutative diagram of
isomorphisms

WEw/Fv ,a ←− E loc(E/F )a|Gal (E/F )w ⊂ E loc(E/F )a ↪→ E2(E/F )a
zt ↓ o zt ↓ o zt ↓ o zt ↓ o

WEw/Fv ,a′ ←− E loc(E/F )a′|Gal (E/F )w ⊂ E loc(E/F )a′ ↪→ E2(E/F )a′ .

Similarly it gives identifications

zt : Eglob(E/F )a ∼= Eglob(E/F )αglob
∼= Eglob(E/F )a,

and similarly for WE/F,a and E3(E/F )a; i.e. we get a commutative diagram of iso-
morphisms

E3(E/F )a ←− Eglob(E/F )a � WE/F,a
ϕa−→ Gal (Eab/F )

zt ↓ o zt ↓ o zt ↓ o ||
E3(E/F )a′ ←− Eglob(E/F )a′ � WE/F,a′

ϕa−→ Gal (Eab/F ).

The maps zt do not depend on the choice of representative (αglob, αloc, β) ∈ a, but

only on a and t. (Indeed if (αglob
1 , αloc

1 , β1) ∈ a and (αglob
1 , αloc

1 , tβ1) ∈ a′ are another
pair of such representatives, then we can find unique functions γglob : Gal (E/F ) →
Eglob(E/F )0 and γloc : Gal (E/F )→

∏
w E

×
w such that

(αglob
1 , αloc

1 , β1) = (γ
glob

αglob, γ
loc

αloc, γglobβ(γloc)−1).

In this case

(αglob
1 , αloc

1 , tβ1, ϕ1) = (γ
glob

αglob, γ
loc

αloc, γglob(tβ)(γloc)−1, ϕ ◦ i−1
γglob).

Then

E loc(E/F )αloc

i
γloc

−→ E loc(E/F )αloc
1

|| ||

E loc(E/F )αloc

i
γloc

−→ E loc(E/F )αloc
1

obviously commutes, and (αglob, αloc, β) and (αglob
1 , αloc

1 , β1) give the same isomor-

phism E loc(E/F )a
∼→ E loc(E/F )a′ . Similarly for the other extensions we are consider-

ing.) We have
zt ◦ loca = conjt ◦ locta ◦ zt

and
conjtw ◦ zt ◦ ι

a
w = ι

ta
w ◦ zt.
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Moreover zt takes decomposition groups to decomposition groups. If a ∈ T2,E(AF )
and b ∈ Eglob(E/F )0 and c ∈

∏
w E

×
w , then zabct = conjb−1 ◦ zt on E3(E/F )a and

Eglob(E/F )a and WE/F,a, while zabct = conjc ◦ zt on WEw/Fv ,a and E loc(E/F )a and
E2(E/F )a.

We want to explain how given some auxiliary data we can write down a triple
(αglob, αloc, β) ∈ Z(E/F ) more explicitly. Fix the following data

• α representing [αglob
E/F ],

• a place w = w(v) above each place v of F ,
• αw representing [αEw/Fv ] for each such w,
• a section sw : Gal (E/F )/Gal (Ew/Fv) → Gal (E/F ) with image Hw for each

such w,
• and, for each such w, a function γw : Gal (Ew/Fv) → A×E such that γw(πw ◦
α)|Gal (Ew/Fv) = iwαw ∈ Z2(Gal (Ew/Fv),A×E). (This is possible as α is equiva-
lent to some αloc in Z2(Gal (E/F ), T2,E(AE)).)

Set δv(σ) = σ−1sv(σ). Then [αloc
E/F ] can be represented by

αloc(σ1, σ2) =
∏
v∈VF

∏
η∈Gal (E/F )/Gal (Ew/Fv)

sw(η)αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η)).

Define

β : Gal (E/F ) −→ T2,E(AE)

by

πηwβ(σ) = πηw(α(sw(η), sw(η)−1σsw(σ−1η))/α(σ, sw(σ−1η)))sw(η)γw(sw(η)−1σsw(σ−1η))−1.

We claim that (α, αloc, β) ∈ Z(E/F ), i.e. that

βαloc = α.

Our verification is a rather ugly cocyle computation. We need to check that

β(σ1σ2)β(σ1)−1σ1β(σ2)−1αloc(σ1, σ2) = α(σ1, σ2)

or, after projecting under πηw, that

πηwα(σ1, σ2)
= πηw(β(σ1σ2)β(σ1)−1)σ1πσ−1

1 ηw(β(σ2))−1

sw(η)αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η)).

The right hand side equals

πηw(α(sw(η), sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η))α(σ1, sw(σ−1
1 η)))

πηw(α(sw(η), sw(η)−1σ1sw(σ−1
1 η))α(σ1σ2, sw(σ−1

2 σ−1
1 η)))−1

σ1πσ−1
1 ηw(α(σ2, sw(σ−1

2 σ−1
1 η))/α(sw(σ−1

1 η), sw(σ−1
1 η)−1σ2sw(σ−1

2 σ−1
1 η)))

sw(η)αw(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η))
sw(η)(γw(sw(η)−1σ1sw(σ−1

1 η))/γw(sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η)))σ1sw(σ−1
1 )γw(sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η))
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or
πηw(α(sw(η), sw(η)−1σ1σ2sw(σ−1

2 σ−1
1 η))α(σ1, sw(σ−1

1 η)))
πηw(α(sw(η), sw(η)−1σ1sw(σ−1

1 η))α(σ1σ2, sw(σ−1
2 σ−1

1 η)))−1

πηw(σ1α(σ2, sw(σ−1
2 σ−1

1 η))/σ1α(sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η)))
sw(η)πwα(sw(η)−1σ1sw(σ−1

1 η), sw(σ−1
1 η)−1σ2sw(σ−1

2 σ−1
1 η)),

which in turn equals πηw of

α(sw(η), sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η))α(σ1, sw(σ−1
1 η))/α(sw(η), sw(η)−1σ1sw(σ−1

1 η))α(σ1σ2, sw(σ−1
2 σ−1

1 η))
σ1α(σ2, sw(σ−1

2 σ−1
1 η))/σ1α(sw(σ−1

1 η), sw(σ−1
1 η)−1σ2sw(σ−1

2 σ−1
1 η))

sw(η)α(sw(η)−1σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η)).

We can rewrite this

α(sw(η), sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η))α(σ1, sw(σ−1
1 η))

(α(sw(η), sw(η)−1σ1sw(σ−1
1 η))α(σ1σ2, sw(σ−1

2 σ−1
1 η)))−1

(α(σ1, σ2sw(σ−1
2 σ−1

1 η))α(σ1σ2, sw(σ−1
2 σ−1

1 η))α(σ1, σ2))
(α(σ1sw(σ−1

1 η), sw(σ−1
1 η)−1σ2sw(σ−1

2 σ−1
1 η))α(σ1, sw(σ−1

1 η))α(σ1, σ2sw(σ−1
2 σ−1

1 η)))−1

α(σ1sw(σ−1
1 η), sw(σ−1

1 η)−1σ2sw(σ−1
2 σ−1

1 η))α(sw(η), sw(η)−1σ1sw(σ−1
1 η))

α(sw(η), sw(η)−1σ1σ2sw(σ−1
2 σ−1

1 η))−1

in which almost everything cancels leaving just α(σ1, σ2). The claim follows.
Let us be still more explicit in a special case. Assume that F = Q and that E is

totally imaginary. We may and will assume that

• α(1, 1) = 1,
• αw(1, 1) = 1 for all w,
• 1 ∈ Hw for all w,

• αw(∞)(σ1, σ2) =

{
−1 if σ1 = σ2 = cw(∞)

1 otherwise,
• γw(∞) ≡ 1,
• and α(σ, cw(∞)) = 1 if σ ∈ H∞.

(To achieve the last of these we replace α by γα where γ(1) = γ(cw(∞)) = 1 and
γ(σcw(∞)) = α(σ, cw(∞))γ(σ) if σ ∈ H∞.) Then

• α(σ, 1) = α(1, σ) = 1;
• α(cw(∞), cw(∞))w(∞) = −1w(∞);
• α(σ, cw(∞))σw(∞) = −1σw(∞) if σ 6∈ H∞;

• α(σ1, σ2cw(∞))σ1σ2w(∞) = α(σ1, σ2)σ1σ2w(∞)

{
−1σ1σ2w(∞) if δ∞(σ2) 6= δ∞(σ1σ2)
1 if δ∞(σ2) = δ∞(σ1σ2).

(For the penultimate of these note that α(σ, cw(∞)) = σα(cw(∞), cw(∞))α(σ, 1)/α(σcw(∞), cw(∞)),
and for the ultimate one use the cocycle relation.) Thus

πηw(∞)β(σ) = πηw(∞)(α(ηδ∞(η), δ∞(η)−1δ∞(σ−1η))/α(σ, σ−1ηδ∞(σ−1η)))

≡ πηw(∞)(α(σ, σ−1η))−1

{
−1ηw(∞) if δ∞(σ−1η) 6= 1
1 if δ∞(σ−1η) = 1

for all η ∈ H∞ and σ ∈ Gal (E/Q).
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Although this doesn’t fix α uniquely, we will use α0 to denote the element of
Z(E/Q) arising from such a choice. Also choose ρ0 : Ew(∞)

∼→ C. Then we get a
canonical identification

Θ̃0 : WC/R
∼−→ WEw(∞)/Q∞,α0 .

Moreover

ια0

w(∞)(e
loc
α (cw(∞))) = eglob

α0
(cw(∞)).

5.2. Change of field. Suppose that D ⊃ E ⊃ F are extensions of number fields
with E and D both Galois over F . The comparison of the various extensions E(E/F )
and E(D/F ) seems to be less straight forward than in the case of Weil groups. We
will need to introduce another extension E(E/F )D, which we will compare with both
E(E/F ) and E(D/F ).

We will write

[αloc
E/F,D] =

Gal (D/F )

inf
Gal (E/F )

[αloc
E/F ] = η0

D/E,∗[α
loc
D/F ] ∈ H2(Gal (D/F ),

∏
v∈VF

D×v ).

If α ∈ [αloc
E/F,D] we will write E2(E/F )D,α for the push out of E loc(E/F )D,α along∏

w∈VE D
×
w → T2,E(AD). If w is a place of E below a place u of D we will write

WEw/Fv ,D,α (resp. WEw/Fv ,Du,α) for the pushout of E loc(E/F )D,α|Gal (D/F )w along
∏

w∈VE D
×
w →

D×w (resp. the pushout of E loc(E/F )D,α|Gal (D/F )u along
∏

w∈VE D
×
w → D×u ).

We define

Eglob(E/F )0
D = T2,E(AD)×T2,E(AD)/T2,E(D) A×D/D

×.

Thus Gal (D/F ) acts on Eglob(E/F )0
D and

(Eglob(E/F )0
D)Gal (D/E) = Eglob(E/F )0.

Moreover we have an exact sequence

(0) −→ A×D −→ E
glob(E/F )0

D −→ T3,E(D) −→ (0),

from which we deduce that

H1(Gal (D/F ), Eglob(E/F )0
D) = (0).

We also have an exact sequence

(0) −→ Eglob(E/F )0
D −→ T2,E(AD)× A×D/D

× −→ T2,E(AD)/T2,E(D) −→ (0)

from which we deduce that there is a left exact sequence

(0) −→ H2(Gal (D/F ), Eglob(E/F )0
D) −→ H2(Gal (D/F ), T2,E(AD))⊕H2(Gal (D/F ),A×D/D×)

−→
∏

v∈VF H
2(Gal (D/F )w(v),A×D/D×),

where w(v) is a choice of place of E above v. Moreover

η0
D/E : Eglob(D/F )0 −→ Eglob(E/F )0

D.
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This is compatible with the [D : E]-power map A×D/D× to itself. Then we see that

Gal (D/F )

inf
Gal (E/F )

[αglob
E/F ] = η0

D/E,∗[α
glob
D/F ] ∈ H2(Gal (D/F ), Eglob(E/F )0

D).

(Indeed from the above injectivity, this reduces to showing that

Gal (D/F )

inf
Gal (E/F )

[αloc
E/F ] = η0

D/E,∗[α
loc
D/F ] ∈ H2(Gal (D/F ), T2,E(AD))

and
Gal (D/F )

inf
Gal (E/F )

[αWE/F ] = [D : E][αWD/F ] ∈ H2(Gal (D/F ),A×D/D
×);

both of which we have already observed.) We will denote this class

[αglob
E/F,D] ∈ H2(Gal (D/F ), Eglob(E/F )0

D).

If α ∈ [αglob
E/F,D], then we get extensions

E3(E/F )D,α ←− Eglob(E/F )D,α −→ WE/F,D,α

where

(0) −→ Eglob(E/F )0
D −→ Eglob(E/F )D,α −→ Gal (D/F ) −→ (0)

and

(0) −→ T3,E(D) −→ E3(E/F )D,α −→ Gal (D/F ) −→ (0)

and

(0) −→ A×D/D
× −→ WE/F,D,α −→ Gal (D/F ) −→ (0).

Moreover there is an isomorphism of extensions WE/F,D,α
∼→ WEab/F,D, well defined

up to composition with conjugation by an element of A×D/D×.
Also note that

res
Gal (D/F )
Gal (D/E)[α

glob
D/F ] = [αglob

D/E] ∈ H2(Gal (D/E), Eglob(D/F )0).

(This is proved in the same manner as the corresponding assertions in section 5.1.)
We will consider the collection Z(E/F )D of triples

α = (αglob, αloc, β)

where

• αglob ∈ [αglob
E/F,D],

• αloc ∈ [αloc
E/F,D],

• and β : Gal (D/F )→ T2,E(AD) with

βαloc = αglob ∈ Z2(Gal (D/F ), T2,E(AD)).
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To α we can associate a diagram of extensions:

E3(E/F )D,α � Eglob(E/F )D,α � WE/F,D,α

locα = i−1
β ↓

E loc(E/F )D,α ↪→ E2(E/F )D,α⋃
WEw/Fv ,D,α � E loc(E/F )D,α|Gal (D/F )w⋃
WEw/Fv ,Du,α � E loc(E/F )D,α|Gal (D/F )u .

We will call two triples α and α1 ∈ Z(E/F )D equivalent if there exist γglob :
Gal (D/F )→ Eglob(E/F )0

D and γloc : Gal (D/F )→
∏

u∈VD D
×
u with

(αglob
1 , αloc

1 , β1) = (γ
glob

αglob, γ
loc

αloc, γglobβ(γloc)−1).

In this case the choice of γglob and γloc is unique. (Indeed as H1(Gal (D/F ),
∏

uD
×
u ) =

(0) and H1(Gal (D/F ), Eglob(E/F )0
D) = (0) the only possibility would be to replace

γglob by aγglob and γloc by bγloc for some a ∈ Eglob(E/F )0
D and b ∈

∏
uD

×
u with

a/b ∈ T2,E(AF ). Using the embedding ι0D/E : Eglob(E/F )0
D ↪→ Eglob(D/F )0 and

lemma 5.1 we see that a, b ∈ T2,E(AF ) and so aγglob = γglob and bγloc = γloc.) Thus
the various extensions attached to α only depend, up to canonical isomorphism, on
the equivalence class of α. We will write H(E/F )D for the set of equivalence classes.
Thus to a ∈ H(E/F )D we have a well-defined diagram of extensions

E3(E/F )D,a � Eglob(E/F )D,a � WE/F,D,a

loca ↓
E loc(E/F )D,a ↪→ E2(E/F )D,a⋃

WEw/Fv ,D,a � E loc(E/F )D,a|Gal (D/F )w⋃
WEw/Fv ,Du,a � E loc(E/F )D,a|Gal (D/F )u .

The set of such triples Z(E/F )D has an action of T2,E(AD) via

t(αglob, αloc, β) = (αglob, αloc, tβ).

This action descends to an action on H(E/F )D, and is transitive on the set of equiva-
lence classes. (The latter assertion because H1(Gal (D/F ), T2,E(AD)) = (0).) The 4-
tuples α and tα are equivalent if and only if t ∈ T2,E(AF )Eglob(E/F )0

D

∏
uD

×
u . (This

follows because H1(Gal (D/F ),
∏

uD
×
u ) = (0) and H1(Gal (D/F ), Eglob(E/F )0

D) =
(0), so that in any equivalence γloc and γglob must be coboundaries.) There are
canonical identifications

zt : Eα(E/F )D
∼−→ Etα(E/F )D

for each of the extensions we have considered, simply because they are defined by
the same cocycles. It is easily checked that these identifications are compatible with
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the identifications of the extensions for two equivalent 4-tuples α and α1. Thus for
a ∈ H(E/F )D we get canonical identifications

zt : Ea(E/F )D
∼−→ Eta(E/F )D

for each of the extensions we have considered. We have commutative diagrams

WEw/Fv ,D,a ←− E loc(E/F )D,a|Gal (D/F )w ⊂ E loc(E/F )D,a ↪→ E2(E/F )D,a
zt ↓ o zt ↓ o zt ↓ o zt ↓ o

WEw/Fv ,D,ta ←− E loc(E/F )D,ta|Gal (D/F )w ⊂ E loc(E/F )D,ta ↪→ E2(E/F )D,ta,

and
E3(E/F )D,a ←− Eglob(E/F )D,a � WE/F,D,a

zt ↓ o zt ↓ o zt ↓ o
E3(E/F )D,ta ←− Eglob(E/F )D,ta � WE/F,D,ta.

However
zt ◦ loca = conjt ◦ locta ◦ zt.

Suppose that w is a place of E above a place v of F . Then

(αglob mod T2,E(D))|Gal (D/F )2
w

= πwβ|Gal (D/F )wαloc
w ,

so that there is a map of extensions

(0) −→ D×w −→ WEw/Fv ,D,α −→ Gal (D/F )w −→ (0)
↓ ιαw ↓ ||

(0) −→ A×D/D× −→ WE/F,D,α|Gal (D/F )w −→ Gal (D/F )w −→ (0),

where
ιαw(eαloc

w
(σ)) = πw(β(σ))eglob(σ).

We have

iγglob ◦ ιαw = ι
(γglob,γglob)α
w ◦ iπw◦γloc

and so we can write

ιaw : WEw/Fv ,D,a −→ WE/F,D,a|Gal (D/F )w .

Moreover if t ∈ T2,E(AD) then

conjtw ◦ zt ◦ ι
a
w = ι

ta
w ◦ zt.

There are isomorphisms of extensions WE/F,D,a
∼→ WEab/F,D well defined up to

composition with conjugation by an elements of A×D/D×; and WEw/Fv ,D,a|Gal (D/F )u
∼→

WEab
w /Fv ,D well defined up to composition with conjugation by an elements of D×w ;

and WEw/Fv ,Du,a
∼→ WEab

w /Fv ,Du well defined up to composition with conjugation by an
elements of D×u .

If α = (αglob, αloc, β) ∈ Z(E/F ), then we define

inf
D/E

α = (
Gal (D/F )

inf
Gal (E/F )

αglob,
Gal (D/F )

inf
Gal (E/F )

αloc,
Gal (D/F )

inf
Gal (E/F )

β) ∈ Z(E/F )D.
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Thus

E loc(E/F )D,infD/E α
∼= (

∏
u∈VD

D×u o E loc(E/F )α|Gal (D/F ))/
∏
w∈VE

E×w ,

where ∏
w∈VE E

×
w −→

∏
u∈VD D

×
u o E loc(E/F )α|Gal (D/F )

(ew) 7−→ ((eu|E)−1, ((ew), 1));

and

E2(E/F )D,infD/E α
∼= (T2,E(AD) o E2(E/F )α|Gal (D/F ))/T2,E(AE),

where
T2,E(AE) −→ T2,E(AD) o E2(E/F )α|Gal (D/F )

a 7−→ (a−1, (a, 1));

and

WEw/Fv ,D,infD/E α
∼= (D×w oWEw/Fv ,α|Gal (D/F )w)/E×w ,

where
E×w −→ D×w oWEw/Fv ,α|Gal (D/F )w

e 7−→ (e−1, (e, 1));

and

WEw/Fv ,Du,infD/E α
∼= (D×u oWEw/Fv ,α|Gal (D/F )u)/E×w ,

where
E×w −→ D×u oWEw/Fv ,α|Gal (D/F )u

e 7−→ (e−1, (e, 1));

and

Eglob(E/F )D,infD/E α
∼= (Eglob(E/F )0

D o Eglob(E/F )α|Gal (D/E))/Eglob(E/F )0,

where
Eglob(E/F )0 −→ Eglob(E/F )0

D o Eglob(E/F )α|Gal (D/E)

a 7−→ (a−1, (a, 1));

and

E3(E/F )D,infD/E α
∼= (TE,3(D) o E3(E/F )α|Gal (D/F ))/TE,3(E),

where
TE,3(E) −→ TE,3(D) o E3(E/F )α|Gal (D/F )

a 7−→ (a−1, (a, 1));

and

WE/F,D,infD/E α
∼= (A×D/D

× oWE/F,α|Gal (D/F ))/(A×E/E
×),

where
A×E/E× −→ A×D/D× oWE/F,α|Gal (D/F )

a 7−→ (a−1, (a, 1)).

In each case we have natural maps of extensions

ξD/E : E?(E/F )α|Gal (D/F ) −→ E?(E/F )D,infD/E α.
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These give commutative diagrams

WEw/Fv,α|Gal (D/F )w ←− E loc(E/F )α|Gal (D/F )w ⊂ E loc(E/F )α|Gal (D/F ) ↪→ E2(E/F )α|Gal (D/F )

ξD/E ↓ ξD/E ↓ ξD/E ↓ ξD/E ↓
WEw/Fv,D,infD/E α ←− E loc(E/F )D,infD/E α|Gal (D/F )w ⊂ E loc(E/F )D,infD/E α ↪→ E2(E/F )D,infD/E α,

and

E3(E/F )α|Gal (D/F ) ←− Eglob(E/F )α|Gal (D/F ) � WE/F,α|Gal (D/F )

ξD/E ↓ ξD/E ↓ ξD/E ↓
E3(E/F )D,infD/E α ←− Eglob(E/F )D,infD/E α � WE/F,D,infD/E α.

Moreover they commute with the maps locα and locinfD/E α.

We have infD/E
γα = infD/E γ infD/E α, and so we get a map

inf
D/E

: H(E/F ) −→ H(E/F )D.

Moreover iinfD/E γ = (1, (iγ , 1)). In particular the maps ξD/E for different α ∈ a
become identified. We also have

inf
D/E

tα = t inf
D/E

α.

The map zt for infD/E α is identified with (1, (zt, 1)); and the map ι
infD/E α
w is identified

with (1, (ιαw, 1)). Thus

ξD/E ◦ zt = zt ◦ ξD/E
and

ι
infD/E α
w ◦ ξD/E = ξD/E ◦ ιαw.

Next suppose that α = (αglob, αloc, β) ∈ Z(D/F ). We define

ηD/E,∗α = (ηD/E,∗α
glob, ηD/E,∗α

loc, ηD/E(β)) ∈ Z(E/F )D.

Thus

E loc(E/F )D,ηD/E,∗α
∼= (

∏
u∈VD

D×u o E loc(D/F )α)/
∏
u∈VD

D×u ,

where ∏
u∈VD D

×
u −→

∏
u∈VD D

×
u o E loc(D/F )α

(du) 7−→ ((d
−[Du:Eu|E ]
u ), (du));

and

E2(E/F )D,ηD/E,∗α
∼= (T2,E(AD) o E2(D/F )α)/T2,D(AD),

where
T2,D(AD) −→ T2,E(AD) o E2(D/F )α

a 7−→ (ηD/E(a)−1, a);

and

WEw/Fv ,D,ηD/E,∗α
∼= (D×w o E loc(D/F )α)/

∏
u∈VD

D×u ,
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where ∏
u∈VD D

×
u −→ D×w o E loc(D/F )α

(du) 7−→ ((d
−[Du:Ew]
u )u|w, (du));

and
WEw/Fv ,Du,ηD/E,∗α

∼= (D×u oWDu/Fv ,α)/D×u ,

where
D×u −→ D×u oWDu/Fv ,α

d 7−→ (d−[Du:Ew]), d);

and
Eglob(E/F )D,ηD/E,∗α

∼= (Eglob(E/F )0
D o Eglob(D/F )α)/Eglob(D/F )0,

where
Eglob(D/F )0 −→ Eglob(E/F )0

D o Eglob(D/F )α
a 7−→ (ηD/E(a)−1, a);

and
E3(E/F )D,ηD/E,∗α

∼= (TE,3(D) o E3(D/F )α)/TD,3(D),

where
TD,3(D) −→ TE,3(D) o E3(D/F )α

a 7−→ (ηD/E(a)−1, a);

and
WE/F,D,ηD/E,∗α

∼= (A×D/D
× oWD/F,α)/(A×D/D

×),

where
A×D/D× −→ A×D/D× oWD/F,α

a 7−→ (a−[D:E], a).

In each case we have natural maps of extensions

ζD/E : E?(D/F )α −→ E?(E/F )D,ηD/E,∗α.

These give commutative diagrams

WDu/Fv ,α ←− E loc(D/F )α|Gal (D/F )u ⊂ E loc(D/F )α ↪→ E2(D/F )α
ζD/E ↓ ζD/E ↓ ζD/E ↓ ζD/E ↓

WEw/Fv ,Du,ηD/E,∗α ←− E loc(E/F )D,ηD/E,∗α|Gal (D/F )u ⊂ E loc(E/F )D,ηD/E,∗α ↪→ E2(E/F )D,ηD/E,∗α

(of course we may also replace WEw/Fv ,Du,ηD/E,∗α with the isomorphic

WEw/Fv ,D,ηD/E,∗α|Gal (D/F )u/
∏

u6=u′|w

D×u′

 ,

and
E3(D/F )α ←− Eglob(D/F )α � WD/F,α

ζD/E ↓ ζD/E ↓ ζD/E ↓
E3(E/F )D,ηD/E,∗α ←− Eglob(E/F )D,ηD/E,∗α � WE/F,D,ηD/E,∗α.

Moreover they commute with the maps locα and locηD/E,∗α.
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We have ηD/E,∗
γα = ηD/E,∗γηD/E,∗α and so we get a map

ηD/E,∗ : H(D/F ) −→ H(E/F )D.

Moreover iηD/E,∗γ = (ηD/E, iγ). In particular ζD/E for the different α ∈ a become
identified. We also have

ηD/E,∗
tα = ηD/E(t)ηD/E,∗α.

The map zηD/E(t) for ηD/E,∗α is identified with (1, zt), and so

ζD/E ◦ zt = zηD/E(t) ◦ ζD/E.

The compatibility of ιαw and ι
ηD/E,∗α
w is harder to describe:

Lemma 5.5. There is an isomorphism

WEw/Fv ,D,ηD/E,∗α
∼= ((D×w o Gal (D/E)) oWDu/Fv ,α)/WDu/Fv ,α|Gal (D/E)u ,

where
WDu/Fv ,α|Gal (D/E)u −→ ((D×w o Gal (D/E)) oWDu/Fv ,α)

σ 7−→ ((ε(σ)−1, σ−1), σ),

and
ε : WDu/Fv ,α|Gal (D/E)u −→ E×w ,

which we embed diagonally in D×w , is the homomorphism sending

σ 7−→
∏

η∈Gal (Du/Ew)

sησs
−1
ησ

for any section s : Gal (Du/Ew) → WDu/Fv ,α|Gal (D/E)u. The isomorphism sends
((a, σ), beloc(τ)) ∈ ((D×w o Gal (D/E)) oWDu/Fv ,α) to[(

a
∏

η∈Gal (D/E) α
loc(σ, η)|−1

σηu, e
loc(σ)

)(∏
η∈Gal (D/E)(η(b)αloc(η, τ)/b)|ηuαloc(τ, η)|−1

τηu, be
loc(τ)

)]
∈ (D×w o E loc(D/F )α|Gal (D/F )w)/

∏
xD

×
x ,

where if c ∈
∏

xD
×
x we write c|x ∈

∏
xD

×
x for the element that is cx at x and 1

elsewhere.
Moreover the map

ι
ηD/E,∗α
w : ((D×woGal (D/E))oWDu/Fv ,α)/WDu/Fv ,α|Gal (D/E)u −→ (A×D/D

×oWD/F )/(A×D/D
×)

sends
[((a, 1), 1)] 7−→ [(a, 1)]

and

[((1, σ), 1)] 7−→ conj∏
η∈Gal (D/E) β(η)ηu [(

∏
η∈Gal (D/E)

eglob
α (ση)eglob

α (η)−1σ̃−1, σ̃)],

where σ̃ is any lift of σ to WD/F,α, and [((1, 1), τ)] to

conj∏
η∈Gal (D/E) β(η)ηu [(

∏
η∈Gal (D/E)

(eglob
α (η)ιαu (τ)eglob

α (ητ)−1)/(ιαu (τ)eglob
α (η)eglob

α (τη)−1), ιαu (τ))].
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Proof: The map ε is independent of the choice of section s, it is a homomorphism
and it is valued in E×w ⊂ D×u . The map

WDu/Fv ,α|Gal (D/E)u −→ ((D×w o Gal (D/E)) oWDu/Fv ,α)

is a homomorphism (because ε is) and has normal image (again because ε is a homo-
morphism valued in E×w ). There is an exact sequence

(0) −→ D×w −→ ((D×woGal (D/E))oWDu/Fv ,α)/WDu/Fv ,α|Gal (D/E)u −→ Gal (D/F )w −→ (0)

because

(Gal (D/E) o Gal (D/F )u)/Gal (D/E)u
∼−→ Gal (D/F )w.

The given map

((D×w o Gal (D/E)) oWDu/Fv ,α) −→ WEw/Fv ,D,ηD/E,∗α

is compatible with the inclusion of D×w and the projection to Gal (D/F )w. Thus
it suffices to show that it is a homomorphism that is trivial when restricted to
WDu/Fv ,α|Gal (D/E)u . If σ ∈ Gal (D/E), write

γ(σ) =
∏

η∈Gal (D/E)

αloc(σ, η)|−1
σηu ∈ D×w .

If τ ∈ Gal (D/F )u write

δ(τ) =
∏

η∈Gal (D/E)

αloc(η, τ)|ηu/αloc(τ, η)|τηu.

Then what we must check is the following

• γ(σ1)σ1γ(σ2)αloc(σ1, σ2)
[Du:Ew]
w = γ(σ1σ2) for all σ1, σ2 ∈ Gal (D/E).

•
∏

η∈Gal (D/E)(
ηb1/b1)|ηuτ1

(∏
η∈Gal (D/E)(

ηb2/b2)|ηu
)

=
∏

η∈Gal (D/E)(
η(b1

τ1b2)/b1
τ1b2)|ηu

for all b1, b2 ∈ D×u and τ1 ∈ Gal (D/F )u.

• γ(τ1)τ1γ(τ2)αloc(τ1, τ2)
[Du:Ew]
w =

∏
η∈Gal (D/E)(

η(αloc(τ1, τ2)|u)/αloc(τ1, τ2)|u)|ηu
γ(τ1τ2)αloc(τ1, τ2)|[Du:Fw]

u for all τ1, τ2 ∈ Gal (D/F )u.
• ε(b)−1

∏
η∈Gal (D/E)(

ηb/b)|ηub[Du:Ew] = 1 for all b ∈ D×u .

• ε(eloc
α (σ))−1γ(σ−1)σ

−1
δ(σ)αloc(σ−1, σ)

[Du:Fw]
w αloc(1, 1)

[Du:Fw]
w = 1 for all σ ∈ Gal (D/E)u.

These are equivalent to:

• γ(σ1)σ1γ(σ2)αloc(σ1, σ2)
[Du:Ew]
w = γ(σ1σ2) for all σ1, σ2 ∈ Gal (D/E).

•
∏

η∈Gal (D/E)(
τ1ηb2/

τ1b2)|τ1ηu =
∏

η∈Gal (D/E)(
ητ1b2)/τ1b2)|ηu for all b2 ∈ D×u and

τ1 ∈ Gal (D/F )u.
• γ(τ1)τ1γ(τ2) =

∏
η∈Gal (D/E)(

ηαloc(τ1, τ2)/αloc(τ1, τ2))|ηuγ(τ1τ2) for all τ1, τ2 ∈
Gal (D/F )u.
• ε(b) =

∏
η∈Gal (D/E)(

ηb)|ηu for all b ∈ D×u .

• ε(eloc
α (σ))−1γ(σ−1)σ

−1
δ(σ)αloc(σ−1, σ)

[Du:Fw]
w αloc(1, 1)

[Du:Fw]
w = 1 for all σ ∈ Gal (D/E)u.
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For the first of these note that

γ(σ1)σ1γ(σ2)αloc(σ1, σ2)
[Du:Ew]
w γ(σ1σ2)−1

=
∏

η∈Gal (D/E)(α
loc(σ1, σ2)|ηuαloc(σ1σ2, η)σ1σ2ηu/α

loc(σ1, η)|σ1ηu(
σ1αloc(σ2, η))|σ1σ2ηu)

=
∏

η∈Gal (D/E)(α
loc(σ1, σ2)|ηuαloc(σ1, σ2η)σ1σ2ηu/α

loc(σ1, η)|σ1ηuα
loc(σ1, σ2)|σ1σ2ηu)

=
∏

η∈Gal (D/E)(α
loc(σ1, σ2)|ηuαloc(σ1, η)σ1ηu/α

loc(σ1, η)|σ1ηuα
loc(σ1, σ2)|ηu)

= 1.

For the second replace η on the left hand side by τ−1
1 ητ1 and note that ητ1u = ηu.

For the third note that∏
η∈Gal (D/E) α

loc(η, τ1)|ηu(τ1αloc(η, τ2))|τ1ηuαloc(τ1τ2, η)|τ1τ2ηu/
αloc(τ1, η)|τ1ηu(τ1αloc(τ2, η))|τ1τ2ηuαloc(η, τ1τ2)|ηu

=
∏

η∈Gal (D/E) α
loc(η, τ1)|ηuαloc(τ1η, τ2)|τ1ηuαloc(τ1, η)|τ1ηuαloc(τ1, τ2η)|τ1τ2ηuαloc(τ1τ2, η)|τ1τ2ηu/

αloc(τ1, η)|τ1ηuαloc(τ1, ητ2)|τ1ηuαloc(τ1τ2, η)|τ1τ2ηuαloc(τ1, τ2)|τ1τ2ηuαloc(η, τ1τ2)|ηu
=

∏
η∈Gal (D/E) α

loc(η, τ1)|ηuαloc(ητ1, τ2)|ηuαloc(τ1, ητ2)τ1ηu/

αloc(τ1, ητ2)|τ1ηuαloc(τ1, τ2)|τ1τ2ηuαloc(η, τ1τ2)|ηu
=

∏
η∈Gal (D/E)(

ηαloc(τ1, τ2))|ηu/αloc(τ1, τ2)|ηu.
The fourth is true by the definition of ε. For the fifth first note that if σ ∈

Gal (D/E)u then

ε(eloc
α (σ)) =

∏
η∈Gal (D/E)u

eloc
α (η)eloc

α (σ)eloc
α (ησ)−1 =

∏
η∈Gal (D/E)u

αloc(η, σ)u ∈ E×w ⊂ D×u .

Thus ε(eloc
α (σ)) ∈ D×w can be thought of as∏
ζ∈Gal (D/E)/Gal (D/E)u

∏
η∈Gal (D/E)u

ζ(αloc(η, σ)|u)
=

∏
ζ∈Gal (D/E)/Gal (D/E)u

∏
η∈Gal (D/E)u

(ζαloc(η, σ))|ζu
=

∏
ζ∈Gal (D/E)/Gal (D/E)u

∏
η∈Gal (D/E)u

(αloc(ζη, σ)αloc(ζ, η)/αloc(ζ, ησ))|ζu
=

∏
ζ∈Gal (D/E)/Gal (D/E)u

∏
η∈Gal (D/E)u

αloc(ζη, σ)|ζηuαloc(ζ, η)|ζu/αloc(ζ, ησ)|ζσu
=

∏
η∈Gal (D/E) α

loc(η, σ)|ηu.
Thus for the fifth part we need to show that

1 =
∏

η∈Gal (D/E)(
σ−1

αloc(η, σ))|σ−1ηuα
loc(σ−1, σ)|ηuαloc(1, 1)|ηu/

αloc(η, σ)|ηuαloc(σ−1, η)|σ−1ηu(
σ−1

αloc(σ, η))|ηu
for all σ ∈ Gal (D/E)u. However∏

η∈Gal (D/E)(
σ−1

αloc(η, σ))|σ−1ηuα
loc(σ−1, σ)|ηuαloc(1, 1)|ηu/

αloc(η, σ)|ηuαloc(σ−1, η)|σ−1ηu(
σ−1

αloc(σ, η))|ηu
=

∏
η∈Gal (D/E) α

loc(σ−1η, σ)|σ−1ηuα
loc(σ−1, η)|σ−1ηuα

loc(σ−1, σ)|ηuαloc(1, 1)|ηuαloc(σ−1, ση)ηu/

αloc(σ−1, ησ)|σ−1ηuα
loc(η, σ)|ηuαloc(σ−1, η)|σ−1ηuα

loc(1, η)|ηuαloc(σ−1, σ)|ηu
=

∏
η∈Gal (D/E) α

loc(η, σ)|ηuαloc(σ−1, η)|σ−1ηuα
loc(σ−1, σ)|ηuαloc(1, 1)|ηuαloc(σ−1, η)σ−1ηu/

αloc(σ−1, η)|σ−1ηuα
loc(η, σ)|ηuαloc(σ−1, η)|σ−1ηuα

loc(1, 1)|ηuαloc(σ−1, σ)|ηu
= 1.
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For the final part of the lemma, we have that [(a, 1)] ∈ (D×w oE loc(D/F )α)/
∏

xD
×
x

is mapped under ι
ηD/E,∗α
w to [(a, 1)] ∈ (A×D/D× oWD/F,α)/(A×D/D×). Moreover ∏

η∈Gal (D/E)

αloc(σ, η)|−1
σηu, e

loc
α (σ)

 ∈ (D×w o E loc(D/F )α)/
∏
x

D×x

is mapped under ι
ηD/E,∗α
w to[(∏

η∈Gal (D/E) α
loc(σ, η)|−1

σηuηD/E(β(σ))w, e
glob(σ)

)]
=

[(∏
η∈Gal (D/E)(α

glob(σ, η)β(σ)σβ(η)/β(ση))|−1
σηu

∏
η∈Gal (D/E) β(σ)|ηu, eglob(σ)

)]
=

[(∏
η∈Gal (D/E) α

glob(σ, η)−1β(σ)|−1
σηu(

σβ(η))|−1
σηuβ(ση)|σηuβ(σ)|ηu, eglob(σ)

)]
=

[(∏
η∈Gal (D/E) α

glob(σ, η)−1β(σ)|−1
ηu

σ(β(η)|−1
ηu )β(η)|ηuβ(σ)|ηu, eglob(σ)

)]
= conj∏

η∈Gal (D/E) β(η)|ηu

[(∏
η∈Gal (D/E) e

glob(ση)eglob(η)−1eglob(σ)−1, eglob(σ)
)]

= conj∏
η∈Gal (D/E) β(η)|ηu

[(∏
η∈Gal (D/E) e

glob(ση)eglob(η)−1σ̃−1, σ̃
)]

for any lift σ̃ ∈ WD/F,α of σ. Finally ∏
η∈Gal (D/E)

(η(b)αloc(η, τ)/b)|ηuαloc(τ, η)|−1
τηu, be

loc
α (τ)

 ∈ (D×woE loc(D/F )α)/
∏
x

D×x

is mapped under ι
ηD/E,∗α
w to[(

ηD/E(β(τ))|w
∏

η∈Gal (D/E)(η(b)αloc(η, τ)/b)|ηuαloc(τ, η)|−1
τηu, be

glob(τ)
)]

=
[(
ηD/E(β(τ)β(τ)|−1

u )|w
∏

η∈Gal (D/E)(η(b)αloc(η, τ)/b)|ηuαloc(τ, η)|−1
τηu, β(τ)ube

glob(τ)
)]

=
[(∏

η∈Gal (D/E) β(τ)|ηu(η(b)/bβ(τ)|u)|ηu(αglob(η, τ)β(η)ηβ(τ)β(ητ)−1)|ηu
(αglob(τ, η)β(τ)τβ(η)β(τη)−1)|−1

τηu, ι
α
u (beloc

α (τ))
)]

=
[(∏

η∈Gal (D/E)(η(bβ(τ)|u)/bβ(τ)|u)|ηu(αglob(η, τ)/αglob(τ, η))

β(η)|ηuβ(ητ)|−1
ηuβ(τ)|−1

τηu
τ (β(η)|−1

ηu )β(τη)|τηuβ(τ)|ηu, ιαu (beloc
α (τ))

)]
= conj∏

η∈Gal (D/E) β(η)|ηu

[(∏
η∈Gal (D/E)((e

glob(η)eglob(τ)eglob(ητ)−1)/(eglob(τ)eglob(η)eglob(τη)−1))

(η(bβ(τ)|u)/bβ(τ)|u)|ηuβ(ητ)|−1
ηuβ(τ)|−1

ητuβ(ητ)|ητuβ(τ)|ηu, ιαu (beloc
α (τ))

)]
= conj∏

η∈Gal (D/E) β(η)|ηu

[(∏
η∈Gal (D/E)(e

glob(η)ιαu (beloc
α (τ))eglob(ητ)−1)/

(ιαu (beloc
α (τ))eglob(η)eglob(τη)−1), ιαu (beloc

α (τ))
)]
.

�

The following lemma is straight forward to verify.

Lemma 5.6. Suppose that D′ ⊃ D ⊃ E ⊃ F are finite Galois extensions of F .
Suppose also that αD′ ∈ Z(D′/F ) and αD ∈ Z(D/F ) and αE ∈ Z(E/F ) satisfy
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ηD′/D,∗αD′ = t′ infD′/DαD and ηD/E,∗αD = t infD/E αE with t′ ∈ T2,D(AD′) and t ∈
T2,E(AD). Then

ηD′/E,∗αD′ = tηD/E(t′) inf
D′/E

αE.

5.3. Global algebraic cohomology. We will define the algebraic cohomology of
Eglob(E/F )a using the algebraicity conditions

N = {ν ∈ Hom (T2,E, G)(AE) : ν is G(AE)−conjugate to an element of Hom (T2,E, G)(E)}
and

Nbasic = Hom (T2,E, Z(G))(E).

Note that in this case an element ν ∈ N may not be determined by ν : Eglob(E/F )→
G(AE). We will denote the corresponding pointed sets of cycles and cohomology
classes Z1

alg(Eglob(E/F )a, G(AE)) and Z1
alg(Eglob(E/F )a, G(AE))basic andH1

alg(Eglob(E/F ), G(AE))

and H1
alg(Eglob(E/F ), G(AE))basic. The map loca induces an isomorphism

loc∗a : Z1
alg(E2(E/F )a, G(AE))

∼−→ Z1
alg(Eglob(E/F )a, G(AE))

which preserves basic subsets and passes to cohomology. We will denote its inverse
simply

loca : Z1
alg(Eglob(E/F )a, G(AE))

∼−→ Z1
alg(E2(E/F )a, G(AE)).

Following Kottwitz, to define the algebraic cohomology of E3(E/F ) we will use the
algebraicity conditions

N = Hom (T3,E, G)(E)

and

Nbasic = Hom (T3,E, Z(G))(E).

We will denote the corresponding pointed sets of cycles and cohomology classes
Z1

alg(E3(E/F )a, G(E)) and Z1
alg(E3(E/F )a, G(E))basic and H1

alg(E3(E/F ), G(E)) and

H1
alg(E3(E/F ), G(E))basic. Note that there is a natural map

Z1
alg(E3(E/F )a, G(E)) −→ Z1

alg(Eglob(E/F )a, G(AE))

which preserves basic subsets and passes to cohomology. If E0
v/Fv is a finite extension

abstractly isomorphic to Ew/Fv for some w|v, then the composite

resE0
v
◦ loc : H1

alg(E3(E/F ), G(E)) −→ H1
alg(WE0

v/Fv
, G(E0

v))

coincides with the localization map defined by Kottwitz in [K3].
If a, a′ ∈ H(E/F ) and if t ∈ T2,E(AE) with a′ = ta, then we get an isomorphism

zt = ((zt)
−1)∗ : Z1

alg(Ea, G(AE))
∼−→ Z1

alg(Ea′ , G(AE))

for E = E3(E/F ) or Eglob(E/F ) or E2(E/F ) or E loc(E/F )S or E(Ew/Fv) and AE = E
or AE or AE or AE,S or E×w respectively. This takes basic elements to basic elements
and passes to cohomology (as gzt(φ) = zt(

gφ)). We have zt(φ1φ2) = zt(φ1)zt(φ2) and
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if f : G1 → G2, then zt(f∗φ) = f∗(zt(φ)). Moreover zt commutes with the maps resS
and resw and resE0

v
, while

loctazt(φ) = (locaφ)(t)zt(locaφ).

Finally if a ∈ T2,E(AF ) and b ∈ Eglob(E/F )0 and c ∈
∏

w E
×
w , then

zabct(φ) = φ(b)zt(φ)

if φ ∈ Z1
alg(E3(E/F )a, G(E)) or Z1

alg(Eglob(E/F )a, G(AE)), while

zabct(φ) = φ(c−1)zt(φ)

if φ ∈ Z1
alg(WEw/Fv ,a, G(Ew)) or Z1

alg(E loc(E/F )S,a, G(AE,S)) or Z1
alg(E2(E/F )a, G(AE)).

Thus on the level of cohomology zt is independent of t and only depends on a and a′.
Suppose that D ⊃ E is another finite Galois extension of F . We will define the

algebraic cohomology of Eglob(E/F )D,a using the algebraicity conditions

N = {ν ∈ Hom (T2,E, G)(AD) : ν is G(AD)−conjugate to an element of Hom (T2,E, G)(D)}

and

Nbasic = Hom (T2,E, Z(G))(D).

We will denote the corresponding pointed sets of cycles and cohomology classes
Z1

alg(Eglob(E/F )D,a, G(AD)) and Z1
alg(Eglob(E/F )D,a, G(AD))basic andH1

alg(Eglob(E/F )D, G(AD))

andH1
alg(Eglob(E/F )D, G(AD))basic. We also define the algebraic cohomology of E3(E/F )D

using the algebraicity conditions

N = Hom (T3,E, G)(D)

and

Nbasic = Hom (T3,E, Z(G))(D).

We will denote the corresponding pointed sets of cycles and cohomology classes
Z1

alg(E3(E/F )D,a, G(D)) and Z1
alg(E3(E/F )D,a, G(D))basic and H1

alg(E3(E/F )D, G(D))

and H1
alg(E3(E/F )D, G(D))basic. We define algebraic cocycles and cohomology for

Eglob(E/F )|Gal (D/F ) and E3(E/F )|Gal (D/F ) using these same algebraicity conditions.
Let aE ∈ H(E/F ) and aD ∈ H(D/F ) and choose t ∈ T2,E(AD) with t(infD/E aE) =

(ηD/E,∗aD) ∈ H(E/F )D. Using the functorialities (B) then (C) then (z∗t )
−1 then (B)

again from the end of section 3.1, we get morphisms

inf loc
D/E,t : Z1

alg(E loc(E/F )aE , G(AE)) −→ Z1
alg(E loc(E/F )aE |Gal (D/F ), G(AD))

−→ Z1
alg(E loc(E/F )D,inf aE , G(AD))

(z∗t )−1

−→ Z1
alg(E loc(E/F )D,ηD/E,∗aD , G(AD))

−→ Z1
alg(E loc(D/F )aD , G(AD))
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and

inf2,D/E,t : Z1
alg(E2(E/F )aE , G(AE)) −→ Z1

alg(E2(E/F )aE |Gal (D/F ), G(AD))
−→ Z1

alg(E2(E/F )D,inf aE , G(AD))
(z∗t )−1

−→ Z1
alg(E2(E/F )D,ηD/E,∗aD , G(AD))

−→ Z1
alg(E2(D/F )aD , G(AD))

and

infglob
D/E,t : Z1

alg(Eglob(E/F )aE , G(AE)) −→ Z1
alg(Eglob(E/F )aE |Gal (D/F ), G(AD))

−→ Z1
alg(Eglob(E/F )D,inf aE , G(AD))

(z∗t )−1

−→ Z1
alg(Eglob(E/F )D,ηD/E,∗aD , G(AD))

−→ Z1
alg(Eglob(D/F )aD , G(AD))

and

inf3,D/E,t : Z1
alg(E3(E/F )aE , G(E)) −→ Z1

alg(E3(E/F )aE |Gal (D/F ), G(D))
−→ Z1

alg(E3(E/F )D,inf aE , G(D))
(z∗t )−1

−→ Z1
alg(E3(E/F )D,ηD/E,∗aD , G(D))

−→ Z1
alg(E3(D/F )aD , G(D)).

These maps are all injective and induce maps on the basic subsets. We have

locaD( inf
D/E,t

(φ)) = (locaEφ)(t) inf
D/E,t

(locaEφ)

and so

(locaD( inf
D/E,t

(φ)))|T2,D(AE) = (locaEφ)|T2,E(AE) ◦ ηD/E.

If a ∈ Eglob(E/F )0
D and b ∈

∏
uD

×
u and c ∈ T2,E(AF ), then

loc

inf
D/E,abct

=
loc

inf
D/E,t

◦conj∗b and inf
2,D/E,abct

= inf
2,D/E,t

◦conj∗b .

Moreover

ztD ◦ inf
D/E,t

= inf
D/E,tEtη

0
D/E

(tD)−1
◦ztE

for each of the four types of cocycles. Moreover if D′ ⊃ D is another finite Galois
extension of F and if aD′H(D′/F ) and if t′ ∈ T2,D(AD′) with ηD′/D,∗aD′ = t′ infD′/D aD,
then

inf
D′/D,t′

◦ inf
D/E,t

= inf
D′/E,tηD/E(t′)

.

Each of the maps inf loc
D/E,t, inf2,D/E,t, infglob

D/E,t, and inf3,D/E,t induces a map in coho-

mology, which does not depend on the choice of t, and so we will denote the induced
cohomological maps simply inf loc

D/E, inf2,D/E, infglob
D/E, and inf3,D/E. These cohomolog-

ical maps are also injective and commute with localization.
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We define

Bglob(F,G) = lim
→,E/F

H1
alg(Eglob(E/F ), G(AE)) ∼= B(AF , G)

and
B(F,G) = lim

→,E/F
H1

alg(E3(E/F ), G(E)),

and similarly for the basic subsets. We have a map

loc : B(F,G) −→ Bglob(F,G) ∼= B(AF , G) −→ Bloc(F,G)

and hence maps
resv ◦ loc : B(F,G) −→ B(Fv, G)

for any place v of F . These maps preserve the basic subsets.

5.4. Global algebraic cohomology of reductive groups. Now suppose that G is
reductive.

If α = (αglob, αloc, β) ∈ Z(E/F ) and T over F is a torus split over E then

cor α = cor αglob : Z[VE]0 ⊗X∗(T ) −→ Z1
alg(E3(E/F )a, T (E))

induces a bijection

cor glob : (Z[VE]0 ⊗X∗(T ))Gal (E/F )
∼−→ H1

alg(E3(E/F ), T (E))

which is independent of (αglob, αloc, β). (Note that cor αglob depends on (αglob, αloc, β)
and not just its image in H(E/F ).)

We have the following special case of the general observation made in item E of
section 3.1:

Lemma 5.7. Suppose that (αglob, αloc, β) ∈ Z(E/F ). Suppose also that T is a torus
split by E and that χ : T3,E → T is a homomorphism (which must then be defined
over E). Set

b =
∏

η∈Gal (E/F )

η−1χ(β(η))−1.

Then
locacor αglob(χ) = bcor αloc(χ)

(where a = [(αglob, αloc, β)]).

Kottwitz shows that for any reductive G split by E there is a map

κG : H1
alg(E3(E/F ), G(E)) −→ (Z[VE]0 ⊗Z ΛG)Gal (E/F )

which is functorial in G and gives (cor glob)−1 in the case that G is a torus. The image
of κG(φ) in (Z[VE]⊗Z ΛG)Gal (E/F ) equals κG(locφ). Moreover κG is compatible with
infD/E and the natural isomorphism

(Z[VD]0 ⊗Z ΛG)Gal (D/F )
∼−→ (Z[VE]0 ⊗Z ΛG)Gal (E/F )
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induced by the map Z[VD]→ Z[VE] sending u to u|E. (To see the map is an isomor-

phism it suffices to show that Z[VD]0,Gal (D/E)
∼→ Z[VE]0. This follows from the long

exact sequence associates to (0) → Z[VD]0 → Z[VD] → Z → (0) and the surjectivity
of
⊕

w∈VE Gal (Du/Ew)ab → Gal (D/E)ab.)
If E/F splits G then Kottwitz proves that there is a cartesian square

B(F,G)basic

⊕v|∞resv◦loc
−→

∏
v|∞B(Fv, G)basic

κG ↓
∏

v|∞ κG ↓
(Z[VE]0 ⊗ ΛG)Gal (E/F ) −→

∏
v|∞ ΛG,Gal (Ew/Fv)∑

w w ⊗ λw 7−→ (
∑

σ∈Gal (Eṽ/Fv)\Gal (E/F ) σλσ−1ṽ)v|∞,

where ṽ|v. (See proposition 15.1 of [K3].) In particular the fibres of κF are finite.
If S is a finite set of places of F , we will write B(F,G)S,basic for the inverse image

in B(F,G)basic under κG of the image of Z[VE,S]0 ⊗Z ΛG in (Z[VE]0 ⊗Z ΛG)Gal (E/F ).
(Here E/F is any finite Galois extension that splits G.)

Lemma 5.8. If S is a finite set of places of F , then there is a finite Galois extension
D/F such that B(F,G)S,basic is contained in the image of H1

alg(E3(D/F ), G(D)).

Proof: Let E/F be a finite Galois extension which splitsG. Note that ΛG/X∗(Z(G)0)
is finite and hence (Z[SE]0 ⊗Z ΛG)Gal (E/F )/(Z[VE,S]0 ⊗Z ΛZ(G)0)Gal (E/F ) is finite. We
conclude that B(F,Z(G)0)S has only finitely many orbits on B(F,G)S,basic. Moreover
B(F,Z(G)0)S is finitely generated (being isomorphic to the image of Z[VE,S]⊗ΛZ(G)0

in (Z[VE]0⊗ZΛZ(G)0)Gal (E/F )). Thus there is a finite Galois extension D/F containing
E such that B(F,G)S,basic is contained in the image of H1

alg(E3(D/F ), G(D)).�

Kottwitz also shows that there is a commutative diagram with exact rows

(0) −→ ker1(F,G) −→ B(F,G)basic −→ B(AF , G)
κF−→ (ΛG)Gal (F/F )

|| ↑ ↑ ||
(0) −→ ker1(F,G) −→ H1(F,G) −→ H1(AF , G)

κF−→ (ΛG)Gal (F/F ).

(See proposition 15.6 of [K3].)
Now suppose that F = Q and that E is sufficiently large that

• E splits G;
• E is totally imaginary;
• B(Q, G){∞},basic is contained in the image of H1

alg(E3(E/Q), G(E)).

Suppose moreover that Y is a compactifying G(R)-conjugacy class of cocharacters
of G defined over C, and that τ ∈ Aut (C). Then there is a unique class φG,Y,τ ∈
H1

alg(E3(E/Q), G(E))basic such that

• κG(φG,Y,τ ) = (v(ρ) − v(τρ)) ⊗ ρ−1
λG(Y ), where ρ : K ↪→ C and v(ρ) denotes

the corresponding infinite place of K (this is independent of the choice of ρ);

• and resC/RlocφG,Y,τ = λ̂G(Y − τ [Y ]G(C)).
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In this case res∞locφG,Y,τ = 1. If φ ∈ φG,Y,τ , then Y (τ [Y ]G(C), Y ) is a compactifying

conjugacy class of cocharacters of φG over C, which we will denote τ,φY .
If f : G1 → G2 and Yi is a compactifying Gi(R)-conjugacy class of cocharacters

of G over C with fY1 ⊂ Y2, then f∗φG1,Y1,τ = φG2,Y2,τ . Hence, if φ ∈ φG1,Y1,τ , then

f : φG1 → f◦φG2 and f(τ,φY1) ⊂ τ,f◦φY2.
If G = T is a torus and Y = {µ} ⊂ X∗(T )(C), then

φG,{µ},τ = cor ((v(ρ)− v(τρ))⊗ ρ−1

µ.
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6. Rigidification data.

6.1. Rigidification data. Suppose that E/F is a finite Galois extension of number
fields, that a ∈ Z(E/F ).

By a rigidification of a we shall mean an isomorphism of extensions

(0) −→ A×E/E×
rE−→ WEab/F −→ Gal (E/F ) −→ (0)

|| Γ̃ ↓ o ||
(0) −→ A×E/E×

rE−→ WE/F,a −→ Gal (E/F ) −→ (0).

Such a rigidifcation always exists and it is unique up to composition with conjugation
by an element of A×E/E×.

Suppose that ρ : Eab → F v is F -linear. Write w(ρ) (resp. u(ρ)) for the place of E
(resp. Eab) induced by ρ. There is a morphism of extensions

(0) −→ (ρ(E)Fv)
× −→ W(ρ(E)Fv)ab/Fv −→ Gal (ρ(E)Fv/Fv) −→ (0)

ρ−1 ↓ θρ ↓ ↑ o
(0) −→ A×E/E× −→ WEab/F |Gal (E/F )w(ρ)

−→ Gal (E/F )w(ρ) −→ (0)

which is determined up to conjugation by an element of (E×∞)0E×/E×. (Here the
right hand vertical map is the one induced by ρ.) There is also an isomorphism of
extensions

(0) −→ (ρ(E)Fv)
× −→ W(ρ(E)Fv)ab/Fv −→ Gal (ρ(E)Fv/Fv) −→ (0)

ρ ↑ o Θ̃v,ρ ↓ o ↑ o
(0) −→ E×w(ρ) −→ WEw(ρ)/Fv ,a −→ Gal (Ew(ρ)/Fv) −→ (0),

which is unique up to composition with conjugation by an element of E×w(ρ). The
composites

Γ̃ ◦ θρ : Wρ(Eab)Fv/Fv −→ WE/F,a

and
ιaw(ρ) ◦ Θ̃v,ρ : Wρ(Eab)Fv/Fv −→ WE/F,a

must be equal up to multiplication by an element of Z1(Gal (E/F )w(ρ),A×E/E×), and
hence we must have

conja ◦ Γ̃ ◦ θρ = ιaw(ρ) ◦ Θ̃v,ρ,

for some a ∈ A×E/E×. We will say that Γ̃ is adapted to (ρ, θρ) if for some choice of

Θ̃v,ρ we may take a = 1. We see that a rigidification adapted to (ρ, θρ) always exists
and is unique up to composition with conjugation by an element of

(A×E/E
×)Gal (E/F )w(ρ)E×w(ρ).

Note that if Γ̃ is adapted to (ρ, θρ) and if a ∈ (E×∞)0E×/E×, then conja ◦ Γ̃ is adapted

to (ρ, conja ◦ θρ). If Γ̃ is a rigidification of a adapted to (ρ, θρ) then

conjtw(ρ)
◦ Γ̃



ON THE FORMALISM OF SHIMURA VARIETIES 81

is a rigidification of ta adapted to (ρ, θρ) (because

ι
ta
w(ρ) = conjtw(ρ)

◦ ιaw(ρ)).

If Γ̃ is a rigidification of a adapted to (ρ, θρ), if α ∈ a and if σ ∈ WEab/F then

Γ̃σ = Γ̃σ,α = conjβ(σ−1)w(ρσ)
◦ conjeglob

α (σ−1) ◦ Γ̃ ◦ conjσ

is a rigidification of a adapted to (ρσ, conjσ−1 ◦ θρ). Indeed

Γ̃σ◦(conjσ−1◦θρ) = conjβ(σ−1)w(ρσ)
◦conjeglob

α (σ−1)◦ι
a
w(ρ)◦Θ̃v,ρ = ιaw(ρσ)◦conjeloc

α (σ−1)◦Θ̃v,ρ,

while conjeloc
α (σ−1)◦Θ̃v,ρ : W((ρσ)(E)Fv)ab/Fv

∼→ WEw(ρσ)/Fv ,α extends σ−1◦ρ−1 : ((ρσ)(E)Fv)
× ∼→

E×w(ρσ). We have

Γ̃σ,
γα = conjγloc(σ−1)−1

w(ρσ)
◦ Γ̃σ,α.

Note that

Γ̃σ1σ2,α = conjαloc(σ−1
1 ,σ−1

2 )w(ρσ1σ2)
◦ (Γ̃σ1,α)σ2,α.

By a Galois rigidification of a adapted to ρ we mean an isomorphism of extensions

(0) −→ Gal (Eab/E) −→ Gal (Eab/F ) −→ Gal (E/F ) −→ (0)
Art E ↑ o Γ ↓ o ||

(0) −→ A×E/(E×∞)0E× −→ WE/F,a/(E×∞)0E× −→ Gal (E/F ) −→ (0)

which lifts to a rigidification of a adapted to (ρ, θρ), for some, and hence any, θρ. Such
a Galois rigidification exists and it is unique up to composition with conjugation by
an element of (A×E/E×)Gal (E/F )w(ρ)E×w(ρ). If Γ is a Galois rigidification of a adapted to

ρ, then conjtw(ρ)
◦ Γ is a Galois rigidification of ta adapted to ρ. Moreover

Γσ,a = conjβ(σ−1)w(ρσ)
◦ conjeglob

α (σ−1) ◦ Γ ◦ conjσ

is a Galois rigidification of a adapted to ρσ.
We call two Galois rigidifications Γ and Γ′ both adapted to ρ equivalent if Γ′ =

conja ◦ Γ for some a ∈ E×w(ρ). If Γ ∼ Γ′, then conja ◦ Γ ∼ conja ◦ Γ′ and

Γσ,α ∼ (Γ′)σ,α ∼ (Γ′)σ,α
′

for α,α′ ∈ a. Thus if [Γ] is an equivalence class of Galois rigidifcations of a adapted
to ρ and t ∈ T2,E(AE), then

t[Γ] = [conjtw(ρ)
◦ Γ]

is a well defined equivalence class of Galois rigidifcations of ta adapted to ρ. Moreover
if σ ∈ Gal (Eab/F ), then

[Γ]σ = [Γσ,α]

is a well defined equivalence class of Galois rigidifcations of a adapted to ρσ. Moreover

t1t2 [Γ] = t1(t2 [Γ])
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and
[Γ]σ1σ2 = ([Γ]σ1)σ2 .

Lemma 6.1.
(t[Γ])σ = t([Γ]σ).

Proof:

(conjtw(ρ)
◦ Γ)σ = conjσ−1tw(ρ)

◦ conj(tβ)(σ−1)w(ρσ)/β(σ−1)w(ρσ)
◦ Γσ

= conj(σ−1t)w(ρσ)
◦ conj(t/σ−1(t))w(ρσ)

◦ Γσ

= conjtw(ρσ)
◦ Γσ.

�

By complete rigidification data for a we mean the choice for each place v of F and
each F -linear ρ : Eab → Fv an equivalence class [Γv,ρ] of Galois rigidifications of a
adapted to ρ, such that

• if σ ∈ Gal (Eab/F ) then [Γρσ] = [Γρ]
σ.

Note that it is equivalent to specify [Γv,ρv ] for one choice of F -linear embedding
ρv : Eab ↪→ F v for each place v of F .

Lemma 6.2. (1) Complete rigidification data for a exists.
(2) If t ∈ T2,E(AE) and if {[Γv,ρ]} is complete rigidification data for a, then
{t[Γv,ρ]} is complete rigidification data for ta.

(3) If {[Γv,ρ]} and {[Γ′v,ρ]} are complete rigidification data for a, then there exists
t ∈ T2,E(AF ) such that [Γ′v,ρ] = t[Γv,ρ] for all v and ρ.

Proof: The first two parts follow immediately from the above discussion. For the
third part choose for each place v of F an F -linear embedding ρv : Eab → Fv. Then
we can find tw(ρv) ∈ (A×E/E×)Gal (E/F )w(ρv) such that

[Γ′v,ρv ] = [conjtw(ρv)
◦ Γv,ρv ].

Define t ∈ T2,E(AF ) by
tσw(ρv) = σtw(ρv).

Then
[Γ′v,ρv ] = t[Γv,ρv ]

and so
[Γ′v,ρvσ] = [Γ′v,ρv ]

σ = (t[Γv,ρv ])
σ = t([Γv,ρv ]

σ) = t[Γv,ρvσ]

for all σ ∈ Gal (Eab/F ). The third part follows. �

We will write H(E/F )+ for the set of pairs (a, {[Γv,ρ]}), where a ∈ H(E/F ) and
{[Γv,ρ]} is complete rigidification data for a. It comes with a transitive action of
T2,E(AE) compatible with the action of T2,E(AE) on H(E/F ).

We may define Z(E/F )+ as the set of 4-tuples α+ = (αglob, αloc, β, [{Γv,ρ}]), where
α = (αglob, αloc, β) ∈ Z(E/F ) and where {[Γv,ρ]} is complete rigidification data for
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[α]. We call α+
1 and α+

2 equivalent if we can find (γglob, γloc) with α2 = (γglob,γloc)α1

and [Γ2,v,ρ] = [iγglob◦Γ1,v,ρ] for all v and ρ. ThenH(E/F )+ is just the set of equivalence
classes of elements of Z(E/F )+. The actions of T2,E(AE) on Z(E/F ) and H(E/F )+

lift to an action on Z(E/F )+.

If α0 ∈ Z(E/Q) and ρ0 : Ew(∞)
∼→ C are as described at the end of section 5.1,

then we will extend α0 to

α+
0 = (α0, {[Γv,ρ,0]}) ∈ Z(E/Q)+

where we choose Γ∞,ρ0,0 so that it has a lift Γ̃∞,ρ0,0 : WEab/Q
∼→ WE/Q,α0 with

Γ̃∞,ρ0,0 ◦ θρ0 = ια0

w(∞) ◦ Θ̃0.

6.2. Comparing correstrictions. In this section we will put ourselves in the fol-
lowing situation. E/F will be a finite Galois extension of number fields, v will be a
place of F , τ an element of Aut (Fv/F ). We will fix α = (αglob, αloc, β) ∈ Z(E/F )
and a lifting α+ = (αglob, αloc, β, {[Γv,ρ]}) ∈ Z(E/F )+ of α. Set a = [α] ∈ H(E/F )
and a+ = [α+] ∈ H(E/F )+. If ρ : Eab → Fv is F -linear we define

ga+,v,ρ(τ) =

((
locaΓ̃v,ρ(τ ρ)

)−1

eloc
α (τ ρ)

)
w(τρ)

∈ A×E,

where Γ̃v,ρ(τ ρ) is any lift of Γv,ρ(τ
ρ) to Eglob

a (E/F ). This element is not independent
of all choices, but its image

ga+,v,ρ(τ) ∈ A×E/(E×∞)0E×E×w(ρ)E
×
w(τρ)

is well defined.

Lemma 6.3. (1) ga+,v,ρσ(τ) = σ−1
ga+,v,ρ(τ)β(σ−1)w(ρσ)/β(σ−1)w(τρσ).

(2) ga+,v,τ2ρ(τ1) = (τρ2 )−1
ga+,v,ρ(τ1)β((τ ρ2 )−1)w(τ2ρ)/β((τ ρ2 )−1)w(τ1τ2ρ).

(3) ga+,v,ρ(τ1τ2) = ga+,v,τ2ρ(τ1)ga+,v,ρ(τ2) ∈ A×E/(E×∞)0E×E×w(ρ)E
×
w(τ2ρ)E

×
w(τ1τ2ρ).

(4) gta+,v,ρ(τ) = (tw(ρ)/tw(τρ))ga+,v,ρ(τ).

(5) If τ fixes the image ρ(E) then ga+,v,ρ(τ) = Art −1
E (τ ρ)−1.
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Proof: For the first part

ga+,v,ρσ(τ)

=

((
locα ˜Γv,ρσ(σ−1τ ρσ)

)−1

eloc
α (τ ρσ)

)
w(τρσ)

=

(
locα

˜(
β(σ−1)w(ρσ)e

glob
α (σ−1)Γv,ρ(τ ρ)e

glob
α (σ−1)−1β(σ−1)−1

w(ρσ)

)−1

eloc
α (τ ρσ)

)
w(τρσ)

=
(
β(σ−1)w(ρσ)β(σ−1)−1eloc

α (σ−1)(locαΓ̃v,ρ(τ ρ))
−1eloc

α (σ−1)−1β(σ−1)β(σ−1)−1
w(ρσ)e

loc
α (τ ρσ)

)
w(τρσ)

=
(
eloc
α (σ−1)(locαΓ̃v,ρ(τ ρ))

−1eloc
α (τ ρ)eloc

α (σ−1)−1
)
w(τρσ)(

β(σ−1)w(ρσ)β(σ−1)−1eloc
α (σ−1)eloc

α (τ ρ)−1eloc
α (σ−1)−1β(σ−1)β(σ−1)−1

w(ρσ)e
loc
α (σ−1τ ρσ)

)
w(τρσ)

= σ−1
ga+,v,ρ(τ)β(σ−1)w(ρσ)β(σ−1)−1

w(τρσ)(
σ−1(τρ)−1σβ(σ−1))w(τρσ)

σ−1(τρ)−1σ(β(σ−1)w(ρσ))
−1

= σ−1
ga+,v,ρ(τ)β(σ−1)w(ρσ)β(σ−1)−1

w(τρσ)
(τρσ)−1

(β(σ−1)w(ρσ)/β(σ−1)w(ρσ))

= σ−1
ga+,v,ρ(τ)β(σ−1)w(ρσ)β(σ−1)−1

w(τρσ).

The second part follows from the first.
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For the third part we have

ga+,v,τ2ρ(τ1)ga+,v,ρ(τ2)

=

((
locα ˜Γv,τ2ρ(τ

τ2ρ
1 )
)−1

eloc
α (τ τ2ρ1 )

)
w(τ1τ2ρ)

((
locαΓ̃v,ρ(τ

ρ
2 )
)−1

eloc
α (τ ρ2 )

)
w(τ2ρ)

=

(
locα

(
conjβ((τρ2 )−1)w(τ2ρ)

eglob
α ((τρ2 )−1)(Γ̃v,ρ(τ

ρ
1 ))
)−1

eloc
α (τ τ2ρ1 )

)
w(τ1τ2ρ)((

locαΓ̃v,ρ(τ
ρ
2 )
)−1

eloc
α (τ ρ2 )

)
w(τ1τ2ρ)

((τρ2 )−1
β(τ ρ2 ))w(τ2ρ)/(

(τρ2 )−1
β(τ ρ2 ))w(τ1τ2ρ)

=
((

conjβ((τρ2 )−1)w(τ2ρ)
β((τρ2 )−1)−1eloc

α ((τρ2 )−1)locα(Γ̃v,ρ(τ
ρ
1 ))−1

)
eloc
α (τ τ2ρ1 )

)
w(τ1τ2ρ)((

locαΓ̃v,ρ(τ
ρ
2 )
)−1

eloc
α (τ ρ2 )

)
w(τ1τ2ρ)

((τρ2 )−1
β(τ ρ2 ))w(τ2ρ)/(

(τρ2 )−1
β(τ ρ2 ))w(τ1τ2ρ)

=

(
β((τ ρ2 )−1)w(τ2ρ)β((τ ρ2 )−1)−1

(
locαΓ̃v,ρ(τ

ρ
2 )
)−1

eloc
α (τ ρ2 )eloc

α ((τ ρ2 )−1)locα(Γ̃v,ρ(τ
ρ
1 ))−1eloc

α (τ ρ1 τ
ρ
2 )

eloc
α (τ ρ1 τ

ρ
2 )−1eloc

α ((τ ρ2 )−1)−1β((τ ρ2 )−1)β((τ ρ2 )−1)−1
w(τ2ρ)e

loc
α (τ τ2ρ1 )

)
w(τ1τ2ρ)

((τρ2 )−1
β(τ ρ2 ))w(τ2ρ)/(

(τρ2 )−1
β(τ ρ2 ))w(τ1τ2ρ)

= β((τ ρ2 )−1)w(τ2ρ)β((τ ρ2 )−1)−1
w(τ1τ2ρ)(

(τρ2 )−1
αloc(τ ρ2 , (τ

ρ
2 )−1))w(τ1τ2ρ)ga+,v,ρ(τ1τ2)(

eloc
α (τ ρ1 τ

ρ
2 )−1eloc

α ((τ ρ2 )−1)−1β((τ ρ2 )−1)β((τ ρ2 )−1)−1
w(τ2ρ)e

loc
α ((τ ρ2 )−1τ ρ1 τ

ρ
2 )
)
w(τ1τ2ρ)

((τρ2 )−1
β(τ ρ2 ))w(τ2ρ)/(

(τρ2 )−1
β(τ ρ2 ))w(τ1τ2ρ)

= ga+,v,ρ(τ1τ2)(β((τ ρ2 )−1)(τρ2 )−1
β(τ ρ2 ))w(τ2ρ)(β((τ ρ2 )−1)(τρ2 )−1

β(τ ρ2 ))−1
w(τ1τ2ρ)(

(τρ2 )−1
αloc(τ ρ2 , (τ

ρ
2 )−1))w(τ1τ2ρ)

(τρ2 )−1(τρ1 )−1τρ2 (β((τ ρ2 )−1)w(τ1τ2ρ(τρ2 )−1(τρ1 )−1τρ2 )/β((τ ρ2 )−1)w(τ2ρ))(
(τρ2 )−1(τρ1 )−1τρ2αloc((τ ρ2 )−1, τ ρ1 τ

ρ
2 ))−1

w(τ1τ2ρ)

= ga+,v,ρ(τ1τ2)(πw(τ2ρ)/πw(τ1τ2ρ))(α
loc((τ ρ2 )−1, τ ρ2 )β(1)/αglob((τ ρ2 )−1, τ ρ2 ))

((τρ2 )−1
αloc(τ ρ2 , (τ

ρ
2 )−1))w(τ1τ2ρ)(

(τρ2 )−1(τρ1 )−1τρ2αloc((τ ρ2 )−1, τ ρ1 τ
ρ
2 ))−1

w(τ1τ2ρ)

= ga+,v,ρ(τ1τ2)(πw(τ2ρ)/πw(τ1τ2ρ))(α
loc((τ ρ2 )−1, τ ρ2 )αloc(1, 1)/αglob((τ ρ2 )−1, τ ρ2 )αglob(1, 1))

= ga+,v,ρ(τ1τ2)πw(τ2ρ)(α
loc((τ ρ2 )−1, τ ρ2 )αloc(1, 1)).

For the fourth part we have

gta+,v,ρ(τ)

=

((
loctαΓ̃v,ρ(τ ρ)

)−1

eloc
tα(τ ρ)

)
w(τρ)

=

((
(t−1(locαtw(ρ)Γ̃v,ρ(τ ρ)t

−1
w(ρ))t

)−1

eloc
α (τ ρ)

)
w(τρ)

=

(
(((τρ)−1

(t−1
w(ρ)t))/(t

−1
w(ρ)t))

(
locαΓ̃v,ρ(τ ρ)

)−1

eloc
α (τ ρ)

)
w(τρ)

= (((τρ)−1
(t−1
w(ρ)tw(ρ)))/(t

−1
w(ρ)tw(τρ)))ga+,v,ρ(τ).

For the fifth part we have

ga+,v,ρ(τ) = Art −1
E (τ ρ)−1αloc(1, 1)w(ρ) = Art −1

E (τ ρ)−1.
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�

Now suppose further that T/F is a torus which splits over E and that µ a cochar-
acter of T defined over Fv.

If ρ : E ↪→ Fv is F -linear then we saw in lemma 5.7 how to find an element
bρ ∈ T (AE) with

locacor αglob(ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)) = bρcor αloc(ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)).

However it turns out that the choice of the extension α+ allows us to choose bρ more
canonically, so that it is largely independent of the choice of ρ. That is what we will
explain next.

Define

bα+,v,µ,τ,ρ =
∏

η∈Gal (E/F )

η−1(ρ
−1

µ)((β(η)w(τρ)/β(η)w(ρ))ga+,v,ρ(τ)) ∈ T (AE)/T (F )T (F∞)0T (Fv).

Also write ba+,v,µ,τ for its image in T (AE)/T (F )T (F∞)0T (E)T (Ev), which is indepen-
dent of the representative α+ of a+ which one chooses.

Lemma 6.4. (1)

locαcor αglob(ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)) = bα+,v,µ,τ,ρcor αloc(ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)).

(2) ba+,v,µ,τ does not depend on the choice of F -linear ρ : Eab ↪→ F v used in its
definition. (And hence justifying the notation.)

(3) If τ fixes the image ρ(E) (this being independent of the choice of ρ), then

ba+,v,µ,τ =
∏

ρ:E↪→Fv

(ρ
−1

µ)(Art −1
E τ ρ̃)−1,

where ρ runs over F -linear embeddings E ↪→ Fv and where ρ̃ is any extension
of ρ to Eab.

(4) ba+,v,µ,τ1τ2 = ba+,v,τ2µ,τ1ba+,v,µ,τ2.
(5) If σ ∈ Gal (E/F ), then

σba+,v,µ,τ = ba+,v,µ,τ

∏
ρ

(ρ
−1

(τµ/µ))(β(σ)w(ρ))

where ρ runs over F -linear embeddings ρ : E ↪→ Fv.
(6) If χ : T → T ′ over F , then ba+,v,χ◦µ,τ = χ(ba+,v,µ,τ ).
(7) If t ∈ T2,E(AE), then

bta+,v,µ,τ = ba+,v,µ,τ

∏
ρ(
ρ−1
µ) ◦ (πw(ρ)/πw(τρ))(t)

= ba+,v,µ,τ

∏
ρ(
ρ−1

(µ/τµ))(tw(ρ))

where ρ runs over F -linear embeddings ρ : E ↪→ Fv.
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Proof: The first part follows immediately from lemma 5.7 because∏
η∈Gal (E/F )

η−1(ga+,v,ρ(τ)) ∈ T (AF ).

For the second part, if σ ∈ Gal (Eab/F ) then

bα+,v,µ,τ,ρ◦σ
=

∏
η∈Gal (E/F ) η

−1σ−1(ρ
−1
µ)
(
σ(β(η)w(τρσ)/β(η)w(ρσ))

σga+,v,ρσ(τ)
)

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)
(
(σβ(σ−1η)w(τρσ)/

σβ(σ−1η)w(ρσ))ga+,v,ρ(τ)σ(β(σ−1)w(ρσ)/β(σ−1)w(τρσ))
)

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)
(

(πτρ/πρ)(
σ(αglob(σ−1, η)β(σ−1)σ

−1
β(η)/αloc(σ−1, η)))

(πρ/πτρ)(
σβ(σ−1))ga+,v,ρ

)
= bα+,v,µ,τ,ρ

∏
η∈Gal (E/F ) η

−1(ρ
−1
µ)
(
(πτρ/πρ)(

σαglob(σ−1, η)/σαloc(σ−1, η))
)

∈ bα+,v,µ,τ,ρT (E)T (Ev),

as desired.
For the third part note that

ba+,v,µ,τ =
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)((β(η)w(ρ)/β(η)w(ρ))Art −1

E (τ ρ)−1)

=
∏

η∈Gal (E/F )(
η−1ρ−1

µ)(η−1Art −1
E (τ ρ)−1)

=
∏

η∈Gal (E/F )(
(ρη)−1

µ)(Art −1
E (τ ρη)−1).

For the fourth part note that

ba+,v,µ,τ1τ2

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)((β(η)w(τ1τ2ρ)/β(η)w(ρ))ga+,v,ρ(τ1τ2))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)((β(η)w(τ1τ2ρ)/β(η)w(τ2ρ))ga+,v,τ2ρ(τ1)(β(η)w(τ2ρ)/β(η)w(ρ))ga+,v,ρ(τ2))

= ba+,v,µ,τ2

∏
η∈Gal (E/F ) η

−1((τ2ρ)−1τ2µ)((β(η)w(τ1τ2ρ)/β(η)w(τ2ρ))ga+,v,τ2ρ(τ1))

= ba+,v,µ,τ2ba+,v,τ2µ,τ1 .

For the fifth part we have

σba+,v,µ,τ/ba+,v,µ,τ

=
∏

η∈Gal (E/F ) ση
−1(ρ

−1
µ)(β(η)w(τρ)/β(η)w(ρ))/

∏
η∈Gal (E/F ) η

−1(ρ
−1
µ)(β(η)w(τρ)/β(η)w(ρ))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)(β(ησ)w(τρ)/β(ησ)w(ρ))/

∏
η∈Gal (E/F ) η

−1(ρ
−1
µ)(β(η)w(τρ)/β(η)w(ρ))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)(β(ησ)w(τρ)β(η)w(ρ)

ηβ(σ)w(ρη)/β(η)w(τρ)
ηβ(σ)w(τρη)β(ησ)w(ρ))∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)η(β(σ)w(τρη)/β(σ)w(ρη))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)(αglob(η, σ)αloc(η, σ)w(ρ)/α

loc(η, σ)w(τρ)α
glob(η, σ))∏

ρ(
ρ−1
µ)(β(σ)w(τρ)/β(σ)w(ρ))

=
∏

ρ(
ρ−1
µ)(β(σ)w(τρ))/

∏
ρ(
ρ−1
µ)(β(σ)w(ρ))

=
∏

ρ(
ρ−1τµ)(β(σ)w(ρ))/

∏
ρ(
ρ−1
µ)(β(σ)w(ρ))

=
∏

ρ(
ρ−1

(τµ/µ))(β(σ)w(ρ)).
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The sixth part is clear. For the seventh we have

bta+,v,µ,τ/ba+,v,µ,τ

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)((t/ηt)w(τρ)(

ηt/t)w(ρ)(tw(ρ)/tw(τρ)))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)((tw(τρ)/

ηtw(τρη))(
ηtw(ρη)/tw(ρ))(tw(ρ)/tw(τρ)))

=
∏

η∈Gal (E/F ) η
−1(ρ

−1
µ)η(tw(ρη)/tw(τρη))

=
∏

ρ(
ρ−1
µ)(tw(ρ)/tw(τρ))

=
∏

ρ(
ρ−1
µ)(tw(ρ))/

∏
ρ(
ρ−1
µ)(tw(τρ))

=
∏

ρ(
ρ−1
µ)(tw(ρ))/

∏
ρ(
ρ−1τµ)(tw(ρ))

=
∏

ρ(
ρ−1

(µ/τµ))(tw(ρ)).

�

Finally consider the case F = Q and v =∞. We will write

φα,∞,µ,τ,ρ = cor αglob(ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)) ∈ φT,m{µ},τ ⊂ Z1
alg(E3(E/Q), T (E)),

so that

res∞locaφα,∞,µ,τ,ρ = bα+,∞,µ,τ,ρ1.

We can calculate the element b[α+
0 ],∞,µ,τ (with the notation of the end of sections 5.1

and 6.1). We have:

b[α+
0,ϕ],∞,µ,τ

=
∏

η∈Gal (E/Q) η
−1(ρ

−1
0 µ)((β(η)w(τρ0)/β(η)w(ρ0))((locα0Γ∞,ρ0,0(τ ρ0))−1eloc

α0
(τ ρ0))w(τρ0))

=
∏

η∈Gal (E/Q) η
−1(ρ

−1
0 µ)((β(η)w(τρ0)/β(η)w(ρ0))(Γ∞,ρ0,0(τ ρ0)−1β(τ ρ0)eglob

α0
(τ ρ0))w(τρ0))

=
∏

η∈Gal (E/Q) η
−1(ρ

−1
0 µ)((Γ∞,ρ0,0(τ ρ0)−1eglob

α0
(τ ρ0))τ

ρ0,−1
(β(τ ρ0)w(ρ0))β(η)w(τρ0)/β(η)w(ρ0))

=
∏

η∈Gal (E/Q) η
−1(ρ

−1
0 µ)((Γ∞,ρ0,0(τ ρ0)−1eglob

α0
(τ ρ0))τ

ρ0,−1
α(τ ρ0 , τ ρ0,−1)−1α(η, η−1τ ρ0,−1)−1α(η, η−1))

=
∏

η∈Gal (E/Q) η
−1(ρ

−1
0 µ)(Γ∞,ρ0,0(τ ρ0)−1eglob

α0
(τ ρ0)eglob

α0
(τ ρ0)−1(eglob

α0
(τ ρ0,−1)−1eglob

α0
(τ ρ0)−1)eglob

α0
(τ ρ0)

(eglob
α0

(τ ρ0,−1)eglob
α0

(η−1τ ρ0,−1)−1eglob
α0

(η)−1)(eglob
α0

(η)eglob
α0

(η−1)))

=
∏

η∈Gal (E/Q) η(ρ
−1
µ)(Γ∞,ρ0,0(τ ρ)−1eglob(η(τ ρ)−1)−1eglob(η)).

6.3. Change of field. Again in order to compare H(E/F )+ with H(D/F )+ it will
be convenient to to describe an intermediate theory. So suppose that D ⊃ E ⊃ F
are finite Galois extensions of a number field F , and that a ∈ H(E/F )D.

Suppose that v is a place of F . We will write RD,E,F,v for the set of pairs (ρ′, ρ),
where ρ′ : Eab → Fv and ρ : D → Fv are F -linear maps with ρ′|E = ρ|E. We will
write w(ρ′), (resp. u(ρ′), resp. u(ρ)) for the place of E (resp. Eab, resp. D) induced
by ρ′ (resp. ρ′, resp. ρ). We have a morphism

θ(ρ′,ρ) : W(ρ(E)Fv)ab/Fv ,ρ,D −→ WEab/F,D
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well defined up to ∆E-conjugation. (See section 2.8.) By a rigidification of a adapted
to θ(ρ′,ρ) we shall mean an isomorphism of extensions

(0) −→ A×D/D× −→ WEab/F,D −→ Gal (D/F ) −→ (0)

|| Γ̃ ↓ o ||
(0) −→ A×D/D× −→ WE/F,D,α −→ Gal (D/F ) −→ (0)

such that there exists an isomorphism of extensions

(0) −→ D×w(ρ) −→ W(ρ(E)Fv)ab/Fv ,ρ,D −→ Gal (D/F )w(ρ) −→ (0)

|| Θ̃v,(ρ′,ρ) ↓ o ||
(0) −→ D×w(ρ) −→ WEw(ρ)/Fv ,D,α −→ Gal (D/F )w(ρ) −→ (0),

(such an isomorphism being unique up to composition with conjugation by an element
of D×w(ρ)) with

Γ̃ ◦ θ(ρ′,ρ) = ιaw(ρ′) ◦ Θ̃v,(ρ′,ρ).

As above, such a rigidification adapted to θ(ρ′,ρ) exists. (The main point being that
any two such maps W(ρ(E)Fv)ab/Fv ,ρ,D → WE/F,D,a of extensions must differ by an

element of Z1(Gal (D/F )w(ρ),A×D/D×) and hence by conjugation by an element of

A×D/D×. Altering an initial choice of Γ̃ by such a conjugation, we get a Γ̃ adapted to
θ(ρ′,ρ).) Moreover a rigidification adapted to θ(ρ′,ρ) is unique up to composition with
conjugation by an element of

(A×D/D
×)Gal (D/F )w(ρ)D×w(ρ).

Note that if Γ̃ is adapted to θ(ρ′,ρ) and if a ∈ ∆E, then conja ◦ Γ̃ is adapted to

conja ◦ θ(ρ′,ρ). If Γ̃ is a rigidification of a adapted to θ(ρ′,ρ) then

conjtw(ρ)
◦ Γ̃

is a rigidification of ta adapted to θ(ρ′,ρ) (because

ι
ta
w(ρ) = conjtw(ρ)

◦ ιaw(ρ)).

If Γ̃ is a rigidification of a adapted to θ(ρ′,ρ), if α ∈ a and if σ ∈ Gal (Eab/F )|Gal (D/F )

then

Γ̃σ = Γ̃σ,α = conjβ(σ−1)w(ρσ)
◦ conjeglob(σ−1) ◦ Γ̃ ◦ conjσ

is rigidification data adapted to conjσ−1 ◦ θ(ρ′,ρ) (which is a possible choice of θ(ρ′,ρ)◦σ).
Indeed

Γ̃σ◦(conjσ−1◦θ(ρ′,ρ)) = conjβ(σ−1)w(ρσ)
◦conjeglob

α (σ−1)◦ι
a
w(ρ)◦Θ̃v,(ρ′,ρ) = ιaw(ρσ)◦conjeloc

α (σ−1)◦Θ̃v,(ρ′,ρ),

while conjeloc
α (σ−1) ◦ Θ̃v,(ρ′,ρ) : W((ρσ)(E)Fv)ab/Fv ,ρ,D

∼→ WEw(ρσ)/Fv ,D,α. Note that

Γ̃σ,
γα = conjγloc(σ−1)−1

w(ρσ)
◦ Γ̃σ,α
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and
Γ̃σ1σ2,α = conjαloc(σ−1

1 ,σ−1
2 )w(ρσ1σ2)

◦ (Γ̃σ1,α)σ2,α.

Suppose that Γ̃ : WEab/F → WE/F,a is rigidification of a ∈ H(E/F ) adapted to
θρ′ : W(ρ′(E)Fv)ab/Fv → WEab/F . Recall that θ(ρ′,ρ) : W(ρ′(E)Fv)ab/Fv ,ρ,D → WEab/F,D is
defined as 1× (θρ′ × 1). We define

Γ̃D : WE/F,D = (A×D/D
×oWEab/F |Gal (D/F ))/A×E

∼−→WE/F,D,infD/E a = (A×D/D
×oWEab/E,a|Gal (D/F ))/(A×E/E

×)

by

(a, (σ, τ)) 7−→ (a, (Γ̃(σ), τ)).

If Θ̃v,ρ′ : W(ρ′(E)Fv)ab/Fv

∼→ WEw(ρ′)/Fv ,a
with

Γ̃ ◦ θρ′ = ιaw(ρ′) ◦ Θ̃v,ρ′ ,

then we have
Γ̃D ◦ θ(ρ′,ρ) = ι

infD/E a

w(ρ′) ◦ Θ̃D
v,(ρ′,ρ),

where Θ̃D
v,(ρ′,ρ) is the map

W(ρ′(E)Fv)ab/Fv ,ρ,D
∼−→ WEw(ρ′)/Fv ,D,infD/E a

|| ||
(D×w(ρ′) oW(ρ′(E)Fv)ab/Fv |Gal (D/F )w(ρ′)

)/E×w(ρ′)

∼−→ (D×w(ρ′) oWEw(ρ′)/Fv ,a
|Gal (D/F )w(ρ′)

)/E×w(ρ′)

(a, (σ, τ)) 7−→ (a, (Θ̃v,ρ(σ), τ)).

Thus Γ̃D is a rigidification of infD/E a adapted to θ(ρ′,ρ). Note that

Γ̃D,(σ
′,σ),infD/E α = Γ̃σ

′,α,D

and
(conjtw(ρ′)

◦ Γ̃)D = conjtw(ρ′)
◦ Γ̃D.

Suppose now that Γ̃ : WDab/F → WD/F,a is rigidification data for a ∈ H(D/F )

adapted to θρ̃ : W(ρ̃(D)Fv)ab/Fv → WDab/F . If α ∈ a we define Γ̃E,ρ̃,α : WEab/F,D →
WE/F,D,ηD/E,∗a to be the map

Γ̃E,ρ̃,α : (A×D/D× oWDab/F )/A×D −→ (A×D/D× oWD/F,a)/A×D
[(a, σ)] 7−→ conj∏

η∈Gal (D/E) β(η)ηu [(aγα,E(Γ̃(σ)), Γ̃(σ))],

where

γα,E : WD/F,α −→ A×D/D×
aeglob(σ) 7−→ (ND/E(a)/a[D:E])

∏
η∈Gal (D/E) α

glob(η, σ)/αglob(σ, η)

=
∏

η∈Gal (D/E))e
glob
α (η)(aeglob

α (σ))eglob
α (ησ)−1)/((aeglob

α (σ))eglob
α (η)eglob

α (ση)−1).

This is well defined because, if a ∈ A×D/D×, then

γα,E(a) = (ND/E(aαglob(1, 1)−1)/(aαglob(1, 1)−1)[D:E])
∏

η∈Gal (D/E) α
glob(η, 1)/αglob(1, η)

= ND/E(a)/a[D:E].
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(Note that on the left hand side of the definition of Γ̃E,ρ̃,α the map A×D → A×D/D× o
WDab/F sends a to ((ND/Ea)−1, rD(a)); while on the right hand side the map A×D →
A×D/D× oWD/F,α sends a to (a−[D:E], a).) It is a homomorphism because

γα,E(a1e
glob
α (σ1)a2e

glob
α (σ2))

= γα,E(a1
σ1a2α

glob(σ1, σ2)eglob
α (σ1σ2))

= (ND/E(a1
σ1a2)/(a1

σ1a2)[D:E])
∏

η∈Gal (D/E)
ηαglob(σ1, σ2)αglob(η, σ1σ2)/αglob(σ1, σ2)αglob(σ1σ2, η)

= (ND/E(a1
σ1a2)/(a1

σ1a2)[D:E])
∏

η∈Gal (D/E) α
glob(ησ1, σ2)αglob(η, σ1)/σ1αglob(σ2, η)αglob(σ1, σ2η)

= (ND/E(a1
σ1a2)/(a1

σ1a2)[D:E])
∏

η∈Gal (D/E) α
glob(σ1η, σ2)αglob(η, σ1)/σ1αglob(σ2, η)αglob(σ1, ησ2)

= (ND/E(a1)σ1ND/E(a2))/(a1
σ1a2)[D:E])

∏
η∈Gal (D/E)

σ1αglob(η, σ2)αglob(η, σ1)/σ1αglob(σ2, η)αglob(σ1, η)

= γα,E(a1e
glob
α (σ1))σ1γα,E(a2e

glob
α (σ2)).

Also note that

γγα,E(iγglob(σ)) = γα,E(σ)(σ−1)
∏

η∈Gal (D/E)

γglob(η)

and

γtα,E = γα,E

and

γα,E(conja(σ)) = (ND/E(a/σa)/(a/σa)[D:E])γα,E(σ)

for a ∈ A×D/D×, and

σγE,α(τ) = γE,α(eglob
α (σ))−1γE,α(eglob

α (σ)τ)

= γE,α(eglob
α (σ))−1γE,α(eglob

α (σ)τeglob
α (σ)−1)στσ

−1
γE,α(eglob

α (σ))

= (στσ−1−1)γE,α(eglob
α (σ))γE,α(eglob

α (σ)τeglob
α (σ)−1).

Lemma 6.5. Suppose that Γ̃ : WDab/F → WD/F,a is rigidification data for a ∈
H(D/F ) adapted to θρ̃ : W(ρ̃(D)Fv)ab/Fv → WDab/F , and that α ∈ a. Then Γ̃E,ρ̃,α

is rigidification data for ηD/E,∗a adapted to θ(ρ̃,ρ̃).

Proof: Suppose that Θ̃ : W(ρ̃(D)Fv)ab/Fv

∼→ WDu(ρ̃)/Fv ,a is an isomorphism of exten-

sions such that ιau(ρ̃) ◦ Θ̃ = Γ̃ ◦ θρ̃. Then we define an isomorphism

Θ̃E : W(ρ̃(E)Fv)ab/Fv ,ρ̃|D,D
∼−→ WEw(ρ̃)/Fv ,D,ηD/E,∗a

to be the map

((D×w(ρ̃) o Gal (D/E)) oW(ρ̃(D)Fv)ab/Fv )/W(ρ̃(D)Fv)ab/(ρ̃(E)Fv) −→ ((D×w(ρ̃) o Gal (D/E)) oWDu(ρ̃)/Fv,α)/(WDu(ρ̃)/Fv,α|Gal (Du(ρ̃)/Ew(ρ̃)))

[((a, σ), τ)] 7−→ [((a, σ), Θ̃(τ))].

It will suffice to show the equality of maps

Γ̃E,ρ̃ ◦ θ(ρ̃,ρ̃) = ι
ηD/E,∗a

w(ρ̃) ◦ Θ̃E : W(ρ̃(E)Fv)ab/Fv ,ρ̃|D,D −→ WE/F,D,ηD/E,∗a,
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which we will realize more concretely as maps

((D×w(ρ̃)oGal (D/E))oW(ρ̃(D)Fv)ab/Fv)/W(ρ̃(D)Fv)ab/(ρ̃(E)Fv) −→ (A×D/D
×oWD/F,α)/(A×D/.D

×).

The first map, Γ̃E,ρ̃ ◦ θ(ρ̃,ρ̃), sends a ∈ D×w(ρ̃) to [(a, 1)]. It sends σ ∈ Gal (D/E) first to

[(r−1
D (trW ab

Dab/E
/W ab

Dab/D
σ̃)−1, σ̃)] ∈ (A×D/D

× oWDab/F )/(A×D/D
×)

and then to

conj∏
η∈Gal (D/E) β(η)ηu [((

∏
η∈Gal (D/E) e

glob
α (η)Γ̃(σ̃)eglob

α (ησ)−1)−1∏
η∈Gal (D/E)(e

glob
α (η)Γ̃(σ̃)eglob

α (ησ)−1)/(Γ̃(σ̃)eglob
α (η)eglob

α (ση)−1), Γ̃(σ̃))]

= conj∏
η∈Gal (D/E) β(η)ηu [((

∏
η∈Gal (D/E) Γ̃(σ̃)eglob

α (η)eglob
α (ση)−1)−1, Γ̃(σ̃))]

∈ (A×D/D× oWD/F,α)/(A×D/D×),

where σ̃ ∈ WDab/E is any lift of σ. It also sends τ ∈ W(ρ(D)Fv)ab/Fv to

conj∏
η∈Gal (D/E) β(η)ηu [(

∏
η∈Gal (D/E)(e

glob
α (η)(Γ̃ ◦ θρ̃)(τ)eglob

α (ητ)−1)/

((Γ̃ ◦ θρ̃)(τ)eglob
α (η)eglob

α (τη)−1), (Γ̃ ◦ θρ̃)(τ))] ∈ (A×D/D× oWD/F,a)/(A×D/D×).

On the other hand, using lemma 5.5, the second map sends a ∈ D×w(ρ̃) to [(a, 1)].

It sends σ ∈ Gal (D/E) to

conj∏
η∈Gal (D/E) β(η)ηu [((

∏
η∈Gal (D/E) σ̃e

glob
α (η)eglob

α (ση)−1)−1, σ̃)]

∈ (A×D/D× oWD/F,a)/(A×D/D×),

where σ̃ ∈ WD/E,a is any lift of σ. It also sends τ ∈ W(ρ(D)Fv)ab/Fv to

conj∏
η∈Gal (D/E) β(η)ηu [(

∏
η∈Gal (D/E)(e

glob
α (η)((ιau(ρ̃) ◦ Θ̃)(τ)eglob

α (ητ)−1)/

((ιau(ρ̃) ◦ Θ̃)(τ)eglob
α (η)eglob

α (τη)−1), (ιau(ρ̃) ◦ Θ̃)(τ))] ∈ (A×D/D× oWD/F,a)/(A×D/D×).

The lemma follows. �

It is straightforward to verify that

(iγglob ◦ Γ̃)E,ρ̃,
γα = conj∏

η∈Gal (D/E) γ
loc(η)−1

ηu(ρ̃)
◦ iηD/E◦γglob ◦ Γ̃E,ρ̃,α

and

(conjtu(ρ̃)
◦ Γ̃)E,ρ̃,

tα = conjηD/E(t)w(ρ̃)
◦ Γ̃E,ρ̃,α.
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If σ ∈ Gal (Dab/F ), then we have that

(Γ̃σ,α)E,ρ̃σ,α(a, τ)

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃σ)

(aγα,E(Γ̃σ,α(τ)), Γ̃σ,α(τ))

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃σ)

(aγα,E((1−τ)β(σ−1)u(ρ̃σ)conjeglob
α (σ−1)(Γ̃(conjσ(τ)))),

(1−τ)β(σ−1)u(ρ̃σ)conjeglob
α (σ−1)(Γ̃(conjσ(τ))))

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃σ)

(a(1−τ)(ND/Eβ(σ−1)u(ρ̃σ)/β(σ−1)
[D:E]
u(ρ̃σ))

γα,E(conjeglob
α (σ−1)(Γ̃(conjσ(τ))))(1−τ)β(σ−1)

[D:E]
u(ρ̃σ), conjeglob

α (σ−1)(Γ̃(conjσ(τ))))

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃σ)

conjND/Eβ(σ−1)u(ρ̃σ)
(aγα,E(conjeglob

α (σ−1)(Γ̃(conjσ(τ)))),

conjeglob
α (σ−1)(Γ̃(conjσ(τ)))).

On the other hand we have

(Γ̃E,ρ̃,α)(σ|
Eab ,σ|D),ηD/E,∗α(a, τ)

= conj(ηD/E◦β)(σ−1)w(ρ̃σ)
◦ conjeglob

α (σ−1)(Γ̃
E,ρ̃,α(σa, conjσ(τ)))

= conj(ηD/E◦β)(σ−1)w(ρ̃σ)
◦ conjeglob

α (σ−1) ◦ conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

(σaγα,E(Γ̃(conjσ(τ))), Γ̃(conjσ(τ)))

= conj(ηD/E◦β)(σ−1)w(ρ̃σ)
◦ conjσ−1 ∏

η∈Gal (D/E) β(η)ηu(ρ̃)
(aσ

−1
γα,E(Γ̃(conjσ(τ))),

conjeglob
α (σ−1)(Γ̃(conjσ(τ))))

= conj(ηD/E◦β)(σ−1)w(ρ̃σ)
◦ conjσ−1 ∏

η∈Gal (D/E) β(η)ηu(ρ̃)
(a(τ−1)γE,α(eglob

α (σ−1))

γE,α(eglob
α (σ−1)Γ̃(conjσ(τ))eglob

α (σ−1)−1), conjeglob
α (σ−1)(Γ̃(conjσ(τ))))

= conj(ηD/E◦β)(σ−1)w(ρ̃σ)
◦ conjσ−1 ∏

η∈Gal (D/E) β(η)ηu(ρ̃)
◦ conj−1

γE,α(eglob
α (σ−1))

(aγE,α(conjeglob
α (σ−1)(Γ̃(conjσ(τ)))), conjeglob

α (σ−1)(Γ̃(conjσ(τ))))

= conjA((Γ̃σ,α)E,ρ̃σ,α(a, τ)),

where

A

=
∏

η∈Gal (D/E) β(σ−1)ηu(ρ̃σ)
σ−1

β(η)ηu(ρ̃)(α
glob(σ−1, η)/αglob(η, σ−1))β(η)−1

ηu(ρ̃σ)
ηβ(σ−1)−1

u(ρ̃σ)

=
∏

η∈Gal (D/E) β(σ−1)ησ−1u(ρ̃)(
σ−1

β(η))σ−1ηu(ρ̃)(α
glob(σ−1, η)/αglob(η, σ−1))β(η)−1

ηu(ρ̃σ)
ηβ(σ−1)−1

u(ρ̃σ)

=
∏

η∈Gal (D/E)(β(σ−1)σ
−1
β(η)β(σ−1η)−1αglob(σ−1, η))σ−1ηu(ρ̃)β(σ−1η)σ−1ηu(ρ̃)/

((αglob(η, σ−1)β(η)ηβ(σ−1)β(ησ−1)−1)ηu(ρ̃σ)β(ησ−1)ηu(ρ̃σ))
=

∏
η∈Gal (D/E) α

loc(σ−1, η)σ−1ηu(ρ̃)/α
loc(η, σ−1)ηu(ρ̃σ).

Thus we have shown that

(Γ̃E,ρ̃,α)(σ|
Eab ,σ|D),ηD/E,∗α = conj∏

η∈Gal (D/E) α
loc(σ−1,η)σ−1ηu(ρ̃)/α

loc(η,σ−1)ηu(ρ̃σ)
◦ (Γ̃σ,α)E,ρ̃σ,α.
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By a Galois rigidification of a adapted to (ρ′, ρ) we mean an isomorphism of ex-
tensions

(0) −→ Gal (Dab/D) −→ Gal (Eab/F )D −→ Gal (D/F ) −→ (0)
ArtD ↑ o Γ ↓ o ||

(0) −→ A×D/(D×∞)0D× −→ WE/F,D,a/(D×∞)0D× −→ Gal (D/F ) −→ (0)

which lifts to a rigidification of a adapted to θ(ρ′,ρ), for some θ(ρ′,ρ). Such a Galois
rigidification exists and it is unique up to composition with conjugation by an element
of rD((A×D/D×)Gal (D/F )w(ρ)D×w(ρ)). If Γ is a Galois rigidification of a adapted to ρ, then

conjtw(ρ)
◦Γ is a Galois rigidification of ta adapted to ρ. Moreover, if σ ∈ Gal (Eab/F )D

then
Γσ = Γσ,α = conj(β(σ−1)w(ρσ))

◦ conjeglob
α (σ−1) ◦ Γ ◦ conjσ

is Galois rigidification of a adapted to ρσ.
We call two Galois rigidifications Γ and Γ′ of a both adapted to ρ equivalent if

Γ′ = conja ◦ Γ for some a ∈ D×w(ρ). If Γ ∼ Γ′, then conja ◦ Γ ∼ conja ◦ Γ′ and

Γσ,α ∼ (Γ′)σ,α ∼ (Γ′)σ,α
′

if α,α′ ∈ a. Thus if [Γ] is an equivalence class of Galois rigidifications of a adapted
to (ρ′, ρ) and t ∈ T2,E(AD), then

t[Γ] = [conjtw(ρ)
◦ Γ]

is a well defined equivalence class of Galois rigidifications of ta adapted to (ρ′, ρ).
Moreover if σ ∈ Gal (Eab/F )|Gal (D/F ), then

[Γ]σ = [Γσ,α]

is a well defined equivalence class of Galois rigidifications of a adapted to (ρ′, ρ)σ.
Moreover

t1t2 [Γ] = t1(t2 [Γ])

and
[Γ]σ1σ2 = ([Γ]σ1)σ2

and
(t[Γ])σ = t([Γ]σ).

The latter is proved in the same way as lemma 6.1.
If Γ is a Galois rigidification of a ∈ H(E/F ) adapted to ρ′, then we obtain Galois

rigidification data ΓD for infD/E a adapted to (ρ′, ρ). If Γ ∼ Γ′, then ΓD ∼ (Γ′)D.
Thus to an equivalence class [Γ] we may associate an equivalence class

[Γ]D = [ΓD].

(t[Γ])D = t([Γ]D)

and
([Γ]D)(σ′,σ) = ([Γ]σ

′
)D.
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If Γ is a Galois rigidification of a ∈ H(D/F ) adapted to ρ̃, then we get a Galois
rigidification ΓE,ρ̃,α of ηD/E,∗a adapted to (ρ̃, ρ̃). If Γ ∼ Γ′, then

ΓE,ρ̃,α ∼ (Γ′)E,ρ̃,α ∼ (Γ′)E,ρ̃,α

if α,α′ ∈ a. Thus we can define

[Γ]E,ρ̃ = [ΓE,ρ̃,α].

We have
(t[Γ])E,ρ̃ = ηD/E(t)([Γ]E,ρ̃)

and
([Γ]E,ρ̃)(σ̃,σ̃) = ([Γ]σ̃)E,ρ̃σ̃.

By complete rigidification data for a we mean the choice for each place v of F
and each (ρ′, ρ) ∈ RD,E,F,v an equivalence class [Γ(ρ′,ρ)] of Galois rigidifications of a
adapted to (ρ′, ρ), such that

• if σ ∈ Gal (Eab/F )|Gal (D/F ) then [Γv,(ρ′,ρ)σ] = [Γv,(ρ′,ρ)]
σ.

Note that it suffices to prescribe [Γv,(ρ′,ρ)] for one (ρ′, ρ) in RD,E,F,v for each v. Such a
choice extends uniquely to complete rigidification data by the above formula. (That
such an extension indeed defines complete rigidification data follows because [Γ]σ1σ2 =
([Γ]σ1)σ2 .) Note that in particular complete rigidification exists for α.

Lemma 6.6. (1) If t ∈ T2,E(AD) and if {[Γv,(ρ′,ρ)]} is complete rigidification data
for a, then {t[Γv,(ρ′,ρ)]} is complete rigidification data for ta.

(2) If {[Γv,(ρ′,ρ)]} and {[Γ′v,(ρ′,ρ)]} are complete rigidification data for a, then there

exists t ∈ T2,E(AF ) such that [Γ′v,(ρ′,ρ)] = t[Γv,(ρ′,ρ)] for all v and (ρ′, ρ).

Proof: The first part is clear. For the second part choose for each place v of F a
pair (ρ′v, ρv) ∈ RD,E,F,v. Then we can find tv ∈ (A×D/D×)Gal (D/F )w(ρ′v) such that

Γ′v,(ρ′v ,ρv) ∼ conjtv ◦ Γv,(ρ′v ,ρv).

Define t ∈ T2,E(AF ) by
tσw(ρ′v) = σtw(ρ′v).

Then
[Γ′v,(ρ′v ,ρv)σ] = (t[Γv,(ρ′v ,ρv)])

σ

= t([Γv,(ρ′v ,ρv)]
σ)

= t[Γv,(ρ′v ,ρv)σ].

�

We will write H(E/F )+
D for the set of pairs (a, {[Γv,(ρ′,ρ)]}), where a ∈ H(E/F )D

and {[Γv,(ρ′,ρ)]} is complete rigidification data for a. It comes with a transitive action
of T2,E(AD) compatible with the action of T2,E(AD) on H(E/F )D.

We may define Z(E/F )+
D as the set of 4-tuples α+ = (αglob, αloc, β, [{Γv,(ρ′,ρ)}]),

where α = (αglob, αloc, β) ∈ Z(E/F )D and where {[Γv,(ρ′,ρ)]} is complete rigidification
data for [α]. We call α+

1 and α+
2 equivalent if we can find (γglob, γloc) with α2 =
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(γglob,γloc)α1 and [Γ2,v,(ρ,ρ′)] = [iγglob ◦ Γ1,v,(ρ′,ρ)] for all v and (ρ′, ρ). Then H(E/F )+
D is

just the set of equivalence classes of elements of Z(E/F )+
D. The actions of T2,E(AD)

on Z(E/F )D and H(E/F )+
D lift to an action on Z(E/F )+

D.
Suppose that α+ = (αglob, αloc, β, {[Γv,ρ′ ]}) ∈ Z(E/F )+. Then {[ΓDv,(ρ′,ρ) = ΓDv,ρ′ ]}

is complete rigidification data for infD/E α. We will write

inf
D/E

α+ = (
Gal (D/F )

inf
Gal (E/F )

αglob,
Gal (D/F )

inf
Gal (E/F )

αloc,
Gal (D/F )

inf
Gal (E/F )

β, {[ΓDv,(ρ′,ρ)]}) ∈ Z(E/F )+
D.

Note that
inf
D/E

γα+ = γ inf
D/E

α+,

so that infD/E descends to a map infD/E : H(E/F )+ → H(E/F )+
D. Moreover, if

t ∈ T2,E(AE), then
inf
D/E

tα+ = t inf
D/E

α+.

Now suppose that α+ = (αglob, αloc, β, {[Γv,ρ̃]}) ∈ Z(D/F )+. If σ ∈ Gal (Eab/F )D
and ρ̃σ = (ρ′, ρ), then we define

[ΓEv,(ρ′,ρ)] = [(ΓE,ρ̃,α)σ,ηD/E,∗α].

This does not depend on the choice of ρ̃ or σ. Moreover {[ΓEv,(ρ′,ρ)]} is complete
rigidification data for ηD/E,∗α. We will write

ηD/E,∗α
+ = (ηD/E,∗α

glob, ηD/E,∗α
loc, ηD/E,∗β, {[ΓEv,(ρ′,ρ)]}) ∈ Z(E/F )+

D.

Note that
ηD/E,∗

γα+ = ηD/E,∗γηD/E,∗α
+

and
ηD/E,∗

tα+ = ηD/E(t)ηD/E,∗α
+.

The following lemma is straight forward to verify.

Lemma 6.7. Suppose that D′ ⊃ D ⊃ E ⊃ F are finite Galois extensions of F .
Suppose also that α+

D′ ∈ Z(D′/F ) and α+
D ∈ Z(D/F ) and α+

E ∈ Z(E/F ) satisfy
ηD′/D,∗α

+
D′ = t′ infD′/Dα

+
D and ηD/E,∗α

+
D = t infD/E α

+
E with t′ ∈ T2,D(AD′) and t ∈

T2,E(AD). Then

ηD′/E,∗α
+
D′ = tηD/E(t′) inf

D′/E
α+
E.

If ρ : EabD → Fv is F -linear and τ ∈ Aut (F v/F ), we define

gα+,v,ρ(τ) =

((
locα ˜Γv,(ρ,ρ)(τ ρ)

)−1

eloc
α (τ ρ)

)
w(τρ)

∈ A×D/(D×∞)0D×D×w(ρ)D
×
w(τρ),

where ˜Γv,(ρ,ρ)(τ ρ) is any lift of Γv,(ρ,ρ)(τ
ρ) to Eglob

a (E/F )D. This element is independent

of the choice of Γv,(ρ,ρ) ∈ [Γv,(ρ,ρ)] and of the lift ˜Γv,(ρ,ρ)(τ ρ) of Γv,(ρ,ρ)(τ
ρ).
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Lemma 6.8. (1) gγα+,v,ρ(τ) = gα+,v,ρ(τ).
(2) gtα+,v,ρ(τ) = (tw(ρ)/tw(τρ))gα+,v,ρ(τ).
(3) gindD/Eα

+,v,ρ(τ) = gα+,v,ρ(τ).

(4) gηD/E,∗α+,v,ρ(τ) = (ND/Egα+,v,ρ̃(τ))
∏

η∈Gal (D/E) β(η)ηu(ρ̃)/β(η)ηu(τ ρ̃).

Proof: For the first part we have

gα+,v,ρ(τ)

=

(
iγloc

((
locα ˜Γv,(ρ,ρ)(τ ρ)

)−1

eloc
α (τ ρ)

))
w(τρ)

=

((
locγαiγglob

˜Γv,(ρ,ρ)(τ ρ)
)−1

γloc(τ ρ)eloc
γα(τ ρ)

)
w(τρ)

= gγα+,v,ρ(τ).

For the second we have

gtα+,v,ρ(τ)

= z−1
t

(loctαzt
˜(

conjtw(ρ)
Γv,(ρ,ρ)(τ ρ)

))−1

eloc
tα(τ ρ)


w(τρ)

=

(conj−1
t locα

˜(
conjtw(ρ)

Γv,(ρ,ρ)(τ ρ)
))−1

eloc
α (τ ρ)


w(τρ)

=

((τρ)−1
t/t)

(
locα

˜(
conjtw(ρ)

Γv,(ρ,ρ)(τ ρ)
))−1

eloc
α (τ ρ)


w(τρ)

= ((τρ)−1
t/t)w(τρ)(tw(ρ)/

(τρ)−1
(tw(ρ)))

((
locα

˜(
Γv,(ρ,ρ)(τ ρ)

))−1

eloc
α (τ ρ)

)
w(τρ)

= (tw(ρ)/tw(τρ))gα+,v,ρ(τ).

For the third part, under the identification

E2(E/F )D,infD/E α
∼= (T2,E(AD) o (E2(E/F )α ×Gal (E/F ) Gal (D/F )))/T2,E(AE)

eloc
infD/E α(τ ρ) is identified with [(1, (eloc

α (τ ρ), τ ρ))]. Moreover, under the identification

WE/F,D,infD/E α
∼= (A×D/D

× o (WE/F,α ×Gal (E/F ) Gal (D/F )))/A×E

ΓDv,ρ(τ
ρ) is identified with [(1, (Γv,ρ(τ

ρ), τ ρ))]. Moreover locinfD/E αΓ̃Dv,ρ(τ
ρ) can be cho-

sen to be [(1, (locαΓ̃v,ρ(τ ρ), τ
ρ))]. the third part follows.

For the fourth part we will make use of the identifications

WE/F,D,ηD/E,∗α
∼= (A×D/D

× oWD/F,α)/A×D
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and
Eglob(E/F )D,ηD/E,∗α

∼= (Eglob(E/F )0
D o Eglob(D/F )α)/Eglob(D/F )0

and
E2(E/F )D,ηD/E,∗α

∼= (T2,E(AD) o E2(D/F )α)/T2,D(AD).

Under these identifications ΓE,ρ̃v,ρ̃ (τ ρ̃) corresponds to

conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[(γα,E(Γ̃v,ρ̃(τ ρ̃)), Γ̃v,ρ̃(τ ρ̃))]

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[(ND/E(Γ̃v,ρ̃(τ ρ̃)e
glob
α (τ ρ̃)−1)γα,E(eglob

α (τ ρ̃))/(Γ̃v,ρ̃(τ ρ̃)e
glob
α (τ ρ̃)−1)[D:E],

Γv,ρ̃(τ
ρ̃))]

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[(ND/E(Γ̃v,ρ̃(τ ρ̃)e
glob
α (τ ρ̃)−1)

∏
η∈Gal (D/E)(α

glob(η, τ ρ̃)/αglob(τ ρ̃, η)),

eglob
α (τ ρ̃))].

Applying locηD/E,∗α we get

conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[(ND/E(Γ̃v,ρ̃(τ ρ̃)e
glob
α (τ ρ̃)−1)

∏
η∈Gal (D/E)(α

glob(η, τ ρ̃)/αglob(τ ρ̃, η))

(ηD/Eβ(τ ρ̃))−1, eloc
α (τ ρ̃))]

and then taking the inverse gives

conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[((τ ρ̃)−1
ND/E(eglob

α (τ ρ̃)Γ̃v,ρ̃(τ ρ̃)
−1

)
∏

η∈Gal (D/E)
(τ ρ̃)−1

(αglob(τ ρ̃, η)/αglob(η, τ ρ̃))
(τ ρ̃)−1

(ηD/Eβ(τ ρ̃)), eloc
α (τ ρ̃)−1)]

= conj∏
η∈Gal (D/E) β(η)ηu(ρ̃)

[(ND/E(Γ̃v,ρ̃(τ ρ̃)
−1

eglob
α (τ ρ̃))

∏
η∈Gal (D/E)

(τ ρ̃)−1
(αglob(τ ρ̃, η)/αglob(η, τ ρ̃))

(τ ρ̃)−1
(ηD/Eβ(τ ρ̃)), eloc

α (τ ρ̃)−1)].

Multiplying on the right by eloc
ηD/E,∗α

(τ ρ̃) = [(1, eloc
α (τ ρ̃))] and taking the w(τρ)-component

gives(∏
η∈Gal (D/E) β(η)ηu(ρ̃)

)
ND/E(Γ̃v,ρ̃(τ ρ̃)

−1

eglob
α (τ ρ̃))

(∏
η∈Gal (D/E)

(τ ρ̃)−1
(αglob(τ ρ̃, η)/αglob(η, τ ρ̃))

)
(τ ρ̃)−1 ∏

η∈Gal (D/E) β(τ ρ̃)ηu(ρ̃)
(τ ρ̃)−1 ∏

η∈Gal (D/E) β(η)−1
ηu(ρ̃).

However

Γ̃v,ρ̃(τ ρ̃)
−1

eglob
α (τ ρ̃) = ((locαΓ̃v,ρ̃(τ ρ̃))

−1β(τ ρ̃)−1eloc
α (τ ρ̃))u(τρ) = ((τ ρ̃)−1

β(τ ρ̃))−1
u(τρ)gα+,v,ρ̃(τ).

Thus gηD/E,∗α+,v,ρ̃(τ) equals the product of ND/Egα+,v,ρ̃(τ) with (τ ρ̃)−1 applied to(
τ ρ̃
∏

η∈Gal (D/E) β(η)ηu(ρ̃)

)
ND/E(β(τ ρ̃)−1

u(ρ̃))
(∏

η∈Gal (D/E)(α
glob(τ ρ̃, η)/αglob(η, τ ρ̃))

)∏
η∈Gal (D/E) β(τ ρ̃)ηu(ρ̃)

∏
η∈Gal (D/E) β(η)−1

ηu(ρ̃)

=
∏

η∈Gal (D/E)(α
loc(τ ρ̃, η)β(τ ρ̃η)/β(τ ρ̃)τ

ρ
β(η))τ ρ̃η(τ ρ̃)−1u(ρ̃)(β(η)ηβ(τ ρ)/αloc(η, τ ρ̃)β(ητ ρ̃))ηu(ρ̃)∏

η∈Gal (D/E)
τ ρ̃β(η)ηu(ρ̃)(

ηβ(τ ρ̃))−1
ηu(ρ̃)β(τ ρ̃)τ ρ̃η(τ ρ̃)−1u(ρ̃)β(η)−1

ηu(ρ̃)

≡ τ ρ̃
∏

η∈Gal (D/E) β(η)ηu(ρ̃)/β(η)ηu(τ ρ̃),



ON THE FORMALISM OF SHIMURA VARIETIES 99

and the fourth part of the lemma follows. �

Finally we obtain:

Lemma 6.9. Suppose that D ⊃ E ⊃ F are finite extensions of number fields with E
and D Galois over F , and that v is a place of F . Suppose also that a+

E ∈ H(E/F )+

and a+
D ∈ H(D/F )+. Then we can find a t ∈ T2,E(AD) such that t inf

Gal (D/F )
Gal (E/F ) a

+
E =

ηD/E,∗a
+
D ∈ H(E/F )+

D.

Suppose moreover that T/F is a torus that splits over E, that µ ∈ X∗(T )(Fv) and
that τ ∈ Aut (Fv/F ). Then

ba+
E ,v,µ,τ

= ba+
D,v,µ,τ

∏
ρ

(ρ
−1

µ)(tw(τρ)/tw(ρ)) ∈ T (AE)/T (F )T (F∞)0T (Fv)T (E)T (Ev),

where ρ runs over F -linear embeddings E ↪→ Fv, and w(ρ) is the corresponding place
of E.

Proof: Choose αE ∈ aE and αD ∈ aD. Then we can find t ∈ T2,E(AD) and
γ = (γglob, γloc), where γglob : Gal (D/F ) → Eglob(E/F )0

D and γloc : Gal (D/F ) →∏
u∈VD D

×
u such that

t inf
D/E

αE = γηD/E,∗αD.
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If η ∈ Gal (E/F ) we will select a lift η̃ of η to Gal (D/F ). Then we have

ba+
D,v,µ,τ

=
∏

η∈Gal (E/F )

∏
ζ∈Gal (D/E) η̃

−1ζ−1(ρ
−1
µ)((βD(ζη̃)u(τρ)/βD(ζη̃)u(ρ))ga+,v,ρ(τ))

=
∏

η∈Gal (E/F )

∏
ζ∈Gal (D/E) η̃

−1(ρ
−1
µ)(ζ

−1
(πu(τρ)/πu(ρ))(βD(ζ)ζβD(η̃)αglob

D (ζ, η̃)/αloc
D (ζ, η̃))

(ζ
−1
ga+,v,ρ(τ)))

=
∏

η∈Gal (E/F ) η̃
−1
(

(ρ
−1
µ)(gηD/E,∗α+

D,v,ρ
(τ))∏

ζ∈Gal (D/E)(
ρ−1
µ)((πζ−1u(τρ)/πζ−1u(ρ))(

ζ−1
βD(ζ)βD(η̃))(β(ζ−1)ζ−1u(τρ)/β(ζ−1)ζ−1u(ρ)))

)
=

∏
η∈Gal (E/F ) η̃

−1
(

(ρ
−1
µ)(gγηD/E,∗α

+
D,v,ρ

(τ)(ηD/EβD(η̃))w(τρ)/(ηD/EβD(η̃))w(ρ))∏
ζ∈Gal (D/E)(

ρ−1
µ)((πζ−1u(τρ)/πζ−1u(ρ))(

ζ−1
βD(ζ)βD(ζ−1)))

)
=

∏
η∈Gal (E/F ) η̃

−1
(

(ρ
−1
µ)(gt infD/E α+

E ,v,ρ
(τ)(πw(τρ)/πw(ρ))((

tβE)(η̃)γglob(η)−1γloc(η̃)))∏
ζ∈Gal (D/E)(

ρ−1
µ)((πζ−1u(τρ)/πζ−1u(ρ))(βD(1)αloc

D (ζ−1, ζ)/αglob
D (ζ−1, ζ)))

)
=

∏
η∈Gal (E/F ) η̃

−1
(

(ρ
−1
µ)(ginfD/E α+

E ,v,ρ
(τ)(tw(ρ)/tw(τρ))(πw(τρ)/πw(ρ))(βE(η̃)(t/η̃t)))∏

ζ∈Gal (D/E)(
ρ−1
µ)((πζ−1u(τρ)/πζ−1u(ρ))(βD(1)))

)
=

∏
η∈Gal (E/F ) η̃

−1
(

(ρ
−1
µ)(gα+

E ,v,ρ
(τ)(πw(τρ)/πw(ρ))(βE(η̃)η̃t−1))∏

ζ∈Gal (D/E)(
ρ−1
µ)((πζ−1u(τρ)/πζ−1u(ρ))(α

loc
D (1, 1)/αglob

D (1, 1)))
)

= ba+
E ,v,µ,τ

∏
η∈Gal (E/F ) η̃

−1(ρ
−1
µ)(η̃(πη−1w(τρ)/πη−1w(ρ))(t

−1))

= ba+
E ,v,µ,τ

∏
η∈Gal (E/F )(

η−1ρ−1
µ)((πw(ρη)/πw(τρη))(t)),

and the lemma follows. �
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7. Taniyama groups

The results of this section are not necessary for stating our main results, but will
be needed in the proofs in order to compare our cohomological constructions with
those of Langlands in [L].

7.1. The Serre torus. We will write RE for the restriction of scalars from E to
Q of Gm. Thus X∗(RE) = Map (Gal (E/Q),Z) with Gal (E/Q) action given by
(σϕ)(τ) = ϕ(σ−1τ).

If τ ∈ Gal (E/Q) we define an automorphism [τ ] of RE/Q by X∗([τ ])(ϕ)(τ ′) =
ϕ(τ ′τ−1). We have [τ1τ2] = [τ1][τ2], i.e. this gives a left action of Gal (E/Q) on
RE/Q.

There is also a cocharacter µcan = µcan
E : Gm → RE over E characterized by

X∗(µcan)(ϕ) = ϕ(1). We have σµcan = [σ−1]◦µcan. The map
∏

η∈Gal (E/Q) η◦µcan gives

isomorphisms E×
∼→ RE(Q) and E×v

∼→ RE(Qv) and A×E
∼→ RE(A).

If T/Q is a torus and µ ∈ X∗(T )(E) then there is a unique map of tori µ̃ : RE → T
over Q such that µ = µ̃ ◦ µcan. (X∗(µ̃)(χ)(τ) = χ ◦ τµ.) If σ ∈ Gal (E/Q) then
σ̃µ = µ̃ ◦ [σ−1].

If D is a finite Galois extension of Q containing E then ND/E = µ̃can
E : RD → RE is

a homomorphism also characterized by X∗(ND/E)(ϕ)(τ) = ϕ(τ |E). If µ ∈ X∗(T )(E)
then we get µ̃E : RE → T and µ̃D : RD → T . They satisfy:

µ̃E ◦ND/E = µ̃D.

There is a slightly different way of thinking about this torus that will be slightly
more convenient: we want the canonical cocharacter to be defined over C rather than
over E. If ρ : E ↪→ C we will set RE,ρ = RE, a torus over Q, and µcan

ρ = ρµcan ∈
X∗(RE)(C) and, if τ ∈ Aut (C) we set [τ ]ρ = [τ ρ] ∈ Aut (RE/Q). If σ ∈ Gal (E/Q),

then we identify RE,ρ and RE,ρ◦σ via [σ−1] : RE,ρ
∼→ RE,ρ◦σ. This identification carries

µcan
ρ to µcan

ρ◦σ, and [τ ]ρ to [τ ]ρ◦σ. Thus we get a well defined torus RE,C/Q with an action
of Aut (C), which we denote τ 7→ [τ ]C ∈ Aut (RE,C/Q), and a canonical cocharacter
µcan
C ∈ X∗(RE,C)(C). We have τµcan

C = [τ−1]C◦µcan
C (for τ ∈ Aut (C)). Moreover if T/Q

is a torus and µ ∈ X∗(T )(C) is actually defined over the image of E in C, then there
is a unique map of tori µ̃ : RE,C → T over Q such that µ = µ̃ ◦ µcan

C . If D is another
finite Galois extension of Q containing E, we also get a map ND/E : RD,C → RE,C
over Q. If µ ∈ X∗(T )(C) then we get µ̃E : RE → T and µ̃D : RD → T . They satisfy:

µ̃E ◦ND/E = µ̃D.

We will also write SE for the torus over Q characterized by

X∗(SE) = {(ϕ,w) ∈ Map (Gal (E/Q),Z)×Z : ϕ(cvτ)+ϕ(τ) = w ∀τ ∈ Gal (E/Q) and ∀cv ∈ [c]},

with a left action of Gal (E/Q) given by

σ(ϕ,w) = (τ 7→ ϕ(σ−1τ), w).
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It is called the Serre torus. There is an obvious injection X∗(SE) ↪→ X∗(RE) (sending
(ϕ,w) to ϕ) with torsion free cokernel; and hence an epimorphism RE � SE with
connected kernel R1

E. the exact sequence

(0) −→ R1
E −→ RE −→ SE −→ (0)

splits over E. The action of Gal (E/Q) on RE (via τ 7→ [τ ]) over Q descends to an
action on SE, which we will denote in the same way. It is also characterized by

X∗([τ ])(ϕ,w) = (τ ′ 7→ ϕ(τ ′τ−1), w).

We will again denote the composite of µcan with the map RE � SE by µcan ∈
X∗(SE)(E). It is also characterized by

X∗(µcan)(ϕ,w) = ϕ(1) ∈ Z ∼= X∗(Gm).

Again we have σµcan = [σ−1] ◦ µcan. Also note that the {[τ ] ◦ µcan}τ∈Gal (E/Q) spans
X∗(SE). There is a second cocharacter wt : Gm → SE over Q characterized by

X∗(wt)(ϕ,w) = w ∈ Z ∼= X∗(Gm).

Note that wt = cv+1µcan = ([cvτ ]µcan)([τ ]µcan) for any cv ∈ [c] ⊂ Gal (E/Q) and any
τ ∈ Gal (E/Q). If D ⊃ E is another finite Galois extension of Q then ND/E : RD →
RE descends to a map ND/E : SD → SE, also characterized by

X∗(ND/E)(ϕ,w) = (τ 7→ ϕ(τ |E), w).

If E0 denotes the maximal CM subfield of E then

NE/E0 : SE
∼−→ SE0 .

We recall (for instance from [MS1]) that SE(Q) is a discrete subgroup of SE(A∞)
and that ker1(Q, SE) = (0).

If T/Q is any torus and µ ∈ X∗(T )(E) satisfies

• cvµ is independent of cv ∈ [c],
• and (cv + 1)µ ∈ X∗(T )(Q) for one, and hence any, cv ∈ [c];

then there is a unique morphism µ̃ : SE → T over Q such that µ = µ̃ ◦ µcan. We have

X∗(µ̃)(χ) = (τ 7→ χ ◦ τµ, χ ◦ (cµµ)).

Note that
σ̃µ = µ̃ ◦ [σ−1].

Lemma 7.1. Suppose that χ ∈ Z[VE,∞]0 ⊗X∗(SE) ⊂ X∗(T3,E)⊗X∗(SE). Then∏
η∈Gal (E/Q)

ηχ = 1.
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Proof: By linearity we only need to consider the case χ = [τ ]µcan(πv1/πv2). As [τ ]
is rationally defined we are further reduced to the case χ = µcan(πv1/πv2). Thought
of as an element of Hom (T2,E, SE) we have∏

η∈Gal (E/Q)
η(µcan ◦ πv) =

∏
η∈Gal (E/Q)(

ηµcan) ◦ πηv
=

∏
η∈Gal (E/Q)/Gal (Ev/R)(

ηµcanηcvµcan) ◦ πηv
=

∏
η∈Gal (E/Q)/Gal (Ev/R)(

ηwt) ◦ πηv
= wt ◦

∏
w|∞ πw.

As this does not depend on v, the lemma follows. �

Again there is a second way to think about this: there is a torus SE,C/Q (abstractly
isomorphic to SE) together with a cocharacter µcan

C ∈ X∗(SE,C)(C) and an action of
Aut (C) denoted τ 7→ [τ ]C. If τ ∈ Aut (C) then τµcan

C = [τ−1]C ◦ µcan
C . There is a

Aut (C)-equivariant surjection RE,C � SE,C taking µcan
C to µcan

C . The kernel R1
E,C is

again a torus. There is a cocharacter wt = µcan
C

cµcan
C ∈ X∗(SE,C)(Q), which commutes

with the action of Aut (C). If D/Q is another finite Galois extension containing E,
then ND/E : SD,C → SE,C.

If T/Q is any torus and µ ∈ X∗(T )(C) satisfies

• µ is defined over the image of E in C,
• τcτ−1

µ is independent of τ ∈ Aut (C),
• and (c+1)µ ∈ X∗(T )(Q);

then there is a unique morphism µ̃ : SE,C → T over Q such that µ = µ̃ ◦ µcan. We
have

τ̃µ = µ̃ ◦ [τ−1].

Corollary 7.2. If χ ∈ Z[VE,∞]0 ⊗X∗(SE,C)(E) ⊂ X∗(T3,E)⊗X∗(SE,C)(E). Then∏
η∈Gal (E/Q)

ηχ = 1.

7.2. The Taniyama group. Langlands considers extensions

1 −→ SE −→ S̃ −→ Gal (Eab/Q) −→ 1

(as a pro-algebraic group over Q) such that the induced action of Gal (Eab/Q) on SE
is given by [ ], together with a continuous group theoretic section sp : Gal (Eab/Q)→
S̃(A∞). (We will follow [MS1], which in turn followed [L]. However the two articles use
different conventions so it is hard to directly compare the details in the two sources.)

Note that such a pair (S̃, sp) has no automorphisms (where we consider S̃ with its

structure of an extension of Gal (Eab/Q) by SE). Also note that S̃(E)� Gal (Eab/Q).
(See [MS1] p235.)

Langlands showed that giving such a pair is equivalent to giving an element

b ∈ Z1(Gal (Eab/Q), (SE(A∞E )/SE(E))Gal (E/Q)),
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where Gal (Eab/Q) acts via [ ] and Gal (E/Q) acts by its Galois action on A∞E , such
that b lifts to a continuous map

b : Gal (Eab/Q) −→ SE(A∞E )

such that
Gal (Eab/Q)2 −→ SE(E)

(τ1, τ2) 7−→ b(τ1)[τ1](b(τ2))b(τ1τ2)−1

is locally constant. (See proposition 2.7 of [MS1].) We will will write

Z1
cts(Gal (Eab/Q), (SE(A∞E )/SE(E))Gal (E/Q))

for the set of elements b ∈ Z1(Gal (Eab/Q), (SE(A∞E )/SE(E))Gal (E/Q)) with such a
lift.

If τ ∈ Gal (Eab/Q) then its preimage SE,b,τ in S̃ is a right SE-torsor. If α ∈ SE,b,τ ,
then

cb,τ,α : σ 7−→ α−1σα

lies in Z1(Gal (E/Q), SE(E)). The class [cb,τ,α] ∈ H1(Gal (E/Q), SE(E)) does not
depend on α so we will denote it simply [cb,τ ]. It characterizes the right torsor SE,b,τ .
We set

bb,τ,α = α−1sp(τ) ∈ SE(A∞E ),

so that
cb,τ,α(σ) = bb,τ,α

σb−1

b,τ,α
.

Note that bb,τ,α lifts [τ−1](b(τ)−1). (This normalization seems unfortunate, but we
keep it to aid reference to the papers of Langlands [L] and Milne-Shih [MS1].) If
α ∈ SE(Q) lifts τ ∈ Gal (Eab/Q) then b(τ) ∈ SE(A∞)/SE(Q) and bb,τ,α = α−1sp(τ) ∈
SE(A∞) lifts [τ−1](b(τ)−1). Also note that if γ ∈ SE(E) then

cb,τ,γα = γ−1

cb,τ,α

and
bb,τ,γα = γ−1bb,τ,α.

Moreover
cb,τ1τ2,α1α2

(σ) = [τ2]−1(cb,τ1,α1
)cb,τ2,α2

(σ)

and
bb,τ1τ2,α1α2

= [τ−1
2 ](bb,τ1,α1

)bb,τ2,α2
.

If v is an infinite place of Eab Langlands defines a particular element

b
Tan

E,v ∈ Z1
cts(Gal (Eab/Q), (SE(A∞E )/SE(E))Gal (E/Q))

as follows. There is an exact sequence

1 −→ A×E/E
× −→ WEab/Q −→ Gal (E/Q) −→ 1.

Choose preimages wη ∈ WEab/Q of each η ∈ Gal (E/Q) such that the following condi-
tions hold:
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• w1 = 1
• and there is a set of representatives 1 ∈ H ⊂ Gal (E/Q) for Gal (E/Q)/Gal (Ev/R)

such that wηcv = wηθv(j) for all η ∈ H.

If w ∈ WEab/Q then
wηw = uv,η,wwηw

where uv,η,w ∈ A×E/E× and where w denotes the image of w in Gal (E/Q). Then
Langlands takes

b
Tan

E,v (w) =
∏

η∈Gal (E/Q)

(ηµcan)(uv,η,w) ∈ SE(A∞E )/SE(E).

He verifies that it lies in (SE(A∞E )/SE(E))Gal (E/Q); that it doesn’t depend on the
choices of preimages wη (as long as they satisfy the above conditions); that it only

depends on the image τ of w in Gal (Eab/Q) (so we will often write b
Tan

E,v (τ)); and

that b
Tan

E,v ∈ Z1
cts(Gal (Eab/Q), (SE(A∞E )/SE(E))Gal (E/Q)). It also doesn’t depend on

the choice of θv associated to v. (If θv is replaced by aθva
−1 with a ∈ E×(E×∞)0, then

wη gets replaced by wη
cva/a if η 6∈ H and is unchanged if η ∈ H. Thus uv,η,w gets

multiplied by {
ηcva/ηa if η 6∈ H
1 if η ∈ H

}{
ηwa/ηwcva if ηw 6∈ H
1 if ηw ∈ H

}
.

Thus b
Tan

K,v(w) changes by∏
η 6∈H η

(
µcan(cva/a)(w

−1
µcan)(a/cva)

)
=

(∏
η∈H ηwt(a)/

∏
η∈Gal (E/Q) ηµ(a)

)(∏
η∈Gal (E/Q) η

w−1
µ(a)/

∏
η∈H ηwt(a)

)
=

∏
η∈Gal (E/Q) η(w

−1
µ/µ)(a)

∈ SE(Q)SE(R) = SE(Q)SE(R) ⊂ SE(E)SE(E∞),

i.e. it is unchanged.)

We will write (S̃E,v, spE,v) for the corresponding extension with a finite adelic sec-
tion. It is usually referred to as the ‘Taniyama group’ (although as it depends on the
choice of v it would be better called ‘the Taniyama group with respect to v’). We

also write S̃E,v,τ for the pre-image in S̃E,v of τ ∈ Gal (Eab/Q), a right SE-torsor, i.e.

S̃E,v,τ = S
E,b

Tan
E,v ,τ

. Note that if α ∈ S̃E,v(E) lies above τ ∈ Gal (Eab/Q), then

b
b
Tan
E,v ,τ,α

≡ [τ−1]
∏

η∈Gal (E/Q)(
ηµcan)(wη τ̃w

−1
ητ )−1

=
∏

η∈Gal (E/Q)(
ητµcan)(wητ τ̃

−1w−1
η )

=
∏

η∈Gal (E/Q)(
ηµcan)(wη τ̃

−1w−1
ητ−1)

=
∏

η∈Gal (E/Q) ηµ
can(τ̃−1w−1

ητ−1wη) mod SE(E),

where τ̃ ∈ WEab/Q lifts τ .
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Note that if w ∈ A×E/E× then b
Tan

E,v (Art Ew) =
∏

η∈Gal (E/Q) ηµ
can(w) ∈ SE(A∞)/SE(Q).

If we choose a lift bTan
E,v (Art Ew) ∈ SE(A∞) then a(Art Ew) = bTan

E,v (Art Ew)spE,v(Art Ew) ∈
S̃E,v(Q) and maps to Art Ew ∈ Gal (Eab/E). Thus we have shown that every element

of Gal (Eab/E) has a lift in S̃E,v(Q) (and not simply in S̃E,v(E)). If α ∈ S̃E,v(Q) lifts
τ ∈ Gal (Eab/E), then

b
b
Tan
E,v ,τ,α

≡
∏

η∈Gal (E/Q)

ηµcan(Art −1
E τ)−1 mod SE(Q).

Lemma 7.3. If σ ∈ Gal (Eab/Q) then there is a unique isomorphism

{σ} : S̃E,v
∼−→ S̃E,σv

such that

(0) −→ SE −→ S̃E,v −→ Gal (Eab/Q) −→ (0)
[σ] ↓ {σ} ↓ conjσ ↓

(0) −→ SE −→ S̃E,σv −→ Gal (Eab/Q) −→ (0)

commutes, and

{σ} ◦ spE,v = spE,σv ◦ conjσ.

Proof: We may construct b
Tan

E,σv from w′η = conjσ(wσ−1ησ) and H ′ = σHσ−1, which
gives

uσv,η,w = σuv,σ−1ησ,conjσ−1 (w)

and

b
Tan

E,σv(w) =
∏

η∈Gal (E/Q) ηµ
can(η−1σuv,σ−1ησ,conjσ−1 (w)

=
∏

η∈Gal (E/Q) σησ
−1µcan(ση−1uv,η,conjσ−1 (w)

=
∏

η∈Gal (E/Q) σ
η([σ]µcan)(uv,η,conjσ−1 (w)

= [σ]σb
Tan

E,v (conjσ−1w)

= [σ]b
Tan

E,v (conj−1
σ w)

The lemma follows. �

Corollary 7.4. If σ ∈ Gal (Eab/Q) then

b
b
Tan
E,σv ,στσ

−1,{σ}α = [σ]b
b
Tan
E,v ,τ,α

.

Lemma 7.5. spE,v(cv) ∈ S̃E,v(Q) and {cv} : S̃E,v → S̃E,v is simply conjugation by
spE,v(cv).

Proof: We have

uv,η,wcv =

{
1 if η ∈ H
−1ηv if η 6∈ H.
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Thus b
Tan

E,v (cv) = 1 and spE,v(cv) ∈ S̃E,v(E) ∩ S̃E,v(A∞) = S̃E,v(Q). The second part
of the lemma follows immediately. �

If ρ : Eab ↪→ C we can pull the extension S̃E,v(ρ) back along the map

Aut (C) −→ Gal (Eab/Q)
τ 7−→ τ ρ

to obtain an extension

(0) −→ SE −→ S̃E,ρ −→ Aut (C) −→ (0),

where Aut (C) acts on SE via τ 7→ [τ ρ]C, and a splitting

spρ : Aut (C) −→ S̃E,ρ(A∞).

It follows from lemma 7.3 that if σ ∈ Gal (Eab/Q) we have a commutative diagram

(0) −→ SE −→ S̃E,ρ −→ Aut (C) −→ (0)
[σ−1] ↓ {σ−1} ↓ ||

(0) −→ SE −→ S̃E,ρσ −→ Aut (C) −→ (0)

and that spρσ = {σ−1} ◦ spρ. Thus we have a canonical extension

(0) −→ SE,C −→ S̃E,C −→ Aut (C) −→ (0),

where τ ∈ Aut (C) acts on SE,C via [τ ]C, together with a section sp : Aut (C) →
S̃E,C(A∞).

If α ∈ S̃E,C(E) has image α ∈ Aut (C) we will write

bE,Tan,α = α−1sp(α) ∈ SE,C(A∞E ).

We have the following properties:

(1) If γ ∈ SE,C(E), then bE,Tan,γα = γ−1bE,Tan,α.
(2)

bE,Tan,α ≡
∏

η∈Gal (E/Q)

η(ρ
−1

µcan
C )(τ̃−1w−1

ητ−1wη) mod SE,C(E),

where ρ : Eab ↪→ C and τ̃ ∈ WEab/Q lifts αρ ∈ Gal (Eab/Q) and where the
liftings wη ∈ WEab/Q are chosen to satisfy the conditions listed earlier in this
section with respect to v(ρ).

(3) In particular, if α ∈ S̃E(Q) and α fixes the image of E in C, then bE,Tan,α ∈
SE,C(A∞) and

bE,Tan,α ≡
∏

ρ:E↪→C

(ρ
−1

µcan
C )(Art −1

E αρ)−1 mod SE,C(Q).
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We will call α ∈ S̃E,C(Q) well placed if α fixes the image of E in C and

bE,Tan,α =
∏

ρ:E↪→C

(ρ
−1

µcan
C )(Art −1

E αρ)−1.

If α ∈ S̃E,C(Q) and α fixes the image of E in C, then SE,C(Q)α contains a

unique well placed element. The element 1 ∈ S̃E,C(Q) is well placed.
(4)

bE,Tan,α1α2 ≡ [α−1
2 ]C(bE,Tan,α1)bE,Tan,,α2 .

(Indeed (α1α2)−1sp(α1α2) = α−1
2 (α−1

1 sp(α1))α2(α−1
2 sp(α2)).)

(5) If α ∈ S̃E,C(E) and σ ∈ Gal (E/Q), then

bE,Tan,α
σ(bE,Tan,α)−1 ∈ SE,C(E).

(Indeed σ(α−1sp(α)) = ((σα)−1α)(α−1sp(α)).)

7.3. Relationship between Taniyama groups and the elements ba+,∞,µcan
C ,τ .

Lemma 7.6. If α ∈ S̃E,C(E) has image α ∈ Gal (Eab/Q), then

ba+,∞,µcan
C ,α ∈ SE,C(A∞E )/SE,C(E) = RE,C(A∞E )/RE,C(Q)RE,C(E)R1

E,C(A∞E )

equals the image of bE,Tan,α.

Proof: Replacing a+ by ta+ leaves ba+,∞,µcan
C ,α unchanged. (Use corollary 7.2, lemma

6.4 and note that SE,C(Q)SE,C(R) = SE,C(Q)SE,C(R).) Thus it suffices to prove the
assertion with a+ = [α+

0 ], the class defined at the end of section 6.1. In this case we
may take wη = ϕ(eglob

α0
(η)), and the result then follows from comparing the formula

at the end of section 6.2 with the formula two paragraphs before lemma 7.3. �

Lemma 7.7. Suppose that s : SE,C(E) → RE,C(E) is a group theoretic section. For

α ∈ S̃E,C(E), we may choose elements ba+,∞,µcan
C ,α ∈ RE,C(A∞E ) with the following

properties. Write α for the image of α in Gal (Eab/Q).

(1) ba+,∞,µcan
C ,α lifts ba+,∞,µcan

C ,α ∈ RE,C(A∞E )/RE,C(Q)RE,C(E).
(2) ba+,∞,µcan

C ,α lifts bE,Tan,α ∈ SE,C(A∞E ).

(3) If α ∈ S̃E,C(Q) is well placed, then ba+,∞,µcan
C ,α =

∏
ρ:E↪→C(ρ

−1
µcan
C )(Art −1

E αρ)−1.

(4) If γ ∈ SE,C(E) then ba+,∞,µcan
C ,γα = γ̃−1ba+,∞,µcan

C ,α, for some lift γ̃ ∈ RE,C(E)
of γ.

The first two of these properties determine ba+,∞,µcan
C ,α up to multiplication by an

element of R1
E,C(Q)R1

E,C(E).
Then we also have that:

(5)

ba+,∞,µcan
C ,α1α2

≡ [α−1
2 ]C(ba+,∞,µcan

C ,α1
)ba+,∞,µcan

C ,α2
mod R1

E,C(Q)R1
E,C(E).
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(6) If t ∈ T2,E(AE) then

bta+,∞,µcan
C ,α ≡ ba+,∞,µcan

C ,α

∏
ρ:E↪→C

((ρ
−1

(µ/αµ)) ◦ πw(ρ))(t) mod R1
E,C(Q)R1

E,C(E).

(7) If α ∈ S̃E,C(E) and σ ∈ Gal (E/Q), then

ba+,∞,µcan
C ,α

σ(ba+,∞,µcan
C ,α)−1 ∈ R1

E,C(A∞E )RE,C(E) ⊂ RE,C(A∞E ).

Proof: Let A denote a set of representatives for S̃E,C(E)/SE,C(E), which we can
and will assume to be the unique well-placed representative whenever the appropriate
coset contains some well-placed element. If α ∈ A is well placed, then we set

ba+,∞,µcan
C ,α =

∏
ρ:E↪→C

(ρ
−1

µcan
C )(Art −1

E αρ)−1.

This also satisfies the first two conditions. If α ∈ A is not well-placed, then define
ba+,∞,µcan

C ,α to be any common lift of ba+,∞,µcan
C ,α and bE,Tan,α. This exists tautologically.

We then use (4) to extend the definition to all α ∈ S̃E,C(E). It is easy to check that
this definition satisfies properties (1)-(4).

The uniqueness assertion follows from the equality R1
E,C(A∞E )∩RE,C(Q)RE,C(E) =

R1
E,C(Q)R1

E,C(E). (If β ∈ RE(E) and γi ∈ RE(Q) and γi → g in RE(A∞) and

βg ∈ R1
E(A∞E ), then we may suppose that all the γi have the same image in SE(Q),

which is discrete in SE(A∞), and that this image is the inverse of the image of β.

Then βg = lim←(βγ0)(γ−1
0 γi) ∈ R1

E(E)R1
E(Q).)

The final three assertions follow from this uniqueness and the corresponding rela-
tions for ba+,∞,µcan

C ,α (see lemma 6.4) and bE,Tan,α. �

The particular element ba+,∞,µcan
C ,α was constructed by Langlands in [L] using ex-

plicit formulae. He verified some of the above properties including property (7).
Note the following simple remark:

Lemma 7.8. Suppose c1, c2 ∈ Z1
alg(E3(E/Q)a, T (E)) for some torus T/Q, and that

[c1] = [c2]. Suppose also that vloc∞(ci) = bi1 and that b−1
1 b2 ∈ T (A∞). Then c1 = c2.

(The point being that c2 = γc1 with γ ∈ T (E), so that γb1b
−1
2 ∈ T (A∞). Thus

γ ∈ T (A∞) ∩ T (E) = T (Q).)

Lemma 7.9. (1) If α ∈ S̃E,C(E), there exists a unique class

ca+,∞,µcan
C ,α ∈ φRE,C,{µcan

C },α = [cor (ρ
−1

µcan
C ◦ πw(ρ)/πw(αρ))] ⊂ Z1

alg(E3(E/Q)a, RE,C)

with loc∞a ca+,∞,µcan
C ,α =

ba+,∞,µcan
C ,α1. (For any ρ : Eab ↪→ C.) The class

ca+,∞,µcan
C ,α is independent of the suppressed choices (made in lemma 7.7) up

to the action of R1
E,C(E).
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(2) If α ∈ S̃E,C(E) and γ ∈ SE,C(E) then we can find γ̃ ∈ RE,C(E) lifting γ such

that ca+,∞,µcan
C ,γα = γ̃−1

ca+,∞,µcan
C ,α and ba+,∞,µcan

C ,γα = γ̃−1ba+,∞,µcan
C ,α.

(3) If α ∈ S̃E,C(Q) is well-placed, then ca+,∞,µcan
C ,α = 1 and

ba+,∞,µcan
C ,α =

∏
ρ:E↪→C

(ρ
−1

µcan
C )(Art −1

E αρ)−1 ∈ RE,C(A∞).

(4) Given αi ∈ S̃E,C(E) for i = 1, 2, there exists β ∈ R1
E,C(E) such that

βba+,∞,µcan
C ,α1α2

≡ [α−1
2 ]C(ba+,∞,µcan

C ,α1
)ba+,∞,µcan

C ,α mod R1
E,C(Q)

and
βca+,∞,µcan

C ,α1α2
= [α−1

2 ]C(ca+,∞,µcan
C ,α1

)ca+,∞,µcan
C ,α2

.

(5) If α ∈ S̃E,C(E) and σ ∈ Gal (E/Q), then

ba+,∞,µcan
C ,α

σ(ba+,∞,µcan
C ,α)−1 ∈ R1

E,C(A∞E )RE,C(E) ⊂ RE,C(A∞E ).

(6) If t ∈ T2,E(AE) then there exists β ∈ R1
E,C(E) with

βbta+,∞,µcan
C ,α ≡ ba+,∞,µcan

C ,α

∏
ρ:E↪→C

((ρ
−1

(µ/αµ)) ◦ πv(ρ))(t) mod R1
E,C(Q)

and
βcta+,∞,µcan

C ,α = zt(ca+,∞,µcan
C ,α).

Proof: For the first part we have that

loc∞α cor αglob(ρ
−1

µ) ◦ (πw(ρ)/πw(αρ)) =
bα+,∞,µcan

C ,α,ρ,g̃1.

By lemma 7.6 we can find γ ∈ RE,C(E) so that γbα+
0,ϕ,∞,µcan

C ,α,ρ,g̃∞,ρ,0
maps to bE,Tan,α

in SE,C(A∞E ). Thus γbα+
0,ϕ,∞,µcan

C ,α,ρ,g̃∞,ρ,0
and ba+

0,ϕ,∞,µcan
C ,α differ by an element of

R1
E,C(Q)R1

E,C(E); or varying γ simply by an element of R1
E,C(Q). Hence

b
a+
0,ϕ,∞,µ

can
C ,α1 = loc∞α0

γcor αglob
0

(ρ
−1

µ) ◦ (πw(ρ)/πw(αρ)) ∈ φRE,C,{µcan
C },α.

Existence follows. Uniqueness results from lemma 7.8 and the uniqueness assertion
in lemma 7.7.

The remaining parts follow from lemmas 7.7 and 7.8. �
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8. Deligne’s Shimura varieties

8.1. Deligne’s Shimura data. In Deligne’s formalism, Shimura varieties are at-
tached to ‘Shimura data’. In this section we will recall Deligne’s definition and men-
tion some variants.

Write S for the restriction of scalars from C to R of Gm and identify

SC ∼= Gm ×Gm

so that z ⊗ w ∈ S(C) = (C ⊗R C)× corresponds to (zw, zw). There is a natural
inclusion Gm ↪→ S and a norm map S→ Gm, both defined over Q. If we write S1 for
the kernel of the norm map, then there are exact sequences

(0) −→ S1 −→ S −→ Gm −→ (0)

and
(0) −→ Gm −→ S −→ S1 −→ (0)

z 7−→ z/z.

Define a Shimura datum (or h-Shimura datum when we need to distinguish it from
an equivalent formulation) to be a pair (G,X), where G/Q is a reductive algebraic
group and X is a G(R)-conjugacy class of morphisms h : S→ GR of algebraic groups
over R satisfying the following axioms:

(1) if h ∈ X then the adjoint action of S×R C ∼= Gm×Gm on (LieG)C has all its
characters in the set {(1,−1), (0, 0), (−1, 1)};

(2) if h ∈ X then adh(i) is a Cartan involution for the adjoint group Gad .

If h ∈ X then hC : SC ∼= G2
m → GC has the form (µh,

cµh) for a unique cochar-
acter µh : Gm → GC. Also note that if h ∈ X, then adh|Gm = 1. The space
X is uniquely a complex manifold in such that a way that z ∈ (C×)NC/R=1 acts
on ThX = LieG(R)/Lie StabG(R)(h) as adµh(z). (Note that adh factors through
uh : S1 → Gad over R and uh on S1(R) it equals the restriction of µh to (C×)NC/R=1.
According to proposition 5.9 and theorem 2.14 of [Mi3], the complex structure on
ThX = LieG(R)/Lie StabG(R)(h) is such that (C×)NC/R=1 acts by the adjoint action of
uh, i.e. by adµh.) A morphism φ : (G1, X1) → (G2, X2) is a morphism φ : G1 → G2

of algebraic groups over Q which takes X1 to X2. For instance if γ ∈ Gad (Q)R then

conjγ : (G,X)→ (G,X).

The G-conjugacy class [µh] can be thought of as a variety over C. If we set

E(G,X) = CStabAut (C)([µh]) ⊂ C
then E(G,X) is a number field (called the reflex field of (G,X)). It comes with a
preferred embedding

ı(G,X) : E(G,X) ↪→ C
and hence with a preferred infinite place v(G,X). The variety [µh] can be defined
over E(G,X), and if it can be defined over any subfield E ⊂ C then E(G,X) ⊂ E.

In [D2], Deligne imposes a further condition
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(3) Gad has no Q factors on which the projection of h is trivial.

Most subsequent authors have continued to impose this assumption. If (G,X) satisfies
this further condition we will call it a NCF-Shimura datum. (Here ‘NCF’ stands for
‘no compact factor’.)

We want to explain a straightforward reformulation of this concept. By a µ-Shimura
datum we will mean a pair (G, Y ) where G/Q is a reductive group and Y is a G(R)-
conjugacy class of miniscule compactifying cocharacters µ : Gm → G/C. Note that as
adµcµ is trivial, we have adµ(−1) ∈ Gad (R). A morphism φ : (G1, Y1)→ (G2, Y2) is
a morphism φ : G1 → G2 of algebraic groups over Q which takes Y1 to Y2. We define
the reflex field E(G, Y ) to be the field of definition of the G-conjugacy class of µ. We
will call (G, Y ) an NCF-µ-Shimura datum if G also satisfies condition (3) above.

There is a 1-1 correspondence between h-Shimura data and µ-Shimura data which
preserves morphisms, reflex fields and the NCF condition. This correspondence sends
an h-Shimura datum (G,X) to (G,Xµ), where

Xµ = {µh : h ∈ X}.

Note that µh
cµh = h|Gm so that adµh

cµh = 1; and that adh(i) = adµh(i)
cµh(−i) =

adµh(−1)ad (µh
cµh)(−i) = adµh(−1). In the other direction if (G, Y ) is a µ-Shimura

datum and µ ∈ Y , then µ and µc commute (as µc is a central character times µ−1)
and so

(µ, cµ) : G2
m −→ G/C

descends to a homomorphism

hµ : S −→ G/R.

Note that adhµ(i) = ad (µ(i)(cµ)(−i)) = adµ(−1)ad (µcµ)(−i) = adµ(−1). We send
(G, Y ) to (G, Y h), where Yh = {hµ : µ ∈ Y }.

It follows from lemma ?? that a Shimura datum (G, Y ) is completely determined by

the triple (G, [Y ]G, λ̂G(Y )), where [Y ]G denotes the G-conjugacy class of cocharacters
containing Y .

An element µ ∈ Y is called special if it factors through a sub-torus T ⊂ G which is
defined over Q. We will call it E-special if we may choose T such that in addition T
is split by E.

Lemma 8.1. (1) If µ ∈ Y is special it factors through a maximal torus defined
over Q.

(2) If µ ∈ Y is special and factors through a torus T defined over Q, then T ad (R)
is compact, i.e. c acts on X∗(T

ad ) by −1.
(3) If T ⊂ G is a maximal torus defined over Q and if T ad (R) is compact then

there is a µ ∈ Y which factors through T .
(4) If G contains a maximal torus T defined over Q and split by E with T ad (R)

compact, then the E-special points in Y are dense. In any case the special
points in Y are dense.
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(5) If µ ∈ Y is special and E/Q is Galois, then µ is E-special if and only if µ is
defined over E.

(6) If E/Q is finite Galois and if µ ∈ Y is E-special factoring through a torus
T ⊂ G defined over Q and split by E, then there is a commutative diagram

R1
E,C −→ Z(G) ∩ T ⊂ Z(G)
↓ ↓ ↓

RE,C
µ̃−→ T ⊂ G

↓ ↓ ↓
SE,C −→ T ad ⊂ Gad .

Moreover the the restriction µ̃|R1
E,C

depends only on E, but not on µ or T . We

will denote it µ̃Y,E. If D ⊃ E is another finite Galois extension of Q then
µ̃Y,D = µ̃Y,E ◦ND/E.

Proof: For the first part suppose that µ factors through a torus T ⊂ G defined over
Q. Then one can replace T by a maximal torus of ZG(T ) defined over Q.

For the second part note that T ad embeds over R into the inner form of Gad

determined by the cocycle c 7→ adµ(−1), whose real points are compact.
For the third part choose any µ1 ∈ Y and chose a maximal torus T1 ⊂ G defined

over R through which µ1 factors. Then T ad
1 (R) is compact (as in part 2)). Thus T

and T1 are fundamental tori in G/R and hence T = gT1g
−1 for some g ∈ G(R). Then

µ = gµ1g
−1 will do.

For the first assertion of the fourth part, because G(Q) is dense in G(R), it suffices
to see that there is some E-special point. This follows from the previous part. For
the second assertion choose a maximal torus T1 ⊂ G defined over R with T ad

1 (R)
compact. Then T1 is G(R)-conjugate to some maximal torus T ⊂ G defined over
Q, and we see that T ad (R) is also compact. Choosing a finite Galois extension E/Q
which splits T , and the second assertion follows from the first.

For the fifth part note that if µ factors through a torus T ⊂ G defined over Q
and split over E, then µ, like any cocharacter of T , is defined over E. Conversely,
if µ is defined over E and factors through a torus T1 ⊂ G defined over Q, then let
T be the minimal subtorus of T1 defined over Q through which µ factors. Because
X∗(T1)Gal (E/E) is Gal (E/Q)-invariant, we see that T splits over E.

For the sixth part note that one, and hence every, complex conjugation acts on
X∗(T

ad ) by −1. If µ1 and µ2 ∈ Y are two E-special points, then the composites µi :
Gm → G→ C(G) are equal and hence so are the composites µ̃i : RE,C → G→ C(G).
Because Z(G)→ C(G) is an isogeny we see that µ̃1|R1

E,C
= µ̃2|R1

E,C
�

8.2. Conjugation of Shimura data: general theory. Suppose that (G, Y ) is an
µ-Shimura datum. If τ ∈ Aut (C) and φ ∈ φG,Y,τ , then (φG, τ,φY ) is another Shimura

datum. If G = T is a torus then (φT, τ,φ{µ}) = (T, {τµ}).
We will say that a finite Galois extension E/Q is acceptable for G if
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• G contains a maximal torus T defined over Q and split by E and with T ad (R)
compact;
• E is totally imaginary;
• B(Q, G){∞},basic is contained in the image of H1

alg(E3(E/Q), G(E))basic.

The existence of some such E follows from the last paragraph of section 2.3 and
lemma 5.8.

If (G, Y ) is a Shimura datum, E is a number field acceptable forG and a ∈ H(E/Q),
then we will write Conj E,a,(G, Y ) for the set of triples (τ, φ, b), where

• τ ∈ Aut (C);
• φ ∈ φG,Y,τ ;
• b ∈ G(A∞E ) satisfies res∞locaφ = b1.

We will sometimes write (τ,φ,b)(G, Y ) = (φG, τ,φY ). We have

conjb : G× A∞ ∼−→ φG× A∞.
Note that if t ∈ T2,E(AE) then there is a natural bijection

ct : Conj E,a(G, Y )
∼−→ Conj E,ta(G, Y )

(τ, φ, b) 7−→ (τ, zt(φ), (locaφ)(t)b).

More generally if D ⊃ E is another finite Galois extension of Q, if aE ∈ H(E/Q)

and aD ∈ H(D/Q) and if t ∈ T2,E(AD) with t inf
Gal (D/Q)
Gal (E/Q) aE = ηD/E,∗aD, and if

(τ, φ, b) ∈ Conj E,aE(G, Y ), then

inf
D/E,t

(τ, φ, b) = (τ, inf
3,D/E,t

φ, (locaEφ)(t)b) ∈ ConjD,aD(G, Y ).

If (τ1, φ1, b1) ∈ Conj E,a(G, Y ) and (τ2, φ2, b2) ∈ Conj E,a
τ1,φ1,b1(G, Y ), then (τ2τ1, φ2φ1, b2b1) ∈

Conj E,a(G, Y ), and we have

τ2,φ2,b2(τ1,φ1,b1(G, Y )) = τ2τ1,φ2φ1,b2b1(G, Y ).

If (τ, φ, b) ∈ Conj E,a(G1, Y1) and f : (G1, Y1) → (G2, Y2) then (τ, f ◦ φ, f(b)) ∈
Conj E,a(G2, Y2) and f induces a map

τ,φ,bf : τ,φ,b(G1, Y1) −→ τ,f◦φ,f(b)(G2, Y2).

Moreover
conjf(b) ◦ f = τ,φ,bf ◦ conjb.

If we fix τ ∈ Aut (C) we will write Conj E,a(G, Y )τ for the subset of Conj E,a(G, Y )
consisting of those triples with first element τ . The group G(E)×G(A∞) acts tran-
sitively on Conj E,a(G, Y )τ via

(γ, h)(τ, φ, b) = (τ, γφ, γbh−1).

The stabilizer of (τ, φ, b) is identified with φG(Q) via δ 7→ (δ, b−1δb). We have

inf
D/E,t

((γ, h)(τ, φ, b)) = (γ, h) inf
D/E,t

(τ, φ, b).
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8.3. Conjugation of Shimura data: Langlands’ theory. Now suppose that a+ ∈
H(E/Q)+ lies above a and that α ∈ S̃E,C,τ (E). Suppose also that µ ∈ Y is E-special,
and choose a torus T ⊂ G defined over Q and split by E, through which µ factors.
Then µ̃ : RE,C → T over Q.

We define

φE,a+,τ,α,µ = µ̃(ca+,∞,µcan
C ,α) ∈ Z1

alg(E3(E/Q)a, G(E))

and

bE,a+,τ,α,µ = µ̃(ba+,∞,µcan
C ,α) ∈ T (A∞E ) ⊂ G(A∞E ).

There was a somewhat arbitrary choice of lifting made in the definition of ba+,∞,µcan
C ,α.

Varying this choice will only vary bE,a+,τ,α,µ by an element of Z(G)(E)Z(G)(Q), which
is independent of µ, and φE,a+,τ,α,µ by the corresponding element of Z(G)(E). We
have the following observations:

(1) res∞locaφE,a+,τ,α,µ = bE,a+,τ,α,µ1.

(2) φE,a+,τ,α,µ|T3,E(E) =
∏

ρ:E↪→C(ρ
−1

(µ/τµ)) ◦ πv(ρ), which by lemma 7.1 is valued

in Z(G)(E).
(3) [φE,a+,τ,α,µ] = φG,Y,τ ∈ H1

alg(E3(E/Q), G(E))basic.
(4) (τ, φE,a+,τ,α,µ, bE,a+,τ,α,µ) ∈ Conj E,a(G, Y ).

(5) Given τ1, τ2 ∈ Aut (C) and αi ∈ S̃E,C,τi(E), there exists β ∈ Z(G)(E), inde-
pendent of µ ∈ Y E-special, such that

βbE,a+,τ1τ2,α1α2,µ ≡ bE,a+,τ1,α1,τ2µbE,a+,τ2,α2,µ mod Z(G)(Q)

and
βφE,a+,τ1τ2,α1α2,µ = φE,a+,τ1,α1,τ2µφE,a+,τ2,α2,µ.

(6) If γ ∈ SE,C(E) then γ has a lift γ̃ ∈ RE,C(E) such that

φE,a+,τ,αγ−1,µ = µ̃(γ̃)φE,a+,τ,α,µ

and

bE,a+,τ,αγ−1,µ = µ̃(γ̃)bE,a+,τ,α,µ.

(7) We may take

φE,ta+,τ,α,µ = zt(φE,a+,τ,α,µ)

and

bE,ta+,τ,α,µ = bE,a+,τ,α,µ(res∞locaφE,a+,τ,α,µ)(t).

We will write

φad
E,τ,α,µ = adφE,a+,τ,α,µ ∈ Z1(Gal (E/Q), Gad (E)),

and

bad
E,τ,α,µ = ad bE,a+,τ,α,µ ∈ Gad (A∞E ).
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As the notation suggests these do not depend on the choice of a+ (nor on the somewhat
arbitrary choice of lifting made in the definition of ba+,∞,µcan

C ,α). If γ ∈ SE,C(E) then
γ has a lift γ̃ ∈ RE,C(E) such that

φad
E,τ,αγ−1,µ = ad µ̃(γ̃)φad

E,τ,α,µ

and
bad
E,τ,αγ−1,µ = ad µ̃(γ̃)bad

E,τ,α,µ.

(Note that ad µ̃(γ̃) depends only on γ, i.e. is independent of the particular lift γ̃.)
The cocycle φad

E,τ,α,µ equals the cocycle σ 7→ cσ(τ, µad )−1 of section 6 of [L]. Moreover

the element bad
E,τ,α,µ ∈ Gad (A∞E ) equals the element denoted ad b̃(τ, µ)−1 in section 6

of [L]. Note that Langlands does not mention the chosen lift α in his notation. This
is presumably because by point (6) above there is a canonical relationship between
these quantities for different choices of α. Nonetheless we find it less confusing to
keep track of the α.

Following Langlands we will set

τ,µ,α(G, Y ) = (τ,µ,αG, τ,µ,αY ) = (τ,φE,a+,τ,α,µ,bE,a+,τ,α,µ)(G, Y ),

so that
conjbad

E,τ,α,µ
: G× A∞ ∼−→ τ,µ,(ρ,α)G× A∞

and τµ ∈ τ,µ,αY . Note that

τ,µ,α(G, Y ) = (φ
ad
E,τ,α,µG, τ,φ

ad
E,τ,α,µY ),

and so τ,µ,α(G, Y ) does not depend on the choice of a+. This notation is consistent
with Langlands notation in [L], except again Langlands suppresses the choice of α in
his notation. If γ ∈ SE,C(E), then there is a canonical identification

conjµ̃(γ) : τ,µ,α(G, Y )
∼−→ τ,µ,αγ−1

(G, Y )

and
bad
E,τ,αγ−1,µ = (ad µ̃)(γ)bad

E,τ,α,µ.

This may be seen as explaining Langlands choice to suppress the α in his notation,
but again we feel it is clearer to make it explicit.

As
φad
E,τ1τ2,α1α2,µ

= φad
E,τ1,α1,τ2µ

φad
E,τ2,α2,µ

,

we see that
τ1τ2,µ,α1α2(G, Y ) = τ1,τ2µ,α1(τ2,µ,α2(G, Y )).

Similarly
bad
E,τ1τ2,α1α2,µ

= bad
E,τ1,α1,τ2µ

bad
E,τ2,α2,µ

.

If f : (G1, Y1)→ (G2, Y2) is a morphism of Shimura data and µ1 ∈ Y1 is special, then
we get a morphism

τ,µ1,αf : τ,µ1,α(G1, Y1) −→ τ,f(µ1),α(G2, Y2).
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Moreover

conjbad
E,τ,α,f(µ1)

◦ f = τ,µ1,αf ◦ conjbad
E,τ,α,µ1

.

If µ1, µ2 ∈ Y are both E-special then we set

φE,τ,α,µ1,µ2 = φE,a+,τ,α,µ2
φ−1
E,a+,τ,α,µ1

∈ Z1(Gal (E/Q), τ,µ1,αGad (E))

and

bE,τ,α,µ1,µ2 = bE,a+,τ,α,µ2
b−1
E,a+,τ,α,µ1

∈ G(A∞E ).

As the notation suggests, these do not depend on the somewhat arbitrary choices
made in the definition of ba+,∞,µcan

C ,α nor on the choice of a+.

(1)

ad bE,τ,α,µ1,µ2 = bad
E,τ,α,µ2

(bad
E,τ,α,µ1

)−1 ∈ Gad (A∞E ).

If γ̃ ∈ RE,C(E) maps to γ ∈ SE,C(E) then bE,τ,γα,µ1,µ2 = µ̃2(γ̃)−1bE,τ,α,µ1,µ2µ̃1(γ̃).
(2)

φE,τ,α,µ1,µ2 7−→ φad
E,τ,α,µ2

(φad
E,τ,α,µ1

)−1 ∈ Z1(Gal (K/Q), τ,µ1,αGad (E)).

We also have

φE,τ,α,µ1,µ2(σ) = bE,τ,α,µ1,µ2conjφad
E,τ,α,µ1

(σ)(
σbE,τ,α,µ1,µ2)−1.

If γ̃ ∈ RE,C(E) maps to γ ∈ SE,C(E) then

φE,τ,γα,µ1,µ2(σ) = µ̃2(γ̃)−1conjφad
E,τ,α,µ2

(σ)(
σµ̃2(γ̃)−1)φE,τ,α,µ1,µ2(σ)conjφad

E,τ,α,µ1
(σ)(

σµ̃1(γ̃))µ̃1(γ̃)−1.

(3) [φE,τ,α,µ1,µ2 ] ∈ H1(Gal (E/Q), τ,µ1,αG) is trivial, so that

φE,τ,α,µ1,µ2(σ) = γE,τ,α,µ1,µ2conjφad
E,τ,α,µ1

(σ)(
σγ−1

E,τ,α,µ1,µ2
)

for some γE,τ,α,µ1,µ2 ∈ G(E) well defined up to right multiplication by an
element of τ,µ1,αG(Q). We see that

φE,a+,τ,α,µ2
= γE,τ,α,µ1,µ2φE,a+,τ,α,µ2

and

conjγE,τ,α,µ1,µ2
: τ,µ1,αG

∼−→ τ,µ2,αG,

and

bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

∈ τ,µ2,αG(A∞).

Moreover

conjγE,τ,α,µ1,µ2
(τ,µ1,αY ) = τ,µ2,αY.

The cocycle φE,τ,α,µ1,µ2 ∈ Z1(Gal (E/Q), τ,µ1,αG) equals the cocycle denoted σ 7→ γσ
in ‘the first lemma of comparison’ in section 6 of [L]. Moreover bE,τ,α,µ1,µ2 ∈ G(A∞E )
is the element denoted B(τ) = B(τ, µ1, µ2) in section 6 of [L]. Finally the element
γE,τ,α,µ1,µ2 ∈ G(E) is denoted u in the ‘second lemma of comparison’ in section 6 of
[L].
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8.4. Deligne’s Shimura varieties. Given a Shimura datum (G,X) and a neat com-
pact open subgroup U ⊂ G(A∞) the complex analytic manifold

Sh(G,X)U(C) = G(Q)\(G(A∞)/U ×X)

arises from a unique quasi-projective variety Sh(G,X)U over C. Moreover to each
morphism f : (G1, X1) → (G2, X2) of Shimura data, each neat open compact sub-
group Ui ⊂ Gi(A∞) and each g ∈ G2(A∞) such that gf(U1)g−1 ⊂ U2 the map

G1(Q)\(G1(A∞)/U1 ×X1) −→ G2(Q)\(G2(A∞)/U2 ×X2)
G1(Q)(hU1, x) 7−→ G2(Q)(f(h)g−1U2, f(x),

is holomorphic and arises from an algebraic map

Sh(g, f) : Sh(G1, X1)U1 −→ Sh(G2, X2)U2 .

If G = T is a torus then we have an isomorphism

ΠT,{µ} : T (Q)\T (A∞)/U
∼−→ Sh(T, {µ})U(C)

T (Q)tU 7−→ [(t, µ)]

Note that

(1) If f1 : (G1, X1)→ (G2, X2) and f2 : (G2, X2)→ (G3, X3) and if Ui ⊂ Gi(A∞)
is a neat open compact subgroup and if gi ∈ Gi(A∞) (for i = 2, 3) satisfy
g2f1(U1)g−1

2 ⊂ U2 and g3f2(U2)g−1
3 ⊂ U3, then

Sh(g3, f2) ◦ Sh(g2, f1) = Sh(g3f2(g2), f2 ◦ f1).

In particular as U varies over neat open compact subgroups of G(A∞) the
filtered inverse system {Sh(G,X)U} (with transition maps Sh(1, 1)) has a
right action of G(A∞), where g acts by Sh(g−1, 1).

(2) If γ ∈ G(Q) and u ∈ U then Sh(uγ−1, conjγ) is the identity on Sh(G,X)U . In

particular if z ∈ Z(G)(Q) then Sh(z, 1) = 1.
(3) If x ∈ lim←V Sh(G,X)V (C) then the image ofG(A∞)x is dense in Sh(G,X)U(C),

for any U .
This implies the following: If T ⊂ G is a maximal torus defined over Q

with T ad (R) is compact, if i : t ↪→ G denotes this embedding, and if µ ∈ Xµ

factors through T (such a µ always exists); then⋃
g∈G(A∞)

Sh(g, i)(Sh(T, {µ})g−1Ug∩T (A∞)(C))

is dense in Sh(G,C)U(C).
(4) The group of automorphisms of the variety Sh(G,X)U is finite.

(For most of this see sections 1.8 and 1.14 of [D1]. For the uniqueness of the quasi-
projective algebraic structure on Sh(G,X)U see [B]. Item (3) above follows from the
density of G(Q)x in X for any x ∈ X, or even from the density of G(Q) in G(R).
Item (4) follows from lemma 2.6.3 of [Ma]. (See also lemma 2.2 of [Mi2].))
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As best we understand the main theorem of [Mi1] (proving a conjecture of Lang-
lands from [L]), it asserts the following:

Theorem 8.2 (Milne). Suppose that (G, Y ) is an NCF µ-Shimura datum, that E/Q
is a finite Galois extension, and that µ ∈ Y is an E-special point. Suppose also that

τ ∈ Aut (C) and choose α ∈ S̃E,C,τ . Then there is a unique morphism

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)

such that
Φ(τ, µ, α)(1, µ) = (1, τµ)

and
Φ(τ, µ, α) ◦ τSh(g, 1) = Sh(conjbad

E,τ,α,µ
(g), 1) ◦ Φ(τ, µ, α)

for all g ∈ G(A∞).
If µ1 and µ2 ∈ Y are two E-special points, then

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2
) ◦ Φ(τ, µ1, α).

(Note that the right hand side is unchanged if γE,τ,α,µ1,µ2 is replaced by γE,τ,α,µ1,µ2β
with β ∈ τ,µ2,αG(Q), and so the ambiguity in γE,τ,α,µ1,µ2 is unimportant.)

From these assertions the following additional formulae are easily deduced:

(1) If γ ∈ SE,C(E) then Φ(τ, µ, αγ)) = Sh(1, conjµ̃(γ)−1)Φ(τ, µ, α).
(2) If f : (G1, Y1)→ (G2, Y2) and g ∈ G2(A∞) and µ1 ∈ Y1 is an E-special point,

then Φ(τ, f ◦ µ1, α) ◦ τSh(g, f) = Sh(conjbad
E,τ,α,f◦µ

(g), τ,µ1,αf) ◦ Φ(τ, µ1, α).

(3) Φ(τ1τ2, µ, α1α2) = Φ(τ1,
τ2µ, α1) ◦ τ1Φ(τ2, µ, α2).

(4) If G = T is a torus then Φ(τ, µ, α) ◦ τ ◦ ΠT,{µ} = ΠT,{τµ}.

8.5. Removing the NCF-condition. We start with the following lemma.

Lemma 8.3. Suppose that (G, Y ) is a Shimura datum. Suppose also that H ⊂ G is a
normal connected reductive subgroup such that (G/H)(R) is compact and the image of
one, and hence every, µ ∈ Y in (G/H)(R) is trivial. We will write i for the inclusion
H ↪→ G. Also suppose that U is a neat open compact subgroup of G(A∞).

(1) Then Y is a single H(R)-conjugacy class so that (H,Y ) is also a Shimura
datum.

(2) G(Q)H(A∞)\G(A∞)/U has finite cardinality.
(3) (G/H)(Q) ∩ Im (U → (G/H)(A∞)) = {1}.
(4) G(Q)\(G(A∞)/U×Y ) =

∐
h∈G(Q)H(A∞)\G(A∞)/U H(Q)\(H(A∞)/(hUh−1∩H(A∞))×

Y )h.
(5) Sh(G, Y )U =

∐
h∈G(Q)H(A∞)\G(A∞)/U Sh(H,Y )hUh−1∩H(A∞), where we map

Sh(H,Y )hUh−1∩H(A∞) ↪→ Sh(G, Y )U

via Sh(h−1, i).
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Proof: The exact sequence

(0) −→ Had −→ Gad −→ (G/H)ad −→ (0)

has a unique splitting in which (G/H)ad lifts to a normal subgroup of Gad . Write H ′

for the pre-image in G of (G/H)ad ⊂ Had × (G/H)ad = Gad , so that (H ′)ad ∼→ G/H.
Note that H ′(R)� (G/H)(R) (as (G/H)(R) is compact) and acts trivially on Y . If
µ, µ′ ∈ Y then µ′ = conjg ◦µ for some g ∈ G(R). Let h ∈ H ′(R) have the same image
as g in (G/H)(R). Thus gh−1 ∈ H(R) and conjgh−1 ◦ µ = µ′. The first part of the
lemma follows.

The set

G(Q)H(A∞)\G(A∞)/U = G(Q)H(A∞)\G(A)/UG(R)

is finite by theorem 5.1 of [PR].
For the third part we see that (G/H)(Q)∩ Im (U → (G/H)(A∞)) is finite (because

(G/H)(R) is compact) and hence {1} because U is neat.
For the fourth part, first note that

G(Q)\(G(A∞)/U × Y ) =
∐

h∈G(Q)H(A∞)\G(A∞)/U

G(Q)\(G(Q)H(A∞)hU/U × Y ).

Next suppose that for g1, g2 ∈ H(A∞) and µ1, µ2 ∈ Y we have

γ(g1hu, µ1) = (g2h, µ2),

for some γ ∈ G(Q) and u ∈ U . Then we see that the image of γ in (G/H)(Q) lies in
(G/H)(Q)∩Im (hUh−1 → (G/H)(A∞)) = {1}. Thus γ ∈ H(Q) and huh−1 ∈ H(A∞).
We conclude that

H(Q)\(H(A∞)/(hUh−1 ∩H(A∞))× Y )
h−→ G(Q)\(G(Q)H(A∞)hU/U × Y )

is an isomorphism, and the third part of the lemma follows. The fifth part follows
from the fourth and the uniqueness assertion in section 8.4. �

Suppose that (G, Y ) is a µ-Shimura datum. We have Gad = Gad ,nc ×Gad ,c, where
Gad ,c(R) is compact, but if H is any simple factor of Gad ,nc/Q, then H(R) is not
compact. We will write Gnc (resp. Gc) for the connected component of the identity
of ker(G � Gad ,c) (resp. ker(G � Gad ,nc)) and G

nc
(resp. G

c
) for G/Gc (resp.

G/Gnc). Thus

Gc � G
c
� Gad ,c ∼−→ Gc,ad

and

Gnc � G
nc
� Gad ,nc ∼−→ Gnc,ad ,

where the central maps have finite central kernels. We also have Z(Gc) = Z(G)∩Gc

and Z(Gnc) = Z(G) ∩ Gnc. Moreover Gc and Gnc centralize each other. (Indeed if
we let Gc act on Gnc by conjugation, we see that, given h ∈ Gnc, there is a character
χh : Gc → Z(G) ∩ Gnc such that conjg(h) = χh(g)h. The character χh must factor
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through C(Gc), but is trivial on Z(G)∩Gc � C(Gc). Thus χh = 1 and Gc centralizes
h as desired.) We have an exact sequence

(0) −→ Z(Gc) ∩ Z(Gnc) −→ Gnc ×Gc −→ G −→ (0).

Note (G/Gnc)(R) is compact and hence connected. Thus Gc(R)� (G/Gnc)(R).
If µ ∈ Y then the composition of µ with G → Gad ,c takes −1 to 1 and hence

factors through the squaring map Gm → Gm. As this composition is miniscule we
see that it must actually be trivial, i.e. µ ∈ X∗(G

nc) and Gc centralizes µ. By
lemma 8.3 (Gnc, Y ) is a NCF-Shimura datum. Write i for the map Gnc ↪→ G, so that
i : (Gnc, Y )→ (G, Y ). Further by lemma 8.3 we have

Sh(G, Y )U =
∐

h∈G(Q)Gnc(A∞)\G(A∞)/U

Sh(Gnc, Y )hUh−1∩Gnc(A∞),

where G(Q)Gnc(A∞)\G(A∞)/U is finite, and where

Sh(h−1, i) : Sh(Gnc, Y )hUh−1∩Gnc(A∞) ↪→ Sh(G, Y )U .

If h′ = gγhu with g ∈ Gnc(A∞), γ ∈ G(Q) and u ∈ U , then

Sh(Gnc, Y )hUh−1∩Gnc(A∞)

↘ Sh(h−1, i)
Sh(g, conjγ) ↓ o Sh(G, Y )U

↗ Sh((h′)−1, i)
Sh(Gnc, Y )h′U(h′)−1∩Gnc(A∞)

commutes.
Now suppose that f : (G1, Y1) → (G2, Y2) is a morphism of Shimura data, that

Ui ⊂ Gi(A∞) are neat open compact subgroups and that g ∈ G2(A∞) such that
gf(U1)g−1 ⊂ U2. Note that f : Gnc

1 → Gnc
2 . If h ∈ G(A∞) then

Sh(Gnc
1 , Y1)hU1h−1∩Gnc1 (A∞)

Sh(h−1,i1)
↪→ Sh(G1, Y1)U1

Sh(1, f) ↓ ↓ Sh(g, f)

Sh(Gnc
2 , Y2)f(h)g−1U2(f(h)g−1)−1∩Gnc2 (A∞)

Sh(gf(h−1),i2)
↪→ Sh(G2, Y2)U2

commutes.
Our next aim is to extend theorem 8.2 to this setting. So suppose that (G, Y ) is a

Shimura datum and that µ ∈ Y is an E-special point. Suppose also that τ ∈ Aut (C)

and α ∈ S̃E,C,τ .
Note that φE,a+,τ,α,µ and bE,a+,τ,α,µ as defined for G equal those defined for Gnc.

Thus we will denote them with the same symbol. Hence G
c

= τ,µ,αG
c

and τ,µ,α(Gnc) =
(τ,µ,αG)nc. We claim that the images of G(Q) and τ,µ,αG(Q) in G

c
(Q) are equal, from

which it follows that

conjbad
E,τ,α,µ

(G(Q)Gnc(A∞)) = τ,µ,αG(Q)τ,µ,αGnc(A∞),
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and hence that conjbad
E,τ,α,µ

gives a bijection

G(Q)Gnc(A∞)\G(A∞)/U
∼−→ τ,µ,αG(Q)τ,µ,αGnc(A∞)\τ,µ,αG(A∞)/conjbad

E,τ,α,µ
(U).

To prove the claim suppose that γ ∈ G(Q). Then we have γE,τ,α,µ,conjγ−1◦µ ∈ Gnc(E)

satisfying

φE,a+,τ,α,conjγ−1◦µ(σ)φE,a+,τ,α,µ(σ)−1

= γE,τ,α,µ,conjγ−1◦µφE,a+,τ,α,µ(σ)σγ−1
E,τ,α,µ,conjγ−1◦µφE,a+,τ,α,µ(σ)−1

i.e.

γγE,τ,α,µ,conjγ−1µ = conjφad
E,τ,α,µ(σ)(

σ(γγE,τ,α,µ,conjγ−1µ)).

Hence

γγE,τ,α,µ,conjγ−1µ ∈ τ,µ,αG(Q)

and has the same image in G
c
(E) as γ. Thus the image of G(Q) in G

c
(Q) is contained

in the image of τ,µ,αG(Q) in G
c
(Q). Using the identification τ−1,τµ,α−1

(τ,µ,αG) = G we
get the reverse inclusion.

Now define

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)

to be the disjoint union over h ∈ G(Q)Gnc(A∞)\G(A∞)/U of the maps Φ(τ, µ, α):

τSh(Gnc, Y )hUh−1∩Gnc(A∞)
∼→ Sh(τ,µ,αGnc, τ,µ,αY )conj

bad
E,τ,α,µ

(h)conj
bad
E,τ,α,µ

(U)conj
bad
E,τ,α,µ

(h)−1∩τ,µ,αGnc(A∞).

From the claim above we see that Φ(τ, µ, α) is an isomorphism. We must check it is
independent of the choice of coset representatives h. For this suppose that h′ = gγhu
with g ∈ Gnc(A∞) and γ ∈ G(Q) and u ∈ U . Then

conjbad
E,τ,α,µ

(h′) = (conjbad
E,τ,α,µ

(gγ)γ−1
E,τ,α,µ,conjγ−1µ

γ−1)(γγE,τ,α,µ,conjγ−1µ)

conjbad
E,τ,α,µ

(h)conjbad
E,τ,α,µ

(u),

with γγE,τ,α,µ,conjγ−1µ ∈ τ,µ,αG(Q) and

conjbad
E,τ,α,µ

(gγ)γ−1
E,τ,α,µ,conjγ−1µ

γ−1 ∈ τ,µ,αGnc(A∞).

Thus what we must show is that

Φ(τ, µ, α)◦τSh(g, conjγ) = Sh(conjbad
E,τ,α,µ

(gγ)γ−1
E,τ,α,µ,conjγ−1µ

γ−1, conjγγE,τ,α,µ,conj
γ−1µ

)◦Φ(τ, µ, α).

However

Φ(τ, µ, α) ◦ τSh(g, conjγ)
= Sh(conjbad

E,τ,α,µ
(g), conjγ) ◦ Φ(τ, conjγ−1µ, α)

= Sh(conjbad
E,τ,α,µ

(g), conjγ) ◦ Sh(bE,τ,α,µ,conjγ−1µγ
−1
E,τ,α,µ,conjγ−1µ

, conjγE,τ,α,µ,conj
γ−1µ

) ◦ Φ(τ, µ, α).
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Thus we are reduced to checking that

Sh(γbE,τ,α,µ,conjγ−1µγ
−1
E,τ,α,µ,conjγ−1µ

γ−1, conjγγE,τ,α,µ,conj
γ−1µ

)

= Sh(conjbad
E,τ,α,µ

(γ)γ−1
E,τ,α,µ,conjγ−1µ

γ−1, conjγγE,τ,α,µ,conj
γ−1µ

).

This is clear because

γbE,τ,α,µ,conjγ−1µ

= γconjγ−1(bE,a+,τ,α,µ)b−1
E,a+,τ,α,µ

= bE,a+,τ,α,µγb
−1
E,a+,τ,α,µ

= conjbad
E,τ,α,µ

(γ).

We certainly have
Φ(τ, µ, α)(µ, 1) = (τµ, 1).

If gU1g
−1 ⊂ U2, we claim that

Φ(τ, µ, α) ◦ τSh(g, 1) = Sh(conjbad
E,τ,α,µ

(g), 1) ◦ Φ(τ, µ, α),

as maps
τSh(G, Y )U1 → Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U2).

However both sides when restricted to Sh(G, Y )hU1h−1∩Gnc(A∞) are just Φ(τ, µ, α) tak-
ing

τSh(Gnc, Y )hU1h−1∩Gnc(A∞) −→ Sh(τ,µ,αGnc, τ,µ,αY )conj
bad
E,τ,α,µ

hg−1 (U2)∩τ,µ,αGnc(A∞).

Now suppose that µ1 and µ2 are special in Y and defined over E. We claim that

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2
) ◦ Φ(τ, µ1, α)

as maps
τSh(G, Y )U −→ Sh(τ,µ2,αG, τ,µ2,αY )conj

bad
E,τ,α,µ2

U .

To verify this, we must show that if h ∈ G(A∞), then

Φ(τ, µ2, α) = Sh(bE,τ,α,b1,b2γ
−1
E,τ,α,µ1,µ2

, 1) ◦ Sh(1, conjγE,τ,α,µ1,µ2
) ◦ Φ(τ, µ1, α)

as maps from τSh(Gnc, Y )hUh−1∩Gnc(A∞) to

Sh(τ,µ2,αGnc, τ,µ2,αY )conj
bad
E,τ,α,µ2

(h)conj
bad
E,τ,α,µ2

(U)conj
bad
E,τ,α,µ2

(h)−1∩τ,µ2,αGnc(A∞).

However this equality is part of theorem 8.2.
Thus Milne’s theorem 8.2 remains true without the NCF hypothesis. As noted

immediately after the statement of that theorem, this allows us to conclude:

Theorem 8.4. Suppose that E/Q is a finite Galois extension, that (G, Y ) is a µ-
Shimura datum, and that µ ∈ Y is an E-special point. Suppose also that τ ∈ Aut (C)

and choose α ∈ S̃E,C,τ . Then there is a unique morphism

Φ(τ, µ, α) : τSh(G, Y )U
∼−→ Sh(τ,µ,αG, τ,µ,αY )conj

bad
E,τ,α,µ

(U)
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such that
Φ(τ, µ, α)(µ, 1) = (τµ, 1)

and
Φ(τ, µ, α) ◦ Sh(g, 1) = Sh(conjbad

E,τ,α,µ
(g), 1) ◦ Φ(τ, µ, α)

for all g ∈ G(A∞). Moreover:

(1) If γ ∈ SE,C(E) then Φ(τ, µ, αγ) = Sh(1, conjµ̃(γ)−1)Φ(τ, µ, α).
(2) If f : (G1, Y1) → (G2, Y2) and g ∈ G2(A∞) and µ1 ∈ Y1 is a special point

defined over the image of E in C, then

Φ(τ, f ◦ µ1, α) ◦ τSh(g, f) = Sh(conjbad
E,τ,α,f◦µ

(g), τ,µ1,αf) ◦ Φ(τ, µ1, α).

(3) Φ(τ1τ2, µ, α1α2) = Φ(τ1,
τ2µ, α1) ◦ τ1Φ(τ2, µ, α2).

(4) If G = T is a torus then Φ(τ, µ, α) ◦ τ ◦ ΠT,{µ} = ΠT,{τµ}.
(5) If µ1 and µ2 are two such special points defined over E, then

Φ(τ, µ2, α) = Sh(bE,τ,α,µ1,µ2γ
−1
E,τ,α,µ1,µ2

, conjγE,τ,α,µ1,µ2
) ◦ Φ(τ, µ1, α).

8.6. Reformulation of Milne’s theorem. We now state and prove our first main
theorem, which is a reformulation of Milne’s theorem.

Theorem 8.5. Suppose that E/Q is a finite Galois extension and a+ ∈ H(E/Q)+.
If (G, Y ) is a Shimura datum with E acceptable for G, if (τ, φ, b) ∈ Conj E,a(G, Y )
and if U is a neat open compact subgroup of G(A∞), then there is an isomorphism

ΦE,a+(τ, φ, b) : τSh(G, Y )U
∼−→ Sh(τ,φ,b)(G, Y )bUb−1

with the following properties.

(1) ΦE,a+(τ, φ, b) ◦ τSh(g, 1) = Sh(bgb−1, 1) ◦ ΦE,a+(τ, φ, b).
(2) Sh(1, f) ◦ ΦE,a+(τ, φ, b) = ΦE,a+(τ, f ◦ φ, f(b)) ◦ τSh(1, f).
(3) If δ ∈ G(E) and h ∈ G(A∞), then ΦE,a+(τ, δφ, δbh) = Sh(1, conjδ)◦ΦE,a+(τ, φ, b)◦

τSh(h, 1).
(4) If (τ1, φ1, b1) ∈ Conj E,a+

(τ2,c2,b2)(G, Y ) and (τ2, φ2, b2) ∈ Conj E,a+(G, Y ), then

ΦE,a+(τ1τ2, φ1φ2, b1b2) = ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2, φ2, b2).

(5) Suppose that G = T is a torus, that µ ∈ X∗(T )(C) and that (τ, φ, b) ∈
Conj E,a(T, {µ}). Then

b−1ba+,∞,µ,τ ∈ T (A∞)/T (Q) ⊂ T (A∞K )/T (Q)T (K).

Moreover

ΦE,a+(τ, φ, b) ◦ τ ◦ ΠT,{µ} = Sh(bb
−1

a+,∞,µ,τ , 1) ◦ ΠT,{τµ}.

In the special case that τ fixes the image of E in C, then Π−1
T,{τµ}◦ΦE,a+(τ, φ, b)◦

τ ◦ ΠT,{µ} equals multiplication by

b−1
∏

ρ:E↪→C

(ρ
−1

µ)(Art −1
E τ ρ̃)−1,
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where ρ̃ is any extension of ρ to Eab.
(6) If (τ, φ, b) ∈ Conj E,a(G, Y ), then (τ, zt(φ), (locaφ)(t)b) ∈ ConjK,ta(G, Y ) and

ΦE,ta+(τ, zt(φ), (locaφ)(t)b) = ΦG,a+(τ, φ, b).
(7) Suppose that D ⊃ E is another finite Galois extension of Q, that a+

D ∈
H(D/Q)+ and that t ∈ T2,E(AD) with t inf

Gal (D/Q)
Gal (E/Q) a

+ = ηD/E,∗a
+
D. Then

ΦD,a+
D

(infD/E,t(τ, φ, b)) = ΦE,a+(τ, φ, b).

(8) If µ ∈ Y is an E-special point and if α ∈ S̃E,C,τ (E) then

ΦE,a+(τ, φE,a+,τ,α,µ, bE,a+,τ,α,µ) = Φ(τ, µ, α).

Proof: Suppose that T ⊂ G is a maximal torus defined over Q such that T ad (R) is
compact and T is split by E. Then we may choose µ ∈ Y that factors through T . It
will be E-special. Choosing α as in part (8) of the theorem, we may find δ ∈ G(E)
and h ∈ G(A∞) such that

(τ, φ, b) = (τ, δφE,a+,τ,α,µ, δbK,a+,τ,α,µh).

Then we are forced to set

ΦE,a+(τ, φ, b) = Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1).

We must check that this is a good definition.
If γ ∈ φE,a+,τ,α,µG(Q) then

Sh(1, conjδγ) ◦ Φ(τ, µ, α) ◦ τSh(b−1γ−1bh, 1)
= Sh(1, conjδ) ◦ Sh(γ, 1) ◦ Φ(τ, µ, α) ◦ τSh(b−1γ−1bh, 1)
= Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1),

and so the definition is independent of the choice of δ and h.
If we replace α by αγ−1 with γ ∈ SE,C(E), then there is a lift γ̃ ∈ RE,C(E) of γ

such that φE,a+,τ,αγ−1,µ = µ̃(γ̃)φE,a+,τ,α,µ and bE,a+,τ,αγ−1,µ = µ̃(γ̃)bE,a+,τ,α,µ and so

(τ, φ, b) = (τ, δµ̃(γ̃)−1

φE,a+,τ,αγ−1,µ, δµ̃(γ̃)−1bE,a+,τ,αγ−1,µh).

Then, because Φ(τ, µ, αγ−1) = Sh(1, conjγ̃) ◦ Φ(τ, µ, α), we see that

Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1) = Sh(1, conjδµ̃(γ̃)−1) ◦ Φ(τ, µ, αγ−1) ◦ τSh(h, 1),

and our definition is independent of the choice of α.
Finally if we replace µ by µ′, then

(τ, φ, b) = (τ,
δγ−1

E,a+,τ,α,µ,µ′φE,a+,τ,α,µ′ , (δγ
−1
E,a+,τ,α,µ,µ′)bE,a+,τ,α,µ′(b

−1
E,a+,τ,α,µ′γE,a+,τ,α,µ,µ′bE,a+,τ,α,µh)).

We must check that

Sh(1, conjδ) ◦ Φ(τ, µ, α) ◦ τSh(h, 1)
= Sh(1, conjδγ−1

E,a+,τ,α,µ,µ′
) ◦ Φ(τ, µ′, α) ◦ τSh(b−1

E,a+,τ,α,µ′γE,a+,τ,α,µ,µ′bE,a+,τ,α,µh, 1),
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or that

Φ(τ, µ, α) ◦ τSh(b−1
E,a+,τ,α,µγ

−1
E,a+,τ,α,µ,µ′bE,a+,τ,α,µ′ , 1)

= Sh(1, conjγ−1

E,a+,τ,α,µ,µ′
) ◦ Sh(bE,τ,α,µ,µ′γ

−1
E,τ,α,µ,µ′ , conjγE,τ,α,µ,µ′ ) ◦ Φ(τ, µ, α),

or even that

Sh(γ−1
E,a+,τ,α,µ,µ′bE,a+,τ,α,µ′b

−1
E,a+,τ,α,µ, 1) ◦ Φ(τ, µ, α)

= Sh(γ−1
E,a+,τ,α,µ,µ′bE,τ,α,µ,µ′ , 1) ◦ Φ(τ, µ, α),

which is true.
Having checked that our definition is good we must check the desired properties.

Property (8) is part of the definition, while property (3) follows easily from the defi-
nition.

Properties (1) and (2) are true for

(τ, φ, b) = (τ, φE,a+,τ,α,µ, bE,a+,τ,α,µ),

because φE,a+,τ,α,f◦µ = f ◦ φE,a+,τ,α,µ and bE,a+,τ,α,f◦µ = f(bE,a+,τ,α,µ). To check that
they remain true for all (τ, φ, b), it suffices to check that if they are true (τ, φ, b) then
they are also true for (τ, δφ, δbh). However we have

ΦE,a+(τ, δφ, δbh) ◦ τSh(g, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(hg, 1)
= Sh(1, conjδ) ◦ Sh(bhgh−1b−1, 1) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(conjδbh(g), 1) ◦ ΦE,a+(τ, δφ, δbh)

and
ΦE,a+(τ, f ◦ δφ, f(δbh)) ◦ τSh(1, f)

= Sh(1, conjf(δ)) ◦ ΦE,a+(τ, f ◦ φ, f(b)b) ◦ τSh(f(h), 1) ◦ τSh(1, f)
= Sh(1, conjf(δ)) ◦ ΦE,a+(τ, f ◦ φ, f(b)b) ◦ τSh(1, f) ◦ τSh(h, 1)
= Sh(1, conjf(δ)) ◦ Sh(1, f) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(1, f) ◦ Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1)
= Sh(1, f) ◦ ΦE,a+(τ, δφ, δbh).

Similarly property (5) is true in the case

(τ, φ, b) = (τ, φE,a+,τ,α,µ, bE,a+,τ,α,µ).

On the other hand if the claim is true for (τ, φ, b), then

ΦE,a+(τ, δφ, δbh) ◦ τ ◦ ΠT,{µ}
= Sh(1, conjδ) ◦ ΦE,a+(τ, φ, b) ◦ τSh(h, 1) ◦ τ ◦ ΠT,{µ}
= Sh(h, 1) ◦ ΦE,a+(τ, φ, b) ◦ τ ◦ ΠT,{µ}

= Sh(h, 1) ◦ Sh(bb
−1

a+,∞,µ,τ , 1) ◦ ΠT,{τµ}

= Sh(δbhb
−1

a+,∞,µ,τ , 1) ◦ ΠT,{τµ},

and so it is also true for (τ, δφ, δbh).
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That property (7) is true in the case G = T is a torus follows from property (5)
because infD/E,t(τ, φ, b) = (τ, inf3,D/E,t φ, (locaφ)(t)b) and

ba+
D,∞,µ,τ

= ba+,∞,µ,τ
∏

ρ:E↪→C

((ρ
−1

µ) ◦ (πw(ρ)/πw(τρ)))(t) = ba+,∞,µ,τ (locaφ)(t).

Now consider the general case. Because infD/E,t(γ, h)(τ, φ, b) = (γ, h) infD/E,t(τ, φ, b),
the assertion will be true for (τ, φ, b) if and only if it is true for (γ, h)(τ, φ, b). Choose
a maximal torus T ⊂ G defined over Q and split by E such that T ad (R) is compact.
Also choose µ ∈ Y which factors through T and let i denote the canonical embedding
i : T ↪→ G. Also choose (τ, φ, b) ∈ Conj E,a(T, {µ}). It will suffice to prove that

ΦE,a+(τ, i ◦ φ, i(b)) = ΦE,a+
D

( inf
D/E,t

(τ, i ◦ φ, i(b))).

Because ⋃
g∈G(A∞)

Sh(g, i)(Sh(T, {µ})g−1Ug∩T (A∞))

is Zariski dense in Sh(G, Y )U , it even suffices to check that

ΦE,a+(τ, i ◦ φ, i(b)) ◦ τSh(g, i) = ΦE,a+
D

( inf
D/E,t

(τ, i ◦ φ, i(b))) ◦ τSh(g, i)

for all g ∈ G(A∞). As conjb(g) = conj(locaφ)(t)b(g) (because φ is basic) and inf3,D/E,t(i◦
φ) = i ◦ inf3,D/E,t φ and i((locaφ)(t)) = (locai ◦ φ)(t); applying properties (1) and (2)
we reduce to the equality

ΦE,a+(τ, φ, b) = ΦE,a+
D

( inf
D/E,t

(τ, φ, b)),

which we have already verified.
Property (6) is a special case of property (7).
Finally we must check property (4). If

(τ1, φ1, b1) = (τ, φE,a+,τ1,α1,τ2µ, bE,a+,τ1,α1,τ2µ)

and

(τ2, φ2, b2) = (τ, φE,a+,τ2,α2,µ, bE,a+,τ2,α2,µ)

Then the result is true because for some β ∈ Z(G)(E) we have

φE,a+,τ1,α1,τ2µφE,a+,τ2,α2,µ = βφE,a+,τ1τ2,α1α2,µ

and

bE,a+,τ1,α1,τ2µbE,a+,τ2,α2,µ ≡ βbE,a+,τ1τ2,α1α2,µ mod Z(G)(Q),

so that

ΦE,a+(τ1τ2, φE,a+,τ1,α1,τ2µφE,a+,τ2,α2,µ, bE,a+,τ1,α1,τ2µbE,a+,τ2,α2,µ)
= ΦE,a+(τ1τ2, φE,a+,τ1τ2,α1α2,µ, bE,a+,τ1τ2,α1α2,µ).
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Suppose now that property (4) holds for (τ1, φ1, b1) and (τ2, φ2, b2). Then it also holds
for (τ1,

δφ1, δb1h) and (τ2, φ2, b2), because

ΦE,a+(τ1τ2, (
δφ1)φ2, δb1hb2)

= ΦE,a+(τ1τ2,
δ(φ1φ2), δb1b2(b−1

2 hb2))
= Sh(1, conjδ) ◦ ΦE,a+(τ1τ2, φ1φ2, b1b2) ◦ τ1τ2Sh(b−1

2 hb2, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(b−1

2 hb2, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, φ1, b1) ◦ τ1Sh(h, 1) ◦ τ1ΦE,a+(τ2, φ2, b2)
= ΦE,a+(τ1,

δφ1, δb1h) ◦ τ1ΦE,a+(τ2, φ2, b2).

Similarly, if the property holds for (τ1, conjδ−1 ◦ φ1, conjδ−1 ◦ b1) and (τ2, φ2, b2), then
it also holds for (τ1, φ1, b1) and (τ2,

δφ2, δb2h), because

ΦE,a+(τ1τ2, φ1(δφ2), b1δb2h)
= ΦE,a+(τ1τ2,

δ((conjδ−1 ◦ φ1)φ2), δconjδ−1(b1)b2h)
= Sh(1, conjδ) ◦ ΦE,a+(τ1τ2, (conjδ−1 ◦ φ1)φ2, conjδ−1(b1)b2) ◦ τ1τ2Sh(h, 1)
= Sh(1, conjδ) ◦ ΦE,a+(τ1, conjδ−1 ◦ φ1, conjδ−1(b1)) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(h, 1)
= ΦE,a+(τ1, φ1, b1) ◦ τ1Sh(1, conjδ) ◦ τ1ΦE,a+(τ2, φ2, b2) ◦ τ1τ2Sh(h, 1)
= ΦE,a+(τ1, φ1, b1) ◦ τ1ΦE,a+(τ2,

δφ2, δb2h).

Note that

(τ1, conjδ−1◦φE,a+,τ1,α1,µ, conjδ−1◦bE,a+,τ1,α1,µ) = (τ1, φE,a+,τ1,α1,conjδ−1◦µ, bE,a+,τ1,α1,conjδ−1◦µ).

Thus property (4) follows in full generality. �

We remark that properties (1), (2) and (5) completely characterize the ΦE,a+(τ, φ, b).
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9. Rational Shimura varieties

9.1. Rational Shimura data. In this section we will discuss the data that we pro-
pose as an alternative formalism for Shimura varieties. Suppose that E/Q is a finite
totally imaginary Galois extension and that a+ ∈ H(E/Q)+.

By a ((E, a)-)rational Shimura datum over a field L of characteristic 0 we mean a
triple (G,ψ,C) where

(1) G is a reductive group over Q for which E is acceptable;
(2) ψ ∈ Z1

alg(E loc(E/Q)a, G(AE))basic with resC/Rψ compact;
(3) C is a G-conjugacy class, defined over L, of miniscule cocharacacters of G such

that C can be defined over a subfield L0 ⊂ L which admits an embedding
ρ : L0 ↪→ E and κ(ψ) = λ(ρC) ∈ ΛG,Gal (E/Q). (This is independent of the
particular choice of L0 and ρ.)

By a morphism (φ, g, f) : (G1, ψ1, C1) → (G2, ψ2, C2) of (E, a)-rational Shimura
data over L, we will mean

• a cocycle φ ∈ Z1
alg(E3(E/Q)a, G2(E))basic,

• an element g ∈ G2(AE),

• and a morphism f : G1 → φG2 defined over Q, such that f ◦ψ1 = g−1
ψ2locaφ

−1

and f(C1) ⊂ C2.

Note that
θ(φ,g,f) = conjg ◦ f : ψ1G1(A) −→ ψ2G2(A).

We define the composite of such morphisms by

(φ2, g2, f2) ◦ (φ1, g1, f1) = (f2(φ1)φ2, g2f2(g1), f2 ◦ f1)

and set
Id(G,ψ,C) = (1, 1, 1).

This makes (E, a)-rational Shimura data over a field L into a category RSD(E, a;L).
If Z(G) is connected, then (by proposition 10.4 of [K3]) any object of RSD(E, a;L)

is isomorphic to one with G quasisplit. Thus in this case one might as well restrict
to triples (G,ψ,C) with G quasi-split.

We will write

ĜE,(G,ψ,C)(A) = ĜE,ψ(A) = {(ζ, g, 1) ∈ Z1
alg(E3(E/Q)a, Z(G)(E))×G(AE)×{1G} : (locaζ)gψ = ψ}.

Elements of ĜE,ψ(A) are examples of the triples considered in the previous paragraph.
Under the composition law described above they become a group. Explicitly

(ζ2, g2, 1)(ζ1, g1, 1) = (ζ2ζ1, g2g1, 1).

We will often write (ζ, g) for (ζ, g, 1). If (ζ, g) ∈ Ĝ(G,ψ,C)(A), then we see that
ζ ∈ Z1(Gal (E/Q), Z(G)(E)). We have embeddings

ψG(A) ↪→ ĜE,ψ(A)
g 7−→ (1, g)
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and
Z(G)(E) ↪→ ĜE,ψ(A)

z 7−→ (z1, z−1).

We further define

G̃E,ψ(A∞) = ĜE,ψ(A)/Z(G)(E)Z(G)(Q)ψG(R).

There is a short exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃E,ψ(A∞)
ζ−→

ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE))) −→ (0),

where ζ is induced by (ζ, g) 7→ [ζ]. If (φ, g, f) : (G1, ψ1, C1) −→ (G2, ψ2, C2), set

G̃E,(G1,ψ1,C1)(A∞)f = {[(ζ, h)] ∈ G̃E,(G1,ψ1,C1)(A∞) : f ◦ ζ is valued in Z(G2)(E)}.
Then we get a continuous homomorphism

θ̃(φ,g,f) : G̃(G1,ψ1,C1)(A∞)f −→ G̃(G2,ψ2,C2)(A∞)
[(ζ, h)] 7−→ [(f ◦ ζ, conjg(f(h)))],

satisfying

θ̃(φ,g,f)|ψ1G1(A∞)/Z(G1)(Q) = θ(φ,g,h)

and

θ̃(φ,g,f)(g̃) ◦ (φ, g, f) = (φ, g, f) ◦ g̃
If (G,ψ,C) is a (E, a)-rational Shimura datum over L and if τ : L → L′ is a field

morphism then we define

τ(G,ψ,C) = (G,ψ, τC),

a (E, a)-rational Shimura datum over L′. If (φ, g, f) : (G1, ψ1, C1) → (G2, ψ2, C2)
over L, then (φ, g, f) : τ(G1, ψ1, C1)→ τ(G2, ψ2, C2) over L′ and τ induces a functor
τ : RSD(E, a;L)→ RSD(E, a;L′).

If t ∈ T2,E(AE) we define an equivalence of categories

zt : RSD(E, a;L) −→ RSD(E, ta;L)

with

zt(G,ψ,C) = (G, zt(ψ), C)

and

zt(φ, g, f) = (zt(φ), (locaφ)(t)−1g, f).

(Note that zt on objects only depends on a and ta, but on morphisms it depends on
t itself.) Thus we get an isomorphism

zt : G̃E,(G,ψ,C)(A∞)
∼−→ G̃E,zt(G,ψ,C)(A∞)

[(ζ, g)] 7−→ [(ζ, g)],

which only depends on a and ta, but not on t.
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More generally suppose that D ⊃ E is another finite Galois extension of Q, that
aD ∈ H(D/Q) and that t ∈ T2,E(AD) with ηD/E,∗aD = t infD/E a. Then there is a
functor

infD/E,t : RSD(E, a;L) −→ RSD(D, aD;L)
(G,ψ,C) 7−→ (G, inf loc

D/E,t ψ,C)
(φ, g, f) 7−→ (inf3,D/E,t φ, (locaφ)(t)g, f).

(Again note that infD/E,t on objects only depends on a and aD, but on morphisms it
depends on t itself.) Thus we get a map

infD/E,t : G̃E,(G,ψ,C)(A∞) −→ G̃D,infD/E,t(G,ψ,C)(A∞)

[(ζ, g)] 7−→ [(inf
Gal (D/Q)
Gal (E/Q) ζ, g)],

which only depends on a and ta, but not on t. It restricts to the identity on ψG(A∞) =
infloc

D/E,t ψG(A∞). Moreover

inf
D′/D,t′

◦ inf
D/E,t

= inf
D′/E,tηD/E(t′)

.

9.2. Labels. If (G,ψ,C) is a (E, a)-rational Shimura datum over C, we define Label a(G,ψ,C)
to be the set of pairs (φ, b) where

(1) φ ∈ Z1
alg(E3(E/Q)a, G(E))basic with loc[φ] = λ̃resCψG(C)[ψ],

(2) and b ∈ G(AE) with res∞locaφ = bres∞ψ.

We also set
(G,ψ,C)(φ,b) = (φG, Y (C)φG),

a Deligne Shimura datum. Note that φGad (Q)E,R acts on Y (C)φG; and that

conjb : ψG(A∞)
∼−→ φG(A∞).

There is an embedding

i(φ,b) : φGad (Q)E,R ↪→ G̃E,ψ(A∞)
γ 7−→ [((σ 7→ γ̃−1φ(σ)σγ̃φ(σ)−1), (b−1γ̃b, γ̂−1γ̃))],

where γ̃ ∈ φG(E) and γ̂ ∈ φG(R) are lifts of γ. (This is independent of the choice of
lifts γ̃ and γ̂.)

We call two elements (φ, b) and (φ′, b′) ∈ Label a(G,ψ,C) equivalent if [φ] = [φ′] ∈
H1(E3(E/Q), G(E)). In this case we can find γ ∈ G(E) and h ∈ ψG(A∞) with

(φ′, b′) = (γ,h)(φ, b) = (γφ, γbh−1).

Moreover the only ambiguity in the choice of (γ, h) is that we can replace γ by γδ
and h by hconjb−1(δ) for some δ ∈ φG(Q). Choosing some (φ, b) ∈ Label a(G,ψ,C),
we have

#Label a(G,ψ,C)/ ∼ = #{φ ∈ H1(E3(E/Q), G(E))basic : locφ = λ̃resCψG(C)[ψ]}
= # ker(H1(Gal (E/Q), φG(E))→ H1(Gal (E/Q), φG(AE)))
< ∞.
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If (φ, g, f) : (G1, ψ1, C1)→ (G2, ψ2, C2) then we get a map

Label a(φ, g, f) : Label a(G1, ψ1, C1) −→ Label a(G2, ψ2, C2)
(φ1, b1) 7−→ ((f ◦ φ1)φ, f(b1)g−1).

Moreover f gives a map

f : φ1G1 −→ (f◦φ1)φG2

over Q which takes Y (C1)φ1G1
to Y (C2)(f◦φ1)φG2

, and we have

conjf(b1)g−1 ◦ θ(φ,g,f) = f ◦ conjb1 : ψ1G1(A∞) −→ (f◦φ1)φG2(A∞).

Moreover

Label a(φ, g, f)((γ,h)(φ1, b1)) = (f(γ),gf(h)g−1)Label a(φ, g, f)(φ1, b1),

and so we get an induced map

Label a(φ, g, f) : Label a(G1, ψ1, C1)/ ∼−→ Label a(G2, ψ2, C2)/ ∼ .

If (φ, b) ∈ Label a(G,ψ,C) and (τ, φ′, b′) ∈ Conj E,a(
φG, Y (C)φG), then

(φ′φ, b′b) ∈ Label a(G,ψ,
τC).

(To verify this use the fact from the end of section 3.4 that

λ̂λ̃G(C)G
(τC − Y (C)λ̃G(C)G

)λ̃G(C) = λ̃G(τC).)

If t ∈ T2,E(AE), then there is a bijection

zt : Label a(G,ψ,C)
∼−→ Label ta(G, zt(ψ), C)

(φ, b) 7−→ (zt(φ), (locaφ)(t)b).

More generally suppose that D ⊃ E is another finite Galois extension of Q, that
aD ∈ H(D/Q) and that t ∈ T2,E(AD) with ηD/E,∗aD = t infD/E a. Then there is a
map

infD/E,t : Label a(G,ψ,C) −→ Label aD(infD/E,t(G,ψ,C))
(φ, b) 7−→ (inf3,D/E,t φ, (locaφ)(t)b).

It induces a bijection

Label a(G,ψ,C)/ ∼ ∼−→ Label aD( inf
D/E,t

(G,ψ,C))/ ∼ .

(Because, if (φ, b) ∈ Label a(G,ψ,C), then ker1(Gal (E/Q), φG(E))
∼→ ker1(Gal (D/Q), φG(D)),

as E is acceptable for G.) We have

inf
D/E,t

◦Label a(φ, g, f) = Label aD( inf
D/E,t

(φ, g, f)) ◦ inf
D/E,t

and

inf
D′/D,t′

◦ inf
D/E,t

= inf
D′/E,tηD/E(t′)

.
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9.3. Rational Shimura varieties. We now state and prove our second main theo-
rem.

Theorem 9.1. We have the following objects:

(I) To any object (G,ψ,C) of RSD(E, a;L) and any neat open compact subgroup
U ⊂ ψG(A∞) we may associate a quasi-projective variety Sh(G,ψ,C)U =
ShE,a+,L(G,ψ,C)U/L, well defined up to canonical isomorphism.

(II) To any morphism (φ, g, f) : (G1, ψ1, C1) → (G2, ψ2, C2) in RSD(E, a;L) and
neat open compact subgroups Ui ⊂ ψiGi(A∞) with θ(φ,g,f)(U1) ⊂ U2, we may
associate a well defined morphism of varieties over L

Sh(φ, g, f) = ShE,a+;L(φ, g, f) : Sh(G1, ψ1, C1)U1 −→ Sh(G2, ψ2, C2)U2

over L.
(III) To an embedding of fields τ : L ↪→ L′ we may associate well defined morphisms

of varieties over L′

ΦE,a+(τ) = Φ(τ) : τSh(G,ψ,C)U
∼−→ Sh(G,ψ, τC)U .

(IV) To an embedding ρ : L ↪→ C and (φ, τ) ∈ Label E,a(G,ψ,
ρC) we may associate

an isomorphism of complex manifolds

πE,a+;ρ,(φ,b) = πρ,(φ,b) : φGad (Q)E,R\(G̃ψ(A∞)/U × Y (ρC)φG)
∼−→ τSh(G,ψ,C)U(C).

(V) If t ∈ T2,E(AE) an isomorphism

αt : ShE,a+(G,ψ,C)U
∼−→ ShE,ta+(G, zt(ψ), C)U .

(VI) If D ⊃ E is another finite Galois extension of Q, if a+
D ∈ H(D/Q)+ and if

t ∈ T2,E(AD) with ηD/E,∗a
+
D = t infD/E a+, an isomorphism

αt : ShE,a+(G,ψ,C)U
∼−→ ShD,a+

D
( inf
D/E

(G,ψ,C))U .

These objects satisfy the following compatibilities.

(1) Sh(1, 1, 1) = Id and Sh((φ2, g2, f2)◦(φ1, g1, f1)) = Sh(φ2, g2, f2)◦Sh(φ1, g1, f1).
(2) If z ∈ Z(G)(E) and u ∈ U and h ∈ ψG(R), then

Sh(z1, z−1uh, 1) : Sh(G,ψ,C)U −→ Sh(G,ψC)U

is the identity. In particular G̃ψ(A∞) acts on the inverse system {Sh(G,ψ,C)U}U .
(3) Φ(1) = Id and Φ(τ ′ ◦ τ) = Φ(τ ′) ◦ τ ′Φ(τ).
(4) Φ(τ) ◦ τSh(φ, g, f) = Sh(φ, g, f) ◦ Φ(τ).
(5) If τ : L ↪→ L′ and (φ, b) ∈ Label a(G,ψ,

ρτC), then ρΦ(τ) ◦ πτρ,(φ,b) = πρ,(φ,b).

(6) If g̃ ∈ G̃ψ(A∞), then Sh(g̃) ◦ πρ,(φ1,b1) equals the compositum of πρ,(φ1,b1) with
right translation by g̃−1.

(7) If k̃ ∈ G̃1,ψ1(A∞)f , then

Sh(φ, g, f) ◦ πρ,(φ1,b1)(k̃, µ) = πLabel a(φ,g,f)(φ1,b1)(θ̃(φ,g,f)(k̃), f ◦ µ).
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(8) If G = T is a torus and τ ∈ Aut (C), then

(τ ◦ πρ,(φ,b))(g̃, µ) = πτρ,(φτφ,bτ b)(g̃,
τµ),

for any (τ, φτ , bτ ) ∈ Conj a(T, {µ}) for which bτ lifts ba+,∞,µ,τ ∈ T (A∞E )/T (Q)T (E).
Such a pair (φτ , bτ ) always exists.

(9) αt ◦ ShE,a+(φ, g, f) = ShD,a+
D

(infD/E,t(φ, g, f)) ◦ αt.
(10) αt ◦ ΦE,a+(τ) = ΦD,a+

D
(τ) ◦ αt.

(11) αt ◦ πE,a+;ρ,(φ,b) = πD,a+
D;ρ,infD/E,t(φ,b)

◦ (infD/E,t×1).

(12) If D′ ⊃ D is another finite Galois extension of Q, if a+
D′ ∈ H(D′/Q)+ and if

t′ ∈ T2,D(AD′) with ηD′/D,∗a
+
D′ = t′ infD′/D a+

D; then ηD′/E,∗a
+
D′ = tηD/E(t′) infD′/E a+

and

αtηD/E(t′) = αt′ ◦ αt.

Proof: A completely routine descent argument shows that we only need treat the
case that L (and L′) is C. In case it helps the reader, we sketch the argument.

As a first reduction, we will show that it suffices to prove the theorem in the case
that L ⊂ E. In the general case suppose that (G,ψ,C) is an object of RSD(E, a+;L).
Consider triples (L0, τ, C0) where L0 ⊂ E and τ0 : L0 ↪→ L and C0 is a conjugacy class
of cocharacters of G defined over L0 with τC0 = C. By definition some such triple
exists. We make these into a category C by defining a morphism σ : (L0, τ, C0) →
(L′0, τ

′, C ′0) to be a map σ : L0 → L′0 such that τ = τ ′ ◦ σ. We set

Sh(G,ψ,C)(L0,τ,C0),U = τSh(G,ψ,C0)U .

If σ : (L0, τ, C0)→ (L′0, τ
′, C ′0) then

τ ′Φ(σ) : Sh(G,ψ,C)(L0,τ,C0),U
∼−→ Sh(G,ψ,C)(L′0,τ

′,C′0),U .

We set

Sh(G,ψ,C)U = lim
→

Sh(G,ψ,C)(L0,τ,C0),U ,

which is canonically defined and isomorphic to each Sh(G,ψ,C)(L0,τ,C0). It is easily
verified that these varieties have the desired properties.

As a second reduction, we will show that it suffices to prove the theorem in the
case L = C. Indeed suppose that L ⊂ E and (G,ψ,C) is an object of RSD(E, a+;L).
If ρ : L ↪→ C then for any τ ∈ Aut (C/ρL) we have

Φ(τ) : τSh(G,ψ, ρC)U
∼−→ Sh(G,ψ, ρC)U ,

and these maps provide descent data, so we obtain a quasi-projective variety

Sh(G,ψ,C)ρ,U/
ρL.

(See section 2.2 and recall from section 8.4 that the group of automorphisms of the
variety Sh(G,ψ, ρC) is finite.) If ρ′ : L ↪→ C is a second embedding then ρ′ = σρ for
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some σ ∈ Aut (C). The element σ is not well defined, but the coset Aut (C/ρ′L)σ is.
Then

Φ(σ) : σSh(G,ψ, ρC)U
∼→ Sh(G,ψ, ρ

′
C)U

descends to
Φ(σ) : σSh(G,ψ, ρC)ρ,U

∼→ Sh(G,ψ, ρ
′
C)ρ′,U

over ρ′L, so that

(ρ′)−1

Φ(σ) : ρ
−1

Sh(G,ψ, ρC)ρ,U
∼−→ (ρ′)−1

Sh(G,ψ, ρ
′
C)ρ′,U .

If we replace σ by τσ with τ ∈ Aut (C/ρ′L), then (ρ′)−1
Φ(σ) is replaced by (ρ′)−1

Φ(τ)(ρ′)−1
Φ(σ),

but this equals (ρ′)−1
Φ(σ) because Φ(τ) descends to the identity on Sh(G,ψ, ρ

′
C)ρ′,U .

Thus we have a canonical isomorphism

αρ′,ρ : ρ
−1

Sh(G,ψ, ρC)ρ,U
∼−→ (ρ′)−1

Sh(G,ψ, ρ
′
C)ρ′,U .

We define Sh(G,ψ,C) to be the limit over ρ ∈ Hom (L,C) of the ρ−1
Sh(G,ψ, ρC)ρ,U

with respect to these maps. We also obtain maps Sh(φ, g, f) : Sh(G1, ψ1, C1)U1 →
Sh(G2, ψ2, C2)U2 with the desired properties. If σ : L ↪→ L′ and ρ : L ↪→ C and
ρ′ : L′ ↪→ C we can find τ ∈ Aut (C) with ρ′ ◦ σ = τ ◦ ρ, and τ is unique up to left
multiplication by an element of Aut (C/ρL). We obtain

Φ(τ) : τSh(G,ψ, ρC) −→ Sh(G,ψ, ρ
′σC)

which descends to
Φ(τ) : τρSh(G,ψ,C) −→ ρ′Sh(G,ψ, σC)

over ρ′L, and hence we obtain

(ρ′)−1

Φ(τ) : σSh(G,ψ,C) −→ Sh(G,ψ, σC)

over L′. This can be checked to be independent of the choice of τ , and so we use it
to define Φ(σ), which can be easily checked to have the desired properties.

So now assume that L = C. If (φ, b) ∈ Label a(G,ψ,C) we define

Sh(G,ψ,C)U,(φ,b) = Sh(φG, Y (C)φG)bUb−1 .

Up to canonical isomorphism this only depends on the equivalence class of (φ, b).
Indeed if γ ∈ G(E) and h ∈ ψG(A∞), then

Sh(conjγb(h)−1, conjγ) : Sh(G,ψ,C)U,(φ,b)
∼−→ Sh(G,ψ,C)U,(γφ,γbh−1).

If we replace (γ, h) by (γδ, hconjb−1(δ)) with δ ∈ φG(Q) then this map is replaced by

Sh(conjγδb(hb
−1δb)−1, conjγδ) = Sh(γbh−1b−1δ−1γ−1, conjγδ)

= Sh(γbh−1b−1γ−1, conjγ) ◦ Sh(δ−1, conjδ)
= Sh(conjγb(h)−1, conjγ).

Thus we have a canonical isomorphism

α(φ,b),(γφ,γbh−1) : Sh(G,ψ,C)U,(φ,b)
∼−→ Sh(G,ψ,C)U,(γφ,γbh−1)
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which is independent of the choice of (γ, h), and Sh(G,ψ,C)U,(φ,b) only depends on
[(φ, b)] up to canonical isomorphism. Thus we can define

Sh(G,ψ,C)U =
∐

[(φ,b)]∈Label a(G,ψ,C)/∼

Sh(G,ψ,C)U,(φ,b)

and it is well defined up to canonical isomorphism. As the union is finite, Sh(G,ψ,C)U
is a quasi-projective variety.

Now suppose that (φ, g, f) : (G1, ψ1, C1)→ (G2, ψ2, C2) and that θ(φ,g,f)(U1) ⊂ U2.
Then we define

Sh(φ, g, f)|Sh(G1,ψ1,C1)U1,(φ1,b1)
= Sh(1, f) : Sh(G1, ψ1, C1)U1,(φ1,b1) −→ Sh(G2, ψ2, C2)U2,((f◦φ1)φ,f(b1)g−1).

This is well defined independent of the choice of representatives (φ1, b1) because

Sh(1, f)◦Sh(conjγb1(h)−1, conjγ) = Sh(conjf(γ)f(b1)g−1(gf(h)g−1)−1, conjf(γ))◦Sh(1, f).

We have Sh(1, 1, 1) = Id and Sh((φ′, g2, f2)◦(φ, g1, f1)) = Sh(φ′, g2, f2)◦Sh(φ, g1, f1).
To verify the latter suppose that (φ1, b1) ∈ Label a(G1, ψ1, C1). Then we have to verify
that Sh(1, f2) ◦ Sh(1, f1) = Sh(1, f1f2) as maps

Sh(G1, ψ1, C1)U1,(φ1,b1) −→ Sh(G3, ψ3, C3)U3,((f2◦((f1◦φ1)φ))φ′,f2(f1(b1)g−1
1 )g−1

2 )

= Sh(G3, ψ3, C3)U3,((f2◦f1◦φ1)((f2◦φ)φ′),(f2◦f1)(b1)(g2f(g1))−1)
,

which is clear.
We must check that if z ∈ Z(G)(E) and u ∈ U and h ∈ ψG(R) then Sh(z1, z−1uh, 1) =

Id. Indeed its restriction to Sh(G,ψ,C)U,(φ1,b1) is

Sh(1, 1) = Id : Sh(φ1G, Y (C)φ1G)b1Ub−1
1
−→ Sh(φ1G, Y (C)φ1G)b1Ub−1

1
= Sh(G,ψ,C)U,(φ1

z1,b1h−1u−1z).

thus it suffices to check that

α(φ1,b1),(zφ1,b1h−1u−1z) = Sh(conjzb1(h−1u−1), conjz) = Sh(b1h
−1u−1b−1

1 , 1)

is the identity on Sh(φ1G, Y (C)φ1G)b1Ub−1
1

, which it is.

Next suppose that τ ∈ Aut (C). We simply define

Φ(τ) =
∐

[(φ1,b1)]∈Label a(G,ψ,C)/∼

ΦE,a+(τ, φ, b) : τSh(G,ψ,C)U,(φ1,b1)
∼−→ Sh(G,ψ, τC)U,(φφ1,bb1)

for any (τ, φ, b) ∈ Conj E,a(
φ1G, Y (C)φ1G). This is independent of the choice of (τ, φ, b)

because if γ ∈ G(E) and h ∈ φ1G(A∞), then

Sh(conjγbb1(b−1
1 h−1b1), conjγ) ◦ Φ(τ, φ, b) = Φ(τ, γφ, γbh−1),

as both sides equals Sh(1, conjγ) ◦ Φ(τ, φ, b) ◦ τSh(h−1, 1). It is also independent of

the choice of representatives (φ1, b1) because, if γ ∈ G(E) and h ∈ ψG(A∞) then

Φ(τ, conjγ ◦ φ, conjγ(b)) ◦ τα(φ1,b1),(γφ1,γb1h−1) = α(φφ1,bb1),((conjγ◦φ)γφ1,γbb1h−1) ◦ Φ(τ, φ, b).
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To see this, note that (conjγ ◦ φ)γφ1 = γ(φφ1) and decode the equality to to

Φ(τ, conjγφ, γbγ
−1) ◦ τSh(conjγb1(h−1), conjγ) = Sh(conjγbb1(h−1), conjγ) ◦ Φ(τ, φ, b),

which holds.
We have Φ(1) = Id and Φ(τ ′τ) = Φ(τ ′) ◦ τ ′Φ(τ). The latter because if (τ, φ, b) ∈

Conj (φ1G, Y (C)φ
1G

) and (τ ′, φ′, b′) ∈ Conj (φφ1G, Y (τC)φφ1G), then (τ ′τ, φ′φ, b′b) ∈
Conj (φ1G, Y (C)φ1G) and

Φ(τ ′τ, φ′φ, b′b) = Φ(τ ′, φ′, b′) ◦ τ ′Φ(τ, φ, b).

We must also check that Φ(τ) ◦ τSh(φ, g, f)) = Sh(φ, g, f) ◦ Φ(τ). Indeed we will
consider the restriction of both sides to

τSh(G1, ψ1, C1)U1,(φ1,b1) = τSh(φ1G1, Y (C1)φ1G1
)b1U1b

−1
1
.

Choose (φ′, b′) ∈ Conj (φ1G1, Y (C1)φ1G1
), so that (f◦φ′, f(b′)) ∈ Conj ((f◦φ1)φG2, Y (C2)(f◦φ1)φG2

).
then we are required to check that

Φ(τ, f ◦ φ′, f(b′)) ◦ τSh(1, f) = Sh(1, f) ◦ Φ(τ, φ′, b′)

as maps

τSh(φ1G1, Y (C1)φ1G1
)b1U1b

−1
1
−→ Sh((f◦(φ′φ1))φG2, Y (C2)(f◦(φ′φ1))φG2

)f(b′b1)g−1U2gf(b′b1)−1

= Sh(G2, ψ2, C2)U2,((f◦(φ′φ1))φ,f(b′b1)g−1).

This is true.
If (φ, b) ∈ Label a(G,ψ,C), then we define a map of complex analytic spaces

π1,(φ,b) : φGad (Q)E,R\(G̃ψ(A∞)/U × Y (C)φG) −→ Sh(G,ψ,C)U(C)
(g̃, µ) 7−→ Sh(g̃−1)φG(Q)(bg̃Ug̃−1b−1, µ),

where φG(Q)(bg̃Ug̃−1b−1, µ) ∈ Sh(G,ψ,C)g̃Ug̃−1,(φ,b)(C). To see it is well defined,
suppose that γ ∈ φGad (Q)E,R has lifts γ̃ ∈ φG(E) and γ̂ ∈ φG(R), so that i(φ,b)(γ

−1) =
(γ̃1, (b−1γ̃−1b, γ̃−1γ̂)). Then we must check that

Sh(γ̃1, (b−1γ̃−1b, γ̃−1γ̂), 1)(φG(Q)(b(b−1γ̃b)g̃U g̃−1(b−1γ̃b)−1b−1, conjγ̂ ◦ µ))

equals (φG(Q)(bg̃Ug̃−1b−1, µ)) in Sh(G,ψ,C)U(C). However the former of these equals

(φG(Q)(γ̃bg̃Ug̃−1b−1γ̃−1, conjγ̂ ◦ µ)) ∈ Sh(G,ψ,C)U,(γ̃φ,γ̃b)(C),

so we must check that

α(γ̃φ,γ̃b),(φ,b)(
φG(Q)(γ̃bg̃Ug̃−1b−1γ̃−1, conjγ̂◦µ)) = (φG(Q)(bg̃Ug̃−1b−1, µ)) ∈ Sh(G,ψ,C)U(C),

i.e. that

Sh(1, conjγ̃−1)(φG(Q)(γ̃bg̃Ug̃−1b−1γ̃−1, conjγ̂◦µ)) = (φG(Q)(bg̃Ug̃−1b−1, µ)) ∈ Sh(G,ψ,C)U(C),

which is clear.
We next prove that π1,(φ,b) is an isomorphism.
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Note that if g̃ = [(ζ, g)] ∈ G̃ψ(A∞), then

Sh(g̃−1) : Sh(G,ψ,C)U,(φ,b)
∼−→ Sh(G,ψ,C)g̃−1Ug̃,(ζ−1φ,bg).

Thus G̃ψ(A∞) acts on Label a(G,ψ,C)/ ∼ via

[(ζ, g)] : [(φ, b)] 7→ [(ζ−1φ, bg)].

This action factors through the abelian group

ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), ψG(AE)).

We claim this action is transitive. Suppose that (φ, b) and (φ′, b′) ∈ Label a(G,ψ,C),
then loc[adφ] = loc[adφ′] ∈ H1(Gal (E/Q), Gad (AE)) and so [adφ] = [adφ′] ∈
H1(Gal (E/Q), Gad (E)). Thus there is [ζ] ∈ H1

alg(Gal (E/Q), Z(G)(E)) such that

[ζ][φ] = [φ′] . Moreover loc[ζφ] = loc[φ] ∈ H1
alg(E loc(E/Q), G(AE))basic. Thus if v|∞

then resvloc[ζ] = o(γ) for some γ ∈ φGad (R). By theorem 7.8 of [PR] we may take γ ∈
φGad (Q). Then [φ] = [φ]o(γ)−1 and [φ′] = [ζ ′φ] ∈ H1

alg(E3(E/Q), G(E))basic, where

ζ ′ = ζo(γ)−1 ∈ Z1(Gal (E/Q), Z(G)(E)). Moreover resvloc[ζ ′] = 1 ∈ H1(Gal (Ev/R), Z(G)(Ev)).
Thus

[ζ ′] ∈ ker(H1
alg(E3(E/Q), Z(G)(E))→ H1

alg(E loc(E/Q), ψG(AE))),

and we can find g ∈ G(AE) such that locaζ
′ = g1 ∈ Z1

alg(E loc(E/Q)a,
ψG(AE)),

i.e. (ζ ′, g) ∈ G̃ψ(A∞). We can also find γ ∈ G(E) with γφ′ = ζ ′φ. We have
[(ζ, g)]([(φ′, b′)]) = [(φ, γb′g)] = [(φ, b)].

As the action of G̃ψ(A∞) on Label a(G,ψ,C) is transitive and factors through an

abelian group, the stabilizer of each point is equal. We will denote it G̃ψ(A∞)1. Note

that G̃ψ(A∞)1 ⊃ i(φ,b)
φGad (Q)E,R and G̃ψ(A∞)1 ⊃ ψG(A∞)/Z(G)(Q). We have an

exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃ψ(A∞)1 −→
ker(H1(Gal (E/Q), Z(G)(E))→ H1(Gal (E/Q), φG(E))⊕H1(Gal (C/R), φG(C))) −→ (0),

and hence an exact sequence

(0) −→ ψG(A∞)/Z(G)(Q) −→ G̃ψ(A∞)1 −→ φGad (Q)E,R/
φG(Q)ad −→ (0).

The composite map

φGad (Q)E,R
i(φ,b)−→ G̃ψ(A∞)1 � φGad (Q)E,R/

φG(Q)ad

is the natural projection, so that

G̃ψ(A∞)1 = φGad (Q)E,R
ψG(A∞)

and
φGad (Q)E,R ∩ ψG(A∞) = G(Q)ad .
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If we write

G̃ψ(A∞) =
∐
i

G̃ψ(A∞)1[(ζi, gi)]

then

φGad (Q)E,R\(G̃ψ(A∞)/U×Y (C)φG) =
∐
i

φGad (Q)E,R\(G̃ψ(A∞)1/conjgi(U)×Y (C)φG)

and π1,(φ,b) is a disjoint union of maps

φGad (Q)E,R\(G̃ψ(A∞)1/conjgi(U)× Y (C)φG)
π1,(φ,b)−→ Sh(G,ψ,C)conjgi (U),(φ,b)(C)

Sh([(ζ−1
i ,g−1

i )])
−→ Sh(G,ψ,C)conjgi (U),(ζ−1

i φ,bgi)
(C).

The latter map is an isomorphism. Thus to show that π1,(φ,b) is an isomorphism, it
suffices to show that

π1,(φ,b) : φGad (Q)E,R\(G̃ψ(A∞)1/conjgi(U)× Y (C)φG)−→Sh(φG, Y (C)φG)conjbgi (U)(C)

is an isomorphism. However

φGad (Q)E,R\(G̃ψ(A∞)1/conjgi(U)× Y (C)φG) = φG(Q)ad \(ψG(A∞)/conjgi(U)× Y (C)φG)
∼= φG(Q)ad \(φG(A∞)/conjbgi(U)× Y (C)φG)

and the map

φG(Q)ad \(φG(A∞)/conjbgi(U)× Y (C)φG) −→ Sh(φG, Y (C)φG)conjbgi (U)(C)

is the usual isomorphism.
In conclusion, we have defined an isomorphism of complex manifolds:

π1,(φ,b) : φGad (Q)E,R\(G̃ψ(A∞)/U × Y (C)φG)
∼−→ Sh(G,ψ,C)U(C).

If ρ ∈ Aut (C) we define

πρ,(φ,b) = Φ(ρ)−1 ◦ π1,(φ,b),

which makes property (5) trivially true. Properties (6) and (7) follow immediately
from the definitions.

To verify property (8) it suffices to treat the case g̃ = 1 and ρ = 1. Then π1(φ,b)(1, µ)
is represented by ΠT,{µ}(1) ∈ Sh(T, {µ})U = Sh(T, ψ, {µ})(φ,b) and τ ◦ π1,(φ,b)(1, µ) is
represented by Φ(τ, φτ , bτ )

−1ΠT,{τµ}(1) ∈ τSh(T, {µ})U = τSh(T, ψ, {µ})(φ,b). On the
other hand πτ,(φτφ,bτ b)(1,

τµ) = Φ(τ)−1π1,(φτφ,bτ b)(1,
τµ) is represented by Φ(τ)−1ΠT,{τµ}(1),

where ΠT,{τµ}(1) ∈ Sh(T, {τµ})U = Sh(T, ψ, {τµ})U,(φτφ,bτ b)(C). Thus πτ,(φτφ,bτ b)(1,
τµ)

is represented by Φa+(τ, φτ , bτ )
−1ΠT,{τµ}(1) in τSh(T, {µ})U = τSh(T, ψ, {µ})U,(φ,b),

and part (8) follows.
In the setting of part VI we define

αt : ShE,a+(G,ψ,C)U
∼−→ ShD,a+

D
(G,

loc

inf
D/E,t

(ψ), C)U
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to be the disjoint union of the maps

ShE,a+(G,ψ,C)U,(φ,b)
∼−→ ShD,a+

D
(G, inf loc

D/E,t(ψ), C)U,(inf3,D/E,t(φ),(locaφ)(t)b)

|| ||
Sh(φG, Y (C)φG)bUb−1 = Sh(inf3,D/E,t(φ)G, Y (C)inf3,D/E,t(φ)

G
)(locaφ)(t)bUb−1(locaφ)(t)−1).

(Recall that (locaφ)(t) ∈ Z(ψG)(AE).) Properties (9) and (12) are immediate, while
property (10) follows from part (7) of theorem 8.5. By part (12) it suffices to check
property (11) in the case ρ = 1. In this case it follows easily from property (9) and

the fact that the restriction of infD/E,t : G̃E,(G,ψ,C)(A∞) → G̃D,infD/E,t(G,ψ,C)(A∞) to
ψG(A∞) equals the identity.
�
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