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The problem

{
∆2u = λf(u) in Ω
u = ∆u = 0 on ∂Ω, (Nλ)

where λ ≥ 0 is a parameter, Ω is a bounded domain in RN,
N ≥ 2, and where f satisfies one of the following two conditions:

(R): f is smooth, increasing, convex on R with f(0) = 1 and

f is superlinear at ∞ (i.e. lim
t→∞

f(t)
t

= ∞);

(S): f is smooth, increasing, convex on [0,1) with f(0) = 1
and lim

t↗1
f(t) = +∞.

Our main interest is in the regularity of the extremal solution u∗

associated with (Nλ).



The second order case{
−∆u = λf(u) in Ω
u = 0 on ∂Ω (Qλ)

is relatively well understood (Joseph-Lundgren, Mignot-Puel,
Brezis-Vasquez, Martel, Nedev, Cabre, Capella, Ghoussoub,
Guo, Esposito, etc....)
I There exists a finite positive λ∗ such that for all 0 < λ < λ∗

there exists a minimal solution uλ of (Qλ).
I For each 0 < λ < λ∗, uλ is semi-stable:∫

Ω

λf ′(uλ)ψ2dx ≤
∫

Ω

|∇ψ|2dx , ∀ψ ∈ H1
0(Ω),

and is unique among all the weak semi-stable solutions.
I λ 7→ uλ(x) is increasing on (0, λ∗) for each x ∈ Ω. This

allows one to define u∗(x) := limλ↗λ∗ uλ(x), the so-called
extremal solution. It is the unique weak solution of (Qλ∗).

I There are no solutions of (Qλ) (even weak) for λ > λ∗.



Regularity of the extremal solution

Is u∗ a regular solution ?
I Of interest since one can then apply Crandall-Rabinowitz

to start a 2d branch of solutions emanating from (λ∗,u∗).
I If f satisfies (R) (resp. (S)) it is sufficient –in view of

standard elliptic regularity theory– to show that u∗ is
bounded (resp. supΩ u∗ < 1).

I This turned out to depend on the dimension, and so:
Given a nonlinearity f , say that N is the associated
critical dimension provided:

I the extremal solution u∗ for (Qλ∗) is a classical solution for
any bounded smooth domain Ω ⊂ RM for any M ≤ N − 1,
and

I if there exists a domain Ω ⊂ RN such that the associated
extremal solution u∗ is not a classical solution.



What do we know?Still 2d order

I For f(t) = et , the critical dimension is N = 10.
For N ≥ 10, then on the unit ball the extremal solution is
explicitly given by u∗(x) = −2 log(|x |). (Joseph-Lundgren,
Mignot-Puel, Brezis-Vasquez, etc... ?)

I For f(t) = (t + 1)p, p > 1, there exists N(p) critical
dimension that I cannot remember...

I For Ω = B the unit ball in RN, u∗ is bounded for any f
satisfying (R) provided N ≤ 9, which –in view of the above–
is optimal (Cabre-Capella).

I On general domains, and if f satisfies (R), then u∗ is
bounded for N ≤ 3 (Nedev). Recently this has been
improved to N ≤ 4 provided the domain is convex (Cabre).

I For f(t) = (1 − t)−2 the critical dimension is N = 8 and
u∗ = 1 − |x |

2
3 is the extremal solution on the unit ball for

N ≥ 8. (Joseph-Lundgren, Mignot-Puel, Ghoussoub-Guo. )



The general approach

1. Use the semi-stability of the minimal solutions uλ to obtain
Lq-estimates estimates which translate to uniform L∞

bounds and then passing to the limit. These estimates
generally depend on the ambient space dimension.

2. On the other hand, to show the optimality of the regularity
result one generally finds an explicit singular extremal
solution u∗ on a radial domain.

I Here the crucial tool is the fact that a semi-stable singular
solution in H1

0(Ω), has to be the extremal solution.
I In practice one considers an explicit singular solution on the

unit ball and applies Hardy-type inequalities to show its
semi-stability in the right dimension.



The fourth order case–Dirichlet Boundary conditions
There are two obvious fourth order extensions of (Qλ) namely
the problem (Nλ) mentioned above, and its Dirichlet counterpart{

∆2u = λf(u) in Ω
u = ∂νu = 0 on ∂Ω, (Dλ)

1. The bifurcation diagram for (Qλ) is heavily dependent on
the maximum principle, but for general domains there is no
maximum principle for ∆2 with Dirichlet boundary
conditions. However, on the unit ball there is Boggio’s
maximum principle!

2. First real progress Davila-Dupaigne-Guerra-Montenegro,
2008): For (Dλ) on the ball with f(t) = et , u∗ is bounded if
and only if N ≤ 12.

3. Followed by Cowan, Esposito, Ghoussoub, Moradifam,
2009, for (Dλ) on ball with f(t) = (1 − t)−2. Here u∗ < 1 if
and only if N ≤ 8.

Both heavily dependent on the fact that Ω is the unit ball.



Even in this radial situation, two main hurdles

1. The standard energy estimate approach, so successful in
the second order case, does not appear to work in the
fourth order case. More later.

2. Not trivial to construct explicit unbounded u∗ for N ≥ 13.
I An explicit singular, semi-stable solution which satisfies the

first boundary condition is easy to guess. One then needs
to perturb it enough to satisfy the second boundary
condition but not too much so as to lose the semi-stability.

I Davila et al. succeeded in doing so for N ≥ 32, but they
were forced to use a computer assisted proof to show that
the extremal solution is unbounded for the intermediate
dimensions 13 ≤ N ≤ 31.

I Using various improved Hardy-Rellich inequalities from
Ghoussoub-Moradifam the need for the computer assisted
proof was removed in Moradifam.



Navier type conditions

1. The problem (Nλ) with Navier boundary conditions does
not suffer from the lack of a maximum principle and the
existence of the minimal branch has been shown.

2. If the domain is the unit ball, then again one can use the
methods of Davilla et al. for f(t) = et and Cowan et al. for
f(t) = (1 − t)−2 (in the Dirichlet case) to obtain optimal
results in the Navier case on the ball (Moradifam).

3. However, the case of a general domain is only understood
in dimensions N ≤ 4 (Guo-Wei).

The following is a first attempt at giving energy estimates on
general domains, which while they do improve known results,
they still fall short of the conjectured critical dimensions
established when the domain is a ball.



New results on general domain (Cowan-Esposito-Gh.)

u∗ is smooth
I If f is any convex superlinear nonlinearity, provided N ≤ 5.

I If lim inf
t→+∞

f(t)f ′′(t)
(f ′)2(t) > 0, and N ≤ 7.

I If γ := lim sup
t→+∞

f(t)f ′′(t)
(f ′)2(t) < +∞, and N < 8

γ .

In particular,
I If f(t) = et and N ≤ 8;
I If f(t) = (1 + t)p and N < 8p

p−1 .

I If f(t) = (1 − t)−p, p > 1, p , 3, and N ≤ 8p
p+1 .

Major improvements on what is known for general domains, but
still fall short of the expected optimal results as recently
established on radial domains, e.g., u∗ is smooth for N ≤ 12
when f(t) = et and for N ≤ 8 when f(t) = (1 − t)−2



Sufficient Lq-estimates for regularity
It suffices to consider classical solutions (un)n of (Nλn), (λn)n
uniformly bounded, and try to show that sup

n
‖un‖∞ < +∞.

By standard elliptic regularity theory follows by a uniform bound
of f(un) in Lq(Ω), for some q > N

4 .
We can do better!!!
Suppose that for some q ≥ 1 and 0 < β < α we have

sup
n


∫

Ω

fα(un)

uβn + 1
+

∫
Ω

fq(un)

 < +∞ (1)

Then:
1. If 1 ≤ q ≤ N

4 and α ≤ N
4 , then sup

n
‖f(un)‖s < +∞ for every

s < max{ (α−β)NN−4β ,q}.

2. If either q > N
4 or α > N

4 , then sup
n
‖un‖∞ < +∞.



Particular cases
Suppose (un)n is a sequence of solutions of (Nλn) such that

sup
n

∫
Ω

fq(un) < +∞ (2)

for q ≥ 1. Then sup
n
‖un‖∞ < +∞, if:

1. f(t) = et and q ≥ N
4 ;

2. f(t) = (t + 1)p and q > N
4

(
1 − 1

p

)
.

Another criterium for regularity: Suppose

sup
n

∫
Ω

fs(un) < +∞ for 1 ≤ s <
N

N − 2
(3)

and
supn

∫
Ω
(f ′)q(un) < +∞ for some q > N

4 , (4)

Then,
sup

n
‖un‖∞ < +∞. (5)



Elementary use of stability
u is a semi-stable solution of (Nλ) if∫

Ω

λf ′(u)ψ2dx ≤
∫

Ω

(∆ψ)2dx , ∀ψ ∈ H2(Ω) ∩ H1
0(Ω). (6)

To the best of my knowledge the only available energy
estimates for smooth, semi-stable solutions so far, is:∫

Ω

f ′(u)u2dx ≤
∫

Ω

f(u)udx . (7)

To see this, just take ψ = u in (??).This yields:
1. If f(t) = et , then eu∗(u∗)2

∈ L1(Ω) and u∗ is then regular for
N ≤ 4.

2. If f(t) = (t + 1)p, then (u∗ + 1)p
∈ L

p+1
p (Ω), therefore u∗ is

regular for N ≤ 4 or if 1 ≤ p < N+4
N−4 and N > 4

3. If f(t) = (1 − t)−2, then (1 − u∗)−2
∈ L

3
2 (Ω) and u∗ is regular

for N ≤ 4.



A new idea

Suppose u is a semi-stable solution of (Nλ). Then∫
Ω

f ′′(u)(−∆u)|∇u|2dx ≤ λ
∫

Ω

f(u)dx . (8)

Proof: Set ψ = ∆u in the stability condition to arrive at

I :=

∫
Ω

f ′(u)(∆u)2dx ≤
∫

Ω

∆2uf(u)dx =: J.

Now an integration by parts shows that

I =

∫
Ω

f ′′(u)(−∆u)|∇u|2dx −
∫

Ω

f ′(u)∇u · ∇∆udx

J = λ

∫
Ω

f(u)dx −
∫

Ω

f ′(u)∇u · ∇∆udx .

Since I ≤ J one obtains the result.



A new idea.bis

Suppose u is a solution of (Nλ) and g is a smooth function
defined on the range of u with f(t) ≥ g(t)g′(t) and
g(t),g′(t),g′′(t) ≥ 0 on the range of u with g(0) = 0. Then

−∆u ≥
√

λg(u) in Ω. (9)

Proof: Let v := −∆u −
√
λg(u) and so v = 0 on ∂Ω and a

computation shows that

−∆v +
√

λg′(u)v = λ[f(u)−g(u)g′(u)]+
√

λg′′(u)|∇u|2 in Ω.

The assumptions on g allow one to apply the maximum
principle and obtain that v ≥ 0 in Ω.
Inspired by the proof of Souplet of the Lane-Emden conjecture
in four space dimensions.



Main estimate

Suppose u is a semi-stable solution of (Nλ) and that g chosen
as above. If H(u) :=

∫ u
0 f ′′(τ)g(τ)dτ, then∫

Ω

g(u)H(u)dx ≤
∫

Ω

f(u)dx . (10)

Proof: Rewrite the result from previous Lemma as

λ

∫
Ω

g(u)H(u)dx ≤

√

λ

∫
Ω

(−∆u)H(u)dx =
√

λ

∫
Ω

∇H(u) · ∇udx

=
√

λ

∫
Ω

H′(u)|∇u|2dx

≤ λ

∫
Ω

f ′′(u)(−∆u)|∇u|2dx ≤ λ
∫

Ω

f(u)dx .



An example
Take f(u) = eu and set g(u) :=

√
2
(
e

u
2 − 1

)
.

Then −∆u ≥ g(u) in Ω.
Now H(u) =

√
2
(

2
3e

3u
2 − eu + 1

3

)
, and by above lemma:

2
∫

Ω

(
e

u
2 − 1

) (2
3

e
3u
2 − eu +

1
3

)
dx ≤

∫
Ω

eudx ,

hence ∫
Ω

e2udx ≤
5
2

∫
Ω

e
3u
2 dx ,

and by Holder we get
∫
Ω

e2udx ≤ (5
2)4
|Ω|.

Actually for most explicit nonlinearities f , the method yields that
for any stable solution uλ

‖f(uλ)‖2 ≤ C < +∞

where C does not depend on λ and u.



For a general superlinear nonlinearity ...

we can take g(u) :=
√

2
(∫ u

0 (f(t) − 1)dt
) 1

2 , use the
superlinearity of f at ∞ to prove that

g(u)H(u)

f(u)
→ +∞ as u→ +∞,

and re-state above as
∫
Ω

g(u)H(u) ≤ C , for every semi-stable
solution u of (Nλ), where C is independent of λ and u.
One then proves that for u ≥ 0 is a semi-stable solution of (Nλ),∫

Ω

f(u)
3
2

√
u+1

dx ≤ C and
∫
Ω

f(u)dx ≤ C , (11)

for some constant C > 0 independent of λ and u.
The extremal solution u∗ of (Nλ) is then regular for N ≤ 5, while
f(u∗) ∈ Lq(Ω) for all q < N

N−2 if N ≥ 6.



Singular nonlinearities

Theorem 1: Suppose f(t) = (1 − t)−p with p > 1 and p , 3.
Then u∗ is regular (i.e. supΩ u∗ < 1) provided N ≤ 8p

p+1 .

This will follow immediately from the following two theorems.

Theorem 2: Let un be solutions of (Nλn) such that

supn ‖f(un)‖q < ∞ for some q > 1 and q ≥ (p+1)N
4p .

Then supn ‖un‖∞ < 1.

Theorem 3: Suppose p > 1 and u ≥ 0 is a semi-stable
solution of (Nλ). Then

‖f(u)‖2 ≤ C, where C is independent of u and λ.



Proof: Let

g(u) :=

√
2

p − 1

 1

(1 − u)
p−1

2

− 1

 .
It does verify the conditions of Lemma above and therefore

one has −∆u ≥ g(u) a.e. in Ω, and hence∫
Ω

g(u)H(u)dx ≤
∫
Ω

f(u)dx , where H(u) :=
∫ u

0 f ′′(τ)g(τ)dτ. A
computation shows that

H(u) = Cp

 1

(1 − u)
3p+1

2

− 1

 + C̃p

(
1 −

1
(1 − u)p+1

)
where Cp , C̃p > 0. It follows that∫

Ω

1
(1 − u)2p

dx ≤ C(p)

∫
Ω

1

(1 − u)
3p+1

2

dx + C(p)

∫
Ω

1
(1 − u)p dx .

Since p > 1, we have that 3p+1
2 < 2p, and we are done!!!!


