18.014 QUIZ II (PRACTICE)

This quiz has two pages. If you have any questions, please ask.

1. (8 points) Evaluate

$$
\lim _{x \rightarrow 4}\left(\frac{x^{2}}{1+\sqrt{x}}\right)
$$

Explain what limit theorems you are using.
2. (8 points) Show by example that the conclusion of the extreme-value theorem does not hold if f is only continuous on $[a, b)$ and bounded on $[a, b]$.
3. (10 points) State the mean-value theorem. Make sure you state the hypotheses exactly.
4. (18 points) Let $f(x)$ be a function that is continuous for all x except $x= \pm 2$. Let

$$
g(x)= \begin{cases}x^{2} & \text { for } x \leq 0 \\ x^{2}+3 & \text { for } x>0\end{cases}
$$

(a) For what values of x can you be sure that the function $h(x)=f(g(x))$ is continuous?
(b) Does $g^{\prime}(0)$ exist? Does $\lim _{x \rightarrow 0} g^{\prime}(x)$ exist? Explain.
5. (32 points) Find $f^{\prime}(x)$:
(a) if $f(x)=\sin ^{2}\left(\cos ^{2} x\right)$.
(b) if $f(x)=\frac{x^{2}}{1+\sqrt{x}}$ for $x>0$.
(c) if $f(x)=\int_{1}^{x} \frac{d t}{1+t^{4}}$.
(d) if $f(x)=\int_{x}^{x^{2}} \frac{d t}{1+t^{4}}$.
6. (24 points) One has the following table of values for the continuous functions f and g and their derivatives.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	$2 / 3$	1	2
1	3	2	0	-7
2	4	$5 / 2$	3	5
3	5	4	2	-11

[^0](a) Find the derivative of $f(g(x))$ at $x=1$.
(b) Find the derivative of $g(f(x))$ at $x=1$.
(c) Assume $f^{\prime}(x)>0$ for all x, so f has an inverse function h. Find $h^{\prime}(2)$.

GOOD LUCK!

[^0]: Date: Fall 2000.

