18.014 QUIZ I

If you have any questions, please ask. Hint: don't feel compelled to work through the problems in order!

1. (16 points)
(a) State the triangle inequality for $|a+b|$.
(b) Show that $|x|-|y| \leq|x-y|$ for all x, y.
2. (16 points) State the Riemann condition for the existence of the integral $\int_{a}^{b} f$, where f is a function on $[a, b]$.
3. (16 points) Evaluate $\int_{-1}^{2} x^{2}[x] d x$, where $[\cdot]$ denotes the "greatest integer" function.
4. (16 points) Suppose that $\int_{0}^{1} \frac{x}{x^{6}+1} d x=a$ and $\int_{0}^{2} \frac{x}{x^{6}+1} d x=b$. Express $\int_{-2}^{-1} \frac{3 x}{x^{6}+1}$ in terms of a and b.
5. (16 points) Consider the solid in three-space that lies above $z=0$, such that the cross-section for given z is a square with sides parallel to the x and y axes having as left edge the line segment connecting the point $(z, 0)$ on the x-axis to the point $\left(z, z^{3}\right)$ on the curve $y=x^{3}$. Find the volume of the portion of the solid between $z=0$ and $z=a$, where $a>0$.
6. (20 points) Suppose x and y are real numbers with $x<y$.
(a) If $y-x>1$, show that there is an integer z such that $x<z<y$. (You may use standard properties of the integers. If you use the well-ordering principle, the Archimedean property, or the principle of induction, mention the fact that you are using it.)
(b) Even if $y-x$ is not greater than 1 , show that there is a rational number r such that $x<r<y$. (Hint: Why is there a positive integer n such that $y-x>1 / n$? Then consider $n x<n y$ instead of $x<y$.)

GOOD LUCK!

[^0]
[^0]: Date: Fall 2000.

