18.014 SAMPLE QUIZ I

1. (16 points) Let a be a positive real number that is not an integer. Show there exists an integer n such that $a<n<a+1$. (You may use standard properties of the integers. If you use the well-ordering principle, the Archimedean property, or the principle of induction, mention the fact that you are using it.)
2. (16 points) Let f be a bounded function on the interval $[a, b]$. State the Riemann condition for the existence of the integral $\int_{a}^{b} f$.
3. (16 points) Let s be a step function on [a,b]. Suppose $x_{0}<x_{1}<\cdots<x_{n}$ is a partition of $[a, b]$ such that $s(x)=s_{k}$ for $x_{k-1}<x<x_{k}$. Suppose we define $\int_{a}^{b} s=\sum_{k=1}^{n}\left(s_{k}\right)^{2}\left(x_{k}-x_{k-1}\right)$. This integral is well-defined. Which of the following properties hold, and which fail? (Just give answers, not reasons; 4 points for each correct answer, and -2 for each wrong answer.)
(a) $\int_{a}^{b} c s=c \int_{a}^{b} s, c$ constant.
(b) $\int_{a}^{b}(s+t)=\int_{a}^{b} s+\int_{a}^{b} t$.
(c) $\int_{a}^{b} s+\int_{b}^{c} s=\int_{a}^{c} s$ if $a<b<c$.
(d) $\int_{a}^{b} s \leq \int_{a}^{b} t$ if $s \leq t$ on $[a, b]$.
4. (21 points) Evaluate:
(a) $\int_{0}^{2}[2 x] d x$.
(b) $\int_{0}^{2} 2[x] d x$.
(c) $\int_{0}^{2}\left|x^{2}-1\right| d x$.
5. (21 points) Consider the region bounded above by $y=1-x^{2}$ and below by the x-axis. Revolve it about the horizontal line $y=1$. Find the volume thus generated.
6. (10 points) Consider the following cases: (i) x, y both rational; (ii) x, y both irrational; (iii) x rational and y irrational.
(a) In which of these cases does it follow that $x+y$ is rational?
(b) In which of these cases does it follow that $x+y$ is irrational?
(Give answers only.)
[^0]
[^0]: Date: Fall 2000.

