18.014 QUIZ II

This quiz has two pages. If you have any questions, please ask.

1. (24 points) Assume f is defined on the interval $[a, b]$.
(a) State the extreme value theorem for f.
(b) State the mean value theorem for f.
(c) State the first fundamental theorem of calculus for f (the one about the derivative of the integral).

Make sure you include the hypotheses for each theorem.
2. (16 points) Compute the following limit; state what limit theorems you are using.

$$
\lim _{h \rightarrow 0} \frac{(h+2)^{3}-8}{h(h-2)}
$$

3. (24 points) Find $f^{\prime}(x)$ if
(a)

$$
f(x)=\int_{x^{2}}^{x^{3}} \frac{1}{1+t^{4}} d t
$$

(b)

$$
f(x)=\sqrt{x^{3}+5 \sqrt{x+1}}
$$

(c)

$$
f(x)=\sin ^{2}\left(\cos ^{2} x\right)
$$

4. (16 points) Let $f(x)$ be continuous for all x except $x=2$. Let

$$
g(x)= \begin{cases}x^{2} & \text { for } x \geq 0 \\ x^{2}+1 & \text { for } x<0\end{cases}
$$

For what values of x can you be sure that the function $h(x)=f(g(x))$ is continuous?
5. (20 points) The following table was computed for the strictly increasing function f and its first two derivatives. (Assume f^{\prime} and $f^{\prime \prime}$ exist for all x.)

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
0	-2	3	-2
1	0	$3 / 2$	$-1 / 2$
2	1	1	0

Let g be the inverse function to f. Find the values of $g(0), g(1), g^{\prime}(0)$, and $g^{\prime \prime}(0)$.

GOOD LUCK!

