18.024 QUIZ I

Write your name on the first page of your solutions. Time: 50 minutes. Justify all steps. If you have any questions, please ask. GOOD LUCK!

1. (18 points) Let W be a subspace of V_{n}.
(a) Define what it means for the vectors A_{1}, \ldots, A_{k} of W to span W.
(b) Define what it means for the vectors B_{1}, \ldots, B_{m} of W to be linear independent.
(c) If the vectors A_{1}, \ldots, A_{k} of W span W, and the vectors B_{1}, \ldots, B_{m} of W are linearly independent, what is the relation between k and m and $\operatorname{dim} W$? (Answer only; no explanation required.)
2. (18 points) Let W be the subspace of V_{4} spanned by $(1,-1,1,1),(2,0,-1,1)$, and $(1,1,-2,0)$.
(a) What is the dimension of W ?
(b) Find a basis for the orthogonal complement of W.
3. (16 points) Find parametric equations for the line in V_{3} through the point $P=(-1,2,1)$ that is parallel to the line of intersection of the plane $3 x-y+z=1$ and $x+2 z=4$.
4. (16 points) Consider the vectors $A=(1,-1,2,3)$ and $B=(0,1,1,1)$ of V. One can write $A=t B+C$, where $t B$ is parallel to B, and C is perpendicular to B. Find t and C.
5. (16 points) Find the inverse of the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

6. (16 points) If

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 7 \\
-1 & 2 & 2 & 3 \\
1 & 0 & 1 & 2 \\
-1 & 0 & 0 & 1
\end{array}\right) B=\left(\begin{array}{cccc}
0 & 0 & 0 & 5 \\
1 & 2 & -1 & 1 \\
0 & 2 & 1 & 2 \\
0 & 0 & 3 & 6
\end{array}\right)
$$

find $\operatorname{det} B$.

Date: Spring 2001.

