18.024 QUIZ II

Write your name on the first page of your solutions. Time: 50 minutes. Justify all steps. If you have any questions, please ask. **GOOD LUCK!**

Here are some formulas (for reference) for velocity \vec{v} and acceleration \vec{a} .

In terms of \vec{T} and \vec{N} :

$$\vec{v} = \left(\frac{ds}{dt}\right)\vec{T},$$

$$\vec{a} = \left(\frac{d^2s}{dt^2}\right)\vec{T} + \kappa \left(\frac{ds}{dt}\right)^2\vec{N}.$$

In polar coordinates, in terms of \vec{u}_r and \vec{u}_{θ} :

$$\vec{v} = \left(\frac{dr}{dt}\right)\vec{u}_r + \left(r\frac{d\theta}{dt}\right)\vec{u}_{\theta},$$

$$\vec{a} = \left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\vec{u}_r + \left(r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}\right)\vec{u}_{\theta}.$$

1. (16 points)

- (a) Set up the integral for the length of the curve given in Cartesian coordinates by the equation $y^3 = x^2$, for $-1 \le x \le 1$. Do not evaluate it!
- (b) Set up the integral for the length of the curve given in polar coordinates by the equation $r = \sin \theta + \cos \theta$, for $0 \le \theta \le \pi/2$. Evaluate it. (Bonus 4 marks: the integral should have been very easy to evaluate. Why, geometrically, should the integrand have been so nice?)

2. (21 points) Given a scalar function f defined in a neighborhood of a point $\vec{a} \in \mathbb{R}^n$. Consider the following statements:

- (i) f is continuous at \vec{a} .
- (ii) f is differentiable at \vec{a} .
- (iii) All directional derivatives $f'(\vec{a}; \vec{y})$ exist at \vec{a} .
- (iv) All partials $D_1 f, \ldots, D_n f$ exist in a neighborhood of \vec{a} and are continuous at \vec{a} .

Answer "yes" or "no" (+3 points for each correct answer, -2 for each incorrect answer).

Date: Spring 2001.

- Does (ii) imply (i)? Y/N
- Does (ii) imply (iii)? Y/N
- Does (ii) imply (iv)? Y/N
- Does (iii) imply (ii)? \mathbf{Y}/\mathbf{N}
- Does (iii) imply (i)? \mathbf{Y}/\mathbf{N}
- Does (iv) imply (iii)? Y/N
- Does (iv) imply (ii)? \mathbf{Y}/\mathbf{N}

3. (16 points)

- (a) Find a vector tangent to the curve of intersection of the surfaces $x^2 + 2y^2 + yz^2 = 1$ and $z = xe^{2y}$ at the point P = (1, 0, 1).
- (b) Find the directional derivative of

$$f(x, y, z) = x^2 + 2xy - yz$$

at the point (1, 2, -1) in the direction pointing toward the origin.

4. (16 points) Suppose

 $\vec{f}(x,y) = (x^2 - x + y^2, e^x + y, \sin x + \cos y).$

Calculate the derivative of \vec{f} at (0,0) (hint: it's a matrix!), and estimate $\vec{f}(.001,.002)$ (i.e. give to three significant digits).

5. (15 points) If $g(s,t) = f(5s+t, 3st^2, s^2-t)$, then find $\frac{\partial g}{\partial s}$ in terms of s, t and the partials $D_i f$ of f.

6. (16 points) The equation $x^2 + z + (y+z)^3 = 6$ defines z implicitly as a function of x and y, say z = f(x, y). Find $\frac{\partial f}{\partial x}$ in terms of x, y, and z.