18.024 QUIZ II

Write your name on the first page of your solutions. Time: 50 minutes. Justify all steps. If you have any questions, please ask. GOOD LUCK!

Here are some formulas (for reference) for velocity \vec{v} and acceleration \vec{a}.
In terms of \vec{T} and \vec{N} :

$$
\begin{aligned}
\vec{v} & =\left(\frac{d s}{d t}\right) \vec{T} \\
\vec{a} & =\left(\frac{d^{2} s}{d t^{2}}\right) \vec{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \vec{N}
\end{aligned}
$$

In polar coordinates, in terms of \vec{u}_{r} and \vec{u}_{θ} :

$$
\begin{aligned}
\vec{v} & =\left(\frac{d r}{d t}\right) \vec{u}_{r}+\left(r \frac{d \theta}{d t}\right) \vec{u}_{\theta} \\
\vec{a} & =\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \vec{u}_{r}+\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \vec{u}_{\theta}
\end{aligned}
$$

1. (16 points)
(a) Set up the integral for the length of the curve given in Cartesian coordinates by the equation $y^{3}=x^{2}$, for $-1 \leq x \leq 1$. Do not evaluate it!
(b) Set up the integral for the length of the curve given in polar coordinates by the equation $r=\sin \theta+\cos \theta$, for $0 \leq \theta \leq \pi / 2$. Evaluate it. (Bonus 4 marks: the integral should have been very easy to evaluate. Why, geometrically, should the integrand have been so nice?)
2. (21 points) Given a scalar function f defined in a neighborhood of a point $\vec{a} \in \mathbb{R}^{n}$. Consider the following statements:
(i) f is continuous at \vec{a}.
(ii) f is differentiable at \vec{a}.
(iii) All directional derivatives $f^{\prime}(\vec{a} ; \vec{y})$ exist at \vec{a}.
(iv) All partials $D_{1} f, \ldots, D_{n} f$ exist in a neighborhood of \vec{a} and are continuous at \vec{a}.

Answer "yes" or "no" (+3 points for each correct answer, -2 for each incorrect answer).

[^0]- Does (ii) imply (i)? Y/N
- Does (ii) imply (iii)? Y/N
- Does (ii) imply (iv)? Y/N
- Does (iii) imply (ii)? Y/N
- Does (iii) imply (i)? Y/N
- Does (iv) imply (iii)? Y/N
- Does (iv) imply (ii)? Y/N

3. (16 points)
(a) Find a vector tangent to the curve of intersection of the surfaces $x^{2}+2 y^{2}+$ $y z^{2}=1$ and $z=x e^{2 y}$ at the point $P=(1,0,1)$.
(b) Find the directional derivative of

$$
f(x, y, z)=x^{2}+2 x y-y z
$$

at the point $(1,2,-1)$ in the direction pointing toward the origin.
4. (16 points) Suppose

$$
\vec{f}(x, y)=\left(x^{2}-x+y^{2}, e^{x}+y, \sin x+\cos y\right)
$$

Calculate the derivative of \vec{f} at $(0,0)$ (hint: it's a matrix!), and estimate $\vec{f}(.001, .002)$ (i.e. give to three significant digits).
5. (15 points) If $g(s, t)=f\left(5 s+t, 3 s t^{2}, s^{2}-t\right)$, then find $\frac{\partial g}{\partial s}$ in terms of s, t and the partials $D_{i} f$ of f.
6. (16 points) The equation $x^{2}+z+(y+z)^{3}=6$ defines z implicitly as a function of x and y, say $z=f(x, y)$. Find $\frac{\partial f}{\partial x}$ in terms of x, y, and z.

[^0]: Date: Spring 2001.

