18.024 PRACTICE QUIZ II

Here are some formulas (for reference) for velocity \vec{v} and acceleration \vec{a} .

In terms of \vec{T} and \vec{N} :

$$\vec{v} = \left(\frac{ds}{dt}\right)\vec{T},$$
$$\vec{a} = \left(\frac{d^2s}{dt^2}\right)\vec{T} + \kappa \left(\frac{ds}{dt}\right)^2\vec{N}.$$

In polar coordinates, in terms of \vec{u}_r and \vec{u}_{θ} :

$$\vec{v} = \left(\frac{dr}{dt}\right)\vec{u}_r + \left(r\frac{d\theta}{dt}\right)\vec{u}_\theta,$$

$$\vec{a} = \left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\vec{u}_r + \left(r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}\right)\vec{u}_\theta.$$

1. (16 points) Consider the curve given in polar coordinates by $r = e^{-t}$, $\theta = t$ for $0 \le t \le 2M\pi$ (*M* a positive integer).

- (a) Sketch this curve when M = 2.
- (b) Find the length of this curve for general M. What happens as M becomes large?

2. (16 points) A particle moves along a curve C in space. Its acceleration vector has constant length 3 and its speed at time $t \ge 0$ is 1/(1+2t). Find the curvature of the curve in terms of t.

- **3.** (20 points)
- (a) Complete the definition. A vector-valued function

$$\vec{f}:S\to\mathbb{R}^3$$

where $S \subset \mathbb{R}^2$ contains a ball $B(\vec{a}; r)$ of radius r around $\vec{a} \in \mathbb{R}^2$ is said to be *differentiable at* \vec{a} if for all $\vec{v} \in [\text{blank}]$,

$$\vec{f}(\vec{a} + \vec{v}) = \vec{f}(\vec{a}) + T_a \vec{v} + |\vec{v}| E_{\vec{a}}(\vec{v})$$

where [blank]. (Hint: the second blank is a fact about the function $E_{\vec{a}}$.)

(b) Let f(x, y) be a function defined in \mathbb{R}^2 (the plane). Answer the following questions "yes" or "no" (+3 points for each correct answer, -3 for each incorrect answer).

Date: Spring 2001.

- (i) Suppose that $D_1 f$ and $D_2 f$ exist at (0,0). Does it follow that f is continuous at (0,0)? **Y/N** Does it follow that the functions g(t) = f(t,0) and h(t) = f(0,t) are continuous at t = 0? **Y/N**
- (ii) Suppose that $D_1 f$ and $D_2 f$ exist in a neighborhood of (0,0) and are continuous at (0,0). Does it follow that f is continuous at (0,0)? $\mathbf{Y/N}$ Does it follow that $f'(\vec{0}; \vec{y})$ exists for all \vec{y} ? $\mathbf{Y/N}$
- 4. (16 points)
- (a) Suppose f(x, y, z) is a differentiable scalar-valued function such that f(1, 1, 1) = 2, and the $\nabla f(1, 1, 1) = (3, 4, 5)$. Find the (Cartesian) equation of the tangent plane to the level surface f(x, y, z) = 2 at (x, y, z) = (1, 1, 1).
- (b) Suppose f(x, y) is a differentiable scalar-valued function such that f(1, 1) = 2, and $\nabla f(1, 1) = (3, 4)$. Find the (Cartesian) equation of the tangent plane to the graph of f (i.e. z = f(x, y)) when (x, y) = (1, 1).
- (c) Show that $f(x, y) = (\sin x)(\sin y)$ has a critical point (i.e. the gradient is $\vec{0}$) at (x, y) = (0, 0). Does f have a minimum, maximum, or saddle point here?

5. (16 points) Given a differentiable function F(u, v), consider the composite function f(x, y) = F(3x-y, 2x-y). Find $\frac{\partial f}{\partial x}(1, 1)$ if $D_1F(1, 1) = -4$, $D_1F(2, 1) = 7$, $D_2F(1, 1) = 3$, $D_2F(2, 1) = -3$.

6. (16 points) The equation $x^2 + z^3 + yz = 3$ defines z implicitly as a function of x and y, say z = f(x, y). Find $\frac{\partial f}{\partial x}$ in terms of x, y, and z. Find $\frac{\partial^2 f}{\partial x^2}$ in terms of x, y, z, and $\frac{\partial f}{\partial x}$.

Office hours this week: Wednesday 3-5.