18.024 PRACTICE QUIZ II

Here are some formulas (for reference) for velocity \vec{v} and acceleration \vec{a}.
In terms of \vec{T} and \vec{N} :

$$
\begin{aligned}
\vec{v} & =\left(\frac{d s}{d t}\right) \vec{T} \\
\vec{a} & =\left(\frac{d^{2} s}{d t^{2}}\right) \vec{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \vec{N}
\end{aligned}
$$

In polar coordinates, in terms of \vec{u}_{r} and \vec{u}_{θ} :

$$
\begin{aligned}
\vec{v} & =\left(\frac{d r}{d t}\right) \vec{u}_{r}+\left(r \frac{d \theta}{d t}\right) \vec{u}_{\theta} \\
\vec{a} & =\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \vec{u}_{r}+\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \vec{u}_{\theta}
\end{aligned}
$$

1. (16 points) Consider the curve given in polar coordinates by $r=e^{-t}, \theta=t$ for $0 \leq t \leq 2 M \pi$ (M a positive integer).
(a) Sketch this curve when $M=2$.
(b) Find the length of this curve for general M. What happens as M becomes large?
2. (16 points) A particle moves along a curve C in space. Its acceleration vector has constant length 3 and its speed at time $t \geq 0$ is $1 /(1+2 t)$. Find the curvature of the curve in terms of t.
3. (20 points)
(a) Complete the definition. A vector-valued function

$$
\vec{f}: S \rightarrow \mathbb{R}^{3}
$$

where $S \subset \mathbb{R}^{2}$ contains a ball $B(\vec{a} ; r)$ of radius r around $\vec{a} \in \mathbb{R}^{2}$ is said to be differentiable at \vec{a} if for all $\vec{v} \in$ [blank],

$$
\vec{f}(\vec{a}+\vec{v})=\vec{f}(\vec{a})+T_{a} \vec{v}+|\vec{v}| E_{\vec{a}}(\vec{v})
$$

where [blank]. (Hint: the second blank is a fact about the function $E_{\vec{a}}$.)
(b) Let $f(x, y)$ be a function defined in \mathbb{R}^{2} (the plane). Answer the following questions "yes" or "no" (+3 points for each correct answer, -3 for each incorrect answer).

[^0](i) Suppose that $D_{1} f$ and $D_{2} f$ exist at $(0,0)$. Does it follow that f is continuous at $(0,0) ? \mathbf{Y} / \mathbf{N}$ Does it follow that the functions $g(t)=f(t, 0)$ and $h(t)=f(0, t)$ are continuous at $t=0 ? \mathbf{Y} / \mathbf{N}$
(ii) Suppose that $D_{1} f$ and $D_{2} f$ exist in a neighborhood of $(0,0)$ and are continuous at $(0,0)$. Does it follow that f is continuous at $(0,0) ? \mathbf{Y} / \mathbf{N}$ Does it follow that $f^{\prime}(\overrightarrow{0} ; \vec{y})$ exists for all $\vec{y} ? \mathbf{Y} / \mathbf{N}$
4. (16 points)
(a) Suppose $f(x, y, z)$ is a differentiable scalar-valued function such that $f(1,1,1)=$ 2 , and the $\vec{\nabla} f(1,1,1)=(3,4,5)$. Find the (Cartesian) equation of the tangent plane to the level surface $f(x, y, z)=2$ at $(x, y, z)=(1,1,1)$.
(b) Suppose $f(x, y)$ is a differentiable scalar-valued function such that $f(1,1)=2$, and $\overrightarrow{\nabla f}(1,1)=(3,4)$. Find the (Cartesian) equation of the tangent plane to the graph of f (i.e. $z=f(x, y))$ when $(x, y)=(1,1)$.
(c) Show that $f(x, y)=(\sin x)(\sin y)$ has a critical point (i.e. the gradient is $\overrightarrow{0})$ at $(x, y)=(0,0)$. Does f have a minimum, maximum, or saddle point here?
5. (16 points) Given a differentiable function $F(u, v)$, consider the composite function $f(x, y)=F(3 x-y, 2 x-y)$. Find $\frac{\partial f}{\partial x}(1,1)$ if $D_{1} F(1,1)=-4, D_{1} F(2,1)=7$, $D_{2} F(1,1)=3, D_{2} F(2,1)=-3$.
6. (16 points) The equation $x^{2}+z^{3}+y z=3$ defines z implicitly as a function of x and y, say $z=f(x, y)$. Find $\frac{\partial f}{\partial x}$ in terms of x, y, and z. Find $\frac{\partial^{2} f}{\partial x^{2}}$ in terms of x, y, z, and $\frac{\partial f}{\partial x}$.

Office hours this week: Wednesday 3-5.

[^0]: Date: Spring 2001.

