18.024 QUIZ III

(This quiz has two pages.) Write your name on the first page of your solutions. Time: 50 minutes. Justify all steps. If you have any questions, please ask. GOOD LUCK!

1. (16 points) Suppose $\vec{\alpha}:[0,1] \rightarrow \mathbb{R}^{3}$ given by $\vec{\alpha}(t)=\left(t, t^{2}, t^{3}\right)$, and $\vec{F}(x, y, z)=$ $(0, y, x)$. Calculate $\int \vec{F} \cdot d \vec{\alpha}$.
2. (16 points) In (a) and (b), find if possible a potential function $\phi(x, y, z)$ defined on all of \mathbb{R}^{3} for each of the following vector fields. If it is not possible, explain why not.
(a) $\vec{f}(x, y, z)=(2 x y-y) \vec{i}+\left(y^{2}+2\right) \vec{j}+(3 z) \vec{k}$
(b) $\vec{g}(x, y, z)=\left(y^{2}+2\right) \vec{i}+(2 x y-y) \vec{j}+(3 z) \vec{k}$
(c) Suppose $\vec{\alpha}:[0,1] \rightarrow \mathbb{R}^{3}$ given by $\vec{\alpha}(t)=\left(\left(e^{t}-1\right)\left(t^{2}-1\right), \sin \pi t, 0\right)$. Calculate $\int \vec{g} \cdot d \vec{\alpha}$.
3. (16 points) If $\iint_{R} f=\int_{1}^{4} \int_{\sqrt{x}}^{2} f(x, y) d y d x$, express $\iint_{R} f$ as an iterated integral where the first (i.e. "inside") integration is with respect to x. Your answer should be of the form

$$
\int_{?}^{?} \int_{?}^{?} ? d x d y
$$

4. (16 points) Express as an iterated integral the volume of the solid bounded by the surface $z=2-x^{2}-y^{2}$ and the plane $z=0$. (You don't need to evaluate the integral.)
5. (16 points) A piece of wire is bent into the circle $x^{2}+y^{2}=4$ (of radius 2). The density of the wire is $10+x+y$ (in units of mass per unit length). Find the mass of the wire, and the location (\bar{x}, \bar{y}) of its center of mass.
6. (20 points)
(a) Define what the statement " S has content zero" means.

Let $Q=[0,1] \times[0,1]$. Define $f(x, y)$ for (x, y) in Q by the equations

$$
f(x, y)= \begin{cases}2 & \text { if } y=x \\ 1 & \text { if } x=1 / 2 \text { and } y \text { is irrational } \\ 0 & \text { otherwise }\end{cases}
$$

[^0](b) At what points does f fail to be continuous?
(c) Does $\iint_{Q} f$ exist? Why or why not?
(d) Does $\int_{0}^{1} f(x, y) d y$ exist for all x in $[0,1]$?

Bonus. (5 marks) Find the "hypervolume" of the n-dimensional version of a triangle (the n-simplex) in \mathbb{R}^{n} bounded by $x_{1}=0, x_{2}=0, \ldots, x_{n}=0, x_{1}+x_{2}+$ $\cdots+x_{n}=r$.

[^0]: Date: Spring 2001.

