18.024 PRACTICE QUIZ III

Solutions will be discussed in recitation on Thursday. Sketches of solutions will also appear on the web page on Thursday.

1. (16 points) Let C be the curve $\vec{\alpha}(t)=\left(t^{2}, 2 t,-3 t\right)$ from $(0,0,0)$ to $(1,2,-3)$ in \mathbb{R}^{3}.
(a) Evaluate $\int_{C} \vec{F} \cdot d \vec{\alpha}$ if $F(x, y, z)=3 x \vec{i}+x y \vec{j}+y z \vec{k}$.
(b) Evaluate $\int_{C} \vec{\nabla} \phi \cdot d \vec{\alpha}$ if $\phi(x, y, z)=x y^{2} \sin z$.
2. (16 points) For each of the following vector fields, either find a function ϕ such that $\vec{\nabla} \phi=\vec{F}$ or explain how you know that no such function exists.
(a) $\vec{F}(x, y, z)=\left(y^{2}, 2 x y+2, y z\right)$
(b) $\vec{F}(x, y, z)=\left(y^{2}, 2 x y+2, z\right)$
(c) $\vec{F}(x, y, z)=\left(y^{2}, 2 x y+2, x z\right)$
3. (16 points) Set up a triple integral for the volume of the solid consisting of those points for which $x \geq 0, y \geq 0, z \geq 0$, and $x+y^{2}+z \leq 1$,
(a) in which the first integration (the one on the inside) is with respect to z. Your answer should be of the form

$$
\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} 1 d z d y d x \text { or } \int_{?}^{?} \int_{?}^{?} \int_{?}^{?} 1 d z d x d y
$$

(b) in which the first integration is with respect to y.
4. (16 points) Find the y-coordinate \bar{y} of the centroid of the region in the plane bounded by $y=x^{4}$ and $y=1$.
5. (16 points) \vec{f} be a continuously differentiable vector field defined on an open set U in V_{m}. Consider the following conditions on \vec{f} :
(a) $\int_{C} \vec{f} \cdot d \vec{\alpha}=0$ for every closed piecewise-smooth curve C in U.
(b) $\vec{f}=\vec{\nabla} \phi$ for some function ϕ defined on U
(c) $D_{i} f_{j}=D_{j} f_{i}$ in U (where $\vec{f}(\vec{x})=\left(f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right)$.

- Does (a) imply (b)? Y/N
- Does (b) imply (a)? Y/N

[^0]- Does (b) imply (c)? \mathbf{Y} / \mathbf{N}
- Does (c) imply (b)? Y/N
(+4 for each correct answer, -4 for each incorrect answer)

6. (20 points) Suppose $\vec{\alpha}_{1}, \vec{\alpha}_{2}, \vec{\alpha}_{3}$ are paths $[0,1] \rightarrow \mathbb{R}^{2}$ given by

$$
\begin{gathered}
\vec{\alpha}_{1}(t)=(0,1-t) \quad \text { for } 0 \leq t \leq 1, \\
\vec{\alpha}_{2}(t)= \begin{cases}(0,2 t) & \text { for } 0 \leq t \leq 1 / 2, \\
(2(t-1 / 2), 1) & \text { for } 1 / 2 \leq t \leq 1,\end{cases} \\
\vec{\alpha}_{3}(t)= \begin{cases}(2 t, 1) & \text { for } 0 \leq t \leq 1 / 2, \\
(2-2 t, 2-2 t) & \text { for } 1 / 2 \leq t \leq 1 .\end{cases}
\end{gathered}
$$

Suppose \vec{F} is a vector field on \mathbb{R}^{2}, and $\int \vec{F} \cdot d \overrightarrow{\alpha_{1}}=3, \int \vec{F} \cdot d \overrightarrow{\alpha_{2}}=e$, and $\int \vec{F} \cdot d \overrightarrow{\alpha_{3}}=\pi$.
(a) Suppose the path $\vec{\alpha}_{4}:[0, \pi / 2] \rightarrow \mathbb{R}^{2}$ is given by $\alpha_{4}(t)=(\sin t, \sin t)$. Calculate $\int \vec{F} \cdot d \overrightarrow{\alpha_{4}}$.
(b) Is \vec{F} conservative? (Explain.)
(Hint: the paths are sketched below.)

[^0]: Date: Spring 2001.

