### 18.024 UNIT V: LINE INTEGRALS

## Tuesday, April 3.

Lecture: Line integrals

Read: 10.1-10.7.

Do: 10.5: $3,7,8,9,12 \mathrm{~b}$ (parametrize by polar angle); 10.9: $2,7,10$.

Thursday, April 5: QUIZ 2 on Units III and IV

Friday, April 6.

Lecture: The integral of a gradient.

Read: 10.8-10.12. (Skip Theorem 10.2 - we did it last term.)

Do: 10.9: 11a, 15 ( $\bar{x}$ only); 10.13: $1,9,10$ (in 9 , show there is a function such that the gradient of $g(\vec{r})$ equals $\vec{F})$.

Tuesday, April 10.

Lecture: The gradient of an integral.

Read: 10.14-10.16.

Do: 10.13: 2, 3, 4, 5, 6 .

Thursday, April 12.

Lecture: Construction of potential functions.

Read: 10.17, 10.21.

Do: 10.18: $2,4,6,10,12,15$.

Hand in Friday, April 13 in lecture ( 7 points/problem).

1. C.34: 1 .
2. C.34: 2.
3. Evaluate $\int_{C} \vec{f} \cdot d \vec{\alpha}$ if $\vec{f}=\vec{\nabla}\left(x^{2} y+3 x y^{3}\right)$ and $\alpha$ is the curve $\alpha(t)=\left(t^{2}-2,2 / t\right)$ for $1 \leq t \leq 2$.

Date: Spring 2001

