18.034 MIDTERM 2

Explain your answers clearly; show all steps. Calculators may not be used. All problems have equal value. Please put your name on every sheet. Good luck!

1. (a) y_{1}, y_{2}, and y_{3} are 3 solutions of the differential equation $(1-t) y^{\prime \prime \prime}+y^{\prime \prime}+$ $t^{2} y^{\prime}+t^{3} y=0$ on the interval $1<t<\infty$. Calculate the function $W\left(y_{1}, y_{2}, y_{3}\right)(t)$ given that $W\left(y_{1}, y_{2}, y_{3}\right)(2)=3$.
(b) The equation $y^{\prime}+a(x) y=0$ has for a solution

$$
\phi(x)=e^{-\int_{x_{0}}^{x} a(t) d t}
$$

(Here let a be continuous on an interval I containing x_{0}.) This suggests trying to find a solution of

$$
L(y)=y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

of the form

$$
\phi(x)=e^{\int_{x_{0}}^{x} p(t) d t}
$$

where p is a function to be determined. Show that ϕ is a solution of $L(y)=0$ if and only if p satisfies the first-order non-linear equation $y^{\prime}=-y^{2}-a_{1}(x) y-a_{2}(x)$. (Remark: This last equation is called a Riccati equation.)
2. (a) Consider the equation $y^{\prime \prime}-\frac{2}{x^{2}} y=0$ (for $0<x<\infty$). Find all solutions. (Hint: Try functions of the form $y=x^{r}$. How do you know you've found all the solutions?)
(b) Find all solutions to the equation $y^{\prime \prime}-\frac{2}{x^{2}} y=x$. Hint: Use "variation of parameters". Suppose ϕ_{1} and ϕ_{2} are linearly independent solutions to the homogeneous version of the equation (see (a)). Look for a solution of the form $\phi(x)=u_{1}(x) \phi_{1}(x)+u_{2}(x) \phi_{2}(x)$.
3. Iterate $x \rightarrow \sqrt{1+x}$. Start with $x=0$. What happens?
4. (a) State the Existence and Uniqueness Theorem for differential equations of the form $y^{\prime}=f(x, y)$.
(b) Consider the differential equation $y^{\prime}=t^{2}(y+1)$ on the interval \mathbb{R}, with initial condition $y(0)=0$. Find a solution $y=\phi(t)$ defined for all $t \in \mathbb{R}$. If the first few Picard iterates (used in the proof of the Existence and Uniqueness Theorem described in (a)) are $\phi_{0}(t)=0, \phi_{1}(t), \phi_{2}(t)$, find $\phi_{1}(t)$ and $\phi_{2}(t)$.
(c) Explain why the $\phi_{1}(t)$ and $\phi_{2}(t)$ you found are approximations to $\phi(t)$.

[^0]5. Consider the equation $y^{\prime \prime}+\cos (x) y^{\prime}+\sin (x) y=0$.
(a) Let $\phi(x)$ be a nontrivial solution, and let $\psi(x)=\phi(x+2 \pi)$. Prove that $\psi(x)$ is also a solution.
(b) Show that $\phi(x)$ is a periodic solution of period 2π if, and only if, $\phi(0)=\phi(2 \pi)$ and $\phi^{\prime}(0)=\phi^{\prime}(2 \pi)$.
(c) Let $\phi_{1}(x), \phi_{2}(x)$ be two solutions satisfying $\phi_{1}(0)=1, \phi_{1}^{\prime}(0)=0, \phi_{2}(0)=0$, $\phi_{2}^{\prime}(0)=1$. Show that there are constants a and b such that
$$
\phi_{1}(x+2 \pi)=a \phi_{1}(x)+b \phi_{2}(x)
$$
(Hint: See (a).)

6. Let $A=\left(\begin{array}{cc}3 & 1 \\ -5 & -3\end{array}\right)$. Find the eigenvalues of A. Find eigenvectors of A corresponding to each of the eigenvalues. Calculate A^{2000}.

[^0]: Date: April 14, 2000, 1:05-1:55 pm.

