18.034 MIDTERM 2: SKETCHES OF SOLUTIONS

Explain your answers clearly; show all steps. Calculators may not be used. All problems have equal value. Please put your name on every sheet. Good luck!

1. (a) y_{1}, y_{2}, and y_{3} are 3 solutions of the differential equation $(1-t) y^{\prime \prime \prime}+y^{\prime \prime}+$ $t^{2} y^{\prime}+t^{3} y=0$ on the interval $1<t<\infty$. Calculate the function $W\left(y_{1}, y_{2}, y_{3}\right)(t)$ given that $W\left(y_{1}, y_{2}, y_{3}\right)(2)=3$.

Solution. Rewrite the differential equation as $y^{\prime \prime \prime}+\frac{1}{1-t} y^{\prime \prime}+\frac{t^{2}}{1-t} y^{\prime}+\frac{t^{3}}{1-t} y=0$. Then by Abel's theorem, $W=c \exp \left(-\int \frac{1}{1-t} d t\right)=c(1-t)$ for some constant t. From the condition $W(2)=3$, we get $W(t)=3(t-1)$.
(b) The equation $y^{\prime}+a(x) y=0$ has for a solution

$$
\phi(x)=e^{-\int_{x_{0}}^{x} a(t) d t}
$$

(Here let a be continuous on an interval I containing x_{0}.) This suggests trying to find a solution of

$$
L(y)=y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

of the form

$$
\phi(x)=e^{\int_{x_{0}}^{x} p(t) d t}
$$

where p is a function to be determined. Show that ϕ is a solution of $L(y)=0$ if and only if p satisfies the first-order non-linear equation $y^{\prime}=-y^{2}-a_{1}(x) y-a_{2}(x)$. (Remark: This last equation is called a Riccati equation.)

Solution. $\phi(x)=e^{\int p(t) d t}$, so $\phi^{\prime}(x)=p(x) e^{\int p(t) d t}$ and $\phi^{\prime \prime}(x)=p^{\prime}(x) e^{\int p(t) d t}+$ $p(x)^{2} e^{\int p(t) d t}$. If ϕ satisfies the differential equation, then

$$
e^{\int p}\left(p^{\prime}+p^{2}+a_{1} p+a_{2}\right)=0
$$

from which the result follows.
2. (a) Consider the equation $y^{\prime \prime}-\frac{2}{x^{2}} y=0$ (for $0<x<\infty$). Find all solutions. (Hint: Try functions of the form $y=x^{r}$. How do you know you've found all the solutions?)
(b) Find all solutions to the equation $y^{\prime \prime}-\frac{2}{x^{2}} y=x$. Hint: Use "variation of parameters". Suppose ϕ_{1} and ϕ_{2} are linearly independent solutions to the homogeneous version of the equation (see (a)). Look for a solution of the form $\phi(x)=u_{1}(x) \phi_{1}(x)+u_{2}(x) \phi_{2}(x)$.

[^0]Solution. (a) x^{2} and $1 / x$ both work, so $C_{1} x^{2}+C_{2} / x$ work. These are all the solutions by the existence and uniqueness theorem (see for example Theorem 3.2.4).
(b) The general answer is $x^{3} / 4+A x^{3}+B / x$. This can be found using the "Variation of Parameters" formula, see Theorem 3.7.1.

Alternatively, here is the argument, explicitly. Let $\phi_{1}(x)=x^{2}, \phi_{2}(x)=1 / x$ be a basis for the space of solutions. We seek a single solution to the differential equation, as we already know the solutions to the homogeneous version.

We look for a solution $\phi=u_{1} \phi_{1}+u_{2} \phi_{2}$, such that

$$
\begin{equation*}
u_{1}^{\prime} \phi_{1}+u_{2}^{\prime} \phi_{2}=0 \tag{1}
\end{equation*}
$$

Then $\phi^{\prime}=u_{1} \phi_{1}^{\prime}+u_{2} \phi_{2}^{\prime}$, and

$$
\phi^{\prime \prime}=\left(u_{1} \phi_{1}^{\prime \prime}+u_{2} \phi_{2}^{\prime \prime}\right)+\left(u_{1}^{\prime} \phi_{1}^{\prime}+u_{2}^{\prime} \phi_{2}^{\prime}\right)
$$

As $\phi "-\left(2 / x^{2}\right) \phi=x$, we have

$$
\begin{equation*}
u_{1}^{\prime} \phi_{1}^{\prime}+u_{2}^{\prime} \phi_{2}^{\prime}=x \tag{2}
\end{equation*}
$$

Rewriting (1) and (2):

$$
\begin{aligned}
u_{1}^{\prime} x^{2}+u_{2}^{\prime} / x & =0 \\
u_{1}^{\prime}(2 x)+u_{2}^{\prime}\left(-1 / x^{2}\right) & =x
\end{aligned}
$$

and solving this systems gives $u_{1}^{\prime}=\frac{1}{3}, u_{2}^{\prime}=-\frac{1}{3} x^{2}$.
Take $u_{1}=\frac{1}{3} x, u_{2}=-\frac{1}{12} x^{4}$. Then

$$
\phi=\frac{1}{3} x\left(x^{2}\right)-\frac{1}{12} x^{4}\left(\frac{1}{x}\right)=\frac{1}{4} x^{3}
$$

To be safe, we check that $\phi(x)=x^{3} / 4$ really does satisfy the differential equation.
3. Iterate $x \rightarrow \sqrt{1+x}$. Start with $x=0$. What happens?

Solution. The Contraction Mapping Theorem applies to the interval $0 \leq x<\infty$, as if $f(x)=\sqrt{1+x}$ then f maps the interval to itself, and $f^{\prime}(x)=1 /(2 \sqrt{1+x})$, so $\left|f^{\prime}(x)\right| \leq 1 / 2$. Hence we approach a fixed point x_{0}, satisfying $x_{0}=\sqrt{1+x_{0}}$. Squaring and solving, we get $x_{0}=(1 \pm \sqrt{5}) / 2$. As x_{0} must lie in the interval, $x_{0}=(1+\sqrt{5}) / 2$, the golden mean .
4. (a) State the Existence and Uniqueness Theorem for differential equations of the form $y^{\prime}=f(x, y)$.
(b) Consider the differential equation $y^{\prime}=t^{2}(y+1)$ on the interval \mathbb{R}, with initial condition $y(0)=0$. Find a solution $y=\phi(t)$ defined for all $t \in \mathbb{R}$. If the first few Picard iterates (used in the proof of the Existence and Uniqueness Theorem described in (a)) are $\phi_{0}(t)=0, \phi_{1}(t), \phi_{2}(t)$, find $\phi_{1}(t)$ and $\phi_{2}(t)$.
(c) Explain why the $\phi_{1}(t)$ and $\phi_{2}(t)$ you found are approximations to $\phi(t)$.

Solution. (a) See practice midterm.
(b) From $y^{\prime} /(y+1)=t$ we have $\ln |y+1|=t^{2} / 3$, from which $y=e^{t^{3} / 3}-1$.
$\phi_{k+1}(t)=\int_{0}^{t} s^{2}\left(\phi_{k}(s)+1\right) d s$, from which inductively $\phi_{1}(t)=t^{3} / 3, \phi_{2}(t)=$ $t^{3} / 3+t^{6} / 18$.
(c) The power series expansion (or Taylor series expansion) for $e^{t^{3} / 3}$ begins

$$
1+\frac{\left(t^{3} / 3\right)}{1!}+\frac{\left(t^{3} / 3\right)^{2}}{2!}+\frac{\left(t^{3} / 3\right)^{3}}{3!}+\cdots
$$

so the power series expansion for $e^{t^{3} / 3}-1$ begins

$$
\frac{\left(t^{3} / 3\right)}{1!}+\frac{\left(t^{3} / 3\right)^{2}}{2!}+\frac{\left(t^{3} / 3\right)^{3}}{3!}+\cdots
$$

In this case, the first few Picard iterates (and indeed all iterates) are partial sums of the power series.
5. Consider the equation $y^{\prime \prime}+\cos (x) y^{\prime}+\sin (x) y=0$.
(a) Let $\phi(x)$ be a nontrivial solution, and let $\psi(x)=\phi(x+2 \pi)$. Prove that $\psi(x)$ is also a solution.
(b) Show that $\phi(x)$ is a periodic solution of period 2π if, and only if, $\phi(0)=\phi(2 \pi)$ and $\phi^{\prime}(0)=\phi^{\prime}(2 \pi)$.
(c) Let $\phi_{1}(x), \phi_{2}(x)$ be two solutions satisfying $\phi_{1}(0)=1, \phi_{1}^{\prime}(0)=0, \phi_{2}(0)=0$, $\phi_{2}^{\prime}(0)=1$. Show that there are constants a and b such that

$$
\phi_{1}(x+2 \pi)=a \phi_{1}(x)+b \phi_{2}(x)
$$

(Hint: See (a).)
Solution. (a) $\psi(x)$ satisfies the differential equation $y^{\prime \prime}+\cos (x-2 \pi) y^{\prime}+\sin (x-$ $2 \pi) y=0$, which is the original differential equation.
(b) If $\phi(x)$ is a periodic solution of period 2π, then by periodicity, $\phi(0)=\phi(2 \pi)$ and $\phi^{\prime}(0)=\phi^{\prime}(2 \pi)$. Conversely, if $\phi(0)=\phi(2 \pi)$ and $\phi^{\prime}(0)=\phi^{\prime}(2 \pi)$, then $\phi(0)=$ $\psi(0)$ and $\phi^{\prime}(0)=\psi^{\prime}(0)$. As $\psi(x)$ and $\phi(x)$ have the same initial conditions and satisfy the same differential equation, by the Existence and Uniqueness Theorem (for second-order linear equations with continuous coefficients), $\phi(x)=\psi(x)=$ $\phi(x+2 \pi)$, i.e. ϕ is periodic.
(c) By the Wronskian test, $\phi_{1}(x)$ and $\phi_{2}(x)$ are linearly independent solutions of the differential equation, and hence form a basis for the solution space. As $\phi_{1}(x+2 \pi)$ is also a solution, it is a linear combination of ϕ_{1} and ϕ_{2}.
6. Let $A=\left(\begin{array}{cc}3 & 1 \\ -5 & -3\end{array}\right)$. Find the eigenvalues of A. Find eigenvectors of A corresponding to each of the eigenvalues. Calculate A^{2000}.

Solution. The eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=-2$, and the corresponding eigenvectors are $\vec{v}_{1}=\binom{1}{-1}$ and $\vec{v}_{2}=\binom{1}{-5}$ respectively. (Any nonzero multiples of these are correct.) $A^{2000} \vec{v}_{1}=2^{2000} \vec{v}_{1}$ and $A^{2000} \vec{v}_{2}=2^{2000} \vec{v}_{2}$. As any vector \vec{v} is a linear combination of \vec{v}_{1} and $\vec{v}_{2}, A^{2000} \vec{v}=2^{2000} \vec{v}$. Thus

$$
A^{2000}=2^{2000} I=\left(\begin{array}{cc}
2^{2000} & 0 \\
0 & 2^{2000}
\end{array}\right) .
$$

[^0]: Date: April 14, 2000, 1:05-1:55 pm.

