18.034 MIDTERM 2: SKETCHES OF
SOLUTIONS

Explain your answers clearly; show all steps. Calculators may not be used. All
problems have equal value. Please put your name on every sheet. Good luck!

1. (a) y1, Y2, and y3 are 3 solutions of the differential equation (1 — t)y"”" + " +
t2y' + t3y = 0 on the interval 1 < t < oo. Calculate the function W (y1,y2,y3)(t)
given that W (y1,y2,y3)(2) = 3.

Solution. Rewrite the differential equation as y"”" + 5y + lt—fty’ + 1t—;y =0.
Then by Abel’s theorem, W = cexp(— [ 55dt) = ¢(1 — t) for some constant ¢.
From the condition W (2) = 3, we get W(t) = 3(t — 1).

(b) The equation ¢’ + a(z)y = 0 has for a solution
¢($) — 6_ f:O a(t)dt.
(Here let a be continuous on an interval I containing zg.) This suggests trying to
find a solution of
Liy) =y" +ai(@)y’ +az(z)y =0
of the form
o(z) = oo P(D)AE

where p is a function to be determined. Show that ¢ is a solution of L(y) = 0 if
and only if p satisfies the first-order non-linear equation 3’ = —y? — a1 (z)y — az(x).
(Remark: This last equation is called a Riccati equation.)

Solution. ¢(z) = ef PO 5o ¢ (z) = p(z)el PO and ¢ (x) = p/ (z)el PO 4
p(x)2e/ Pt Tf ¢ satisfies the differential equation, then
eJP () +p* +aip+as) =0

from which the result follows.

2. (a) Consider the equation y” — %y = 0 (for 0 < # < o). Find all solutions.
(Hint: Try functions of the form y = 2". How do you know you've found all the
solutions?)

(b) Find all solutions to the equation y” — x—%y = z. Hint: Use “variation
of parameters”. Suppose ¢; and ¢ are linearly independent solutions to the
homogeneous version of the equation (see (a)). Look for a solution of the form

$(x) = ur(2)¢1 (2) + uz(2)da(z).
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Solution. (a) z% and 1/z both work, so C12? + Ca/x work. These are all the
solutions by the existence and uniqueness theorem (see for example Theorem 3.2.4).

(b) The general answer is x3/4 + Ax® + B/x. This can be found using the
“Variation of Parameters” formula, see Theorem 3.7.1.

Alternatively, here is the argument, explicitly. Let ¢1(z) = 2%, ¢o(2) = 1/x
be a basis for the space of solutions. We seek a single solution to the differential
equation, as we already know the solutions to the homogeneous version.

We look for a solution ¢ = ui¢1 + uz¢, such that
(1) uyd1 + upg2 =0
Then ¢ = u1¢) + uadh, and
¢" = (w1 + uady) + (ui ¢ + uye)).
As ¢” — (2/22)¢ = x, we have
(2) urdh +updh = .
Rewriting (1) and (2):

! /
e fuh/r =

uh(2z) +ub(—1/2?) = =z
. ; feQuQ . olves 1 — _1
and solving this systems gives u} = %, up = —za?.
Take uy = %x, Uy = —%x‘*. Then

1, 1 1 1,
qb—gx(:lc) 12:10(x)—4x.

To be safe, we check that ¢(x) = 23 /4 really does satisfy the differential equation.
3. Iterate z — /1 + x. Start with £ = 0. What happens?

Solution. The Contraction Mapping Theorem applies to the interval 0 < x < oo,
as if f(xz) = v/1+ x then f maps the interval to itself, and f'(z) = 1/(2v/1+ ),
so |f'(z)] < 1/2. Hence we approach a fixed point wg, satisfying zo = /1 + zo.
Squaring and solving, we get xop = (1 &+ +/5)/2. As o must lie in the interval,
zo = (1 ++/5)/2, the golden mean.

4. (a) State the Existence and Uniqueness Theorem for differential equations of
the form ¢y’ = f(z,y).

(b) Consider the differential equation y’ = t*>(y + 1) on the interval R, with
initial condition y(0) = 0. Find a solution y = ¢(t) defined for all ¢ € R. If the first

few Picard iterates (used in the proof of the Existence and Uniqueness Theorem
described in (a)) are ¢o(t) = 0, ¢1(t), ¢2(t), find ¢1(¢) and ¢2(t).

(c) Explain why the ¢1(t) and ¢2(t) you found are approximations to ¢(t).

Solution. (a) See practice midterm.



(b) From 3/ /(y + 1) = t we have In |y + 1| = ¢2/3, from which y = ¢’/3 — 1.

Or+1(t) = fot s2(¢r(s) + 1)ds, from which inductively ¢1(t) = t3/3, ¢a(t) =
t3/3 +1°/18.

. . . : s .
(c) The power series expansion (or Taylor series expansion) for e*' /3 begins

t3/3 t3/3)2  (t3/3)3

1+

. . 3 .
so the power series expansion for e!”/3 — 1 begins

t3/3 t3/3)2  (t3/3)3

In this case, the first few Picard iterates (and indeed all iterates) are partial sums
of the power series.

5. Consider the equation y” + cos(x)y’ + sin(x)y = 0.

(a) Let ¢(x) be a nontrivial solution, and let ¥(x) = ¢(x 4 27). Prove that ¢(z)
is also a solution.

(b) Show that ¢(z) is a periodic solution of period 27 if, and only if, $(0) = ¢(2)
and ¢'(0) = ¢'(27).

(c) Let ¢1(x), ¢2(x) be two solutions satisfying ¢1(0) = 1, ¢1(0) = 0, ¢2(0) =0,
@5(0) = 1. Show that there are constants a and b such that

¢1(x +2m) = agy(x) + bea(x).
(Hint: See (a).)

Solution. (a) 1(x) satisfies the differential equation y” 4 cos(z — 27m)y’ + sin(x —
2m)y = 0, which is the original differential equation.

(b) If ¢(x) is a periodic solution of period 2, then by periodicity, ¢(0) = ¢(2)
and ¢/'(0) = ¢'(2w). Conversely, if ¢(0) = ¢(27) and ¢'(0) = ¢'(27), then ¢(0) =
¥(0) and ¢’'(0) = ¢'(0). As ¢(z) and ¢(x) have the same initial conditions and
satisfy the same differential equation, by the Existence and Uniqueness Theorem
(for second-order linear equations with continuous coefficients), ¢(z) = ¢¥(z) =
o(x + 2m), i.e. ¢ is periodic.

(c) By the Wronskian test, ¢1(z) and ¢o2(x) are linearly independent solutions
of the differential equation, and hence form a basis for the solution space. As
¢1(x + 27) is also a solution, it is a linear combination of ¢; and ¢s.
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corresponding to each of the eigenvalues. Calculate
3

6. Let A = ( ) Find the eigenvalues of A. Find eigenvectors of A

AZOOO



Solution. The eigenvalues are \; = 2 and A2 = —2, and the corresponding

and Uy = respectively. (Any nonzero

1
-1 -5
multiples of these are correct.) A20004; = 220005, and A20004, = 220003, Ag any
vector ¥ is a linear combination of ¥; and ¥, A20007 = 220003, Thus

2000 2000 22000 0
A =2 I= ( 0 22000 ) .

eigenvectors are U; = (



