
18.034 MIDTERM 2: SKETCHES OF
SOLUTIONS

Explain your answers clearly; show all steps. Calculators may not be used. All
problems have equal value. Please put your name on every sheet. Good luck!

1. (a) y1, y2, and y3 are 3 solutions of the differential equation (1 − t)y′′′ + y′′ +
t2y′ + t3y = 0 on the interval 1 < t < ∞. Calculate the function W (y1, y2, y3)(t)
given that W (y1, y2, y3)(2) = 3.

Solution. Rewrite the differential equation as y′′′ + 1
1−ty

′′ + t2

1−ty
′ + t3

1−ty = 0.
Then by Abel’s theorem, W = c exp(−

∫
1

1−tdt) = c(1 − t) for some constant t.
From the condition W (2) = 3, we get W (t) = 3(t− 1).

(b) The equation y′ + a(x)y = 0 has for a solution

φ(x) = e
−
R x
x0
a(t)dt

.

(Here let a be continuous on an interval I containing x0.) This suggests trying to
find a solution of

L(y) = y′′ + a1(x)y′ + a2(x)y = 0

of the form
φ(x) = e

R x
x0
p(t)dt

where p is a function to be determined. Show that φ is a solution of L(y) = 0 if
and only if p satisfies the first-order non-linear equation y′ = −y2−a1(x)y−a2(x).
(Remark: This last equation is called a Riccati equation.)

Solution. φ(x) = e
R
p(t)dt, so φ′(x) = p(x)e

R
p(t)dt and φ′′(x) = p′(x)e

R
p(t)dt +

p(x)2e
R
p(t)dt. If φ satisfies the differential equation, then

e
R
p
(
p′ + p2 + a1p+ a2

)
= 0

from which the result follows.

2. (a) Consider the equation y′′ − 2
x2 y = 0 (for 0 < x < ∞). Find all solutions.

(Hint: Try functions of the form y = xr. How do you know you’ve found all the
solutions?)

(b) Find all solutions to the equation y′′ − 2
x2 y = x. Hint: Use “variation

of parameters”. Suppose φ1 and φ2 are linearly independent solutions to the
homogeneous version of the equation (see (a)). Look for a solution of the form
φ(x) = u1(x)φ1(x) + u2(x)φ2(x).
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Solution. (a) x2 and 1/x both work, so C1x
2 + C2/x work. These are all the

solutions by the existence and uniqueness theorem (see for example Theorem 3.2.4).

(b) The general answer is x3/4 + Ax3 + B/x. This can be found using the
“Variation of Parameters” formula, see Theorem 3.7.1.

Alternatively, here is the argument, explicitly. Let φ1(x) = x2, φ2(x) = 1/x
be a basis for the space of solutions. We seek a single solution to the differential
equation, as we already know the solutions to the homogeneous version.

We look for a solution φ = u1φ1 + u2φ2, such that

u′1φ1 + u′2φ2 = 0(1)

Then φ′ = u1φ
′
1 + u2φ

′
2, and

φ′′ = (u1φ
′′
1 + u2φ

′′
2 ) + (u′1φ

′
1 + u′2φ

′
2).

As φ”− (2/x2)φ = x, we have

u′1φ
′
1 + u′2φ

′
2 = x.(2)

Rewriting (1) and (2):

u′1x
2 + u′2/x = 0

u′1(2x) + u′2(−1/x2) = x

and solving this systems gives u′1 = 1
3 , u′2 = − 1

3x
2.

Take u1 = 1
3x, u2 = − 1

12x
4. Then

φ =
1
3
x(x2)− 1

12
x4(

1
x

) =
1
4
x3.

To be safe, we check that φ(x) = x3/4 really does satisfy the differential equation.

3. Iterate x→
√

1 + x. Start with x = 0. What happens?

Solution. The Contraction Mapping Theorem applies to the interval 0 ≤ x <∞,
as if f(x) =

√
1 + x then f maps the interval to itself, and f ′(x) = 1/(2

√
1 + x),

so |f ′(x)| ≤ 1/2. Hence we approach a fixed point x0, satisfying x0 =
√

1 + x0.
Squaring and solving, we get x0 = (1 ±

√
5)/2. As x0 must lie in the interval,

x0 = (1 +
√

5)/2, the golden mean.

4. (a) State the Existence and Uniqueness Theorem for differential equations of
the form y′ = f(x, y).

(b) Consider the differential equation y′ = t2(y + 1) on the interval R, with
initial condition y(0) = 0. Find a solution y = φ(t) defined for all t ∈ R. If the first
few Picard iterates (used in the proof of the Existence and Uniqueness Theorem
described in (a)) are φ0(t) = 0, φ1(t), φ2(t), find φ1(t) and φ2(t).

(c) Explain why the φ1(t) and φ2(t) you found are approximations to φ(t).

Solution. (a) See practice midterm.
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(b) From y′/(y + 1) = t we have ln |y + 1| = t2/3, from which y = et
3/3 − 1.

φk+1(t) =
∫ t

0
s2(φk(s) + 1)ds, from which inductively φ1(t) = t3/3, φ2(t) =

t3/3 + t6/18.

(c) The power series expansion (or Taylor series expansion) for et
3/3 begins

1 +
(t3/3)

1!
+

(t3/3)2

2!
+

(t3/3)3

3!
+ · · · ,

so the power series expansion for et
3/3 − 1 begins

(t3/3)
1!

+
(t3/3)2

2!
+

(t3/3)3

3!
+ · · · .

In this case, the first few Picard iterates (and indeed all iterates) are partial sums
of the power series.

5. Consider the equation y′′ + cos(x)y′ + sin(x)y = 0.

(a) Let φ(x) be a nontrivial solution, and let ψ(x) = φ(x+ 2π). Prove that ψ(x)
is also a solution.

(b) Show that φ(x) is a periodic solution of period 2π if, and only if, φ(0) = φ(2π)
and φ′(0) = φ′(2π).

(c) Let φ1(x), φ2(x) be two solutions satisfying φ1(0) = 1, φ′1(0) = 0, φ2(0) = 0,
φ′2(0) = 1. Show that there are constants a and b such that

φ1(x+ 2π) = aφ1(x) + bφ2(x).

(Hint: See (a).)

Solution. (a) ψ(x) satisfies the differential equation y′′+ cos(x− 2π)y′+ sin(x−
2π)y = 0, which is the original differential equation.

(b) If φ(x) is a periodic solution of period 2π, then by periodicity, φ(0) = φ(2π)
and φ′(0) = φ′(2π). Conversely, if φ(0) = φ(2π) and φ′(0) = φ′(2π), then φ(0) =
ψ(0) and φ′(0) = ψ′(0). As ψ(x) and φ(x) have the same initial conditions and
satisfy the same differential equation, by the Existence and Uniqueness Theorem
(for second-order linear equations with continuous coefficients), φ(x) = ψ(x) =
φ(x+ 2π), i.e. φ is periodic.

(c) By the Wronskian test, φ1(x) and φ2(x) are linearly independent solutions
of the differential equation, and hence form a basis for the solution space. As
φ1(x+ 2π) is also a solution, it is a linear combination of φ1 and φ2.

6. Let A =
(

3 1
−5 −3

)
. Find the eigenvalues of A. Find eigenvectors of A

corresponding to each of the eigenvalues. Calculate A2000.
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Solution. The eigenvalues are λ1 = 2 and λ2 = −2, and the corresponding

eigenvectors are ~v1 =
(

1
−1

)
and ~v2 =

(
1
−5

)
respectively. (Any nonzero

multiples of these are correct.) A2000~v1 = 22000~v1 and A2000~v2 = 22000~v2. As any
vector ~v is a linear combination of ~v1 and ~v2, A2000~v = 22000~v. Thus

A2000 = 22000I =
(

22000 0
0 22000

)
.
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