18.034 MIDTERM 2: SKETCHES OF SOLUTIONS

Explain your answers clearly; show all steps. Calculators may not be used. All problems have equal value. Please put your name on every sheet. Good luck!

1. (a) y_1 , y_2 , and y_3 are 3 solutions of the differential equation $(1-t)y''' + y'' + t^2y' + t^3y = 0$ on the interval $1 < t < \infty$. Calculate the function $W(y_1, y_2, y_3)(t)$ given that $W(y_1, y_2, y_3)(2) = 3$.

Solution. Rewrite the differential equation as $y''' + \frac{1}{1-t}y'' + \frac{t^2}{1-t}y' + \frac{t^3}{1-t}y = 0$. Then by Abel's theorem, $W = c \exp(-\int \frac{1}{1-t} dt) = c(1-t)$ for some constant t. From the condition W(2) = 3, we get W(t) = 3(t-1).

(b) The equation y' + a(x)y = 0 has for a solution

$$\phi(x) = e^{-\int_{x_0}^x a(t)dt}.$$

(Here let a be continuous on an interval I containing x_0 .) This suggests trying to find a solution of

$$L(y) = y'' + a_1(x)y' + a_2(x)y = 0$$

of the form

$$\phi(x) = e^{\int_{x_0}^x p(t)dt}$$

where p is a function to be determined. Show that ϕ is a solution of L(y) = 0 if and only if p satisfies the first-order non-linear equation $y' = -y^2 - a_1(x)y - a_2(x)$. (Remark: This last equation is called a *Riccati equation*.)

Solution. $\phi(x) = e^{\int p(t)dt}$, so $\phi'(x) = p(x)e^{\int p(t)dt}$ and $\phi''(x) = p'(x)e^{\int p(t)dt} + p(x)^2 e^{\int p(t)dt}$. If ϕ satisfies the differential equation, then

$$e^{\int p} \left(p' + p^2 + a_1 p + a_2 \right) = 0$$

from which the result follows.

2. (a) Consider the equation $y'' - \frac{2}{x^2}y = 0$ (for $0 < x < \infty$). Find all solutions. (*Hint:* Try functions of the form $y = x^r$. How do you know you've found *all* the solutions?)

(b) Find all solutions to the equation $y'' - \frac{2}{x^2}y = x$. *Hint:* Use "variation of parameters". Suppose ϕ_1 and ϕ_2 are linearly independent solutions to the homogeneous version of the equation (see (a)). Look for a solution of the form $\phi(x) = u_1(x)\phi_1(x) + u_2(x)\phi_2(x)$.

Date: April 14, 2000, 1:05-1:55 pm.

Solution. (a) x^2 and 1/x both work, so $C_1x^2 + C_2/x$ work. These are all the solutions by the existence and uniqueness theorem (see for example Theorem 3.2.4).

(b) The general answer is $x^3/4 + Ax^3 + B/x$. This can be found using the "Variation of Parameters" formula, see Theorem 3.7.1.

Alternatively, here is the argument, explicitly. Let $\phi_1(x) = x^2$, $\phi_2(x) = 1/x$ be a basis for the space of solutions. We seek a single solution to the differential equation, as we already know the solutions to the homogeneous version.

We look for a solution $\phi = u_1\phi_1 + u_2\phi_2$, such that

(1)
$$u_1'\phi_1 + u_2'\phi_2 = 0$$

Then $\phi' = u_1 \phi'_1 + u_2 \phi'_2$, and

$$\phi'' = (u_1\phi_1'' + u_2\phi_2'') + (u_1'\phi_1' + u_2'\phi_2').$$

As $\phi'' - (2/x^2)\phi = x$, we have

(2)
$$u_1'\phi_1' + u_2'\phi_2' = x.$$

Rewriting (1) and (2):

$$u'_1 x^2 + u'_2 / x = 0$$

$$u'_1 (2x) + u'_2 (-1/x^2) = x$$

and solving this systems gives $u'_1 = \frac{1}{3}$, $u'_2 = -\frac{1}{3}x^2$.

Take $u_1 = \frac{1}{3}x$, $u_2 = -\frac{1}{12}x^4$. Then

$$\phi = \frac{1}{3}x(x^2) - \frac{1}{12}x^4(\frac{1}{x}) = \frac{1}{4}x^3.$$

To be safe, we check that $\phi(x) = x^3/4$ really does satisfy the differential equation.

3. Iterate $x \to \sqrt{1+x}$. Start with x = 0. What happens?

Solution. The Contraction Mapping Theorem applies to the interval $0 \le x < \infty$, as if $f(x) = \sqrt{1+x}$ then f maps the interval to itself, and $f'(x) = 1/(2\sqrt{1+x})$, so $|f'(x)| \le 1/2$. Hence we approach a fixed point x_0 , satisfying $x_0 = \sqrt{1+x_0}$. Squaring and solving, we get $x_0 = (1 \pm \sqrt{5})/2$. As x_0 must lie in the interval, $x_0 = (1 + \sqrt{5})/2$, the golden mean.

4. (a) State the Existence and Uniqueness Theorem for differential equations of the form y' = f(x, y).

(b) Consider the differential equation $y' = t^2(y+1)$ on the interval \mathbb{R} , with initial condition y(0) = 0. Find a solution $y = \phi(t)$ defined for all $t \in \mathbb{R}$. If the first few Picard iterates (used in the proof of the Existence and Uniqueness Theorem described in (a)) are $\phi_0(t) = 0$, $\phi_1(t)$, $\phi_2(t)$, find $\phi_1(t)$ and $\phi_2(t)$.

(c) Explain why the $\phi_1(t)$ and $\phi_2(t)$ you found are approximations to $\phi(t)$.

Solution. (a) See practice midterm.

(b) From y'/(y+1) = t we have $\ln |y+1| = t^2/3$, from which $y = e^{t^3/3} - 1$.

 $\phi_{k+1}(t) = \int_0^t s^2(\phi_k(s) + 1)ds$, from which inductively $\phi_1(t) = t^3/3$, $\phi_2(t) = t^3/3 + t^6/18$.

(c) The power series expansion (or Taylor series expansion) for $e^{t^3/3}$ begins

$$1 + \frac{(t^3/3)}{1!} + \frac{(t^3/3)^2}{2!} + \frac{(t^3/3)^3}{3!} + \cdots,$$

so the power series expansion for $e^{t^3/3} - 1$ begins

$$\frac{(t^3/3)}{1!} + \frac{(t^3/3)^2}{2!} + \frac{(t^3/3)^3}{3!} + \cdots$$

In this case, the first few Picard iterates (and indeed all iterates) are partial sums of the power series.

5. Consider the equation $y'' + \cos(x)y' + \sin(x)y = 0$.

(a) Let $\phi(x)$ be a nontrivial solution, and let $\psi(x) = \phi(x+2\pi)$. Prove that $\psi(x)$ is also a solution.

(b) Show that $\phi(x)$ is a periodic solution of period 2π if, and only if, $\phi(0) = \phi(2\pi)$ and $\phi'(0) = \phi'(2\pi)$.

(c) Let $\phi_1(x)$, $\phi_2(x)$ be two solutions satisfying $\phi_1(0) = 1$, $\phi'_1(0) = 0$, $\phi_2(0) = 0$, $\phi'_2(0) = 1$. Show that there are constants a and b such that

$$\phi_1(x + 2\pi) = a\phi_1(x) + b\phi_2(x).$$

(*Hint:* See (a).)

Solution. (a) $\psi(x)$ satisfies the differential equation $y'' + \cos(x - 2\pi)y' + \sin(x - 2\pi)y = 0$, which is the original differential equation.

(b) If $\phi(x)$ is a periodic solution of period 2π , then by periodicity, $\phi(0) = \phi(2\pi)$ and $\phi'(0) = \phi'(2\pi)$. Conversely, if $\phi(0) = \phi(2\pi)$ and $\phi'(0) = \phi'(2\pi)$, then $\phi(0) = \psi(0)$ and $\phi'(0) = \psi'(0)$. As $\psi(x)$ and $\phi(x)$ have the same initial conditions and satisfy the same differential equation, by the Existence and Uniqueness Theorem (for second-order linear equations with continuous coefficients), $\phi(x) = \psi(x) = \phi(x + 2\pi)$, i.e. ϕ is periodic.

(c) By the Wronskian test, $\phi_1(x)$ and $\phi_2(x)$ are linearly independent solutions of the differential equation, and hence form a basis for the solution space. As $\phi_1(x+2\pi)$ is also a solution, it is a linear combination of ϕ_1 and ϕ_2 .

6. Let $A = \begin{pmatrix} 3 & 1 \\ -5 & -3 \end{pmatrix}$. Find the eigenvalues of A. Find eigenvectors of A corresponding to each of the eigenvalues. Calculate A^{2000} .

Solution. The eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = -2$, and the corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ respectively. (Any nonzero multiples of these are correct.) $A^{2000}\vec{v}_1 = 2^{2000}\vec{v}_1$ and $A^{2000}\vec{v}_2 = 2^{2000}\vec{v}_2$. As any vector \vec{v} is a linear combination of \vec{v}_1 and \vec{v}_2 , $A^{2000}\vec{v} = 2^{2000}\vec{v}$. Thus

$$A^{2000} = 2^{2000}I = \begin{pmatrix} 2^{2000} & 0\\ 0 & 2^{2000} \end{pmatrix}.$$