MODERN ALGEBRA (MATH 210) PRACTICE FINAL EXAM

My office hours will be Sunday 2-4 pm, Monday 8-10 pm, Tuesday 8-10 pm.

1. Suppose P and Q are two normal subgroups of a group G such that $P \cap Q=\{e\}$. Show that any two elements $p \in P, q \in Q$ commute.
2. Suppose G is a finite subgroup, with only one Sylow subgroup for each prime. Show that G is isomorphic to the product of its Sylow subgroups.
3. (Burnside's Lemma) Let G act on a finite set X. If N is the number of orbits, then

$$
N=\frac{1}{|G|} \sum_{\tau \in G} \operatorname{Fix}(\tau)
$$

where $\operatorname{Fix}(\tau)$ is the number of $x \in X$ fixed by τ. (Hint: $\sum_{\tau \in G} \operatorname{Fix}(\tau)=\#\{(\tau \in G, x \in X)$: $\tau x=x\}$.)
4. Let $\phi: R \rightarrow S$ be a homomorphism of commutative rings.
(a) Prove that if \mathfrak{p} is a prime ideal of S then either $\phi^{-1}(\mathfrak{p})=R$ or $\phi^{-1}(\mathfrak{p})$ is a prime ideal of R.
(b) Prove that if \mathfrak{m} is a maximal ideal of S and ϕ is surjective then $\phi^{-1}(\mathfrak{m})$ is a maximal ideal of R. Give an example to show that this need not be the case if ϕ is not surjective.
5. Let R be a commutative ring. We say that an element $x \in R$ is nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}^{+}$. Prove that the set of nilpotent elements form an ideal - called the nilradical of R and denoted by $\mathfrak{N}(R)$.
6. Let τ be the golden mean $\frac{1+\sqrt{5}}{2}$. Show that $\mathbb{Z}[\tau]$ has infinitely many units.
7. Show that if an irreducible cubic in $\mathbb{Q}[x]$ has two complex roots and one real root, then its splitting field is a degree 6 extension of \mathbb{Q}.
8. Suppose p is an odd prime. Let ζ be a primitive root of unity. Show that the minimal polynomial for ζ over \mathbb{Q} is $t^{p-1}+t^{p-2}+\cdots+1$. Show that $\mathbb{Q}(\zeta)$ is Galois over \mathbb{Q}, of degree p, and describe the Galois group.
9. Suppose q is a prime power. Show that there are $\left(q^{3}-q\right) / 3$ irreducible monic degree 3 polynomials in $\mathbb{F}_{q}[x]$. (Hint: Consider the elements of $\mathbb{F}_{q^{3}}$ and their minimal polynomials over q.)

Good luck!

[^0]
[^0]: Date: Friday, December 2, 2004.

