MODERN ALGEBRA (MATH 210A) PRACTICE MIDTERM

RAVI VAKIL

1. Suppose G is a group. Then [G, G] is defined to be the subgroup generated by terms of the form $[x, y] = xyx^{-1}y^{-1}$. (This is the *commutator subgroup*.) Show that [G, G] is a normal subgroup, and that G/[G, G] is abelian.

2. Suppose the center of G has index n. Show that every conjugacy class has at most n elements.

3. Let $(\mathbb{Z}/24)^*$ be those integers (modulo 24) relatively prime to 24. Show that this set forms an abelian group. According to the classification of finitely generated abelian groups, $(\mathbb{Z}/24)^*$ is congruent to a product of cyclic groups of prime power order. Explicitly describe it in such a way.

4. Let A be an abelian normal subgroup of G and let B be any subgroup of G. Prove that $A \cap B \lhd AB$.

5. Let $K_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$. Show that $\operatorname{Aut}(K_4) \cong S_3$. Let $\phi : S_3 \to \operatorname{Aut}(K_4)$ be an isomorphism. Show that $K_4 \rtimes_{\phi} S_3 \cong S_4$. (*Hint:* Show that S_4 is a semidirect product of K_4 and S_3 , and figure out the induced action of S_3 on K_4 .)

6. Suppose M, N \triangleleft G, G = MN. Show that $G/M \cap N \cong G/M \times G/N$.

E-mail address: vakil@math.stanford.edu

Date: Friday, October 29, 2004.