MODERN ALGEBRA (MATH 210) PROBLEM SET 3

This set is due Friday, Oct. 22 at noon at Jarod Alper's door, 380-J.

1. Show that there is no simple group of order 56. Show that there is no simple group of order 351.
2. If G is a nonabelian group, show that $G / Z(G)$ is not cyclic.
3. Suppose that H is a normal subgroup of G . Show that G is solvable if and only if both H and G / H are solvable.
4. Show that if G is a finite group and $\mathrm{H}<\mathrm{G}$ is a proper subgroup, then there exist elements of G not conjugate to any element of H . (In other words, the union of all conjugate subgroups of H cannot be all of G.)
5. Show that if p is the smallest prime dividing $|G|$ then any subgroup of G of index p is a normal subgroup of G.
6. Prove that if H has finite index n then there is a normal subgroup K of G with $\mathrm{K} \leq \mathrm{H}$ and $|G: K| \leq n!$.
7. The set of n-cycles in S_{n} form a conjugacy class in S_{n}. If n is odd, how many conjugacy classes does this set form in A_{n} ?
8. (a) Let Ω be an infinite set. Let D the subgroup of S_{Ω} consisting of permutations which move only a finite number of elements of Ω and let A be the set of all elements $\sigma \in D$ such that σ acts as an even permutation on the (finite) set of points it moves. Prove that A is an infinite simple group.
(b) Prove that if $H \neq\{e\}$ is a normal subgroup of S_{Ω}, then H contains A, i.e. A is the unique nontrivial minimal normal subgroup of S_{Ω}.
9. This exercise shows that for $n \neq 6$, every automorphism of S_{n} is inner. Fix an integer $n \geq 2$ with $n \neq 6$.
(a) Prove that the automorphism group of a group G permutes the conjugacy classes of G, i.e. for each $\sigma \in \operatorname{Aut}(\mathrm{G})$ and each conjugacy class \mathcal{K} of G the set $\sigma(\mathcal{K})$ is also a conjugacy class of G.
(b) Let \mathcal{K} be the conjugacy class of transpositions in S_{n} and let \mathcal{K}^{\prime} be the conjugacy class of any element of order 2 in S_{n} that is not a transposition. Prove that $|\mathcal{K}| \neq\left|\mathcal{K}^{\prime}\right|$. Deduce that any automorphism of S_{n} sends transpositions to transpositions.

[^0](c) Prove that for each $\sigma \in \operatorname{Aut}\left(S_{n}\right)$
$$
\sigma:(12) \mapsto\left(a b_{2}\right), \quad \sigma:(13) \mapsto\left(a b_{3}\right), \ldots, \sigma:(1 n) \mapsto\left(a b_{n}\right)
$$
for some distinct integers $a, b_{2}, b_{3}, \ldots, b_{n} \in\{1,2, \ldots, n\}$. As (12),(13), \ldots, (1n) generate S_{n}, deduce that any automorphism of S_{n} is uniquely determined by its action on these elements. Hence show that S_{n} has at most n ! automorphisms and conclude that $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ for $n \neq 6$.
10. We now show that $\operatorname{Inn}\left(S_{6}\right)$ is of index at most 2 in $\operatorname{Aut}\left(S_{6}\right)$. Let \mathcal{K} be the conjugacy class of transpositions in S_{6} and let \mathcal{K}^{\prime} be the conjugacy class of any element of order 2 in S_{6} that is not a transposition. Prove that $|\mathcal{K}| \neq\left|\mathcal{K}^{\prime}\right|$ unless \mathcal{K}^{\prime} is the conjugacy class of products of three disjoint transpositions. Deduce that $\operatorname{Aut}\left(\mathrm{S}_{6}\right)$ has a subgroup of index at most 2 which sends transpositions to transpositions. Then prove that $\left|\operatorname{Aut}\left(\mathrm{S}_{6}\right): \operatorname{Inn}\left(\mathrm{S}_{6}\right)\right| \leq 2$.
11. Finally, we exhibit an outer automorphism of S_{6}. (There are other, more beautiful, descriptions.) Let $t_{1}^{\prime}=(12)(34)(56), t_{2}^{\prime}=(14)(25)(36), t_{3}^{\prime}=(13)(24)(56), t_{4}^{\prime}=(12)(36)(45)$, $t_{5}^{\prime}=(14)(23)(56)$. Show that $t_{1}^{\prime}, \ldots, t_{5}^{\prime}$ satisfy the following relations:

- $\left(t_{i}^{\prime}\right)^{2}=e$ for all i;
- $\left(t_{i}^{\prime} t_{j}^{\prime}\right)^{2}=e$ for all i and j with $|i-j| \geq 2$;
- $\left(t_{i}^{\prime} t_{j}^{\prime}\right)^{3}=e$ for all i and j with $|i-j|=1$.

Use this to show that the map $(i(i+1)) \mapsto t_{i}^{\prime}$ gives an automorphism of S_{6}. (In the process, you will likely have to show that the relations above define S_{6}. Your argument will also presumably prove the obvious generalization to S_{n}.)

E-mail address: vakil@math.stanford.edu

[^0]: Date: Wednesday, October 13, 2004.

