MODERN ALGEBRA (MATH 210) PROBLEM SET 4

- **1.** Let G be a group of order 7. Show that Aut(H) is abelian of order 6.
- **2.** Prove that \mathbb{Q} is neither a finitely generated group nor a free abelian group.
- **3.** Suppose $B_1+\cdots+B_n=A$ and $B_{i+1}\cap(B_1+\cdots B_i)=0$ for all i. Show that $B_1\oplus\cdots\oplus B_n\to A$ is an isomorphism.
- **4.** Describe a 2-Sylow subgroup of S_8 . How many are there?
- **5.** Describe all 2-Sylow subgroups of S_4 . Show that this group is isomorphic to the symmetry group of a square.
- **6.** Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that $P \cap H$ is the unique Sylow p-subgroup of H.
- 7. (Dummit and Foote p. 168) Let n and m be positive integers with $d = \gcd(n, m)$. Let $Z_n = \langle x \rangle$ and $Z_m = \langle y \rangle$. Let A be the central product of $\langle x \rangle$ and $\langle y \rangle$ with an element of order d identified:

$$\langle x, y : x^n = y^m = 1, xy = yx, x^{n/d} = y^{m/d} \rangle.$$

Describe A as the direct product of two cyclic groups.

- **8.** (Dummit and Foote p. 169) For any group G define the *dual group* of G (denoted \hat{G}) to be the set of all homomorphisms from G into the multiplicative group of roots of unity in \mathbb{C} . Define a group operation in \hat{G} by pointwise multiplication of functions: if χ , ψ are homomorphisms from G into the group of roots of unity then $\chi\psi$ is the homomorphism given by $(\chi\psi)(g)=\chi(g)\psi(g)$ for all $g\in G$, where the latter multiplication takes place in \mathbb{C} .
 - (a) Show that this operation on \hat{G} makes \hat{G} into an abelian group. [Show that the identity is the map $g\mapsto 1$ for all $g\in G$ and the inverse of $\chi\in \hat{G}$ is the map $g\mapsto \chi(g)^{-1}$.]
 - (b) If G is a finite abelian group, prove that $\hat{G} \cong G$. [Write G as $\langle x_1 \rangle \times \cdots \times \langle x_r \rangle$ and if n_i is the order of x_i define χ_i to be the homomorphism which sends x_i to $e^{2\pi i/n_i}$ and sends x_j to 1, for all $j \neq i$. Prove χ_i has order n_i in \hat{G} and $\hat{G} = \langle \chi_1 \rangle \times \cdots \times \langle \chi_r \rangle$.]

This result is often phrased: a finite abelian group is self-dual. It implies that the lattice diagram (of subgroups) of a finite abelian group is the same when it is turned upside down. Note however that there is no *natural* isomorphism between G and its dual; the isomorphism depends on a choice of a set of generators for G. This is frequently stated in the form: a finite abelian group is *noncanonically* isomorphic to its dual.

This set is due Friday, Oct. 29 at noon at Jarod Alper's door, 380–J.