MODERN ALGEBRA (MATH 210) PROBLEM SET 8

1. Describe the set of integers of the form $a^{2}-a b+b^{2}(a, b \in \mathbb{Z})$. (You may use the results of last week's problem set.)
2. Suppose $r+s i(r, s \in \mathbb{Q})$ is the zero of a monic polynomial in $\mathbb{Z}[x]$. Show that $r, s \in \mathbb{Z}$.
3. Suppose p is an odd prime.
(a) Show that exactly half of $(\mathbb{Z} / p \mathbb{Z})^{*}=\{1,2, \ldots, p-1\}$ are square modulo p.
(b) Prove that $a^{(p-1) / 2} \equiv \pm 1(\bmod p)$ for all $a \in(\mathbb{Z} / p \mathbb{Z})^{*}$.
(c) Show that $a^{(p-1) / 2} \equiv 1(\bmod p)$ if and only if a is a perfect square modulo p.
(d) Show that if neither a nor b are perfect squares modulo p, then $a b$ is a perfect square modulo p.
4. Show that $\mathbb{Q}(\pi) \cong \mathbb{Q}(e)$. (You may use the fact that π and e are transcendental over \mathbb{Q}.)
5. Suppose that K is a field of characteristic 0 , and $f(x) \in K[x]$ is irreducible. Show that f does not have repeated roots. Show that this is false in characteristic p. (Hint: consider $K=\mathbb{F}_{p}(\mathrm{t}), \mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{p}}-\mathrm{t}$.)
6. Suppose $f(x) \in \mathbb{Z}[x]$ is a degree n polynomial. Let E be its splitting field. Show that the group of automorphisms of E fixing \mathbb{Q} is isomorphic to a subgroup of S_{n}. (Hint: How does it act on the roots of $f(x)$? Don't ignore the tedious special case where $f(x)$ has multiple roots.) This is called the Galois group of the polynomial.
7. (a) Show that if $f(x)=x^{3}-2$, then the Galois group is isomorphic to S_{3}.
(b) Show that the splitting field E of $x^{3}-3 x+1$ has degree 3 over \mathbb{Q}. Show that Galois group of E / \mathbb{Q} is isomorphic to $\mathbb{Z} / 3$.
8. Find a minimal polynomial (over \mathbb{Q}) of $\sqrt{2}+\sqrt{3}$. (In other words, find a polynomial of minimal degree over \mathbb{Q} with $\sqrt{2}+\sqrt{3}$ as a root.) Let E be the splitting field of this polynomial. Show that $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find the Galois group of E over \mathbb{Q}.

This set is due Friday, Dec. 3 at noon at Jarod Alper's door, 380-J.

[^0]
[^0]: Date: Friday, November 26, 2004.

