MATH 121 MIDTERM

RAVI VAKIL

Each problem is worth 6 points. Justify all answers!

1. No explanation is required for this problem.

(a) Which of { algebraic, finite, separable } implies which other (for field extensions)? (b) Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} . Is it algebraic? Finite? Separable?

2. Prove that $\mathbb{Q}(\sqrt{5} + \sqrt{7}) = \mathbb{Q}(\sqrt{5}, \sqrt{7})$.

3. Suppose K is a field of characteristic p (not necessarily finite). Show that each element of K has at most one pth root. Give an example of such a field in which each element has a pth root. Give an example of such a field in which there exists an element without a pth root.

4. Show that the degree of the splitting field of a degree *n* polynomial is a factor of *n*!.

5. Find the group of automorphisms of the splitting field of $x^4 - 2$ over \mathbb{Q} .

Date: Thursday, February 8, 2007.