MATH 121 PRACTICE FINAL EXAM

RAVI VAKIL

Justify all answers!

1. What is the degree of the minimal polynomial of $\sqrt{2}+\sqrt[3]{2}$ over \mathbb{Q} ?
2. Suppose $x+y+z=0$. Show that

$$
\frac{x^{5}+y^{5}+z^{5}}{5}=\frac{x^{2}+y^{2}+z^{2}}{2} \times \frac{x^{3}+y^{3}+z^{3}}{3}
$$

and

$$
\frac{x^{7}+y^{7}+z^{7}}{7}=\frac{x^{2}+y^{2}+z^{2}}{2} \times \frac{x^{5}+y^{5}+z^{5}}{5} .
$$

3. (a) For each square-free integer, n, describe which roots of unity lie in $\mathbb{Q}(\sqrt{n})$.
(b) As an application, solve the following problem in geometry: for which m can a regular m-gon be found with vertices on lattice points $\{(x, y): x, y \in \mathbb{Z}\} \subset \mathbb{R}^{2}$? How about a triangular lattice?
4. Show that $\mathbb{C}(x) / \mathbb{C}\left(x^{3}+1 / x^{3}\right)$ is a Galois extension with Galois group S_{3}. (Hint: consider the group acting on $\mathbb{C}(x)$ by sending $x \mapsto x, 1 / x, \omega x, \omega / x, \omega^{2} x, \omega^{2} / x$, where ω is a cube root of 1.) Give all intermediate extensions of $\mathbb{C}(x) / \mathbb{C}\left(x^{3}+1 / x^{3}\right)$ (by describing them in the form $\mathbb{C}(f(x))$ for various $f(x))$. Hint: there are four of them.
5. Prove that $\sqrt[3]{2}$ does not lie in any cyclotomic field over \mathbb{Q}.
6. Let E_{1} be the splitting field of $x^{3}-2$ and let E_{2} be the splitting field of $x^{3}-5$ (both over $\mathbb{Q})$. What is the degree of $E_{1} \cap E_{2} / \mathbb{Q}$? What is the degree of $E_{1} E_{2} / \mathbb{Q}$?
[^0]
[^0]: Date: Saturday, March 17, 2007.

