MATH 121 PRACTICE FINAL EXAM

RAVI VAKIL

Justify all answers!

and

1. What is the degree of the minimal polynomial of $\sqrt{2} + \sqrt[3]{2}$ over \mathbb{Q} ?

2. Suppose x + y + z = 0. Show that

 $\frac{x^5 + y^5 + z^5}{5} = \frac{x^2 + y^2 + z^2}{2} \times \frac{x^3 + y^3 + z^3}{3}$ $\frac{x^7 + y^7 + z^7}{7} = \frac{x^2 + y^2 + z^2}{2} \times \frac{x^5 + y^5 + z^5}{5}.$

3. (a) For each square-free integer, *n*, describe which roots of unity lie in $\mathbb{Q}(\sqrt{n})$.

(b) As an application, solve the following problem in geometry: for which *m* can a regular *m*-gon be found with vertices on lattice points $\{(x, y) : x, y \in \mathbb{Z}\} \subset \mathbb{R}^2$? How about a triangular lattice?

4. Show that $\mathbb{C}(x)/\mathbb{C}(x^3+1/x^3)$ is a Galois extension with Galois group S_3 . (Hint: consider the group acting on $\mathbb{C}(x)$ by sending $x \mapsto x, 1/x, \omega x, \omega/x, \omega^2 x, \omega^2/x$, where ω is a cube root of 1.) Give all intermediate extensions of $\mathbb{C}(x)/\mathbb{C}(x^3+1/x^3)$ (by describing them in the form $\mathbb{C}(f(x))$ for various f(x)). Hint: there are four of them.

5. Prove that $\sqrt[3]{2}$ does not lie in any cyclotomic field over \mathbb{Q} .

6. Let E_1 be the splitting field of $x^3 - 2$ and let E_2 be the splitting field of $x^3 - 5$ (both over \mathbb{Q}). What is the degree of $E_1 \cap E_2/\mathbb{Q}$? What is the degree of E_1E_2/\mathbb{Q} ?