MATH 121 PRACTICE MIDTERM

RAVI VAKIL

Justify all answers!

1. (a) Show that any homomorphism of fields is an inclusion. (b) Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic fields.

2. Show that any characteristic 0 field *K* admits precisely one inclusion $\mathbb{Q} \to K$.

3. Lang p. 253 no. 7. Let *E*, *F* be two finite extensions of a field *k*, contained in a larger field *K*. Show that

$$[EF:k] \le [E:k][F:k].$$

4. Show that the finite field $\mathbb{F}_{2^{100}}$ contains unique subfields isomorphic to \mathbb{F}_8 and \mathbb{F}_{16} . Find their intersection (in the form of \mathbb{F}_q for some q).

5. Suppose E/F is an extension. Define the separable closure F^{sep} of F in E to be the separable elements of E/F. Show that F^{sep} is a subfield of E. If E/F is finite, show that E/F^{sep} is generated by a tower of pth roots. If E/F is algebraic, show that any element of E has some p^k th power in F^{sep} .

Date: Thursday, February 1, 2007. Problem 4 corrected February 3.