MATH 121 PROBLEM SET 5

This set is due at noon on Friday March 2 in Jason Lo's mailbox.

1. Suppose m is a factor of n. Find $\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p^{m}}\right)$. Show that it is cyclic, and generated by Frob ${ }^{m}$.
2. Find (with proof!) $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}) / \mathbb{Q})$. (For example, this will involve showing that $\sqrt{11} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7})$.)
3. (a) Suppose n is prime. Show that if G is a subgroup of S_{n} that is transitive and contains a two-cycle, then $G=S_{n}$.
(b) Suppose n is prime. Let K be the splitting field of an irreducible degree n polynomial in $\mathbb{Q}[x]$ with precisely two non-real roots (necessarily conjugate). Show that $\operatorname{Gal}(K / \mathbb{Q}) \cong$ S_{n}. Hint: use (a).
4. Suppose ζ is a primitive fifth root of unity, a root of $f(x)=\left(x^{5}-1\right) /(x-1)=x^{4}+x^{3}+$ $x^{2}+x+1=0$. Show that $f(x)$ is irreducible over \mathbb{Q}. Show that $\mathbb{Q}(\zeta)$ is the splitting field of $f(x)$. Show that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is cyclic of order four. Let $\alpha=\zeta+\zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is the unique intermediate field in the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$. Show that α is degree 2 over \mathbb{Q}, and then use the quadratic formula to find α. Use the quadratic formula again to solve for ζ in terms of α, and hence to compute ζ.
[^0]
[^0]: Date: Friday, February 23, 2007.

