MATH 121 PROBLEM SET 5

This set is due at noon on Friday March 2 in Jason Lo's mailbox.

1. Suppose *m* is a factor of *n*. Find $Gal(\mathbb{F}_{p^n}/\mathbb{F}_{p^m})$. Show that it is cyclic, and generated by Frob^{*m*}.

2. Find (with proof!) $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7},\sqrt{11})/\mathbb{Q})$. (For example, this will involve showing that $\sqrt{11} \notin \mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7})$.)

3. (a) Suppose *n* is prime. Show that if *G* is a subgroup of S_n that is transitive and contains a two-cycle, then $G = S_n$.

(b) Suppose *n* is prime. Let *K* be the splitting field of an irreducible degree *n* polynomial in $\mathbb{Q}[x]$ with precisely two non-real roots (necessarily conjugate). Show that $\operatorname{Gal}(K/\mathbb{Q}) \cong S_n$. Hint: use (a).

4. Suppose ζ is a primitive fifth root of unity, a root of $f(x) = (x^5 - 1)/(x - 1) = x^4 + x^3 + x^2 + x + 1 = 0$. Show that f(x) is irreducible over \mathbb{Q} . Show that $\mathbb{Q}(\zeta)$ is the splitting field of f(x). Show that $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ is cyclic of order four. Let $\alpha = \zeta + \zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is the unique intermediate field in the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$. Show that α is degree 2 over \mathbb{Q} , and then use the quadratic formula to find α . Use the quadratic formula again to solve for ζ in terms of α , and hence to compute ζ .

Date: Friday, February 23, 2007.