MATH 121 PROBLEM SET 6

This set is due at noon on Friday March 9 in Jason Lo's mailbox.

1. Suppose $f(x)=x^{3}+e_{2} x+e_{3}$ is a cubic in $\mathbb{Q}[x]$ (i.e. e_{2} and e_{3} are rational numbers). Show that the discriminant Δ is $-4 e_{2}^{3}-27 e_{3}^{2}$. (If a, b, and c are the roots of $f(x)$ in its splitting field, then $\Delta=((a-b)(a-c)(b-c))^{2}$. As Δ is preserved by the S_{3} permuting the roots, it must lie in \mathbb{Q}.)
2. If $f(x)$ is an irreducible cubic in $\mathbb{Q}[x]$, show that the Galois group of the splitting field of $f(x)$ is S_{3} if and only if Δ is not a perfect square in \mathbb{Q}. Otherwise, show that the Galois group of $f(x)$ is A_{3}. What is the Galois group of the splitting field of $f(x)=x^{3}+2 x^{2}+2 x+2$ over \mathbb{Q} ? (Hint: use problem 1.)
3. Show that the Galois group of the splitting field of $f(x)=x^{5}-4 x+2$ over \mathbb{Q} is S_{5}. (Make sure to verify that $f(x)$ is irreducible!)
4. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e. is a Galois extension of \mathbb{Q} of degree 4 with cyclic Galois group. Use this to give an example of an irreducible quartic polynomial in $\mathbb{Q}[x]$ whose Galois group (of its splitting field) is $\mathbb{Z} / 4$. Make sure to show that this polynomial is irreducible!
[^0]
[^0]: Date: Friday, March 2, 2007.

