MATH 210 PRACTICE FINAL

RAVI VAKIL

Justify all answers!

1. Suppose ω is a primitive cube root of 1 in \mathbb{C} . Show that $\mathbb{Q}(\sqrt[3]{3}\omega)/\mathbb{Q}$ is not a normal extension.

2. Suppose f(x) is an irreducible quartic over \mathbb{Q} , and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ are the roots of f(x) = 0 If $\operatorname{Gal}(\mathbb{Q}(\alpha, \beta, \gamma, \delta)/\mathbb{Q}) \cong S_4$, how many of β, γ, δ are elements of $\mathbb{Q}(\alpha)$? Repeat the question for each subgroup of S_4 that is a possible Galois group of such an f(x). (Hint: How does $\operatorname{Gal}(\mathbb{Q}(\alpha, \beta, \gamma, \delta)/\mathbb{Q}(\alpha))$ act on β, γ, δ ?)

3. Let *E* be the splitting field of $(x^3 - 3)(x^3 - 2)$ over \mathbb{Q} . Desribe the group $\operatorname{Gal}(E/\mathbb{Q})$.

4. (a) For each square-free integer *n*, describe which roots of unity lie in $\mathbb{Q}(\sqrt{n})$.

(b) As an application, solve the following problem in geometry: for which *m* can a regular *m*-gon be found with vertices on lattice points $\{(x, y) : x, y \in \mathbb{Z}\} \subset \mathbb{R}^2$? How about a triangular lattice?

5. In a Noetherian ring, show that a proper ideal *I* is a radical ideal $(I = \sqrt{I})$ if and only if *I* is a finite intersection of prime ideals.

6. (In this problem, *k* is not necessarily algebraically closed.) Show that $I \subset k[x_1, \ldots, x_n]$ is a maximal ideal if and only if $k[x_1, \ldots, x_n]/I$ is a finite field extension of *k*.

7. Suppose *S* is a finitely generated algebra over a field *k* that is a domain, containing *n* algebraically independent elements x_1, \ldots, x_n , such that if $R = k[x_1, \ldots, x_n]$, then S/R is an integral extension. Show that there exists a chain of n + 1 distinct nested prime ideals of *S*

$$P_0 \subset P_1 \subset \cdots \subset P_n.$$

Date: Saturday, March 17, 2007.