MATH 210 PRACTICE FINAL

RAVI VAKIL

Justify all answers!

1. Suppose ω is a primitive cube root of 1 in \mathbb{C}. Show that $\mathbb{Q}(\sqrt[3]{3} \omega) / \mathbb{Q}$ is not a normal extension.
2. Suppose $f(x)$ is an irreducible quartic over \mathbb{Q}, and $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ are the roots of $f(x)=$ 0 If $\operatorname{Gal}(\mathbb{Q}(\alpha, \beta, \gamma, \delta) / \mathbb{Q}) \cong S_{4}$, how many of β, γ, δ are elements of $\mathbb{Q}(\alpha)$? Repeat the question for each subgroup of S_{4} that is a possible Galois group of such an $f(x)$. (Hint: How does $\operatorname{Gal}(\mathbb{Q}(\alpha, \beta, \gamma, \delta) / \mathbb{Q}(\alpha))$ act on β, γ, δ ?)
3. Let E be the splitting field of $\left(x^{3}-3\right)\left(x^{3}-2\right)$ over \mathbb{Q}. Desribe the group $\operatorname{Gal}(E / \mathbb{Q})$.
4. (a) For each square-free integer n, describe which roots of unity lie in $\mathbb{Q}(\sqrt{n})$.
(b) As an application, solve the following problem in geometry: for which m can a regular m-gon be found with vertices on lattice points $\{(x, y): x, y \in \mathbb{Z}\} \subset \mathbb{R}^{2}$? How about a triangular lattice?
5. In a Noetherian ring, show that a proper ideal I is a radical ideal $(I=\sqrt{I})$ if and only if I is a finite intersection of prime ideals.
6. (In this problem, k is not necessarily algebraically closed.) Show that $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal if and only if $k\left[x_{1}, \ldots, x_{n}\right] / I$ is a finite field extension of k.
7. Suppose S is a finitely generated algebra over a field k that is a domain, containing n algebraically independent elements x_{1}, \ldots, x_{n}, such that if $R=k\left[x_{1}, \ldots, x_{n}\right]$, then S / R is an integral extension. Show that there exists a chain of $n+1$ distinct nested prime ideals of S

$$
P_{0} \subset P_{1} \subset \cdots \subset P_{n} .
$$

[^0]
[^0]: Date: Saturday, March 17, 2007.

