MATH 210 PRACTICE MIDTERM

RAVI VAKIL

Justify all answers!

1. (a) Show that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic fields.
(b) Show that $\mathbb{Q}(\sqrt{\pi})$ and $\mathbb{Q}(\pi)$ are isomorphic fields. (You may use the fact that π is transcendental.)
2. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e. is a Galois extension of \mathbb{Q} of degree 4 with cyclic Galois group.
3. Show that $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right) / \mathbb{Q}\left(e_{1}, e_{2}, e_{3},\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\right)$ is a Galois extension, with Galois group of order 3 .
4. Suppose $p(x)$ be an irreducible polynomial in $\mathbb{Q}[x]$ whose splitting field has cyclic Galois group. Show that $p(x)$ must have all real roots or all non-real roots.
5. Suppose E / F is an algebraic field extension. Show that E / F is the splitting field of a family of polynomials if and only if every irreducible polynomial in $F[x]$ with a root in E splits completely. If E / F is finite, show that these two are equivalent to the statement that any map from E to \bar{F} fixing F must send E to itself.
[^0]
[^0]: Date: Thursday, February 8, 2007. Corrected February 13.

