MATH 210 PROBLEM SET 1

RAVI VAKIL

This problem set is due on Monday, January 29 at Jarod Alper's office door.

1. Suppose ω is a nontrivial cube root of 1 , and $\bar{\omega}$ is its conjugate (another cube root of 1). Show that $\bar{\omega} \sqrt[3]{2} \notin \mathbb{Q}(\omega \sqrt[3]{2})$.
2. Give an example (with proof!) of a quadratic field extension E / F that is not obtained by adjoining a square root of F.
3. Suppose E / F is a field extension, and E_{1} and E_{2} are two subextensions. Show that if E_{1} and E_{2} are finite (over F) then their compositum is finite. Show that if E_{1} and E_{2} are algebraic then their compositum is algebraic.
4. Find all intermediate fields in $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$. Find the automorphism group of this field extension. Find all α such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
5. How many irreducible monic degree 10 polynomials are there over \mathbb{F}_{p} ?
6. Show that the degree of the splitting field of $x^{3}-3 x+1$ is 3 . (Please explain where your ideas came from - don't just pull a random expression out of your hat!)
[^0]
[^0]: Date: Monday, January 22, 2007.

