MATH 210 PROBLEM SET 2

RAVI VAKIL

This problem set is due on Friday, February 2 at Jarod Alper's office door.

1. Show that $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not a normal extension.
2. Find the Galois group of the splitting field of $x^{4}-2$ over \mathbb{Q}. (Prior question: what is the degree of this extension?)
3. Make rigorous sense of the statement, and prove it: the algebraic closure of \mathbb{F}_{p} is $\cup \mathbb{F}_{p^{n}}$. (What does that last union even mean?) This field is sometimes called $\mathbb{F}_{p^{\infty}}$.
4. Find the compositum of $\mathbb{F}_{p^{m}}$ and $\mathbb{F}_{p^{n}}$ in the algebraic closure of \mathbb{F}_{p}.
5. Find the sums of squares of the elements of $\mathbb{F}_{p^{n}}$. (The answer will depend on p^{n}.)
[^0]
[^0]: Date: Saturday, January 27, 2007.

