MATH 210 PROBLEM SET 3

RAVI VAKIL

This problem set is due on Friday, February 9 at Jarod Alper's office door.

1. Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real. (Dummit and Foote p. 562, problem 13)
2. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e. is a Galois extension of degree 4 with cyclic Galois group. (Dummit and Foote p. 562, problem 14)
3. Show that every irreducible polynomial in $\mathbb{F}_{p}[x]$ is a factor of $x^{p^{n}}-x$ for some n.
4. Suppose E / F is an extension. Define the separable closure $F^{s e p}$ of F in E to be the separable elements of E / F. Show that $F^{\text {sep }}$ is a subfield of E. If E / F is finite, show that $E / F^{\text {sep }}$ is generated by a tower of p th roots. If E / F is algebraic, show that any element of E has some p^{k} th power in $F^{\text {sep }}$.
5. Suppose the dihedral group with $2 n$ elements acts on the field $k(x)$ with generators mapping $x \mapsto 1 / x$ and $x \mapsto \zeta x$ (where ζ is a primitive nth root of unity). Find some $y \in k(x)$ such that $k(y)$ is the fixed field of this group action.
6. Show that the elements $\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right\}_{0 \leq a_{i}<i}$ form a basis for $k\left(x_{1}, \ldots, x_{n}\right)$ over $k\left(e_{1}, \ldots, e_{n}\right)$ (where as in class e_{i} is the i th symmetric polynomial in x_{1}, \ldots, x_{n}).
[^0]
[^0]: Date: Friday, February 2, 2007.

