MATH 210 PROBLEM SET 4

RAVI VAKIL

This problem set is due on Friday, February 23 at Jarod Alper's office door.

In this problem set, you'll compute an interesting Galois group, prove a famous theorem (Hilbert's "Theorem 90"), use it to cheaply get Pythagorean triples, and work through a useful construction (the resultant).

1. (*Dummit and Foote, p. 562, problem 16*)

(a) Prove that $x^4 - 2x^2 - 2$ is irreducible over \mathbb{Q} . (b) Show that the roots of this quartic are $\alpha_1 = \sqrt{1 + \sqrt{3}}$, $\alpha_2 = \sqrt{1 - \sqrt{3}}$, $\alpha_3 = -\sqrt{1 + \sqrt{3}}$, $\alpha_4 = -\sqrt{1 - \sqrt{3}}$.

(c) Let $K_1 = \mathbb{Q}(\alpha_1)$ and $K_2 = \mathbb{Q}(\alpha_2)$. Show that $K_1 \neq K_2$, and $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) = F$. (d) Prove that K_1, K_2 , and K_1K_2 are Galois over F with $\text{Gal}(K_1K_2/F)$ the Klein 4-group. Write out the elements of $\text{Gal}(K_1K_2/F)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of K_1K_2 containing F.

(e) Prove that the splitting field of $x^4 - 2x^2 - 2$ over \mathbb{Q} is of degree 8 with dihedral Galois group.

2. (*This is basically Dummit and Foote, p. 563, problem 23: Hilbert's Theorem 90*) If *K* is a Galois extension of *F*, define the *norm* of an element $\alpha \in K$ to *F* by

$$N_{K/F}(\alpha) = \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma(\alpha).$$

(See problem 17 on p. 563.) Now let *K* be a Galois extension of *F* with cyclic Galois group of order *n* generated by σ . Suppose $\alpha \in K$ has $N_{K/F}(\alpha) = 1$. Prove that α is of the form $\alpha = \beta/(\sigma\beta)$ for some nonzero $\beta \in K$. (Hint: By the linear independence of characters show there exists some $\theta \in K$ such that

$$\beta = \theta + \alpha \sigma(\theta) + (\alpha \sigma \alpha) \sigma^2(\theta) + \dots + (\alpha \sigma \alpha \cdots \sigma^{n-2} \alpha) \sigma^{n-1}(\theta)$$

is nonzero. Compute $\beta/\sigma\beta$ using the fact that α has norm 1 to *F*.)

3. (*This is basically Dummit and Foote, p. 564, problem 24.*) Prove that the rational solutions $a, b \in \mathbb{Q}$ of Pythagoras' equation $a^2 + b^2 = 1$ are of the form $a = \frac{s^2 - t^2}{s^2 + t^2}$ and $b = \frac{2st}{s^2 + t^2}$ for some $s, t \in \mathbb{Q}$ and hence show that any right triangle with relatively prime integer sides has sides of lengths $(m^2 - n^2, 2mn, m^2 + n^2)$ for some integers m, n. Do this as follows: note that $a^2 + b^2 = 1$ is equivalent to $N_{\mathbb{Q}(i)/\mathbb{Q}}(a + ib) = 1$, then use Hilbert's Theorem 90 in the previous problem with $\beta = s + it$.

4. (*This is basically Dummit and Foote, p. 600, problem 29.*) This exercise gives an effective method of seeing whether two polynomials have a common factor. In particular, this can be used to check if a polynomial and its derivative have a common factor. Let *F* be a field

Date: Friday, February 16, 2007.

and let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$ be two polynomials in F[x].

(a) Prove that a necessary and sufficient condition for f(x) and g(x) to have a common root (in the splitting field, or, equivalently, a common divisor in F[x]) is the existence of a polynomial $a(x) \in F[x]$ of degree at most m - 1 and a polynomial $b(x) \in F[x]$ of degree at most n - 1 with a(x)f(x) = b(x)g(x).

(b) Writing a(x) and b(x) explicitly as polynomials show that equating coefficients in the equation a(x)f(x) = b(x)g(x) gives a system of n + m linear equations for the coefficients of a(x) and b(x). Prove that this system has a nontrivial solution (hence f(x) and g(x) have a common zero) if and only if the determinant

$$R(f,g) = \begin{vmatrix} a_n & a_{n-1} & \cdots & a_0 \\ & a_n & a_{n-1} & \cdots & a_0 \\ & & a_n & a_{n-1} & \cdots & a_0 \\ & & & \ddots & & & \\ & & & a_n & a_{n-1} & \cdots & a_0 \\ & & & & b_{m-1} & \cdots & b_0 \\ & & & & b_m & b_{m-1} & \cdots & b_0 \\ & & & & & b_m & b_{m-1} & \cdots & b_0 \\ & & & & & & \ddots & & \\ & & & & & & b_m & b_{m-1} & \cdots & b_0 \end{vmatrix}$$

is zero. Here R(f,g), called the *resultant* of the two polynomials, is the determinant of an $(n + m) \times (n + m)$ matrix R with m rows involving the coefficients of f(x) and n rows involving the coefficients of g(x). As baby cases, find the resultant of the quadratic $ax^2 + bx + c$ and its derivative; and of the cubic $x^3 + bx + c$ and its derivative.