MATH 210 PROBLEM SET 4

RAVI VAKIL

This problem set is due on Friday, February 23 at Jarod Alper's office door.

In this problem set, you'll compute an interesting Galois group, prove a famous theorem (Hilbert's "Theorem 90"), use it to cheaply get Pythagorean triples, and work through a useful construction (the resultant).

1. (Dummit and Foote, p. 562, problem 16)
(a) Prove that $x^{4}-2 x^{2}-2$ is irreducible over \mathbb{Q}.
(b) Show that the roots of this quartic are $\alpha_{1}=\sqrt{1+\sqrt{3}}, \alpha_{2}=\sqrt{1-\sqrt{3}}, \alpha_{3}=-\sqrt{1+\sqrt{3}}$, $\alpha_{4}=-\sqrt{1-\sqrt{3}}$.
(c) Let $K_{1}=\mathbb{Q}\left(\alpha_{1}\right)$ and $K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$. Show that $K_{1} \neq K_{2}$, and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})=F$.
(d) Prove that K_{1}, K_{2}, and $K_{1} K_{2}$ are Galois over F with $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ the Klein 4-group. Write out the elements of $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of $K_{1} K_{2}$ containing F.
(e) Prove that the splitting field of $x^{4}-2 x^{2}-2$ over \mathbb{Q} is of degree 8 with dihedral Galois group.
2. (This is basically Dummit and Foote, p. 563, problem 23: Hilbert's Theorem 90) If K is a Galois extension of F, define the norm of an element $\alpha \in K$ to F by

$$
N_{K / F}(\alpha)=\prod_{\sigma \in \operatorname{Gal}(K / F)} \sigma(\alpha)
$$

(See problem 17 on p . 563.) Now let K be a Galois extension of F with cyclic Galois group of order n generated by σ. Suppose $\alpha \in K$ has $N_{K / F}(\alpha)=1$. Prove that α is of the form $\alpha=\beta /(\sigma \beta)$ for some nonzero $\beta \in K$. (Hint: By the linear independence of characters show there exists some $\theta \in K$ such that

$$
\beta=\theta+\alpha \sigma(\theta)+(\alpha \sigma \alpha) \sigma^{2}(\theta)+\cdots+\left(\alpha \sigma \alpha \cdots \sigma^{n-2} \alpha\right) \sigma^{n-1}(\theta)
$$

is nonzero. Compute $\beta / \sigma \beta$ using the fact that α has norm 1 to F.)
3. (This is basically Dummit and Foote, p. 564, problem 24.) Prove that the rational solutions $a, b \in \mathbb{Q}$ of Pythagoras' equation $a^{2}+b^{2}=1$ are of the form $a=\frac{s^{2}-t^{2}}{s^{2}+t^{2}}$ and $b=\frac{2 s t}{s^{2}+t^{2}}$ for some $s, t \in \mathbb{Q}$ and hence show that any right triangle with relatively prime integer sides has sides of lengths $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$ for some integers m, n. Do this as follows: note that $a^{2}+b^{2}=1$ is equivalent to $N_{\mathbb{Q}(i) / \mathbb{Q}}(a+i b)=1$, then use Hilbert's Theorem 90 in the previous problem with $\beta=s+i t$.
4. (This is basically Dummit and Foote, p. 600, problem 29.) This exercise gives an effective method of seeing whether two polynomials have a common factor. In particular, this can be used to check if a polynomial and its derivative have a common factor. Let F be a field

[^0]and let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}$ be two polynomials in $F[x]$.
(a) Prove that a necessary and sufficient condition for $f(x)$ and $g(x)$ to have a common root (in the splitting field, or, equivalently, a common divisor in $F[x]$) is the existence of a polynomial $a(x) \in F[x]$ of degree at most $m-1$ and a polynomial $b(x) \in F[x]$ of degree at most $n-1$ with $a(x) f(x)=b(x) g(x)$.
(b) Writing $a(x)$ and $b(x)$ explicitly as polynomials show that equating coefficients in the equation $a(x) f(x)=b(x) g(x)$ gives a system of $n+m$ linear equations for the coefficients of $a(x)$ and $b(x)$. Prove that this system has a nontrivial solution (hence $f(x)$ and $g(x)$ have a common zero) if and only if the determinant
\[

R(f, g)=\left|$$
\begin{array}{cccccccc}
a_{n} & a_{n-1} & \cdots & a_{0} & & & & \\
& a_{n} & a_{n-1} & \cdots & a_{0} & & & \\
& & a_{n} & a_{n-1} & \cdots & a_{0} & & \\
& & & \ddots & & & & \\
b_{m} & b_{m-1} & \cdots & b_{0} & & a_{n} & a_{n-1} & \cdots \\
a_{0} \\
& b_{m} & b_{m-1} & \cdots & b_{0} & & & \\
& & b_{m} & b_{m-1} & \cdots & b_{0} & & \\
& & & \ddots & & & & \\
& & & & b_{m} & b_{m-1} & \cdots & b_{0}
\end{array}
$$\right|
\]

is zero. Here $R(f, g)$, called the resultant of the two polynomials, is the determinant of an $(n+m) \times(n+m)$ matrix R with m rows involving the coefficients of $f(x)$ and n rows involving the coefficients of $g(x)$. As baby cases, find the resultant of the quadratic $a x^{2}+b x+c$ and its derivative; and of the cubic $x^{3}+b x+c$ and its derivative.

[^0]: Date: Friday, February 16, 2007.

