MATH 210 PROBLEM SET 6

RAVI VAKIL

This problem set is due on Friday, March 9 at Jarod Alper's office door.

1. Prove that $\left(y^{2}-x^{3}\right) \subset \mathbb{C}[x, y]$ is a radical ideal. (Hint: show it is prime.)
2. Describe all the algebraic subsets of $\mathbb{A}_{\mathbb{C}}^{1}$.
3. Show that the Zariski topology on $\mathbb{A}_{\mathbb{C}}^{2}$ is not the product topology on $\mathbb{A}_{\mathbb{C}}^{1} \times \mathbb{A}_{\mathbb{C}}^{1}$. (Possible hint: the "diagonal" $V(y-x)$ is a closed subset in the Zariski topology on $\mathbb{A}_{\mathbb{C}}^{2}$.)
4. Show that $\{(n, 0) \mid n \in \mathbb{Z}\} \subset \mathbb{A}_{\mathbb{C}}^{2}$ is not an algebraic subset.
5. Prove that \sqrt{I} / I is the nilradical of R / I.
6. We've shown in class using the axiom of choice (in the guise of Zorn's lemma) that the radical of a proper ideal is the intersection of all prime ideals containing it. Show that this is true for Noetherian rings without using the axiom of choice.
[^0]
[^0]: Date: Friday, March 2, 2007.

