MATH 210 PROBLEM SET 7

RAVI VAKIL

This problem set is due on Friday, March 16 at Jarod Alper's office door.

1. Suppose that *A* and *B* are ideals with $AB \subset Q$ for a primary ideal *Q*. Prove that if *A* is not contained in *Q*, then $B \subset \sqrt{Q}$. (Dummit and Foote 15.2 problem 29)

2. Show that the intersection of two *P*-primary ideals of a ring *R* is also *P*-primary. (Dummit and Foote 15.2 problem 31)

3. Prove that a prime ideal P contains the ideal I if and only if P contains one of the associated primes of a minimal primary decomposition of I. (Dummit and Foote 15.2 problem 37)

4. Let P_1, \ldots, P_m be the associated prime ideals of the ideal (0) in the Noetherian ring *R*.

(a) Show that $P_1 \cap \cdots \cap P_m$ is the collection of nilpotent elements in *R*.

(b) Show that $P_1 \cup \cdots \cup P_m$ is the collection of zero divisors in *R*.

(Dummit and Foote 15.2 problem 41; some hints are given there. Caution: if you use Corollary 22 from the book, you'll have to prove it, as we haven't done it in class.)

5. Prove that the ideal *I* in the Noetherian ring *R* is radical if and only if the primary components of a minimal primary decomposition are all prime ideals, and conclude that in this case the minimal primary decomposition is unique. (Dummit and Foote 15.2 problem 43; some hints are given there.)

6. Describe the Zariski topology on $\operatorname{Spec} \mathbb{C}[t]$.

Date: Friday, March 9, 2007.