MATH 210 PROBLEM SET 7

RAVI VAKIL

This problem set is due on Friday, March 16 at Jarod Alper's office door.

1. Suppose that A and B are ideals with $A B \subset Q$ for a primary ideal Q. Prove that if A is not contained in Q, then $B \subset \sqrt{Q}$. (Dummit and Foote 15.2 problem 29)
2. Show that the intersection of two P-primary ideals of a ring R is also P-primary. (Dummit and Foote 15.2 problem 31)
3. Prove that a prime ideal P contains the ideal I if and only if P contains one of the associated primes of a minmial primary decomposition of I. (Dummit and Foote 15.2 problem 37)
4. Let P_{1}, \ldots, P_{m} be the associated prime ideals of the ideal (0) in the Noetherian ring R.
(a) Show that $P_{1} \cap \cdots \cap P_{m}$ is the collection of nilpotent elements in R.
(b) Show that $P_{1} \cup \cdots \cup P_{m}$ is the collection of zero divisors in R.
(Dummit and Foote 15.2 problem 41; some hints are given there. Caution: if you use Corollary 22 from the book, you'll have to prove it, as we haven't done it in class.)
5. Prove that the ideal I in the Noetherian ring R is radical if and only if the primary components of a minimal primary decomposition are all prime ideals, and conclude that in this case the minimal primary decomposition is unique. (Dummit and Foote 15.2 problem 43 ; some hints are given there.)
6. Describe the Zariski topology on Spec $\mathbb{C}[t]$.
[^0]
[^0]: Date: Friday, March 9, 2007.

