## Problem 6

We can compute the roots of $x^{3}-3 x+1$ in $\mathbb{C}$ as follows. Suppose the solution of $x^{3}-3 x+1$ has the form $x=u+u^{-1}$ for some $u \in \mathbb{C}$. Then

$$
\begin{aligned}
0 & =x^{3}-3 x+1=\left(u+u^{-1}\right)^{3}-3\left(u+u^{-1}\right)+1 \\
& =\left(u^{3}+3 u+3 u^{-1}+u^{-3}\right)-3\left(u+u^{-1}\right)+1 \\
& =u^{3}+u^{-3}+1
\end{aligned}
$$

Hence $u$ is a solution to $u^{6}+u^{3}+1=0$, or equivalently, $v=u^{3}$ is a solution to $v^{2}+v+1=0$. Recall $v^{3}-1=(v-1)\left(v^{2}+v+1\right)$, so $u^{3}=v=e^{ \pm i 2 \pi / 3}$ (one could also compute $v$ using the quadratic equation). Therefore

$$
u=e^{ \pm i 2 \pi / 9}, u=e^{ \pm i 8 \pi / 9}, \text { or } u=e^{ \pm 14 \pi / 9}=e^{ \pm(-4 i \pi / 9)}
$$

Hence

$$
x=e^{i 2 \pi / 9}+e^{-i 2 \pi / 9}, u=e^{i 8 \pi / 9}+e^{-i 8 \pi / 9}, \text { or } u=e^{-i 4 \pi / 9}+e^{i 4 \pi / 9} .
$$

Let $\alpha=e^{i 2 \pi / 9}+e^{-i 2 \pi / 9}$. Then

$$
\alpha^{2}=e^{i 4 \pi / 9}+2+e^{-i 4 \pi / 9}=\left(e^{i 4 \pi / 9}+e^{-i 4 \pi / 9}\right)+2,
$$

so $\alpha^{2}-2$ is also a root of $x^{3}-3 x+1$. Since zero is the sum of the roots of $x^{3}-3 x+1$,

$$
e^{-i 4 \pi / 9}+e^{i 4 \pi / 9}=-\left(e^{i 2 \pi / 9}+e^{-i 2 \pi / 9}+e^{i 8 \pi / 9}+e^{-i 8 \pi / 9}\right)=-\left(\alpha+\alpha^{2}-2\right)=2-\alpha-\alpha^{2} .
$$

Therefore the roots of $x^{3}-3 x+1$ are $\alpha=e^{i 2 \pi / 9}+e^{-i 2 \pi / 9}, \alpha^{2}-2$, and $2-\alpha-\alpha^{2}$, so $\mathbb{Q}(\alpha)$ is the splitting field of $x^{3}-3 x+1$. We know that $x^{3}-3 x+1$ is irreducible since $x^{3}-3 x+1$ is a cubic and thus $x^{3}-3 x+1$ is reducible if and only if it has as rational root. But by the Rational Root Test, the only possible rational roots of $x^{3}-3 x+1$ are -1 and 1 . Since $(-1)^{3}-3(-1)+1=3 \neq 0$ and $(1)^{3}-3(1)+1=-1 \neq 0, x^{3}-3 x+1$ is irreducible over $\mathbb{Q}$. Since $x^{3}-3 x+1$ is the minimal polynomial of $\alpha$, the splitting field of $x^{3}-3 x+1$ has degree $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ over $\mathbb{Q}$.

In light of this calculation, we could show abstractly that the splitting field of $x^{3}-3 x+1$ has degree 3 over $\mathbb{Q}$ without regarding the splitting field is a subset of $\mathbb{C}$. Let $\alpha$ be a root of $x^{3}-3 x+1 \in \mathbb{Q}[x]$, i.e. let $\alpha$ correspond to $x$ in $\mathbb{Q}[x] /\left(x^{3}-3 x+1\right)$. We claim that $\alpha^{2}-2$ and $2-\alpha-\alpha^{2}$ are also solutions to $x^{3}-3 x+1=0$. We have

$$
\begin{aligned}
\left(\alpha^{2}-2\right)^{3}-3\left(\alpha^{2}-2\right)+1 & =\left(\alpha^{6}-6 \alpha^{4}+12 \alpha^{2}-8\right)-3\left(\alpha^{2}-2\right)+1 \\
& =\alpha^{6}-6 \alpha^{4}+9 \alpha^{2}-1 \\
& =(3 \alpha-1)^{2}-6(3 \alpha-1) \alpha+9 \alpha^{2}-1 \\
& =\left(9 \alpha^{2}-6 \alpha+1\right)-6\left(3 \alpha^{2}-\alpha\right)+9 \alpha^{2}-1 \\
& =0,
\end{aligned}
$$

so $\alpha^{2}-2$ is a root of $x^{3}-3 x+1$. Let $\beta$ be the third root of $x^{3}-3 x+1$ in the splitting field of $x^{3}-3 x+1$ over $\mathbb{Q}(\alpha)$. Then

$$
x^{3}-3 x+1=(x-\alpha)\left(x-\alpha^{2}+2\right)(x-\beta),
$$

so $0=\alpha+\left(\alpha^{2}-2\right)+\beta \Rightarrow \beta=2-\alpha-\alpha^{2} \in \mathbb{Q}(\alpha)$. Therefore $\mathbb{Q}(\alpha)$ is the splitting field of $x^{3}-3 x+1$. Since $x^{3}-3 x+1$ is the minimal polynomial of $\alpha,[\mathbb{Q}(\alpha): \mathbb{Q}]=3$. Hence the splitting field of $x^{3}-3 x+1$ has degree $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ over $\mathbb{Q}$.

