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This class will meet 8:40-9:55. Please be sure to be on the e-mail list so I can warn
you which days class will take place.

Welcome back! Where we’re going this quarter: last quarter, we established the objects
of study: varieties or schemes. This quarter we’ll be mostly concerned with important
means of studying them: veeterbundles quasicoherent sheaves and cohomology thereof.
As a punchline for this quarter, I hope to say a lot of things about curves (Riemann sur-
faces) at the end of the quarter. However, in keeping with the attitude of last quarter, my
goal isn’t to make a beeline for the punchline. Instead we’ll have a scorched-earth policy
and try to cover everything between here and there relatively comprehensively. We start
with smeethness nonsingularity of schemes. Then weeter-bundles locally free sheaves,
quasicoherent sheaves and coherent sheaves. Then to line-bundles invertible sheaves,
and divisors. Then we’ll interpret these for projective schemes in terms of graded mod-
ules. We'll investigate pushing forward and pulling back quasicoherent sheaves. We'll
construct schemes using these notions, and for example define the notion of a projective
morphism. We’ll study differentials (e.g. the tangent bundle of smooth schemes, but also
for singular things). Then we’ll discuss cohomology (both Cech cohomology and derived
functor cohomology). Then curves! The punch line for today: Spec Z is a smeeth nonsin-
gular curve.

1. NONSINGULARITY (“SMOOTHNESS”) OF NOETHERIAN SCHEMES

One natural notion we expect to see for geometric spaces is the notion of when an
object is “smooth”. In algebraic geometry, this notion, called nonsingularity (or reqularity,
although we won't use this term) is easy to define but a bit subtle in practice. We will soon
define what it means for a scheme to be nonsingular (or reqular) at a point. A point that
is not nonsingular is (not surprisingly) called singular (“not smooth”). A scheme is said
nonsingular if all its points are nonsingular, and singular if one of its points is singular.
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The notion of nonsingularity is less useful than you might think. Grothendieck taught
us that the more important notions are properties of morphisms, not of objects, and there
is indeed a “relative notion” that applies to a morphism of schemes f : X — Y that is much
better-behaved (corresponding to the notion of submersion in differential geometry). For
this reason, the word “smooth” is reserved for these morphisms. We will discuss smooth
morphisms in the spring quarter. However, nonsingularity is still useful, especially in
(co)dimension 1, and we shall discuss this case (of discrete valuation rings) next day.

2. THE ZARISKI TANGENT SPACE

We begin by defining the notion of the tangent space of a scheme at a point. It will
behave like the tangent space you know and love at “smooth” points, but will also make
sense at other points. In other words, geometric intuition at the smooth points guides the
definition, and then the definition guides the algebra at all points, which in turn lets us
refine our geometric intuition.

This definition is short but surprising. The main difficulty is convincing yourself that
it deserves to be called the tangent space. I've always found this tricky to explain, and
that is because we want to show that it agrees with our intuition; but unfortunately, our
intuition is worse than we realize. So I'm just going to define it for you, and later try to
convince you that it is reasonable.

Suppose p is a prime ideal of a ring A, so [p] is a point of Spec A. Then [pA,] is a point
of the scheme Spec A,. For convenience, we let m := pA, C A, = B. Let k = B/m be the
residue field. Then m/m? is a vector space over the residue field k: it is an B-module, and
elements of m acts like 0. This is defined to be the Zariski cotangent space. The dual is
the Zariski tangent space. Elements of the Zariski cotangent space are called cotangent
vectors or differentials; elements of the tangent space are called tangent vectors.

Note that this definition is intrinsic. It doesn’t depend on any specific description of
the ring itself (such as the choice of generators over a field k, which is equivalent to the
choice of embedding in affine space). Notice that in some sense, the cotangent space is
more algebraically natural than the tangent space. There is a moral reason for this: the
cotangent space is more naturally determined in terms of functions on a space, and we
are very much thinking about schemes in terms of “functions on them”. This will come
up later.

I'll give two of plausibility arguments that this is a reasonable definition. Hopefully
one will catch your fancy.

In differential geometry, the tangent space at a point is sometimes defined as the vector
space of derivations at that point. A derivation is a function that takes in functions near
the point that vanish at the point, and gives elements of the field k, and satisfies the
Leibniz rule

(fg)"=f'g+g'f.
Translation: a derivation is a map m — k. But m? — 0, as if f(p) = g(p) = 0, then

(fg)'(p) =f'(p)g(p) + g'(p)f(p) =0.
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Thus we have a map m/m? — k, i.e. an element of (m/m?)V.

2.A. EXERCISE. Check that this is reversible, i.e. that any map m/m? — k gives a deriva-
tion. In other words, verify that the Leibniz rule holds.

Here is a second vaguer motivation that this definition is plausible for the cotangent
space of the origin of A™. Functions on A™ should restrict to a linear function on the
tangent space. What function does x? + xy + x + y restrict to “near the origin”? You
will naturally answer: x 4+ y. Thus we “pick off the linear terms”. Hence m/m? are the
linear functionals on the tangent space, so m/m? is the cotangent space. In particular,
you should picture functions vanishing at a point (lying in m) as giving functions on the
tangent space in this obvious a way.

2.1. Old-fashioned example. Here is an example to help tie this down to earth. Computing
the Zariski-tangent space is actually quite hands-on, because you can compute it just as
you did when you learned multivariable calculus. In A%, we have a curve cut out by
x+y+zZ+xyz = 0and x — 2y + z + x*y?z® = 0. (You know enough to check that
this is a curve, but it is not important to do so.) What is the tangent line near the origin?
(Is it even smooth there?) Answer: the first surface looks like x +y = 0 and the second
surface looks like x — 2y + z = 0. The curve has tangent line cut out by x +y = 0 and
x — 2y +z = 0. It is smooth (in the analytic sense). In multivariable calculus, the students
do a page of calculus to get the answer, because we aren’t allowed to tell them to just pick
out the linear terms.

Let’s make explicit the fact that we are using. If A is a ring, m is a maximal ideal, and
f € mis a function vanishing at the point [m] € Spec A, then the Zariski tangent space of
Spec A/(f) at m is cut out in the Zariski tangent space of Spec A (at m) by the single linear
equation f (mod m?). The next exercise will force you think this through.

2.B. IMPORTANT EXERCISE (“KRULL’S PRINCIPAL IDEAL THEOREM FOR THE ZARISKI
TANGENT SPACE”). Suppose A is a ring, and m a maximal ideal. If f € m, show that the
Zariski tangent space of A/f is cut out in the Zariski tangent space of A by f (mod m?).
(Note: we can quotient by f and localize at m in either order, as quotienting and localizing
“commute”.) Hence the dimension of the Zariski tangent space of Spec A at [m] is the
dimension of the Zariski tangent space of Spec A/(f) at [m], or one less.

Here is another example to see this principle in action: x +y + z* = 0 and x + y +
x? 4+ y* + z° = 0 cuts out a curve, which obviously passes through the origin. If I asked
my multivariable calculus students to calculate the tangent line to the curve at the origin,
they would do a reams of calculations which would boil down to picking off the linear
terms. They would end up with the equations x +y = 0 and x +y = 0, which cuts out
a plane, not a line. They would be disturbed, and I would explain that this is because
the curve isn’t smooth at a point, and their techniques don’t work. We on the other hand
bravely declare that the cotangent space is cut out by x +y = 0, and (will soon) define
this as a singular point. (Intuitively, the curve near the origin is very close to lying in the



plane x +y = 0.) Notice: the cotangent space jumped up in dimension from what it was
“supposed to be”, not down. We'll see that this is not a coincidence soon, in Theorem 3.1.

Here is a nice consequence of the notion of Zariski tangent space.

2.2. Problem. Consider the ring A = k[x,y, zl/(xy—2z?). Show that (x, z) is not a principal
ideal.

As dim A = 2 (by Krull’s Principal Ideal Theorem), and A/(x,z) = kly] has dimension
1, we see that this ideal is height 1 (as codimension is the difference of dimensions for
finitely generated k-domains). Our geometric picture is that Spec A is a cone (we can
diagonalize the quadric as xy —z* = ((x +y)/2)* — ((x —y)/2)*> — 2%, at least if char k # 2),
and that (x, z) is a ruling of the cone. (See Figure 1 for a sketch.) This suggests that we

look at the cone point.

FIGURE 1. V(x,z) C Specklx,y,z]/(xy — z?) is a ruling on a cone; (x, z)
not (x, z)-primary.

2is

Solution. Let m = (x,y,z) be the maximal ideal corresponding to the origin. Then
Spec A has Zariski tangent space of dimension 3 at the origin, and Spec A /(x, z) has Zariski
tangent space of dimension 1 at the origin. But Spec A/(f) must have Zariski tangent
space of dimension at least 2 at the origin by Exercise 2.B.

2.C. EXERCISE. Show that (x,z) C k[w, x,y, zl/(wz — xy) is a codimension 1 ideal that is
not principal. (See Figure 2 for a sketch.)

2.3. Morphisms and tangent spaces. Suppose f : X — Y, and f(p) = . Then if we
were in the category of manifolds, we would expect a tangent map, from the tangent
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FIGURE 2. The ruling V(x,z) on V(wz —xy) C P3.

space of p to the tangent space at q. Indeed that is the case; we have a map of stalks
Ov,q — Ox,p, which sends the maximal ideal of the former n to the maximal ideal of the
latter m (we have checked that this is a “local morphism” when we briefly discussed local-
ringed spaces). Thus n? — m?, from which n/n* — m/m?, from which we have a natural
map (m/m?)Y — (n/n?)V. This is the map from the tangent space of p to the tangent space
at g that we sought.

Here are some exercises to give you practice with the Zariski tangent space.

2.D. USEFUL EXERCISE (THE JACOBIAN CRITERION FOR COMPUTING THE ZARISKI TAN-
GENT SPACE). Suppose k is an algebraically closed field, and X is a finite type k-scheme.
Then locally it is of the form Speck[x1,...,xn)/(f1,..., fy). Show that the Zariski tangent
space at the closed point p (with residue field k, by the Nullstellensatz) is given by the
cokernel of the Jacobian map k" — k™ given by the Jacobian matrix

Sp) - (p)

(1) ] = : . :
S(p) oo A(p)

(This is just making precise our example of a curve in A3 cut out by a couple of equations,
where we picked off the linear terms, see Example 2.1 .) You might be alarmed: what
of

does 3 - mean?! Do you need deltas and epsilons? No! Just define derivatives formally,

e.g.

a—X](x% +x1%2 + X3) = 2% + x5.

(Hint: Do this first when p is the origin, and consider linear terms, just as in Example 2.1.
Note for future reference that you have not yet used the algebraic closure of k. Then in
the general case (with k algebraically closed), “translate p to the origin.”
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2.E. LESS IMPORTANT EXERCISE (“HIGHER-ORDER DATA”). In an earlier exercise, you
computed the equations cutting out the three coordinate axes of A3. (Call this scheme X.)
Your ideal should have had three generators. Show that the ideal can’t be generated by
fewer than three elements. (Hint: working modulo m = (x,y,z) won't give any useful
information, so work modulo m?.)

2.F. EXERCISE. Suppose X is a k-scheme. Describe a natural bijection Mory(Spec k[e]/(€?), X)
to the data of a point with residue field is k, necessarily a closed point.

2.G. EXERCISE. Find the dimension of the Zariski tangent space at the point [(2,x)] of
Z[2i] = ZI[x]/(x* + 4). Find the dimension of the Zariski tangent space at the point [(2, x)]
of Z[v/=2] = Z[x]/(x* + 2).

3. THE LOCAL DIMENSION IS AT MOST THE DIMENSION OF THE TANGENT SPACE

We are ready to define nonsingularity. The key idea is contained in the title of this
section.

3.1. Theorem. — Suppose (A, m) is a Noetherian local ring. Then dim A < dimy m/m?.

If equality holds, we say that A is a regular local ring. If a Noetherian ring A is regular
at all of its primes, we say that A is a regular ring.

A locally Noetherian scheme X is regular or nonsingular at a point p if the local ring
Oxp is regular. It is singular at the point otherwise. A scheme is regular or nonsingular
if it is regular at all points. It is singular otherwise (i.e. if it is singular at at least one point).

Proof of Theorem 3.1: Note that m is finitely generated (as A is Noetherian), so m/m? is
a finitely generated (A/m = k)-module, hence finite-dimensional. Say dimj;m/m? = n.
Choose a basis of m/m?, and lift them to elements f;, ..., f, of m. Then by Nakayama'’s
lemma (version 4), (fq,...,f,) =m.

We need here one fancy fact that I forgot to say last quarter. Krull’s Principal Ideal
Theorem states that the codimension of any irreducible component of the locus cut out by
one equation is at most one. There is a generalization to an arbitrary number of equations:
if A is a Noetherian ring, then any irreducible component of V(f;, ..., f,) has codimension
at most n. The proof isn’t much harder than Krull, but I haven’t given it to you. Sorry!
You can read a proof in Eisenbud (Theorem 10.2, p. 235).

3.A. EXERCISE. Prove this if A is an irreducible variety over a field. (Hint: this isn’t that
hard. Use the fact that codimension is the difference of dimensions in this happy case.)
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In our case, V((f1,...,fn)) = V(m) is just the point [m], so the codimension of m is
at most n. Thus the longest chain of prime ideals contained in m is at most n 4 1. But
this is also the longest chain of prime ideals in A (as m is the unique maximal ideal), so
n > dimA. O

3.B. EXERCISE. Show that if A is a Noetherian local ring, then A has finite dimension.
(Noetherian rings in general could have infinite dimension, as we saw in an earlier exer-
cise.)

In the case of finite type schemes over an algebraically closed field k, the Jacobian crite-
rion (Exercise 2.D) gives a hands-on method for checking for singularity at closed points.

3.C. EXERCISE. Suppose k is algebraically closed. Show that the singular closed points of

;c)he hypersurface f(x1,...,x,) = 0in A} are given by the equations f = % =...= % =

3.D. EXERCISE. Suppose k is algebraically closed. Show that A] and AZ are nonsingular.
(Make sure to check nonsingularity at the non-closed points! Fortunately you know what
all the points of A? are; this is trickier for A3.) Show that P} and P{ are nonsingular. (This
holds even if k isn’t algebraically closed, and in higher dimension.)

Let’s apply this technology to an arithmetic situation.

3.E. EASY EXERCISE. Show that SpecZ is a nonsingular curve.

Here are some fun comments: What is the derivative of 35 at the prime 5? Answer: 35
(mod 25), so 35 has the same “slope” as 10. What is the derivative of 9, which doesn’t
vanish at 5? Answer: the notion of derivative doesn’t apply there. You'd think that you’d
want to subtract its value at 5, but you can’t subtract “4 (mod 5)” from the integer 9. Also,
35 (mod 25) you might think you want to restate as 7 (mod 5), by dividing by 5, but that’s
morally wrong — you're dividing by a particular choice of generator 5 of the maximal
ideal of Zs (the 5-adics); in this case, one appears to be staring you in the face, but in
general that won’t be true. Follow-up fun: you can talk about the derivative of a function
only for functions vanishing at a point. And you can talk about the second derivative of a
function only for functions that vanish, and whose first derivative vanishes. For example,
75 has second derivative 75 (mod 125) at 5. It’s pretty flat.

3.F. EXERCISE. (This exercise is for those who know about the primes of the Gaussian
integers Z[i].) Note that Z[i] is dimension 1, as Z[x] has dimension 2 (problem set exercise),
and is a domain, and x* + 1 is not 0, so Z[x]/(x? + 1) has dimension 1 by Krull’s Principal
Ideal Theorem. Show that Spec Z[i] is a nonsingular curve.

3.G. EXERCISE. Show that there is one singular point of Spec Z[5i], and describe it.
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Let’s return to more geometric examples.

3.H. EXERCISE (THE EULER TEST FOR PROJECTIVE HYPERSURFACES). There is an analo-
gous Jacobian criterion for hypersurfaces f = 0 in P}. Suppose k is algebraically closed.
Show that the singular closed points correspond to the locus f = % =...= % =0. If
the degree of the hypersurface is not divisible by the characteristic of any of the residue
tields (e.g. if we are working over a field of characteristic 0), show that it suffices to check
% = ... = 5= = 0. (Hint: show that f lies in the ideal (aa—:], ..y o). (Fact: this will give
the singular points in general, not just the closed points. I don’t want to prove this, and I

won’t use it.)

3.I. EXERCISE. Suppose that k is algebraically closed. Show that y%z = x> — xz? in P is
an irreducible nonsingular curve. (This is for practice.) Warning: I didn’t say chark = 0,
so be careful when using the Euler test.

3.J. EXERCISE. Find all the singular closed points of the following plane curves. Here we
work over an algebraically closed field.

(@) y? = x? +x3. This is called a node.
(b) y? = x3. This is called a cusp.
(c) y? = x*. This is called a tacnode.

(I haven’t given a precise definition of a node, etc.)

3.K. EXERCISE. Show that the twisted cubic Proj k[w, x, y, z|/(wz — xy, wy — x?, xz — y?)
is nonsingular. (You can do this by using the fact that it is isomorphic to P'. I'd prefer you
to do this with the explicit equations, for the sake of practice.)

E-mail address: vakil@math.stanford.edu



