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Quasicoherent and coherent sheaves are natural generalizations of the notion of a vec-
tor bundle. In order to help motivate them, we first discuss vector bundles, and how they
can be interpreted in terms of locally free shaves.

In a nutshell, a free sheaf on X is an OX-module isomorphic to O⊕I
X where the sum is

over some index set I. A locally free sheaf X is an OX-module locally isomorphic to a free
sheaf. This corresponds to the notion of a vector bundle. A quasicoherent sheaf on X

may be defined as an OX-module which may be locally written as the cokernel of a map
of free sheaves. These definitions are useful for ringed spaces in general. We will instead
start with two other definitions of quasicoherent sheaf which better highlight the parallel
between this notion and that of modules over a ring, and make it easy to work with a
scheme by considering an affine cover.

1. VECTOR BUNDLES AND LOCALLY FREE SHEAVES

As motivation, we discuss vector bundles on real manifolds. Examples to keep in mind
are the tangent bundle to a manifold, and the Möbius strip over a circle.

Arithmetically-minded readers shouldn’t tune out! Fractional ideals of the ring of in-
tegers in a number field will turn out to be an example of a “line bundle on a smooth
curve”.

A rank n vector bundle on a manifold M is a fibration π : V → M with the structure of
an n-dimensional real vector space on π−1(x) for each point x ∈ M, such that for every
x ∈ M, there is an open neighborhood U and a homeomorphism

φ : U × R
n

→ π−1(U)
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over U (so that the diagram
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commutes) that is an isomorphism of vector spaces over each y ∈ U.

An isomorphism (1) is called a trivialization over U.

In this definition, n is called the rank of the vector bundle. A rank 1 vector bundle
is called a line bundle. (It is sometimes convenient to be agnostic about the rank of the
vector bundle, so it can have different ranks on different connected components. It is also
sometimes convenient to consider infinite-rank vector bundles.)

1.1. Transition functions. Given trivializations over U1 and U2, over their intersection,
the two trivializations must be related by an element Tij of GL(n) with entries consisting
of functions on U1 ∩U2. If {Ui} is a cover of M, and we are given trivializations over each
Ui, then the {Tij} must satisfy the cocycle condition:
(2) fij|Ui∩Uj∩Uk

◦ fjk|Ui∩Uj∩Uk
= fik|Ui∩Uj∩UK

.

Note that this implies Tij = T−1
ji . The data of the Tij are called transition functions for the

trivialization.

Conversely, given the data of a cover {Ui} and transition functions Tij (an element of
GL(n) with entries that are functions on Ui ∩Uj), we can recover the vector bundle (up to
unique isomorphism) by “gluing together the Ui × R

n along over Ui ∩ Uj using fij”.

1.2. Sheaf of sections. Fix a rank n vector bundle V → M. The sheaf of sections F of V is
an OM-module — given any open set U, we can multiply a section over U by a function
on U and get another section.

Moreover, given a U and a trivialization, the sections over U are naturally identified
with n-tuples of functions of U.

U × R
n

π

��
U

f= an n-tuple of functions
UU

Thus given a trivialization, over each open set Ui, we have an isomorphism F |Ui
∼=

O⊕n
Ui

. We say that F is a locally free sheaf of rank n. (As stated earlier, a sheaf F is free
of rank n if F ∼= O⊕n.)

1.3. Transition functions for the sheaf of sections. Suppose we have a vector bundle on
M, along with a trivialization over an open cover Ui. Suppose we have a section of the
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vector bundle over M. (This discussion will apply with M replaced by any open subset.)
Then over each Ui, the section corresponds to an n-tuple functions over Ui, say fi.

1.A. EXERCISE. Show that over Ui ∩ Uj, the vector-valued function fi is related to fj by
the transition functions:

Tijfi = fj

Given a locally free sheaf F with rank n, and a trivializing neighborhood of F (an
open cover {Ui} such that over each Ui, F |Ui

∼= O⊕n
Ui

as O-modules), we have transition
functions Tij ∈ GL(n,O(Ui ∩ Uj)) satisfying the cocycle condition (2). Thus in conclusion
the data of a locally free sheaf of rank n is equivalent to the data of a vector bundle of
rank n.

A rank 1 locally free sheaf is called an invertible sheaf. We’ll see later why it is called
invertible; but it is still a somewhat heinous term for something so fundamental.

1.4. Locally free sheaves on schemes.

Suitably motivated, we now become rigorous and precise. We can generalize the notion
of locally free sheaves to schemes without change. A locally free sheaf of rank n on
a scheme X is an OX-module F that is locally trivial of rank n. Precisely, there is an
open cover {Ui} of X such that for each Ui, F |Ui

∼= O
⊕n
Ui

. A locally free sheaf may be
described in terms of transition functions: the data of a cover {Ui} of X, and functions
Tij ∈ GL(n,O(Ui ∩ Uj)) satisfying the cocycle condition (2). As before, given this data,
we can find the sections over any open set U. Informally, they are sections of the free
sheaves over each U ∩ Ui that agree on overlaps. More formally, for each i, they are

~si =





si
1...

si
n



 ∈ Γ(U ∩ Ui,OX)n, satisfying Tij~s
i = ~sj on U ∩ Ui ∩ Uj.

You should think of these “as” vector bundles, but just keep in mind that they are
not the “same”, just equivalent notions. We will later define the “total space” of the
vector bundle V → X (a scheme over X) in terms of the sheaf version of Spec (precisely,
Spec Sym V•). But the locally free sheaf perspective will prove to be more useful. As one
example: the definition of a locally free sheaf is much shorter than that of a vector bundle.

As in our motivating discussion, it is sometimes convenient to let the rank vary among
connected components, or to consider infinite rank locally free sheaves.

1.5. Useful constructions.

We now give some useful constructions in the form of a series of exercises. Most will
later generalize readily to quasicoherent sheaves.

1.B. EXERCISE. Suppose s is a section of a locally free sheaf F on a scheme X. Define the
notion of the subscheme cut out by s = 0. (Hint: given a trivialization over an open set
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U, s corresponds to a number of functions f1, . . . on U; on U, take the scheme cut out by
these functions.)

1.C. EXERCISE. Suppose F and G are locally free sheaves on X of rank m and n respec-
tively. Show that Hom(F ,G) is a locally free sheaf of rank mn.

1.D. EXERCISE. If E is a locally free sheaf of rank n, show that E∨ := Hom(E ,O) is also a
locally free sheaf of rank n. This is called the dual of E . Given transition functions for E ,
describe transition functions for E∨. (Note that if E is rank 1 (i.e. invertible), the transition
functions of the dual are the inverse of the transition functions of the original.) Show
that E ∼= E∨∨. (Caution: your argument showing that if there is a canonical isomorphism
(F∨)∨ ∼= F better not also show that there is a canonical isomorphism F∨ ∼= F ! We’ll see
an example soon of a locally free F that is not isomorphic to its dual. The example will
be the line bundle O(1) on P

1.)

1.E. EXERCISE. If F and G are locally free sheaves, show that F ⊗G is a locally free sheaf.
(Here ⊗ is tensor product as OX-modules, defined last quarter) If F is an invertible sheaf,
show that F ⊗ F∨ ∼= OX.

1.F. EXERCISE. Recall that tensor products tend to be only right-exact in general. Show
that tensoring by a locally free sheaf is exact. More precisely, if F is a locally free sheaf,
and G ′

→ G → G ′′ is an exact sequence of OX-modules, then then so is G ′ ⊗F → G ⊗F →

G ′′ ⊗F .

1.G. EXERCISE. If E is a locally free sheaf, and F and G are OX-modules, show that
Hom(F ,G ⊗ E) ∼= Hom(F ⊗ E∨,G).

1.H. EXERCISE AND IMPORTANT DEFINITION. Show that the invertible sheaves on X, up
to isomorphism, form an abelian group under tensor product. This is called the Picard
group of X, and is denoted Pic X. (For arithmetic people: this group, for the Spec of the
ring of integers R in a number field, is the class group of R.)

1.6. Random concluding remarks.

We define rational and regular sections of a locally free sheaf on a scheme X.

1.I. LESS IMPORTANT EXERCISE. Show that locally free sheaves on Noetherian normal
schemes satisfy “Hartogs’ theorem”: sections defined away from a set of codimension at
least 2 extend over that set.

1.7. Remark. Based on your intuition for line bundles on manifolds, you might hope that
every point has a “small” open neighborhood on which all invertible sheaves (or locally
free sheaves) are trivial. Sadly, this is not the case. We will eventually see that for the
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curve y2 − x3 − x = 0 in A
2
C

, every nonempty open set has nontrivial invertible sheaves.
(This will use the fact that it is an open subset of an elliptic curve.)

1.J. EXERCISE (FOR ARITHMETICALLY-MINDED PEOPLE ONLY — I WON’T DEFINE MY TERMS).
Prove that a fractional ideal on a ring of integers in a number field yields an invertible
sheaf. Show that any two that differ by a principal ideal yield the same invertible sheaf.
Show that two that yield the same invertible sheaf differ by a principal ideal. The class
group is defined to be the group of fractional ideals modulo the principal ideals. This ex-
ercises shows that the class group is (isomorphic to) the Picard group. (This discussion
applies to the ring integers in any global field.)

1.8. The problem with locally free sheaves.

Recall that OX-modules form an abelian category: we can talk about kernels, cokernels,
and so forth, and we can do homological algebra. Similarly, vector spaces form an abelian
category. But locally free sheaves (i.e. vector bundles), along with reasonably natural
maps between them (those that arise as maps of OX-modules), don’t form an abelian
category. As a motivating example in the category of differentiable manifolds, consider
the map of the trivial line bundle on R (with co-ordinate t) to itself, corresponding to
multiplying by the co-ordinate t. Then this map jumps rank, and if you try to define a
kernel or cokernel you will get yourself confused.

This problem is resolved by enlarging our notion of nice OX-modules in a natural way,
to quasicoherent sheaves.

OX-modules ⊃ quasicoherent sheaves ⊃ locally free sheaves
abelian category abelian category not an abelian category

Similarly, finite rank locally free sheaves will sit in a nice smaller abelian category, that
of coherent sheaves.

quasicoherent sheaves ⊃ coherent sheaves ⊃ finite rank locally free sheaves
abelian category abelian category not an abelian category

2. TOWARD QUASICOHERENT SHEAVES: THE DISTINGUISHED AFFINE BASE

Schemes generalize and geometrize the notion of “ring”. It is now time to define the
corresponding analogue of “module”, which is a quasicoherent sheaf.

One version of this notion is that of an OX-module. They form an abelian category, with
tensor products.

We want a better one — a subcategory of OX-modules. Because these are the analogues
of modules, we’re going to define them in terms of affine open sets of the scheme. So let’s
think a bit harder about the structure of affine open sets on a general scheme X. I’m going
to define what I’ll call the distinguished affine base of the Zariski topology. This won’t be a
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base in the sense that you’re used to. (For experts: it is a first example of a Grothendieck
topology.)

The open sets are the affine open subsets of X. We’ve already observed that this forms
a base. But forget about that.

We like distinguished open sets Spec Af ↪→ Spec A, and we don’t really understand
open immersions of one random affine open subset in another. So we just remember the
“nice” inclusions.

Definition. The distinguished affine base of a scheme X is the data of the affine open
sets and the distinguished inclusions.

In other words, we are remembering only some of the open sets (the affine open sets),
and only some of the morphisms between them (the distinguished morphisms). For ex-
perts: if you think of a topology as a category (the category of open sets), we have de-
scribed a subcategory.

We can define a sheaf on the distinguished affine base in the obvious way: we have a
set (or abelian group, or ring) for each affine open set, and we know how to restrict to
distinguished open sets.

Given a sheaf F on X, we get a sheaf on the distinguished affine base. You can guess
where we’re going: we’ll show that all the information of the sheaf is contained in the
information of the sheaf on the distinguished affine base.

As a warm-up, we can recover stalks as follows. (We will be implicitly using only the
following fact. We have a collection of open subsets, and some subsets, such that if we
have any x ∈ U, V where U and V are in our collection of open sets, there is some W

containing x, and contained in U and V such that W ↪→ U and W ↪→ V are both in our
collection of inclusions. In the case we are considering here, this is the key fact that given
any two affine open sets Spec A, Spec B in X, Spec A ∩ Spec B could be covered by affine
open sets that were simultaneously distinguished in Spec A and Spec B. This is a cofinal
condition.)

The stalk Fx is the direct limit lim
−→

(f ∈ F(U)) where the limit is over all open sets
contained in U. We compare this to lim

−→
(f ∈ F(U)) where the limit is over all affine open

sets, and all distinguished inclusions. You can check that the elements of one correspond
to elements of the other. (Think carefully about this! It corresponds to the fact that the
basic elements are cofinal in this directed system.)

2.A. EXERCISE. Show that a section of a sheaf on the distinguished affine base is deter-
mined by the section’s germs.

2.1. Theorem. —
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(a) A sheaf on the distinguished affine base Fb determines a unique sheaf F , which when
restricted to the affine base is Fb. (Hence if you start with a sheaf, and take the sheaf on
the distinguished affine base, and then take the induced sheaf, you get the sheaf you started
with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a morphism of
sheaves.

(c) An OX-module “on the distinguished affine base” yields an OX-module.

This proof is identical to our argument showing that sheaves are (essentially) the same
as sheaves on a base, using the “sheaf of compatible germs” construction. The main
reason for repeating it is to let you see that all that is needed is for the open sets to form a
cofinal system (or better, that the category of open sets and inclusions we are considering
is cofinal).

For experts: (a) and (b) are describing an equivalence of categories between sheaves on
the Zariski topology of X and sheaves on the distinguished affine base of X.

Proof. (a) Suppose Fb is a sheaf on the distinguished affine base. Then we can define
stalks.

For any open set U of X, define the sheaf of compatible germs
F(U) := {(fx ∈ Fb

x )x∈U : ∀x ∈ U, ∃Ux with x ⊂ Ux ⊂ U, Fx ∈ Fb(Ux) : Fx
y = fy∀y ∈ Ux}

where each Ux is in our base, and Fx
y means “the germ of Fx at y”. (As usual, those who

want to worry about the empty set are welcome to.)

This is a sheaf: convince yourself that we have restriction maps, identity, and gluability,
really quite easily.

I next claim that if U is in our base, that F(U) = Fb(U). We clearly have a map Fb(U) →

F(U). This is an isomorphism on stalks, and hence an isomorphism by an Exercise from
last quarter.

2.B. EXERCISE. Prove (b).

2.C. EXERCISE. Prove (c). �
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