INTERSECTION THEORY CLASS 10

RAVI VAKIL

Contents

1. Last time 1
2. Chern classes 1
2.1. Fun with the splitting principle 4
2.2. The Chern character and Todd class 6
2.3. Looking forward to next day: Rational equivalence on bundles 6

1. LASt time

Let E be a vector bundle of rank $e+1$ on an algebraic scheme X. Let $P=\mathbb{P E}$ be the \mathbb{P}^{e}-bundle of lines on E, and let $p=p_{E}: P \rightarrow X$ be the projection. The Segre classes are defined by:

$$
s_{i}(E) \cap: A_{k} X \rightarrow A_{k-i} X
$$

by $\alpha \mapsto p_{*}\left(c_{1}(\mathcal{O}(1))^{e+i} \cap p^{*} \alpha\right)$.
Corollary to Segre class theorem. The flat pullback $p^{*}: A_{k} X \rightarrow A_{k+e}(\mathbb{P E})$ is a split monomorphism: by (a) (ii), an inverse is $\beta \mapsto p_{*}\left(c_{1}\left(\mathcal{O}_{\mathbb{P E}}(1)\right)^{e} \cap \beta\right)$.

2. CHERN CLASSES

We then defined Chern classes. Define the Segre power series $s_{t}(E)$ to be the generating function of the s_{i}. Define the Chern power series (soon to be Chern polynomial!) as the inverse of $s_{t}(E)$.

We're in the process of proving parts of the Chern class theorem. Left to do:
Chern class Theorem. The Chern classes satisfy the following properties.
(a) (vanishing) For all bundles E on X, and all $i>\operatorname{rank} E, c_{i}(E)=0$.
(e) (Whitney sum) For any exact sequence

$$
0 \rightarrow \mathrm{E}^{\prime} \rightarrow \mathrm{E} \rightarrow \mathrm{E}^{\prime \prime} \rightarrow 0
$$

of vector bundles on X, then $c_{t}(E)=c_{t}\left(E^{\prime}\right) \cdot c_{t}\left(E^{\prime \prime}\right)$, i.e. $c_{k}(E)=\sum_{i+j=k} c_{i}\left(E^{\prime}\right) c_{j}\left(E^{\prime \prime}\right)$.
Notation. The Chern classes and Segre classes of all vector bundles determine a ring of operators on Chow groups. I won't give this ring a name (or I may tentatively call it the Segre-Chern ring); later we will define a ring $A^{*} X$ of operators, in which these Chern and Segre classes will lie.

Splitting principle. I introduced the splitting principle, which tells that we can pretend that every vector bundle splits, not into a direct sum, but into a nice filtration.

Given a vector bundle E on a scheme X, there is a flat morphism $f: X^{\prime} \rightarrow X$ such that
(1) $f^{*}: A_{*} X \rightarrow A_{*} X^{\prime}$ is injective, and
(2) $f^{*} E$ has a filtration by subbundles

$$
f^{*} E=E_{r} \supset E_{r-1} \supset \cdots \supset E_{1} \supset E_{0}=0 .
$$

Injectivity shows that if we can show some equality involving Chern classes on the pullback to X^{\prime}, then it will imply the same equality downstairs on X.

The construction was pretty simple: we took a tower of projective bundles.
I should have said explicitly: we've shown how to split a single vector bundle. But clearly we can split any finite number of vector bundles in this way as well.

Lemma. Assume that E is filtered with line bundle quotients L_{1}, \ldots, L_{r}. Let s be a section of E, and let Z be the closed subset of X where s vanishes. Then for any k-cycle α on X, there is a $(k-r)$-cycle class β on Z (i.e. an element of $A_{k-r} Z$) with

$$
\prod_{i=1}^{r} c_{1}\left(L_{i}\right) \cap \alpha=\beta
$$

in $A_{k-r} X$. (Even better, we will see that we will get equality in $A_{k-r}(Z)$: we have pinned down (or "localized") this class even further.) In particular, if s is nowhere zero, then $\prod_{i=1}^{r} c_{1}\left(L_{i}\right)=0$. (Recall $r=\operatorname{rank} E$.)

Proof. For simplicity of exposition, let me show you how this works for $\mathrm{r}=2$. We have $0 \rightarrow L_{1} \rightarrow E \rightarrow L_{2}=0$. The section s of E induces a section \bar{s} of L_{2}. If Y is the zero scheme of \bar{s}, then $\left(L_{2}, Y, \bar{s}\right)$ is a pseudodivisor D_{2} on X. Let $j: Y \hookrightarrow X$ be the closed immersion. Intersecting with D_{2} gives a class $D_{2} \cdot \alpha$ in $A_{k-1} Y$ such that $c_{1}\left(L_{2}\right) \cap \alpha=j_{*}\left(D_{2} \cdot \alpha\right)$. By the projection formula ("proper pushforward behaves with respect to c_{1} "):

$$
c_{1}\left(L_{1}\right) \cap c_{1}\left(L_{2}\right) \cap \alpha=j_{*}\left(c_{1}\left(j^{*} L_{1}\right) \cap\left(D_{2} \cdot \alpha\right)\right) .
$$

The bundle $L_{1} Y=j^{*} E$ has a section, induced by s, whose zero set is Z. So $c_{1}\left(j^{*} L_{1}\right) \cap\left(D_{2}\right.$. $\alpha) \in A_{k-2} Z$ as desired.

The general argument is just the same (an induction).

Lemma. Suppose E has a filtration by subbundles $E=E_{r} \supset E_{r-1} \supset \cdots \supset E_{0}=0$ with quotients L_{r}, \ldots, L_{1}. Then

$$
c_{t}(E)=\prod_{i=1}^{r}\left(1+c_{1}\left(L_{i}\right) t\right)
$$

Proof. Let $p: \mathbb{P E} \rightarrow X$ be the associated projective bundle. We have a tautological subbundle $\mathcal{O}_{\mathbb{P E}}(-1) \rightarrow p^{*} E$ on $\mathbb{P E}$. Twisting (tensoring) this inclusion by the line bundle $\mathcal{O}_{\mathbb{P E}}(1)$, we get

$$
\mathcal{O}_{\mathbb{P E}} \rightarrow\left(p^{*} \mathrm{E}\right) \otimes \mathcal{O}_{\mathbb{P E}}(1)
$$

In other words, we have a nowhere vanishing section of $\left(p^{*} E\right) \otimes \mathcal{O}_{\mathbb{P E}}(1)$. Note that $\left(p^{*} E\right) \otimes$ $\mathcal{O}_{\mathbb{P E}}(1)$ has a filtration with quotient line bundles $p^{*} L_{i} \otimes \mathcal{O}_{\mathbb{P E}}(1)$. Thus our previous lemma implies that

$$
\prod_{i=1}^{r} c_{1}\left(p^{*} L_{i} \otimes \mathcal{O}_{\mathbb{P E}}(1)\right)=0
$$

We'll now unwind this to get the result. Let $\zeta=c_{1}\left(\mathcal{O}_{\mathbb{P E}}(1)\right)$ for convenience. Let σ_{i} be the i th symmetric function in $c_{1}\left(L_{1}\right), \ldots, c_{1}\left(L_{r}\right)$. Let $\tilde{\sigma}_{i}$ be the i th symmetric function in $c_{1}\left(p^{*} L_{1}\right), \ldots, c_{1}\left(p^{*} L_{r}\right)$.

We want to show that $\left(1+\sigma_{1} t+\sigma_{2} t^{2}+\cdots+\sigma_{r} t^{r}\right)=c_{t}(E)$.
We know that $c_{1}\left(p^{*} L_{i} \otimes \mathcal{O}_{\mathbb{P E}}(1)\right)=c_{1}\left(p^{*} L_{i}\right)+c_{1}\left(\mathcal{O}_{\mathbb{P E}}(1)\right)=c_{1}\left(p^{*} L_{i}\right)+\zeta$. Hence we know:

$$
\zeta^{r}+\tilde{\sigma}_{1} \zeta^{r-1}+\cdots+\tilde{\sigma}_{r}=0 .
$$

(We feel like turning ζ into $1 / \mathrm{t}$ and using injectivity. That's in spirit what we'll do.) Multiply by ζ^{i-1} for some i. Pick any $\alpha \in A_{*} X$, and cap the equation with $p^{*} \alpha$. Then pushforward:

$$
p_{*}\left(\zeta^{e+i} \cap p^{*} \alpha\right)+p_{*}\left(\tilde{\sigma}_{1} \zeta^{e+i-1} \cap p^{*} \alpha\right)+\cdots+p_{*}\left(\tilde{\sigma}_{r} \zeta^{i-1} \cap p^{*} \alpha\right)=0 .
$$

Thus these are Segre classes:

$$
\begin{equation*}
s_{i}(E) \cap \alpha+\sigma_{1} s_{i-1}(E) \cap \alpha+\cdots+\sigma_{r} s_{i-r}(E) \cap \alpha=0 \tag{1}
\end{equation*}
$$

Multiply this by a formal variable t^{i}, and add up over all i to get:

$$
\left(1+\sigma_{1} t+\cdots+\sigma_{r} t^{r}\right) s_{t}(E)=0 .
$$

Oops, that wasn't quite right! Equation (1) holds for $i>0$, so in fact

$$
\left(1+\sigma_{1} t+\cdots+\sigma_{r} t^{r}\right) s_{t}(E)=\text { constant } .
$$

But that constant is 1 . Thus by the definition of $c_{t}(E)$, we get our desired result: $c_{t}(E)=$ $1+\sigma_{1} t+\cdots+\sigma_{r} t^{r}$.

I'm now finally ready to prove (a) and (e) of the Chern class theorem. It suffices to prove (a) assuming that E is filtered. But then $c_{t}(E)=\prod_{i=1}^{r}\left(1+c_{1}\left(L_{i}\right) t\right)$ is clearly a polynomial of degree at most r - we've proved (a).
(e) is also easy. Given an exact sequence of vector bundles as in the statement, pullback to a flat $\mathrm{f}: \mathrm{X}^{\prime} \rightarrow \mathrm{X}$ so that both the (pullback of the) kernel E^{\prime} and the (pullback of the) cokernel $E^{\prime \prime}$ split into line bundles. Then the pullback of E also splits. Thus by the lemma,

$$
c_{t}\left(f^{*} E\right)=c_{t}\left(f^{*} E^{\prime}\right) c_{t}\left(f^{*} E^{\prime \prime}\right)
$$

Notation. If X is a pure-dimensional scheme, and P is a polynomial in Chern classes (or Segre classes) of various vector bundles of total codimension $\operatorname{dim} X$, then $\operatorname{deg} P \cap[X]$ is a number. This is denoted $\int_{X} P$. Example 1: Suppose X is a compact projective manifold (i.e. nonsingular complex projective variety) of dimension n, and T_{X} is the tangent bundle. Then $c_{n}\left(T_{X}\right)$ is a codimension n Chern class. Fact: $\int_{X} c_{n}\left(T_{X}\right):=c_{n}\left(T_{X}\right) \cap[X]=\chi(X)$, where $\chi(X)$ is the (topological) Euler characteristic. Example 2: Suppose $i: X \hookrightarrow \mathbb{P}^{N}$ is a projective variety of dimension n. Then $i^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ is a line bundle on X. Then

$$
\int_{X} c_{1}\left(i^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)\right)^{d}:=c_{1}\left(i^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)\right)^{d} \cap X=\operatorname{deg} X
$$

(Reason: we can interpret each factor $c_{1}\left(i^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ as intersecting with a randomly chosen hyperplane.)
2.1. Fun with the splitting principle. Thanks to the splitting principle, given the Chern classes of a vector bundle, you can find the Chern classes of other related vector bundles.

The way I think about it: imagine that the Chern polynomial factors (even though it doesn't!). Imagine that the bundle splits (even though it doesn't!).

Example 1: Dual bundle. Suppose E is a vector bundle, and E^{\vee} is the dual bundle. Then $c_{i}\left(E^{\vee}\right)=(-1)^{i} c_{i}(E)$. (Reason: $c_{t}(E)=c_{-t}(E)$. The reason for this in turn is that if you assume that E is filtered (which we may do by the splitting principle) then E^{\vee} is filtered too. Do you see why?

Example 2: Tensor products. I'll do a specific example, in the hope that you'll see the general pattern. Suppose E and F are rank 2 bundles. Then $E \otimes F$ is a rank 4 bundle. We can compute its Chern classes in terms of those of E and F. Suppose E has Chern roots e_{1} and e_{2}, and suppose F has Chern roots f_{1} and f_{2}. (Translation: assume that both E and F can be filtered. Let e_{1} and e_{2} be the line bundle quotients of the filtration of E, and similarly for f_{1} and f_{2}.) Thus from

$$
1+c_{1}(E) t+c_{2}(E) t^{2}=\left(1+e_{1} t\right)\left(1+e_{2} t\right)
$$

we get $e_{1}+e_{2}=c_{1}(E)$ and $e_{2}=c_{2}(E)$, and similarly for F. Then

$$
\begin{aligned}
c_{t}(E \otimes F) & =\left(1+\left(e_{1}+f_{1}\right) t\right)\left(1+\left(e_{1}+f_{2}\right) t\right)\left(1+\left(e_{2}+f_{1}\right) t\right)\left(1+\left(e_{2}+f_{2}\right) t\right) \\
& =1+\left(2 e_{1}+2 e_{2}+2 f_{1}+2 f_{2}\right) t+\cdots \\
& =1+\left(2 c_{1}(E)+2 c_{1}(F)\right) t+\cdots
\end{aligned}
$$

from which we get $c_{1}(E \otimes F)=2 c_{1}(E)+2 c_{1}(F)$, and similarly we can compute formulae for higher Chern classes of $E \otimes F$.

To justify that first equality for $c_{t}(E \otimes F)$, we need to give a filtration of $E \otimes F$ using the filtrations of E and F. I'll leave that for you.

Example 3: Exterior powers. I'll again do a specific example to illustrate a general principle. Suppose E is rank 3, with Chern roots e_{1}, e_{2}, e_{3}. In other words, as assume we have a specific filtration of E. The $\Lambda^{2} E$ is also rank 3 , with Chern roots $e_{1}+e_{2}, e_{1}+e_{3}, e_{2}+e_{3}$. Again, we do this by producing a filtration of $\Lambda^{2} E$ induced by that filtration on E.

Thus we can find the Chern classes of $\wedge^{2} E$ in terms of those of E. We know $e_{1}+e_{2}+e_{3}=$ $c_{1}(E), e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}=c_{2}(E)$, and $e_{1} e_{2} e_{3}=c_{3}(E)$. Thus

$$
\begin{aligned}
c_{t}\left(\Lambda^{2}(E)\right) & =\left(1+\left(e_{1}+e_{2}\right) t\right)\left(1+\left(e_{1}+e_{3}\right) t\right)\left(1+\left(e_{2}+e_{3}\right) t\right) \\
& =1+\left(2 e_{1}+2 e_{2}+2 e_{3}\right) t+\cdots .
\end{aligned}
$$

In general, if E is rank n and we want to compute the Chern classes of $\wedge^{k} E$, the roots are sums of k distinct Chern roots of E.

Exercise: if E is rank n, then you can check that $\wedge^{n} E=\operatorname{det} E$. Show that $c_{1}(E)=$ $c_{1}(\operatorname{det} E)$. This gives a different interpretation of c_{1} of a vector bundle - as c_{1} of the determinant bundle.

Exercise: what about symmetric powers? If E is rank 2, can you compute the Chern classes of Sym^{4} E?

Homework (due Nov. 1.) Suppose E is a bundle of rank r on a scheme X, p is the projection $\mathbb{P E} \rightarrow X$, and $\zeta=c_{1}\left(\mathcal{O}_{\mathbb{P E}}(1)\right)$. Show that $\zeta^{r}+c_{1}\left(p^{*} E\right) \zeta^{r-1}+\cdots+c_{r}\left(p^{*} E\right)=0$. (Hint: consider the exact sequence of vector bundles on $\mathbb{P E}: 0 \rightarrow \mathcal{O}_{\mathbb{P E}}(-1) \rightarrow p^{*} E \rightarrow Q \rightarrow 0$.)

Example: Chern classes of the tangent bundle to projective space:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus(n+1)} \rightarrow \mathrm{T}_{\mathbb{P}^{n}} \rightarrow 0 .
$$

For convenience let, $\mathrm{H}=\mathrm{c}_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$. Hence $\mathrm{c}_{\mathrm{t}}\left(\mathrm{T}_{\mathbb{P}^{n}}\right)=(1+\mathrm{Ht})^{\mathrm{n}+1}$. (Note that deg $\mathrm{c}_{\mathrm{n}}\left(\mathrm{T}_{\mathbb{P}^{n}}\right)=$ $n+1$, which is indeed the topological Euler characteristic of \mathbb{P}^{n}.)

Example: Chern classes of the tangent bundle of a hypersurface in Y in X :

$$
\left.0 \rightarrow \mathrm{~T}_{Y} \rightarrow \mathrm{~T}_{X}\right|_{Y} \rightarrow \mathrm{~N} \rightarrow 0 .
$$

$\left(\mathrm{N} \cong \mathcal{O}_{\mathrm{X}}(\mathrm{Y})\right)$.
Suppose next that $X=\mathbb{P}^{n}$, and Y is a degree d hypersurface. Let H denote the restriction of $c_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$ to Y. (Equivalently, it is c_{1} of the pullback of $\mathcal{O}_{\mathbb{P}^{n}}(1)$ to Y : we've shown that c_{1} commutes with any pullback.) Then as operators on $A_{*} Y$, we get

$$
c_{t}\left(T_{Y}\right)=(1+H t)^{n+1}(1+d H t)^{-1}=(1+H t)^{n+1}\left(1-d H t+(d H t)^{2}-(d H t)^{3}+\cdots\right)
$$

You can use this to compute the topological Euler characteristic of a hypersurface, or inductively, of a complete intersection. (Fun exercise: use this to work out the genus of a degree d plane curve.)
2.2. The Chern character and Todd class. The Chern character ch is defined by $\operatorname{ch}(E)=$ $\sum_{i=1}^{r} e^{\alpha_{i}}$. Then if $0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0$ is a short exact sequence of vector bundles, $\operatorname{ch}(E)=\operatorname{ch}\left(E^{\prime}\right)+\operatorname{ch}\left(E^{\prime \prime}\right)$. (You should immediately see the corresponding long exact sequence! $)$ Also, $\operatorname{ch}\left(E \otimes E^{\prime}\right)=\operatorname{ch}(E) \operatorname{ch}\left(E^{\prime}\right)$.

The Todd class is defined by $\operatorname{td}(E)=\prod_{i=1}^{r} Q\left(\alpha_{i}\right)$ where

$$
Q(x)=\frac{x}{1-e^{-x}}=1+\frac{1}{2} x+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{B_{k}}{(2 k)!} x^{2 k}
$$

Again, $\operatorname{td}(E)=\operatorname{td}\left(E^{\prime}\right) \operatorname{td}\left(E^{\prime \prime}\right)$.
Sample application. Let X be an n-dimensional abelian variety lying in projective space $i: X \hookrightarrow \mathbb{P}^{m}$. Then $m \geq 2 n$, and if equality holds, then $\operatorname{deg} X=\binom{2 n+1}{n}$. Fact: for an abelian variety, T_{X} is a trivial bundle. (Reason over $\mathbb{C}, X=\mathbb{C}^{n}$ modulo a lattice.) Hence T_{X} has all Chern classes 0 (except c_{0}).

The first two cases are relative straightforward: if $n=1$, then this corresponds to curves in planes; the only way for a genus 1 curve to lie in \mathbb{P}^{2} is if it is degree 3 .

If $n=2$: there is no way for an abelian surface to be a hypersurface in \mathbb{P}^{3}. Reason: we've computed Chern classes of hypersurfaces.

It can sit in \mathbb{P}^{4}, but we'll see that it can only sit as a degree 10 hypersurface, and there is a famous such example called the Horrocks-Mumford abelian variety.

Here's the proof. $0 \rightarrow T_{X} \rightarrow i^{*} T_{Y} \rightarrow N \rightarrow 0 . c_{i}\left(i^{*} T_{Y}\right)=c_{i}(N)$. Now the rank of N is $m-n . c_{i}\left(i^{*} T_{Y}\right)=\binom{m+1}{i} H^{i}$. If $i \leq n$, this is non-zero, as $H^{n}=\operatorname{deg} X[p t] \in A_{0} X$. On the other hand, $c_{i}(N)=0$ for $i>\operatorname{rank} N$, and $\operatorname{rank} N=n-m$. Thus $m>n$.
2.3. Looking forward to next day: Rational equivalence on bundles. I stated a couple of things that we'll do on Wednesday.

Theorem Let E be a vector bundle of rank $r=e+1$ on a scheme X, with projection $\pi: E \rightarrow X$. Let $\mathbb{P E}$ be the associated projective bundle, with projection $p: \mathbb{P E} \rightarrow X$. Recall the definition of the line bundle $\mathcal{O}(1)=\mathcal{O}_{\mathbb{P E}}(1)$ on $\mathbb{P E}$.
(a) The flat pullback $\pi^{*}: A_{k-r} X \rightarrow A_{k} E$ is an isomorphism for all k.
(b) Each $\beta \in A_{k} \mathbb{P E}$ is uniquely expressible in the form

$$
\beta=\sum_{i=0}^{e} c_{1}(\mathcal{O}(1))^{i} \cap p^{*} \alpha_{i}
$$

for $\alpha \in A_{k-e+i} X$. Thus there are canonical isomorphisms

$$
\theta_{\mathrm{E}}: \oplus_{\mathrm{i}=0}^{e} \mathcal{A}_{\mathrm{k}-\mathrm{e}+\mathrm{i}} \mathrm{X} \xrightarrow{\sim} \mathrm{~A}_{\mathrm{k}} \mathbb{P E} .
$$

$\theta_{\mathrm{E}}: \oplus \alpha_{i} \mapsto \sum_{i=0}^{e} \mathrm{c}_{1}\left(\mathcal{O}_{\mathrm{PE}}(1)\right)^{i} \mathrm{p}^{*} \alpha_{\mathrm{i}}$.

Intersecting with the zero-section of a vector bundle. We can already intersect with the zero-section of a line bundle (i.e. an effective Cartier divisor); we get a map $A_{k} X \rightarrow A_{k-1} D$, which we've called the Gysin pullback.

Definition: Gysin pullback by zero section of a vector bundle. Let $s=s_{E}$ denote the zero section of a vector bundle E. s is a morphism from X to E with $\pi \circ s=i d_{X}$. By part (a) of the Chern class theorem allows us to define Gysin homomorphisms s*: $A_{k} \mathrm{E} \rightarrow \mathrm{A}_{\mathrm{k}-\mathrm{r}} \mathrm{X}$, $r=\operatorname{rank} E$, by $s^{*}(\beta):=\left(\pi^{*}\right)^{-1}(\beta)$.

E-mail address: vakil@math.stanford.edu

