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1. LAST TIME

Let E be a vector bundle of rank e + 1 on an algebraic scheme X. Let P = PE be the
Pe-bundle of lines on E, and let p = pE : P → X be the projection. The Segre classes are
defined by:

si(E)∩ : AkX → Ak−iX

by α 7→ p∗(c1(O(1))e+i ∩ p∗α).

Corollary to Segre class theorem. The flat pullback p∗ : AkX → Ak+e(PE) is a split
monomorphism: by (a) (ii), an inverse is β 7→ p∗(c1(OPE(1))e ∩ β).

2. CHERN CLASSES

We then defined Chern classes. Define the Segre power series st(E) to be the generating
function of the si. Define the Chern power series (soon to be Chern polynomial!) as the
inverse of st(E).

We’re in the process of proving parts of the Chern class theorem. Left to do:

Chern class Theorem. The Chern classes satisfy the following properties.

(a) (vanishing) For all bundles E on X, and all i > rank E, ci(E) = 0.

(e) (Whitney sum) For any exact sequence

0 → E ′ → E → E ′′ → 0
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of vector bundles on X, then ct(E) = ct(E
′) · ct(E

′′), i.e. ck(E) =
∑

i+j=k ci(E
′)cj(E

′′).

Notation. The Chern classes and Segre classes of all vector bundles determine a ring of
operators on Chow groups. I won’t give this ring a name (or I may tentatively call it the
Segre-Chern ring); later we will define a ring A∗X of operators, in which these Chern and
Segre classes will lie.

Splitting principle. I introduced the splitting principle, which tells that we can pretend that
every vector bundle splits, not into a direct sum, but into a nice filtration.

Given a vector bundle E on a scheme X, there is a flat morphism f : X ′ → X such that

(1) f∗ : A∗X → A∗X
′ is injective, and

(2) f∗E has a filtration by subbundles

f∗E = Er ⊃ Er−1 ⊃ · · · ⊃ E1 ⊃ E0 = 0.

Injectivity shows that if we can show some equality involving Chern classes on the pull-
back to X ′, then it will imply the same equality downstairs on X.

The construction was pretty simple: we took a tower of projective bundles.

I should have said explicitly: we’ve shown how to split a single vector bundle. But
clearly we can split any finite number of vector bundles in this way as well.

Lemma. Assume that E is filtered with line bundle quotients L1, . . . , Lr. Let s be a section
of E, and let Z be the closed subset of X where s vanishes. Then for any k-cycle α on X,
there is a (k − r)-cycle class β on Z (i.e. an element of Ak−rZ) with

r∏

i=1

c1(Li) ∩ α = β

in Ak−rX. (Even better, we will see that we will get equality in Ak−r(Z): we have pinned
down (or “localized”) this class even further.) In particular, if s is nowhere zero, then∏r

i=1 c1(Li) = 0. (Recall r = rank E.)

Proof. For simplicity of exposition, let me show you how this works for r = 2. We have
0 → L1 → E → L2 = 0. The section s of E induces a section s of L2. If Y is the zero scheme
of s, then (L2, Y, s) is a pseudodivisor D2 on X. Let j : Y ↪→ X be the closed immersion.
Intersecting with D2 gives a class D2 · α in Ak−1Y such that c1(L2) ∩ α = j∗(D2 · α). By the
projection formula (“proper pushforward behaves with respect to c1”):

c1(L1) ∩ c1(L2) ∩ α = j∗(c1(j
∗L1) ∩ (D2 · α)).

The bundle L1Y = j∗E has a section, induced by s, whose zero set is Z. So c1(j
∗L1) ∩ (D2 ·

α) ∈ Ak−2Z as desired.

The general argument is just the same (an induction). �
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Lemma. Suppose E has a filtration by subbundles E = Er ⊃ Er−1 ⊃ · · · ⊃ E0 = 0 with
quotients Lr, . . . , L1. Then

ct(E) =

r∏

i=1

(1 + c1(Li)t).

Proof. Let p : PE → X be the associated projective bundle. We have a tautological subbun-
dle OPE(−1) → p∗E on PE. Twisting (tensoring) this inclusion by the line bundle OPE(1),
we get

OPE → (p∗E) ⊗OPE(1).

In other words, we have a nowhere vanishing section of (p∗E)⊗OPE(1). Note that (p∗E)⊗

OPE(1) has a filtration with quotient line bundles p∗Li⊗OPE(1). Thus our previous lemma
implies that

r∏

i=1

c1(p
∗Li ⊗OPE(1)) = 0.

We’ll now unwind this to get the result. Let ζ = c1(OPE(1)) for convenience. Let σi be
the ith symmetric function in c1(L1), . . . , c1(Lr). Let σ̃i be the ith symmetric function in
c1(p

∗L1), . . . , c1(p
∗Lr).

We want to show that (1 + σ1t + σ2t
2 + · · ·+ σrt

r) = ct(E).

We know that c1(p
∗Li⊗OPE(1)) = c1(p

∗Li)+c1(OPE(1)) = c1(p
∗Li)+ζ. Hence we know:

ζr + σ̃1ζ
r−1 + · · · + σ̃r = 0.

(We feel like turning ζ into 1/t and using injectivity. That’s in spirit what we’ll do.) Mul-
tiply by ζi−1 for some i. Pick any α ∈ A∗X, and cap the equation with p∗α. Then pushfor-
ward:

p∗(ζ
e+i ∩ p∗α) + p∗(σ̃1ζ

e+i−1 ∩ p∗α) + · · ·+ p∗(σ̃rζ
i−1 ∩ p∗α) = 0.

Thus these are Segre classes:

(1) si(E) ∩ α + σ1si−1(E) ∩ α + · · · + σrsi−r(E) ∩ α = 0.

Multiply this by a formal variable ti, and add up over all i to get:

(1 + σ1t + · · ·+ σrt
r)st(E) = 0.

Oops, that wasn’t quite right! Equation (1) holds for i > 0, so in fact

(1 + σ1t + · · ·+ σrt
r)st(E) = constant.

But that constant is 1. Thus by the definition of ct(E), we get our desired result: ct(E) =

1 + σ1t + · · ·+ σrt
r. �

I’m now finally ready to prove (a) and (e) of the Chern class theorem. It suffices to prove
(a) assuming that E is filtered. But then ct(E) =

∏r

i=1(1 + c1(Li)t) is clearly a polynomial
of degree at most r — we’ve proved (a).
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(e) is also easy. Given an exact sequence of vector bundles as in the statement, pullback
to a flat f : X ′ → X so that both the (pullback of the) kernel E ′ and the (pullback of the)
cokernel E ′′ split into line bundles. Then the pullback of E also splits. Thus by the lemma,

ct(f
∗E) = ct(f

∗E ′)ct(f
∗E ′′).

�

Notation. If X is a pure-dimensional scheme, and P is a polynomial in Chern classes (or
Segre classes) of various vector bundles of total codimension dim X, then deg P ∩ [X] is a
number. This is denoted

∫
X

P. Example 1: Suppose X is a compact projective manifold
(i.e. nonsingular complex projective variety) of dimension n, and TX is the tangent bundle.
Then cn(TX) is a codimension n Chern class. Fact:

∫
X

cn(TX) := cn(TX) ∩ [X] = χ(X),

where χ(X) is the (topological) Euler characteristic. Example 2: Suppose i : X ↪→ P
N is a

projective variety of dimension n. Then i∗OPN(1) is a line bundle on X. Then
∫

X

c1(i
∗OPN(1))d := c1(i

∗OPN(1))d ∩ X = deg X.

(Reason: we can interpret each factor c1(i
∗OPN(1)) as intersecting with a randomly chosen

hyperplane.)

2.1. Fun with the splitting principle. Thanks to the splitting principle, given the Chern
classes of a vector bundle, you can find the Chern classes of other related vector bundles.

The way I think about it: imagine that the Chern polynomial factors (even though it
doesn’t!). Imagine that the bundle splits (even though it doesn’t!).

Example 1: Dual bundle. Suppose E is a vector bundle, and E∨ is the dual bundle. Then
ci(E

∨) = (−1)ici(E). (Reason: ct(E) = c−t(E). The reason for this in turn is that if you
assume that E is filtered (which we may do by the splitting principle) then E∨ is filtered
too. Do you see why?

Example 2: Tensor products. I’ll do a specific example, in the hope that you’ll see the
general pattern. Suppose E and F are rank 2 bundles. Then E ⊗ F is a rank 4 bundle. We
can compute its Chern classes in terms of those of E and F. Suppose E has Chern roots
e1 and e2, and suppose F has Chern roots f1 and f2. (Translation: assume that both E

and F can be filtered. Let e1 and e2 be the line bundle quotients of the filtration of E, and
similarly for f1 and f2.) Thus from

1 + c1(E)t + c2(E)t2 = (1 + e1t)(1 + e2t)

we get e1 + e2 = c1(E) and e2 = c2(E), and similarly for F. Then

ct(E ⊗ F) = (1 + (e1 + f1)t)(1 + (e1 + f2)t)(1 + (e2 + f1)t)(1 + (e2 + f2)t)

= 1 + (2e1 + 2e2 + 2f1 + 2f2)t + · · ·

= 1 + (2c1(E) + 2c1(F))t + · · ·

from which we get c1(E ⊗ F) = 2c1(E) + 2c1(F), and similarly we can compute formulae
for higher Chern classes of E ⊗ F.
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To justify that first equality for ct(E ⊗ F), we need to give a filtration of E ⊗ F using the
filtrations of E and F. I’ll leave that for you.

Example 3: Exterior powers. I’ll again do a specific example to illustrate a general princi-
ple. Suppose E is rank 3, with Chern roots e1, e2, e3. In other words, as assume we have
a specific filtration of E. The ∧2E is also rank 3, with Chern roots e1 + e2, e1 + e3, e2 + e3.
Again, we do this by producing a filtration of ∧2E induced by that filtration on E.

Thus we can find the Chern classes of ∧2E in terms of those of E. We know e1+e2+e3 =

c1(E), e1e2 + e2e3 + e3e1 = c2(E), and e1e2e3 = c3(E). Thus

ct(∧
2(E)) = (1 + (e1 + e2)t)(1 + (e1 + e3)t)(1 + (e2 + e3)t)

= 1 + (2e1 + 2e2 + 2e3)t + · · · .

In general, if E is rank n and we want to compute the Chern classes of ∧kE, the roots are
sums of k distinct Chern roots of E.

Exercise: if E is rank n, then you can check that ∧nE = det E. Show that c1(E) =

c1(detE). This gives a different interpretation of c1 of a vector bundle — as c1 of the
determinant bundle.

Exercise: what about symmetric powers? If E is rank 2, can you compute the Chern
classes of Sym4 E?

Homework (due Nov. 1.) Suppose E is a bundle of rank r on a scheme X, p is the projection
PE → X, and ζ = c1(OPE(1)). Show that ζr+c1(p

∗E)ζr−1+· · ·+cr(p
∗E) = 0. (Hint: consider

the exact sequence of vector bundles on PE: 0 → OPE(−1) → p∗E → Q → 0.)

Example: Chern classes of the tangent bundle to projective space:

0 → OPn → OPn(1)⊕(n+1) → TPn → 0.

For convenience let, H = c1(OPn(1)). Hence ct(TPn) = (1+Ht)n+1. (Note that deg cn(TPn) =

n + 1, which is indeed the topological Euler characteristic of P
n.)

Example: Chern classes of the tangent bundle of a hypersurface in Y in X:

0 → TY → TX|Y → N → 0.

(N ∼= OX(Y)).

Suppose next that X = Pn, and Y is a degree d hypersurface. Let H denote the restriction
of c1(OPn(1)) to Y. (Equivalently, it is c1 of the pullback of OPn(1) to Y: we’ve shown that
c1 commutes with any pullback.) Then as operators on A∗Y, we get

ct(TY) = (1 + Ht)n+1(1 + dHt)−1 = (1 + Ht)n+1
(

1 − dHt + (dHt)2 − (dHt)3 + · · ·
)

You can use this to compute the topological Euler characteristic of a hypersurface, or
inductively, of a complete intersection. (Fun exercise: use this to work out the genus of a
degree d plane curve.)
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2.2. The Chern character and Todd class. The Chern character ch is defined by ch(E) =∑r

i=1 eαi . Then if 0 → E ′ → E → E ′′ → 0 is a short exact sequence of vector bundles,
ch(E) = ch(E ′) + ch(E ′′). (You should immediately see the corresponding long exact
sequence!) Also, ch(E ⊗ E ′) = ch(E)ch(E ′).

The Todd class is defined by td(E) =
∏r

i=1 Q(αi) where

Q(x) =
x

1 − e−x
= 1 +

1

2
x +

∞∑

k=1

(−1)k−1 Bk

(2k)!
x2k.

Again, td(E) = td(E ′)td(E ′′).

Sample application. Let X be an n-dimensional abelian variety lying in projective space

i : X ↪→ P
m. Then m ≥ 2n, and if equality holds, then deg X =

(

2n+1

n

)

. Fact: for an abelian
variety, TX is a trivial bundle. (Reason over C, X = Cn modulo a lattice.) Hence TX has all
Chern classes 0 (except c0).

The first two cases are relative straightforward: if n = 1, then this corresponds to curves
in planes; the only way for a genus 1 curve to lie in P2 is if it is degree 3.

If n = 2: there is no way for an abelian surface to be a hypersurface in P3. Reason:
we’ve computed Chern classes of hypersurfaces.

It can sit in P4, but we’ll see that it can only sit as a degree 10 hypersurface, and there is
a famous such example called the Horrocks-Mumford abelian variety.

Here’s the proof. 0 → TX → i∗TY → N → 0. ci(i
∗TY) = ci(N). Now the rank of N is

m − n. ci(i
∗TY) =

(

m+1

i

)

Hi. If i ≤ n, this is non-zero, as Hn = deg X[pt] ∈ A0X. On the
other hand, ci(N) = 0 for i > rank N, and rank N = n − m. Thus m > n.

2.3. Looking forward to next day: Rational equivalence on bundles. I stated a couple
of things that we’ll do on Wednesday.

Theorem Let E be a vector bundle of rank r = e + 1 on a scheme X, with projection
π : E → X. Let PE be the associated projective bundle, with projection p : PE → X. Recall
the definition of the line bundle O(1) = OPE(1) on PE.

(a) The flat pullback π∗ : Ak−rX → AkE is an isomorphism for all k.

(b) Each β ∈ AkPE is uniquely expressible in the form

β =

e∑

i=0

c1(O(1))i
∩ p∗αi,

for α ∈ Ak−e+iX. Thus there are canonical isomorphisms

θE : ⊕e
i=0Ak−e+iX

∼
→ AkPE.

θE : ⊕αi 7→
∑e

i=0 c1(OPE(1))ip∗αi.
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Intersecting with the zero-section of a vector bundle. We can already intersect with the
zero-section of a line bundle (i.e. an effective Cartier divisor); we get a map AkX → Ak−1D,
which we’ve called the Gysin pullback.

Definition: Gysin pullback by zero section of a vector bundle. Let s = sE denote the
zero section of a vector bundle E. s is a morphism from X to E with π◦s = idX. By part (a)
of the Chern class theorem allows us to define Gysin homomorphisms s∗ : AkE → Ak−rX,
r = rank E, by s∗(β) := (π∗)−1(β).

E-mail address: vakil@math.stanford.edu
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