INTERSECTION THEORY CLASS 13

RAVI VAKIL

CONTENTS

1. Where we are: Segre classes of vector bundles, and Segre classes of cones 1
2. The normal cone, and the Segre class of a subvariety 3
3. Segre classes behave well with respect to proper and flat morphisms 3

1. Where we are: Segre classes of vector bundles, and Segre classes of CONES

We first defined Segre class of vector bundles over an arbitrary scheme X. If E is a vector bundle, we get an operator on class on X. We define it by projectivizing E, so we have a flat and proper morphism $\mathbb{P E} \rightarrow X$, pulling back α to $\mathbb{P E}$, capping with $\mathcal{O}(1)$ a certain number of times, and pushing forward.

Hence we get $s_{i}(E) \cap: A_{k} X \rightarrow A_{k-i} X$, and for example we checked the non-immediate fact that $s_{0}(E)$ is the identity. (Recall s_{0} involved pulling back, capping with precisely rank $E-1$ copies of $\mathcal{O}(1)$, and then pushing forward.) Note that $s_{k}(E)=s_{k}(E \oplus 1)$, as the Whitney product formula gives $s(E \oplus 1)=s(E) s(1)=s(E)$.

We want to generalize this to cones. Here again is the definition of a cone on a scheme X. Let $S=\oplus_{i \geq 0} S^{i}$ be a sheaf of graded \mathcal{O}_{X}-algebras. Assume $\mathcal{O}_{X} \rightarrow S^{0}$ is surjective, S^{1} is coherent, and S is generated (as an algebra) by S^{1}. Then you can define $\operatorname{Proj}\left(S^{\circ}\right)$, which has a line bundle $\mathcal{O}(1) . \underline{\operatorname{Proj}}\left(S^{\cdot}\right) \rightarrow X$ is a projective (hence proper) morphism, but it isn't necessarily flat! (Draw a picture, where the cone has components of different dimension.) Flat morphisms have equidimensional fibers, and cones needn't have this.

A couple of important points, brought out by Joe and Soren. I've been imprecise with terminology. Although one often sees phrases such as "the cone is $C=\operatorname{Spec}\left(S^{\prime}\right)$ ", we lose a little information this way; the cone should be defined to be the graded sheaf S. The sheaf can be recovered from $C_{X} Y$ along with the action of the multiplicative group \mathcal{O}_{X}^{*}; the nth graded piece is the part of the algebra where the multiplicative group acts with weight n.

Example 1: say let E be a vector bundle, and $S^{i}=\operatorname{Sym}^{i}\left(E^{\vee}\right)$. Then Proj $S=\mathbb{P} E$. Example 2: Say $T^{i}=\operatorname{Sym}^{i}\left(E^{\vee} \oplus \mathbf{1}\right)=S^{i} \oplus S^{i-1} z$, so (better) $T=S \cdot[z]$. Then $\underline{\text { Proj } T}=\mathbb{P} E$. Example 3:

Date: Wednesday, November 3, 2004.
$\underline{\operatorname{Proj}}\left(S^{\top}[z]\right)=C \amalg \underline{\operatorname{Proj}}\left(S^{-}\right)=\operatorname{Spec} S \amalg \underline{\operatorname{Proj}}\left(S^{\prime}\right)$. The argument is just the same. The right $\overline{\text { term }}$ is a Cartier divisor in class $\mathcal{O}_{\operatorname{Proj}(S:[z])}(1)$. Example 4: The blow-up can be described in this way, and it will be good to know this. Suppose X is a subscheme of Y, cut out by ideal sheaf \mathcal{I}. (In our situation where all schemes are finite type, \mathcal{I} is a coherent sheaf.) Then let $S=\oplus_{i} \mathcal{I}^{i}$, where \mathcal{I} is the i th power of the ideal \mathcal{I}. (\mathcal{I}^{0} is defined to be $\mathcal{O}_{\text {x }}$.) Then $\mathrm{Bl}_{x} \mathrm{Y} \cong \operatorname{Proj} S$. A short calculation shows that the exceptional divisor class is $\mathcal{O}(-1)$. The exceptional divisor turns out to be $\operatorname{Proj} \oplus \mathcal{I}^{n} / \mathcal{I}^{n+1}$. (Note that this is indeed a graded sheaf of algebras.) As $\oplus \mathcal{I}^{n} \rightarrow \oplus \mathcal{I}^{n} / \mathcal{I}^{n+1}$ is a surjective map of rings, this indeed describes a closed subscheme of the blow-up. (Remember this formula - it will come up again soon!)

So the same construction of Segre classes of vector bundles doesn't work: there is no flat pullback to $\left.\underline{\operatorname{Proj}(} S^{\circ}\right)$. So what do we do?

Idea (slightly wrong): We can't pull classes back to $\operatorname{Proj}\left(S^{\prime}\right)$. But there is a natural class up there already: the fundamental class. So we define

$$
\left.s(C) \stackrel{?}{=} q_{*}\left(\sum_{i \geq 0} c_{1}(\mathcal{O}(1))^{i} \cap \underline{[\operatorname{Proj}} C\right]\right)
$$

where q is the morphism Proj $C \rightarrow X$. Instead, as Segre class of vector bundles are stable with respect to adding trivial bundles, we define

$$
\left.s(C):=q_{*}\left(\sum_{i \geq 0} c_{1}(\mathcal{O}(1))^{i} \cap \underline{[\operatorname{Proj}}(C \oplus \mathbf{1})\right]\right)
$$

where q is the morphism $\operatorname{Proj}(\mathrm{C} \oplus \mathbf{1}) \rightarrow X$. Why is adding in this trivial factor the right thing to do? Partial reason: if C is the 0 cone, i.e. $S^{i}=0$ for $i>0$, then Proj C is empty, but $\operatorname{Proj} \mathrm{C} \oplus 1$ is not; we get different answers. But if you add more 1 's, you will then get the same answer: $s(\mathrm{C} \oplus 1 \oplus \cdots \oplus 1)=s(\mathrm{C})$.
(Exercise: show that $s(C \oplus 1)=s(C)$.)
Note: s has pieces in various dimensions.
Last time I proved:
Proposition. (a) If E is a vector bundle on X, then $s(E)=c(E)^{-1} \cap[X]$, where $c(E)$ is the total Chern class of $X, r=\operatorname{rank}(E)$. $c(E)=1+c_{1}(E)+\cdots+c_{r}(E)$. (I would write $s(E)=s(E) \cap[X]$, but the two uses of $s(E)$ are confusing!) This is basically our definition of Segre/Chern classes.
(b) Let C_{1}, \ldots, C_{t} be the irreducible components of C, m_{i} the geometric multiplicities of C_{i} in C. Then $s(C)=\sum_{i=1}^{t} m_{i} s\left(C_{i}\right)$. (Note that the C_{i} are cones as well, so $s\left(C_{i}\right)$ makes sense.) In other words, we can compute the Segre class piece by piece.

Let X be a closed subscheme of a scheme Y (not necessarily lci $=$ local complete intersection), cut out by ideal sheaf \mathcal{I}.
$\mathcal{I} / \mathcal{I}^{2}$ is the conormal sheaf to X; it is a sheaf on X. (Why is it a sheaf on X ? Locally, say $Y=\operatorname{Spec} R$, and $X=\operatorname{Spec} R / I$. Then this is the $R-$ module I / I^{2}. The fact that I said that it is an R-module makes it a priori a sheaf on Y. But note that it is also an R / I module; the action of I on $\mathrm{I} / \mathrm{I}^{2}$ is the zero action.) If X is a local complete intersection (regular imbedding), then this turns out to be a vector bundle.

Consider $\sum_{n=0}^{\infty} \mathcal{I}^{n} / \mathcal{I}^{n+1}$. (Recall that Proj of this sheaf gives us the exceptional divisor of the blow-up.) Define the normal cone $\overline{\mathrm{C}=} \mathrm{C}_{\mathrm{X}} \mathrm{Y}$ by

$$
\mathrm{C}=\underline{\operatorname{Spec}} \sum_{\mathrm{n}=0}^{\infty} \mathcal{I}^{\mathrm{n}} / \mathcal{I}^{\mathrm{n}+1}
$$

Define the Segre class of X in Y as the Segre class of the normal cone:

$$
s(X, Y)=s\left(C_{X} Y\right) \in A_{*} X
$$

If X is regularly imbedded ($=1 \mathrm{ci}$) in Y, then the definition of $s(X, Y)$ is

$$
s(X, Y)=s(N) \cap[X]=c(N)^{-1} \cap[X]
$$

The following geometric picture will come up in the central construction in intersection (the deformation to the normal cone). $X \times \mathbb{A}^{1} \hookrightarrow Y \times \mathbb{A}^{1}$. Then blow up $X \times 0$ in $Y \times \mathbb{A}^{1}$. The ideal sheaf of $X \times 0$ is $\mathcal{I}[t]$, where t is the coordinate on \mathbb{A}^{1}. Thus the normal cone to $X \times 0$ in $Y \times \mathbb{A}^{1}$ is $C_{X} Y[t]$. Hence the exceptional divisor is $\underline{\operatorname{Proj}}\left(C_{X} Y[t]\right)$ (draw a picture). Inside it is the Cartier divisor $t=0$, which is $\underline{\operatorname{Proj}}\left(\mathrm{C}_{\mathrm{X}} \mathrm{Y}\right)$.

3. SEGRE CLASSES BEHAVE WELL WITH RESPECT TO PROPER AND FLAT MORPHISMS

This is the key result of the chapter.
Proposition. Let $f: Y^{\prime} \rightarrow Y$ be a morphism of pure-dimensional schemes, $X \subset Y$ a closed subscheme, $X^{\prime}=f^{-1}(X)$ the inverse image scheme, $g: X^{\prime} \rightarrow X$ the induced morphism.
(a) If f proper, Y irreducible, and f maps each irreducible component of Y^{\prime} onto Y then

$$
g_{*}\left(s\left(X^{\prime}, Y^{\prime}\right)\right)=\operatorname{deg}\left(Y^{\prime} / Y\right) s(X, Y)
$$

(b) If f flat, then

$$
g^{*}\left(s\left(X^{\prime}, Y^{\prime}\right)\right)=s(X, Y)
$$

Let me repeat why I find this a remarkable result. X^{\prime} is a priori some nasty scheme; even if it is nice, its codimension in Y^{\prime} isn't necessarily the same as the codimension of X in Y. The argument is quite short, and shows that what we've proved already is quite sophisticated.

As a special case, this result shows that Segre classes have a fundamental birational invariance: if $f: Y^{\prime} \rightarrow Y$ is a birational proper morphism, and $X^{\prime}=f^{-1} X$, then $s\left(X^{\prime}, Y^{\prime}\right)$ pushes forward to $s(X, Y)$.

Proof. Let me assume that Y^{\prime} is irreducible. (It's true in general, and I may deal with the general case later.)

Let me first write the diagram on the board, and then explain it.

We blow up $Y \times \mathbb{A}^{1}$ along $X \times 0$, and similarly for Y^{\prime} and X^{\prime}. The exceptional divisor of $\mathrm{Bl}_{\mathrm{X} \times 0}\left(\mathrm{Y} \times \mathbb{A}^{1}\right)$ is $\underline{\operatorname{Proj}}(\mathrm{C} \oplus \mathbf{1})$, and similarly for Y^{\prime} and X^{\prime}. The universal property of blowing up $Y \times \mathbb{A}^{1}$ shows that there exists a unique morphism G from the top exceptional divisor to the bottom. Moreover, by construction, the exceptional divisor upstairs is the pullback of the exceptional divisor downstairs (that's the statement about the two $\mathcal{O}(1)$'s in the diagram). Let q be the morphism from the exceptional divisor $\operatorname{Proj}(\mathrm{C} \oplus 1)$ to X, and similarly for q^{\prime}. That square commutes: $q \circ G=g \circ q^{\prime}$ (basically because that morphism G was defined by the universal property of blowing up).

Now $f_{*}\left[Y^{\prime} \times \mathbb{A}^{1}\right]=d\left[Y \times \mathbb{A}^{1}\right]$ (where I am sloppily using the name f for the morphism $Y^{\prime} \times \mathbb{A}^{1} \rightarrow Y \times \mathbb{A}^{1}$). This is computed on a dense open set, so blow-up doesn't change this fact:

$$
\mathrm{F}_{*}\left[\mathrm{Bl}_{\mathrm{X}^{\prime} \times 0} \mathrm{Y}^{\prime} \times \mathbb{A}^{1}\right]=\mathrm{d}\left[\mathrm{Bl}_{\mathrm{X} \times 0} \mathrm{Y} \times \mathbb{A}^{1}\right] .
$$

Now we've shown that proper pushforward commutes with intersecting with a (pseudo-)Cartier divisor. Hence

$$
\mathrm{G}_{*}\left[\underline{\operatorname{Proj}}\left(\mathrm{C}^{\prime} \oplus \mathbf{1}\right)\right]=\mathrm{d}[\underline{\operatorname{Proj}}(\mathrm{C} \oplus \mathbf{1})] .
$$

Now I'm going to prove (a), and I'm going to ask you to prove (b) with me, so pay attention!

$$
\begin{aligned}
& g_{*} s\left(X^{\prime}, Y^{\prime}\right)=g_{*} q_{*}^{\prime}\left(\sum_{i} c_{1}\left(G^{*}(\mathcal{O}(1))^{i} \cap\left[\mathbb{P}\left(C^{\prime} \oplus 1\right)\right]\right)\right) \quad\left(\text { by def }{ }^{\prime} n\right) \\
& =\mathrm{q}_{*} \mathrm{G}_{*}\left(\sum_{i} \mathrm{c}_{1}\left(\mathrm{G}^{*}(\mathcal{O}(1))^{i} \cap\left[\mathbb{P}\left(\mathrm{C}^{\prime} \oplus \mathbf{1}\right)\right]\right)\right) \quad \text { (prop. push. commute) } \\
& =\mathrm{q}_{*}\left(\sum_{i} \mathrm{c}_{1}\left((\mathcal{O}(1))^{\mathrm{i}} \cap \mathrm{~d}[\mathbb{P}(\mathrm{C} \oplus \mathbf{1})]\right)\right) \quad \text { (proj. form.) } \\
& \text { (i.e. } c_{1} \text { commutes with prop. pushforward) } \\
& =\mathrm{ds}(\mathrm{X}, \mathrm{Y}) \text { (by def'n) }
\end{aligned}
$$

Now (b) is similar:

$$
\begin{aligned}
\mathrm{g}^{*} \mathrm{~s}(\mathrm{X}, \mathrm{Y}) & =\mathrm{g}^{*} \mathrm{q}_{*}\left(\sum_{i} \mathrm{c}_{1}\left((\mathcal{O}(1))^{i} \cap[\mathbb{P}(\mathrm{C} \oplus \mathbf{1})]\right)\right) \quad \text { (by def'n) } \\
& =\mathrm{q}_{*}^{\prime} \mathrm{G}^{*}\left(\sum_{i} \mathrm{c}_{1}\left((\mathcal{O}(1))^{i} \cap[\mathbb{P}(\mathrm{C} \oplus \mathbf{1})]\right)\right) \quad \text { (push/pull commute) } \\
& =\mathrm{q}_{*}^{\prime}\left(\sum_{i} c_{1}\left(\left(\mathrm{G}^{*} \mathcal{O}(1)\right)^{i} \cap \mathrm{G}^{*}[\mathbb{P}(\mathrm{C} \oplus \mathbf{1})]\right)\right) \\
& =s(X, Y) \quad\left(\text { by deff }{ }^{\prime} n\right)
\end{aligned}
$$

We immediately have:
Corollary. With the same assumptions as the proposition, if X^{\prime} is regular imbedded (=lci) in Y^{\prime}, with normal bundle N^{\prime}, then

$$
\mathrm{g}_{*}\left(\mathrm{c}\left(\mathrm{~N}^{\prime}\right)^{-1} \cap\left[\mathrm{X}^{\prime}\right]\right)=\operatorname{deg}\left(\mathrm{Y}^{\prime} / \mathrm{Y}\right) \mathrm{s}(\mathrm{X}, \mathrm{Y})
$$

If $X \subset Y$ is also regularly imbedded, with normal bundle N, then

$$
g_{*}\left(c\left(N^{\prime}\right)^{-1} \cap\left[X^{\prime}\right]\right)=\operatorname{deg}\left(Y^{\prime} / Y\right)\left(c(N)^{-1} \cap[X]\right)
$$

To see why the first part might matter: Suppose $X \hookrightarrow Y$ is a very nasty closed immersion. Then blow up Y along X, to get Y^{\prime} with exceptional divisor X^{\prime}. Then X^{\prime} is regularly imbedded (lci) in Y^{\prime} - it is a Cartier divisor! This is the content of the next corollary.

Corollary. Let X be a open closed subscheme of a variety Y. Let \tilde{Y} be the blow-up of Y along $X, \tilde{X}=\mathbb{P C}$ the exceptional divisor, $\eta: \tilde{X} \rightarrow X$ the projection. Then

$$
\begin{aligned}
s(X, Y) & =\sum_{k \geq 1}(-1)^{k-1} \eta_{*}\left(\tilde{X}^{k}\right) \\
& =\sum_{i \geq 0} \eta_{*}\left(c_{1}(\mathcal{O}(1))^{i} \cap[\mathbb{P C}]\right)
\end{aligned}
$$

In that first equation, the term \tilde{X}^{k} should be interpreted as the k th self intersection of the Cartier divisor \tilde{X}, also known as the exceptional divisor.

E-mail address: vakil@math.stanford.edu

