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1. WHERE WE ARE: SEGRE CLASSES OF VECTOR BUNDLES, AND SEGRE CLASSES OF

CONES

We first defined Segre class of vector bundles over an arbitrary scheme X. If E is a vector
bundle, we get an operator on class on X. We define it by projectivizing E, so we have
a flat and proper morphism PE → X, pulling back α to PE, capping with O(1) a certain
number of times, and pushing forward.

Hence we get si(E)∩ : AkX → Ak−iX, and for example we checked the non-immediate
fact that s0(E) is the identity. (Recall s0 involved pulling back, capping with precisely
rank E − 1 copies of O(1), and then pushing forward.) Note that sk(E) = sk(E ⊕ 1), as the
Whitney product formula gives s(E ⊕ 1) = s(E)s(1) = s(E).

We want to generalize this to cones. Here again is the definition of a cone on a scheme
X. Let S· = ⊕i≥0S

i be a sheaf of graded OX-algebras. Assume OX → S0 is surjective, S1 is
coherent, and S· is generated (as an algebra) by S1. Then you can define Proj(S·), which
has a line bundle O(1). Proj(S·) → X is a projective (hence proper) morphism, but it isn’t
necessarily flat! (Draw a picture, where the cone has components of different dimension.)
Flat morphisms have equidimensional fibers, and cones needn’t have this.

A couple of important points, brought out by Joe and Soren. I’ve been imprecise with
terminology. Although one often sees phrases such as “the cone is C = Spec(S·)”, we lose
a little information this way; the cone should be defined to be the graded sheaf S·. The
sheaf can be recovered from CXY along with the action of the multiplicative group O∗

X;
the nth graded piece is the part of the algebra where the multiplicative group acts with
weight n.

Example 1: say let E be a vector bundle, and Si = Symi(E∨). Then Proj S· = PE. Example

2: Say T i = Symi(E∨⊕ 1) = Si⊕ Si−1z, so (better) T · = S·[z]. Then Proj T · = PE. Example 3:
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Proj(S·[z]) = C
∐

Proj(S·) = Spec S·
∐

Proj(S·). The argument is just the same. The right
term is a Cartier divisor in class OProj(S·[z])(1). Example 4: The blow-up can be described
in this way, and it will be good to know this. Suppose X is a subscheme of Y, cut out by
ideal sheaf I. (In our situation where all schemes are finite type, I is a coherent sheaf.)
Then let S· = ⊕iI

i, where I is the ith power of the ideal I. (I0 is defined to be OX.) Then
BlX Y ∼= Proj S·. A short calculation shows that the exceptional divisor class is O(−1).

The exceptional divisor turns out to be Proj⊕In/In+1. (Note that this is indeed a graded

sheaf of algebras.) As ⊕In → ⊕In/In+1 is a surjective map of rings, this indeed describes
a closed subscheme of the blow-up. (Remember this formula — it will come up again
soon!)

So the same construction of Segre classes of vector bundles doesn’t work: there is no
flat pullback to Proj(S·). So what do we do?

Idea (slightly wrong): We can’t pull classes back to Proj(S·). But there is a natural class
up there already: the fundamental class. So we define

s(C)
?
= q∗(

∑

i≥0

c1(O(1))i
∩ [ProjC])

where q is the morphism Proj C → X. Instead, as Segre class of vector bundles are stable
with respect to adding trivial bundles, we define

s(C) := q∗(
∑

i≥0

c1(O(1))i
∩ [Proj(C ⊕ 1)])

where q is the morphism Proj(C ⊕ 1) → X. Why is adding in this trivial factor the right

thing to do? Partial reason: if C is the 0 cone, i.e. Si = 0 for i > 0, then Proj C is empty,
but Proj C ⊕ 1 is not; we get different answers. But if you add more 1’s, you will then get
the same answer: s(C ⊕ 1 ⊕ · · · ⊕ 1) = s(C).

(Exercise: show that s(C ⊕ 1) = s(C).)

Note: s has pieces in various dimensions.

Last time I proved:

Proposition. (a) If E is a vector bundle on X, then s(E) = c(E)−1 ∩ [X], where c(E) is
the total Chern class of X, r = rank(E). c(E) = 1 + c1(E) + · · · + cr(E). (I would write
s(E) = s(E) ∩ [X], but the two uses of s(E) are confusing!) This is basically our definition
of Segre/Chern classes.

(b) Let C1, . . . , Ct be the irreducible components of C, mi the geometric multiplicities of

Ci in C. Then s(C) =
∑t

i=1 mis(Ci). (Note that the Ci are cones as well, so s(Ci) makes
sense.) In other words, we can compute the Segre class piece by piece.
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2. THE NORMAL CONE, AND THE SEGRE CLASS OF A SUBVARIETY

Let X be a closed subscheme of a scheme Y (not necessarily lci = local complete inter-
section), cut out by ideal sheaf I.

I/I2 is the conormal sheaf to X; it is a sheaf on X. (Why is it a sheaf on X? Locally, say
Y = Spec R, and X = Spec R/I. Then this is the R-module I/I2. The fact that I said that
it is an R-module makes it a priori a sheaf on Y. But note that it is also an R/I module;
the action of I on I/I2 is the zero action.) If X is a local complete intersection (regular
imbedding), then this turns out to be a vector bundle.

Consider
∑∞

n=0I
n/In+1. (Recall that Proj of this sheaf gives us the exceptional divisor

of the blow-up.) Define the normal cone C = CXY by

C = Spec

∞∑

n=0

I
n/In+1.

Define the Segre class of X in Y as the Segre class of the normal cone:

s(X, Y) = s(CXY) ∈ A∗X.

If X is regularly imbedded (=lci) in Y, then the definition of s(X, Y) is

s(X, Y) = s(N) ∩ [X] = c(N)−1
∩ [X].

The following geometric picture will come up in the central construction in intersection
(the deformation to the normal cone). X × A

1
↪→ Y × A

1. Then blow up X × 0 in Y × A
1.

The ideal sheaf of X × 0 is I[t], where t is the coordinate on A
1. Thus the normal cone to

X × 0 in Y × A
1 is CXY[t]. Hence the exceptional divisor is Proj(CXY[t]) (draw a picture).

Inside it is the Cartier divisor t = 0, which is Proj(CXY).

3. SEGRE CLASSES BEHAVE WELL WITH RESPECT TO PROPER AND FLAT MORPHISMS

This is the key result of the chapter.

Proposition. Let f : Y ′ → Y be a morphism of pure-dimensional schemes, X ⊂ Y a closed
subscheme, X ′ = f−1(X) the inverse image scheme, g : X ′ → X the induced morphism.

(a) If f proper, Y irreducible, and f maps each irreducible component of Y ′ onto Y then

g∗(s(X
′, Y ′)) = deg(Y ′/Y)s(X, Y).

(b) If f flat, then
g∗(s(X ′, Y ′)) = s(X, Y).

Let me repeat why I find this a remarkable result. X ′ is a priori some nasty scheme;
even if it is nice, its codimension in Y ′ isn’t necessarily the same as the codimension of
X in Y. The argument is quite short, and shows that what we’ve proved already is quite
sophisticated.

3



As a special case, this result shows that Segre classes have a fundamental birational
invariance: if f : Y ′ → Y is a birational proper morphism, and X ′ = f−1X, then s(X ′, Y ′)

pushes forward to s(X, Y).

Proof. Let me assume that Y ′ is irreducible. (It’s true in general, and I may deal with the
general case later.)

Let me first write the diagram on the board, and then explain it.

OProj(C′⊕1)(1) = G∗OProj(C⊕1)(1)

**UUUUUUUUUUUUUUUUU

OProj(C⊕1)(1)

**UUUUUUUUUUUUUUUUU

Proj(C ′ ⊕ 1)
Cartier div.

//
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Proj(C ⊕ 1)
Cartier div.
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BlX×0(Y × A
1)

X ′

g

��

X

We blow up Y × A
1 along X × 0, and similarly for Y ′ and X ′. The exceptional divisor

of BlX×0(Y × A
1) is Proj(C ⊕ 1), and similarly for Y ′ and X ′. The universal property of

blowing up Y×A
1 shows that there exists a unique morphism G from the top exceptional

divisor to the bottom. Moreover, by construction, the exceptional divisor upstairs is the
pullback of the exceptional divisor downstairs (that’s the statement about the two O(1)’s
in the diagram). Let q be the morphism from the exceptional divisor Proj(C⊕1) to X, and
similarly for q ′. That square commutes: q ◦ G = g ◦ q ′ (basically because that morphism
G was defined by the universal property of blowing up).

Now f∗[Y
′ × A

1] = d[Y × A
1] (where I am sloppily using the name f for the morphism

Y ′ ×A
1 → Y ×A

1). This is computed on a dense open set, so blow-up doesn’t change this
fact:

F∗[BlX′×0 Y ′
× A

1] = d[BlX×0 Y × A
1].

Now we’ve shown that proper pushforward commutes with intersecting with a
(pseudo-)Cartier divisor. Hence

G∗[Proj(C ′
⊕ 1)] = d[Proj(C ⊕ 1)].
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Now I’m going to prove (a), and I’m going to ask you to prove (b) with me, so pay atten-
tion!

g∗s(X
′, Y ′) = g∗q

′
∗

(

∑

i

c1(G
∗(O(1))i

∩ [P(C ′
⊕ 1)])

)

(by def’n)

= q∗G∗

(

∑

i

c1(G
∗(O(1))i

∩ [P(C ′
⊕ 1)])

)

(prop. push. commute)

= q∗

(

∑

i

c1((O(1))i
∩ d[P(C ⊕ 1)])

)

(proj. form. )

(i.e. c1 commutes with prop. pushforward)

= ds(X, Y) (by def’n)

Now (b) is similar:

g∗s(X, Y) = g∗q∗

(

∑

i

c1((O(1))i
∩ [P(C ⊕ 1)])

)

(by def’n)

= q ′
∗G

∗

(

∑

i

c1((O(1))i
∩ [P(C ⊕ 1)])

)

(push/pull commute)

= q ′
∗

(

∑

i

c1((G
∗
O(1))i

∩ G∗[P(C ⊕ 1)])

)

= s(X, Y) (by def’n)

�

We immediately have:

Corollary. With the same assumptions as the proposition, if X ′ is regular imbedded (=lci) in
Y ′ , with normal bundle N ′, then

g∗(c(N
′)−1

∩ [X ′]) = deg(Y ′/Y)s(X, Y).

If X ⊂ Y is also regularly imbedded, with normal bundle N, then

g∗(c(N
′)−1

∩ [X ′]) = deg(Y ′/Y)(c(N)−1
∩ [X]).

To see why the first part might matter: Suppose X ↪→ Y is a very nasty closed immer-
sion. Then blow up Y along X, to get Y ′ with exceptional divisor X ′. Then X ′ is regularly
imbedded (lci) in Y ′ — it is a Cartier divisor! This is the content of the next corollary.
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Corollary. Let X be a open closed subscheme of a variety Y. Let Ỹ be the blow-up of Y

along X, X̃ = PC the exceptional divisor, η : X̃ → X the projection. Then

s(X, Y) =
∑

k≥1

(−1)k−1η∗(X̃
k)

=
∑

i≥0

η∗(c1(O(1))i
∩ [PC])

In that first equation, the term X̃k should be interpreted as the kth self intersection of

the Cartier divisor X̃, also known as the exceptional divisor.
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