INTERSECTION THEORY CLASS 13

RAVI VAKIL

CONTENTS

1.	Where we are: Segre classes of vector bundles, and Segre classes of cones	1
2.	The normal cone, and the Segre class of a subvariety	3
3.	Segre classes behave well with respect to proper and flat morphisms	3

1. WHERE WE ARE: SEGRE CLASSES OF VECTOR BUNDLES, AND SEGRE CLASSES OF CONES

We first defined *Segre class of vector bundles* over an arbitrary scheme X. If E is a vector bundle, we get an operator on class on X. We define it by projectivizing E, so we have a flat and proper morphism $\mathbb{P}E \to X$, pulling back α to $\mathbb{P}E$, capping with $\mathcal{O}(1)$ a certain number of times, and pushing forward.

Hence we get $s_i(E) \cap : A_k X \to A_{k-i} X$, and for example we checked the non-immediate fact that $s_0(E)$ is the identity. (Recall s_0 involved pulling back, capping with precisely rank E - 1 copies of $\mathcal{O}(1)$, and then pushing forward.) Note that $s_k(E) = s_k(E \oplus 1)$, as the Whitney product formula gives $s(E \oplus 1) = s(E)s(1) = s(E)$.

We want to generalize this to cones. Here again is the definition of a *cone* on a scheme X. Let $S^{\cdot} = \bigoplus_{i \ge 0} S^i$ be a sheaf of graded \mathcal{O}_X -algebras. Assume $\mathcal{O}_X \to S^0$ is surjective, S^1 is coherent, and S^{\cdot} is generated (as an algebra) by S^1 . Then you can define $\underline{\operatorname{Proj}}(S^{\cdot})$, which has a line bundle $\mathcal{O}(1)$. $\underline{\operatorname{Proj}}(S^{\cdot}) \to X$ is a projective (hence proper) morphism, but it isn't necessarily flat! (Draw a picture, where the cone has components of different dimension.) Flat morphisms have equidimensional fibers, and cones needn't have this.

A couple of important points, brought out by Joe and Soren. I've been imprecise with terminology. Although one often sees phrases such as "the cone is $C = \text{Spec}(S^{\cdot})$ ", we lose a little information this way; the cone should be defined to be the graded sheaf S^{\check}. The sheaf can be recovered from C_XY along with the action of the multiplicative group \mathcal{O}_X^* ; the nth graded piece is the part of the algebra where the multiplicative group acts with weight n.

Example 1: say let E be a vector bundle, and $S^{i} = \text{Sym}^{i}(E^{\vee})$. Then $\underline{\text{Proj}} S^{\cdot} = \mathbb{P}E$. *Example 2:* Say $T^{i} = \text{Sym}^{i}(E^{\vee} \oplus 1) = S^{i} \oplus S^{i-1}z$, so (better) $T^{\cdot} = S^{\cdot}[z]$. Then $\underline{\text{Proj}} T^{\cdot} = \mathbb{P}E$. *Example 3:*

Date: Wednesday, November 3, 2004.

<u>Proj</u>($S^{\cdot}[z]$) = $C \coprod \underline{Proj}(S^{\cdot}) = \underline{Spec} S^{\cdot} \coprod \underline{Proj}(S^{\cdot})$. The argument is just the same. The right term is a Cartier divisor in class $\mathcal{O}_{\underline{Proj}(S^{\cdot}[z])}(1)$. *Example 4:* The blow-up can be described in this way, and it will be good to know this. Suppose X is a subscheme of Y, cut out by ideal sheaf \mathcal{I} . (In our situation where all schemes are finite type, \mathcal{I} is a coherent sheaf.) Then let $S^{\cdot} = \bigoplus_i \mathcal{I}^i$, where \mathcal{I} is the ith power of the ideal \mathcal{I} . (\mathcal{I}^0 is defined to be \mathcal{O}_X .) Then $Bl_X Y \cong \underline{Proj} S^{\cdot}$. A short calculation shows that the exceptional divisor class is $\mathcal{O}(-1)$. The *exceptional divisor* turns out to be $\underline{Proj} \oplus \mathcal{I}^n / \mathcal{I}^{n+1}$. (Note that this is indeed a graded sheaf of algebras.) As $\oplus \mathcal{I}^n \to \oplus \mathcal{I}^n / \mathcal{I}^{n+1}$ is a surjective map of rings, this indeed describes a closed subscheme of the blow-up. (Remember this formula — it will come up again soon!)

So the same construction of Segre classes of vector bundles doesn't work: there is no flat pullback to $Proj(S^{\cdot})$. So what do we do?

Idea (slightly wrong): We can't pull classes back to $\underline{\operatorname{Proj}}(S^{\cdot})$. But there is a natural class up there already: the fundamental class. So we define

$$s(C) \stackrel{?}{=} q_*(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap [\underline{\operatorname{Proj}}\, C])$$

where q is the morphism $\underline{\operatorname{Proj}} C \to X$. Instead, as Segre class of vector bundles are stable with respect to adding trivial bundles, we define

$$s(C) := q_*(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap [\underline{\operatorname{Proj}}(C \oplus 1)])$$

where q is the morphism $\underline{\operatorname{Proj}}(C \oplus 1) \to X$. Why is adding in this trivial factor the right thing to do? Partial reason: if C is the 0 cone, i.e. $S^i = 0$ for i > 0, then $\underline{\operatorname{Proj}} C$ is empty, but $\underline{\operatorname{Proj}} C \oplus 1$ is not; we get different answers. But if you add more 1's, you will then get the same answer: $s(C \oplus 1 \oplus \cdots \oplus 1) = s(C)$.

(Exercise: show that $s(C \oplus 1) = s(C)$.)

Note: s has pieces in various dimensions.

Last time I proved:

Proposition. (a) If E is a vector bundle on X, then $s(E) = c(E)^{-1} \cap [X]$, where c(E) is the total Chern class of X, $r = \operatorname{rank}(E)$. $c(E) = 1 + c_1(E) + \cdots + c_r(E)$. (I would write $s(E) = s(E) \cap [X]$, but the two uses of s(E) are confusing!) This is basically our definition of Segre/Chern classes.

(b) Let $C_1, ..., C_t$ be the irreducible components of C, m_i the geometric multiplicities of C_i in C. Then $s(C) = \sum_{i=1}^{t} m_i s(C_i)$. (Note that the C_i are cones as well, so $s(C_i)$ makes sense.) In other words, we can compute the Segre class piece by piece.

2. THE NORMAL CONE, AND THE SEGRE CLASS OF A SUBVARIETY

Let X be a closed subscheme of a scheme Y (not necessarily lci = local complete intersection), cut out by ideal sheaf I.

 $\mathcal{I}/\mathcal{I}^2$ is the conormal sheaf to X; it is a sheaf on X. (Why is it a sheaf on X? Locally, say $Y = \operatorname{Spec} R$, and $X = \operatorname{Spec} R/I$. Then this is the R-module I/I^2 . The fact that I said that it is an R-module makes it a priori a sheaf on Y. But note that it is also an R/I module; the action of I on I/I^2 is the zero action.) If X is a local complete intersection (regular imbedding), then this turns out to be a vector bundle.

Consider $\sum_{n=0}^{\infty} \mathcal{I}^n / \mathcal{I}^{n+1}$. (Recall that $\underline{\operatorname{Proj}}$ of this sheaf gives us the exceptional divisor of the blow-up.) *Define* the normal cone $\overline{C} = C_X Y$ by

$$C = \underline{\operatorname{Spec}} \sum_{n=0}^{\infty} \mathcal{I}^n / \mathcal{I}^{n+1}.$$

Define the *Segre class* of X in Y as the Segre class of the normal cone:

$$\mathbf{s}(\mathbf{X},\mathbf{Y}) = \mathbf{s}(\mathbf{C}_{\mathbf{X}}\mathbf{Y}) \in \mathbf{A}_{*}\mathbf{X}.$$

If X is regularly imbedded (=lci) in Y, then the definition of s(X, Y) is

$$s(X, Y) = s(N) \cap [X] = c(N)^{-1} \cap [X].$$

The following geometric picture will come up in the central construction in intersection (the deformation to the normal cone). $X \times \mathbb{A}^1 \hookrightarrow Y \times \mathbb{A}^1$. Then blow up $X \times 0$ in $Y \times \mathbb{A}^1$. The ideal sheaf of $X \times 0$ is $\mathcal{I}[t]$, where t is the coordinate on \mathbb{A}^1 . Thus the normal cone to $X \times 0$ in $Y \times \mathbb{A}^1$ is $C_X Y[t]$. Hence the exceptional divisor is $\underline{\operatorname{Proj}}(C_X Y[t])$ (draw a picture). Inside it is the Cartier divisor t = 0, which is $\operatorname{Proj}(C_X Y)$.

3. SEGRE CLASSES BEHAVE WELL WITH RESPECT TO PROPER AND FLAT MORPHISMS

This is the key result of the chapter.

Proposition. Let $f : Y' \to Y$ be a morphism of pure-dimensional schemes, $X \subset Y$ a closed subscheme, $X' = f^{-1}(X)$ the inverse image scheme, $g : X' \to X$ the induced morphism.

(a) If f proper, Y irreducible, and f maps each irreducible component of Y' onto Y then

$$g_*(s(X',Y')) = \deg(Y'/Y)s(X,Y).$$

(b) If f flat, then

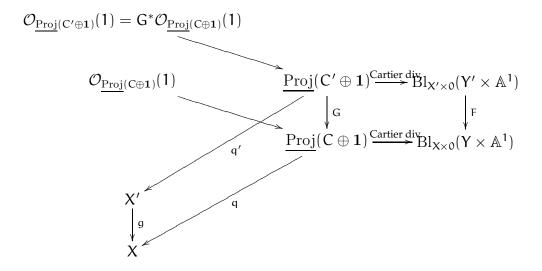
$$g^*(s(X',Y')) = s(X,Y).$$

Let me repeat why I find this a remarkable result. X' is a priori some nasty scheme; even if it is nice, its codimension in Y' isn't necessarily the same as the codimension of X in Y. The argument is quite short, and shows that what we've proved already is quite sophisticated.

As a special case, this result shows that Segre classes have a fundamental birational invariance: if $f : Y' \to Y$ is a birational proper morphism, and $X' = f^{-1}X$, then s(X', Y') pushes forward to s(X, Y).

Proof. Let me assume that Y' is irreducible. (It's true in general, and I may deal with the general case later.)

Let me first write the diagram on the board, and then explain it.



We blow up $Y \times \mathbb{A}^1$ along $X \times 0$, and similarly for Y' and X'. The exceptional divisor of $\operatorname{Bl}_{X\times 0}(Y \times \mathbb{A}^1)$ is $\operatorname{\underline{Proj}}(C \oplus 1)$, and similarly for Y' and X'. The universal property of blowing up $Y \times \mathbb{A}^1$ shows that there exists a unique morphism G from the top exceptional divisor to the bottom. Moreover, by construction, the exceptional divisor upstairs is the pullback of the exceptional divisor downstairs (that's the statement about the two $\mathcal{O}(1)$'s in the diagram). Let q be the morphism from the exceptional divisor $\operatorname{\underline{Proj}}(C \oplus 1)$ to X, and similarly for q'. That square commutes: $q \circ G = g \circ q'$ (basically because that morphism G was defined by the universal property of blowing up).

Now $f_*[Y' \times \mathbb{A}^1] = d[Y \times \mathbb{A}^1]$ (where I am sloppily using the name f for the morphism $Y' \times \mathbb{A}^1 \to Y \times \mathbb{A}^1$). This is computed on a dense open set, so blow-up doesn't change this fact:

$$F_*[\operatorname{Bl}_{X'\times 0} Y' \times \mathbb{A}^1] = d[\operatorname{Bl}_{X\times 0} Y \times \mathbb{A}^1].$$

Now we've shown that proper pushforward commutes with intersecting with a (pseudo-)Cartier divisor. Hence

$$G_*[\operatorname{Proj}(C'\oplus 1)] = d[\operatorname{Proj}(C\oplus 1)]$$

Now I'm going to prove (a), and I'm going to ask you to prove (b) with me, so pay attention!

$$\begin{split} g_*s(X',Y') &= g_*q'_*\left(\sum_i c_1(G^*(\mathcal{O}(1))^i \cap [\mathbb{P}(C' \oplus 1)])\right) & (by \text{ def'n}) \\ &= q_*G_*\left(\sum_i c_1(G^*(\mathcal{O}(1))^i \cap [\mathbb{P}(C' \oplus 1)])\right) & (prop. \text{ push. commute}) \\ &= q_*\left(\sum_i c_1((\mathcal{O}(1))^i \cap d[\mathbb{P}(C \oplus 1)])\right) & (proj. \text{ form. }) \\ & (i.e. \ c_1 \text{ commutes with prop. pushforward}) \\ &= ds(X,Y) & (by \text{ def'n}) \end{split}$$

Now (b) is similar:

$$\begin{split} g^*s(X,Y) &= g^*q_*\left(\sum_i c_1((\mathcal{O}(1))^i \cap [\mathbb{P}(C \oplus 1)])\right) \quad (by \ def'n) \\ &= q'_*G^*\left(\sum_i c_1((\mathcal{O}(1))^i \cap [\mathbb{P}(C \oplus 1)])\right) \quad (push/pull \ commute) \\ &= q'_*\left(\sum_i c_1((G^*\mathcal{O}(1))^i \cap G^*[\mathbb{P}(C \oplus 1)])\right) \\ &= s(X,Y) \quad (by \ def'n) \end{split}$$

We immediately have:

Corollary. With the same assumptions as the proposition, if X' is *regular imbedded* (=lci) in Y', with normal bundle N', then

$$g_*(c(N')^{-1} \cap [X']) = \deg(Y'/Y)s(X,Y).$$

If $X \subset Y$ is also regularly imbedded, with normal bundle N, then

$$g_*(c(N')^{-1}\cap [X']) = \deg(Y'/Y)(c(N)^{-1}\cap [X]).$$

To see why the first part might matter: Suppose $X \hookrightarrow Y$ is a very nasty closed immersion. Then blow up Y along X, to get Y' with exceptional divisor X'. Then X' *is* regularly imbedded (lci) in Y' — it is a Cartier divisor! This is the content of the next corollary.

Corollary. Let X be a open closed subscheme of a variety Y. Let \tilde{Y} be the blow-up of Y along X, $\tilde{X} = \mathbb{P}C$ the exceptional divisor, $\eta : \tilde{X} \to X$ the projection. Then

$$\begin{split} s(X,Y) &=& \sum_{k\geq 1} (-1)^{k-1} \eta_*(\tilde{X}^k) \\ &=& \sum_{i\geq 0} \eta_*(c_1(\mathcal{O}(1))^i \cap [\mathbb{P}C]) \end{split}$$

In that first equation, the term \tilde{X}^k should be interpreted as the kth self intersection of the Cartier divisor \tilde{X} , also known as the exceptional divisor.

E-mail address: vakil@math.stanford.edu