
1. Linear Systems

General Setup: L is a line bundle on our space X. We choose some
nontrivial subspace of sections V ⊂ H0(X, L) with basis {s0, . . . , sr}.

General Goal: To understand the map to P
r induced by the sections,

which ‘should’ be x 7→ [s0(x); . . . ; sr(x)].

Possible problems:

(1) Does a choice of coordinate on our line bundle L alter the map?
Nope, since projective space is nice under scalar action

(2) Projective space isn’t supposed to have a point [0; . . . ; 0], so
what do we do when x ∈ ker si for each si?

This is a serious issue.

The good news about our second problem is that the offending set
is as nice as we could want: it is naturally the (closed) subscheme
of X which is cut out by the section si. This subscheme is the base
locus of V , which we’ll write as B. So we at least have a rational map
ϕ : X − B → P

r.

Example. Let X = P
2, and L = OP2(2). Some sections: J :=

{x2, xy, y2, xz, yz, z2}. What’s the base locus? It’s nothing! Yeah!
So we get a bona fide map P

2 → P
5.

Example. Let’s stick with our scheme and line bundle, but pick out
some new sections: R := {x2, xy, y2, xz, yz}. Will we get lucky and
not have a base locus again? No. This time B = [0; 0; 1]. So we get a
rational map P

2
99K P

4 defined away from [0; 0; 1].

We’re not happy with just having a rational map, since we think we
should be able to ‘fill in’ the missing information.

Example. Let’s return to the previous example for a minute, and see
what’s happening near the base locus. We’ll let [αt; βt; 1] be a point
near [0; 0; 1] (of course, we won’t let α = β = 0 yet). Where does this
point go?

[α2t2; αβt2; βt2; αt; βt] = [α2t; αβt; β2t; α; β].

It seems that as we approach [0; 0; 1] along the line [αt; βt; 1], the map
is taking us to [0; 0; 0; α; β]. Hmm...seems that we’re getting an idea of
what happens to a tangent to our base locus...what does that make us
think of?
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In fact, there is a way to extend the map we’ve been thinking about
to the blowup of X along B, X̃ = BlBX.

E
�
�

// X̃ = BlBX
f
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π
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B
�
�

// X //_____ P
r

How can we get our hands on f? We’re going to pull back the line
bundle L to BlBX and tweak it remove the base locus. Fact: the
bundle π∗L−E has no base locus. Now we’ll use this new line bundle
to map to P

r, and all will be well.

Example. Suppose our variety is P
1, and we’ve chosen the bundle

OP1(2), with sections {x2, xy}. This gives a map P
1

99K P
1 away from

[0; 1], though we ‘should’ know how to fix this map to make it a bona
fide map. How do we resolve this? Let’s follow the formula above: we’ll
blow up P

1 along [0; 1] (this will just give us [0; 1] ↪→ P
1 back again,

since [0; 1] is cartier and cut out by x = 0), and twist our sections by
−E, which in this case means divide by x.

[0; 1] �
�

//
P

1

[x;y]
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?
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??

?
??
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��

[0; 1] �
�

//
P

1
[x2;xy]

//___
P
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Aren’t we in intersection theory? So you might want to know
why I’m talking about this in an intersection theory class. The answer
is that we can use chern classes to say something about the degree of
f∗[X̃], which we will see is connected to the segre class of B in X and
the degree of the map f . Yeah!

degfX̃ := deg(X̃/f(X̃))

∫

Pr

c1(OPr(1))dim(X) ∩ [f(X̃)]

=

∫

X̃

c1(f
∗(OPr(1)))dim(X).

Theorem (see Fulton, Prop 4.4).

degf X̃ =

∫

X

c1(L)n −

∫

B

c(L)n ∩ s(B, X).
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Sketch of proof. To make life easy, I’ll write dim(X) = n. We saw
before that f ∗(OPr(1)) = π∗(L) ⊗ O(−E), so let’s substitute:

degfX̃ =

∫

X̃

c1(f
∗(OPr(1)))n =

∫

X̃

(c1(π
∗L) − c1(O(E)))n

=
n

∑

i=0

(−1)i

(

n

i

)
∫

X

c1(L)n−iπ∗

(

c1(O(E))i ∩ [X̃]
)

=

∫

X

c1(L)n −

∫

X

n
∑

i=1

(

n

i

)

c1(L)n−i ∩ (−1)i−1π∗

(

Ei
)

=

∫

X

c1(L)n −

∫

X

n
∑

i=0

(

n

i

)

c1(L)n−i ∩
∑

k≥1

(−1)k−1π∗

(

Ek
)

=

∫

X

c1(L)n −

∫

B

(1 + c1(L))n ∩ s(B, X).

�

Useful reminder: We saw in class last day that, using our language
of the day,

s(B, X) =
∑

k≥1

(−1)k−1π∗(E
k).

Useful reminder: The degree of α ∈ AkX is 0 whenever k > 0.

Example. Let’s return to the first example. According to the previous
theorem we evaluate

∫

X

c1(OP2(2))2 = 4

(
∫

X

c1(OP2(1))

)2

= 4.

Since this example has no base locus, we see that the degree of our
map to P

5 is 4.

Example. Let’s return to the second example. Since the base locus
is [0; 1] we see that s(B, X) = [pt]. So our (extended) map has degree
4 − 1 = 3.

Example. Cremona: Let’s try P
2 [yz;xz;xy]

−→ P
2. The base locus is the

subscheme yz = xz = xy = 0, otherwise known as the three reduced
points [1; 0; 0], etc. Each has segre class of a point, so that we get the
degree of the map 4 − 3 = 1. It’s a birational morphism! What’s the
inverse? Itself.
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Example. Here’s an example where the image variety has degree 1,
so that we’re left computing the degree of the map. We’ll use OP2(2)
again, with sections x2, y2, z2. There’s no base locus, so our theorem

returns 4 for the degree of the map P
2 [x2;y2;z2]

−→ P
2.

Example. If we choose sections x2, xy, y2 of OP2(2) to map into P
2,

the base locus is the non-reduced point [0; 0; 1]. Since the image loses
dimension (it sits on the conic ac = b2), our theorem tells us that
4 = eBX.

2. Intersection Product

In this section I’m going to tie up some of the loose ends Ravi left for
me on Monday. Recall that we’re interested in finding a map Ap(X)⊗

Aq(X)
×
→ Ap+q−n(X). The things left for me are to clear up that there’s

a map Zk(X) ⊗ Zl(Y )
×
→ Zk+l(X × Y ) and that this map gives us a

map on cycle classes.

For the first, we define the map by giving its action on subvarieties
and extending by linearity. We take [W ]×[V ] 7→ [W×V ]. The studious
student asks why this product lands in the right cycle class.

dim W ×k V = dim
(

(W ×k V ) ×k k̄
)

= dim
(

(W ×k k̄) ×k̄ (V ×k k̄)
)

= dim
(

W ×k k̄
)

+ dim
(

V ×k k̄
)

= dim W + dim V.

Here we have used two exercises from Chap 3 of Hartshorne and the
following diagram

yy
y9

y9
y9

y9
y9

y9
y9

##

��

///o/o/o/o/o/o/o/o/o/o V ×k k̄

��

||
|<

|<
|<

|<
|<

W ×k k̄

��

///o/o/o/o/o/o/o/o/o/o/o/o/o k̄

��

W ×k V

xxqqqqqqqqqqq

##

// V

{{xx
xx

xx
xx

xx

W // k

So we have left to justify that this gives us a map on cycle classes,
and on the way we probably expect we get some result about push
forwards and pull backs.
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Theorem. Let α ∈ Ak(X) and β ∈ Al(Y ).

• If α ∼ 0 or β ∼ 0, then α × β ∼ 0.
• The product f × g of proper (resp., flat) maps is again proper

(resp., flat), and (f×g)∗α×β = f∗α×g∗β (resp., (f×g)∗α×β =
f ∗α × g∗β).

Proof. Part 2 will follow once we split up f × g into the composition
of f × mboxid and id × g. For part 1, assume that α ∼ 0, and reduce
to the case where W = Y . Then α × β is the pull back of α under
the projection X × W → X. Since we can pull back classes under flat
morphisms, we win. �


