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Where we’re going, by popular demand: Grothendieck Riemann-Roch (chapter 15);
bivariant intersection theory and A∗ (chapter 17).

1. LAST DAY

We defined the Gysin pullback i! in a rather general circumstance. I have only a few
additional comments to make. Recall that a morphism f : X → Y is a local complete inter-
section morphism if f can be factored as a local complete intersection followed by a smooth
morphism.

I don’t know why one wouldn’t more generally think of factorizations into a local com-
plete intersection followed by a flat morphism.

I gave you a few examples as to why you might care about such morphisms. Here is
another. If X and Y are smooth then any morphism between them is an lci morphism.
Reason: factor it into

X ↪→ X × Y → Y.

Date: Monday, November 22, 2004.
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2. TOWARDS GROTHENDIECK-RIEMANN-ROCH

I’m going to first explain the terminology behind the statement, then give the statement.
I will then give some examples to show you that the statement is in fact very powerful.
And finally, I hope to sketch a proof in an important special case,

2.1. The Chern character and the Todd class. Suppose E is a rank n vector bundle. Let
α1, . . . , αn be the Chern roots of the vector bundle, so α1 + · · ·+ αn = c1(E), etc. Define

ch(E) =

r∑

i=1

exp(αi)

When you expand this out, you get:

ch(E) = rk(E) + c1 +
1

2
(c2

1 − c2) +
1

6
(c3

1 − 3c1c2 + c3)

+
1

24

(

c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4

)

+ · · ·

So this makes sense for any coherent sheaf, not just a vector bundle. In that case, rank
refers to the rank at the generic point.

Exercise. For any exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0, ch(E) =

ch(E ′) + ch(E ′′). (This is true for coherent sheaves in general.)

For comparison, the Chern polynomial is multiplicative in exact sequences; the Chern
character is additive.

Exercise. For tensor products of vector bundles, ch(E ⊗ E ′) = ch(E) · ch(E ′). I don’t
think this is true for coherent sheaves in general, but haven’t checked. (I would expect∑

i≥0 ch(Tori(E, E ′)) = ch(E) · ch(E ′).)

The Todd class td(E) of a vector bundle is defined by

td(E) =

r∏

i=1

Q(αi)

where

Q(x) =
x

1 − e−x
= 1 +

1

2
x +

∞∑

k=1

(−1)k−1 Bk

(2k)!
x2k.

The first few terms are

td(E) = 1 +
1

2
c1 +

1

12
(c2

1 + c2) +
1

24
c1c2

+
1

720

(

−c4
1 + 4c12c2 + 3c2

2 + c1c3 − c4

)

+ · · ·

If 0 → E ′ → E → E ′′ → 0 is exact, then

td(E) = td(E ′) td(E ′′).

Like the Chern polynomial, it is multiplicative in exact sequences.
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2.2. The Grothendieck groups K0X and K0X. If you went to Dan Ramras’ K-theory talks,
you will have seen these.

The Grothendieck group of vector bundles K0X on X is the group generated by vector bun-
dles, modulo the relations on exact sequences [E] = [E ′] + [E ′′]. Vector bundles pull back
to vector bundles, and exact sequences of vector bundles pull back to exact sequences of
vector bundles, so if a morphism f : X → Y induces a homomorphism f∗ : K0X → K0Y.
However, vector bundles seldom pushforward to vector bundles.

K0X is a ring: [E] · [F] = [E ⊗ F].

The Grothendieck group of coherent sheaves K0X on X is the group generated by coherent
sheaves, modulo the same relations on exact sequences. Bad news: coherent sheaves pull
back to coherent sheaves, but exact sequences of coherent sheaves don’t pull back to exact
sequences of coherent sheaves. So we don’t have a pullback map f∗ : K0X → K0Y. Good
news: we can make sense of pushforwards; if f : X → Y is a proper morphism, then
coherent sheaves pushforward to coherent sheaves (see Hartshorne). Bad news: exact
sequences don’t push forward to exact sequences: If

0 → F ′ → F → F ′′ → 0

is an exact sequence on X, then we only get left exactness of pushforwards:

0 → f∗F
′ → f∗F → f∗F

′′.

Good news: we can extend this to a long exact sequence:

0 // R0f∗F
′ // R0f∗F

// R0f∗F
′′ //

R1f∗F
′ // R1f∗F

// R1f∗F
′′ //

R2f∗F
′ // R2f∗F

// R2f∗F
′′ // · · ·

So this tell us how to define f∗ : K0X → K0Y, by

f∗[F ] =
∑

i≥0

(−1)i[Rif∗F ].

(See Hartshorne for more on these “higher direct image sheaves. They can be defined
as follows: Rif∗F is the sheaf associated to the presheaf U → Hi(f−1(U),F).

We obviously have a homomorphism K0X → K0X.

K0X is a K0X-module: K0X ⊗ K0X → X is given by [E] · [F ] = [E ⊗ F ]. (Exercise: this
is well-defined. Key fact: if 0 → F ′ → F → F ′′ → 0 is an exact sequence of coherent
sheaves, and E is a vector bundle, then 0 → E ⊗ F ′ → E ⊗ F → E ⊗ cF ′′ → 0 is exact.
(Explain. Tensoring with locally frees is exact.)

Lemma. If α ∈ K0Y and β ∈ K0X, and f : X → Y, then f∗(f
∗α · β) = αf∗β.
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Proof. The projection formula Rif∗(f
∗E ⊗ F) = E ⊗ Rif∗F , shown in Hartshorne. �

Fact. If X is nonsingular, the map K0X → K0X is an isomorphism.

Reason: If X is nonsingular, then F has a finite resolution by locally free sheaves:

0 → En → En−1 → · · · → E1 → E0 → F → 0,

where the n ≤ dim X. Hence the inverse map is [F ] =
∑n

i=0(−1)i[Ei]. A sketch of the
reason: show that there is a vector bundle surjecting onto F . (“There are enough locally
free’s.”) Build the sequence from right to left. By the time you reach En, you will run out
of steam — the kernel at some point will already be locally free. How do you show this?
You have a cohomological measure of the “non local freeness” of a coherent sheaf. If the
measure is 0, the sheaf is the 0 sheaf. If 0 → F ′ → E → F → 0, then you show that
the cohomological measure of F ′ is one less than that of F . (Hence if the cohomological
measure is 1, then the sheaf is locally free.)

From now on, X will be smooth, so K0X = K0X, so I’ll just call this group K(X).

The Chern character map descends to K(X):

ch : K(X) → A(X)Q.

3. STATEMENT OF THE THEOREM

Grothendieck-Riemann-Roch Theorem. For any α ∈ K(X),

ch(f∗α) · td(TY) = f∗(ch(α) · td(TX)).

Here f : X → Y is a proper morphism of smooth varieties.

(I should point out where all the intersections take place, and where the pushforwards
take place!)

This can be generalized further to singular schemes, but this is enough generality for
now.

3.1. Why you should care. Before we get into proving it, let me first try to convince you
how powerful it is. I’ll first show that it gives you old-fashioned Riemann-Roch. (I won’t
try to convince you why you should care about Riemann-Roch for curves — that is a
whole lecture in itself, or more!)

Let’s apply this to Y a point, X a smooth curve, and α a line bundle L. Then we get

h0(X, L) − h1(X, L) = · · ·

On the right side, we have

f∗((1 + c1(L))(1 +
1

2
c1(T)) = f∗(1 + c1(L) −

1

2
c1(K)) = deg(c1(L) −

1

2
c1(K)).

Recall that c1(K) = −c1(T) = 2g − 2. Thus the right side is d − g + 1.
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That’s the baby-est case. Let’s make things more interesting. We’ll keep Y a point and
X a nonsingular curve, and now α is the class of a vector bundle V of rank r. Then we get

h0(X, V) − h1(X, V) = f∗((r + c1(V))(1 +
1

2
c1(T)) = f∗(c1(V) +

r

2
c1(T)) = d + r(1 − g).

Let’s generalize further; now V is a coherent sheaf, of “rank” r (rank at the generic
point). The same formula holds!

Next let’s go to the case where X is now a smooth surface, Y a point, and to keep things
calm, let’s make α the class of a line bundle L. Then the left side is

h0(X, L) − h1(X, L) + h2(X, L).

The right side is

f∗((1 + c1(L) +
1

2
(c2

1(L) − c2(L)))

(

1 +
c1(T)

2
+

c2
1(T) + c2(T)

12

)

= deg

(

c2
1(L)

2
− c1(L) · K/2 +

K2 + c2(T)

12

)

which is Riemann-Roch for surfaces, which you can read about in Hartshorne chapter V.

More generally still, if X is a smooth surface, and E is a vector bundle, and Y is still a
point, we get

χ(X, E) =

∫

X

ch(E) · td(TX).

We have reproved the Hirzebruch-Riemann-Roch theorem. And this also works for coher-
ent sheaves.

What about if Y is not a point? I’ll describe why you care somewhat philosophically.
Suppose you have a nice morphism X → Y, interpreted as “nice family” (say of smooth
surfaces). Say you have a vector bundle on the family. On each of the elements of the
family (the fibers of the morphism), you have a vector bundle; let’s say to make things nice
that for every element of the family, this vector bundle has vanishing higher cohomology.
Then h0(V) is constant, as h0(V) = χ(V), and χ(V) is constant on connected families.
Thus for each point of the base Y, you have a vector space of some rank h0(V). You
should expect this to glue together into a vector bundle, and indeed it does: f∗V . (Again,
to make this precise requires Hartshorne chapter III or its equivalent.) Which vector bundle
do you get? For example, what are its Chern classes? Grothendieck-Riemann-Roch will
answer this for you!

So let me emphasize: you’re going to see a proof of GRR that will not be too bad; and as
a special case you’ll get old-fashioned Riemann-Roch for curves. I think the difficulty of
this proof is comparable to the difficulty of building up the machinery behind the “usual”
proof of Riemann-Roch in the algebraic category; so you may as well get a much more
powerful result for the same price.
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4. TOWARD A PROOF

I’ll prove this in the case where X → Y factors through X ↪→ P
n × Y → Y where the

first is a closed immersion. (This is a projective morphism in the sense of Hartshorne,
and a special case of a projective morphism according to other people, such as EGA. I
don’t want to get into this.) This isn’t such an outrageous assumption; for example, if X

is projective, then X ↪→ P
n, and then X ↪→ P

n × Y.

Lemma. Given X
f

// Z
g

// Y . Suppose GRR holds for f and g. Then it holds for g ◦ f.

Proof. This has been cooked up to be easy! (That Grothendieck is quite a tricky guy!)
The pushforward of ch(α) td(TX) by f is ch(f∗α) td(TZ), by GRR for f. The pushforward
of this in turn is ch(g∗f∗α) td(TY), by GRR for g. But then we have GRR for g ◦ f: (g ◦

f)∗(ch(α) td(TX)) = ch(g∗f∗α) td(TY). �

So our strategy is clear. We’re going to prove GRR for closed immersions X ↪→ Y, and
we’ll prove it for P

n × Y → Y.

5. GROTHENDIECK-RIEMANN-ROCH FOR P
n → pt

Let me first work out K(Pn).

Theorem. The group K0(P
m) is generated by the classes [O(n)], with 0 ≤ n ≤ m.

First we show:

Lemma. K0(P
m) is generated by the classes of line bundles [O(n)], without any restriction

on n.

Proof. I will need some machinery we have not developed. How much extra you will
need to consider as a “black box” will depend on how much you already know. Let F be
any coherent sheaf. Our goal is to get a resolution of F by direct sums of line bundles:

0 → ⊕O(?) → ⊕O(?) → · · · → ⊕O(?) → F → 0.

By an earlier statement, we need only show that for any coherent sheaf F , we can find a

surjection ⊕
j
i=1O(n) → F , because then we can iterate this, and at some point we will get

a 0.

By a property of ample line bundles, for N � 0, F ⊗ O(N) is generated by global
sections. (It is then generated by a finite number of global sections, by a Noetherian

argument.) That means that there is a surjection ⊕
j
i=1O → F(N). Twisting by O(−N), we

get our desired surjection ⊕
j
i=1O(−N) → F . �

The theorem is then proved once we know the next lemma:
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Lemma. There is an exact sequence on P
m

0 → O → ⊕m+1O(1) → ⊕(m+1
2 )O(2) → · · ·⊕(m+1

j )O(j) → · · ·⊕m+1O(m) → O(m+1) → 0.

Here’s how this implies the theorem. Twisting this by O(N) we get:

0 → O(N) → ⊕m+1O(N+1) → ⊕(m+1

2 )O(N+2) → · · ·⊕m+1O(N+m) → O(N+m+1) → 0.

This expresses [O(N + m)] in terms of the classes of the m + 1 smaller line bundles. Simi-
larly, it expresses [O(N)] in terms of the classes of the m + 1 larger line bundles. Thus by
using this repeatedly, any line bundle can be expressed in terms of O, O(1), . . . , O(m).

Aside: you also get some interesting algebra out of this. Apply the Chern polynomial
to this exact sequence. You get

m+1∏

i=0

(1 + iH)(−1)i(m+1
i ) ≡ 1 (mod Hm+1)

Example m = 1: (1+H)−2(1+2H)1 ≡ 1 (mod H2). Joe Rabinoff gave me a nice explanation
of why this is true; I’ll give it next day.

Sketch of proof of Lemma. We’ll prove instead an exact sequence

0 → O(−m − 1) → ⊕m+1O(−m) → · · · ⊕m+1 O(−1) → O → 0

which is the dual (or alternatively, a twist) of the one we want. Let V = ⊕m+1O(−1). Then
this sequence is

0 → ∧
m+1V → ∧

mV → · · · → ∧
1V → ∧

0V → 0.

You can check this on the level of graded modules. Let S = k[x0, . . . , xm], with the usual
grading. Let ⊕m+1S[−1]. (S[−1] is the same as S, except the grading is shifted by 1, so
S[−1]1 has dimension 1.) Define the map V → S by multiplication by (x0, . . . , xm). This
induces maps ∧j+1V → ∧jV . Then you can check by hand that this is exact everywhere.;

�

Theorem. GRR is true for P
m → pt for the line bundles O(n) (0 ≤ n ≤ m). Hence GRR is

true for P
m → pt.

Proof. Now p∗[O(n)] = χ(Pm,O(n)). Now we can compute the cohomology groups
of O(n) by hand, and we find that hi(O(n)) = 0 for n ≥ 0. Thus χ(Pm,O(n)) =

h0(Pm,O(n)). And this corresponds to the vector space of degree n polynomials with
m + 1 variables. This turns out to be

(

n+m

m

)

.

Hence we wish to prove that
∫

Pm

ch(O(n)) td(TPm) =

(

n + m

m

)

.

Let’s do this.
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Let’s first calculate td(TPm). The “Euler exact sequence” for the tangent bundle of pro-
jective space is

0 → O → O(1)⊕m+1 → TPm → 0.

(Aside: notice that this is the beginning of that big exact sequence of direct sums of line
bundles in the proof of the previous lemma (that was omitted in class)! This shouldn’t
be a coincidence, but I’m not precisely sure why not.) The Todd class is multiplicative for
exact sequences, so we get

td(TPm) =

(

x

1 − e−x

)m+1

where x = c1(O(1)). We also have ch(O(n)) = enx. Thus we want to show that
∫

Pm

enxxm+1

(1 − e−x)m+1
=

(

n + m

m

)

.

The thing on the left says: “extract the xm term the power series”. So we want to prove

[xm]
enxxm+1

(1 − e−x)m+1
=

(

n + m

m

)

.

Now the left side

= [x−1]
enx

(1 − e−x)m+1

so we’ve turned this into a residue calculation, which is a reasonable quals problem. �

Next, we’ll show that knowing the result for P
m → pt will imply the result for P

m×Y →
Y.
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