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1. WHAT WE’RE DOING THIS WEEK

In this final week of class, I’ll describe bivariant intersection theory, covering much of
Chapter 20. Again, you should notice that given chapters 1 through 6, we can comfortably
jump into chapter 20.

Suppose f : X → Y is any morphism. Throughout today and Wednesday’s lectures,
we’ll use the following notation. Suppose we are given any Y ′

→ Y. Define X ′ = X×Y Y,
so we have a fiber square

X ′
f′

//

��

Y ′

��

X
f

// Y.

Recall that the final fundamental intersection construction we came up with was the
following. Suppose f is a local complete intersection of codimension d (or more generally
a local complete intersection morphism). Then we defined

f! : AkY
′
→ Ak−dX

′

Date: Monday, November 29 and Wednesday, December 1, 2004.

1



for all Y ′
→ Y. These Gysin pullbacks were well-behaved in all ways, and in particular

compatible with proper pushforward, flat pullback, and intersection products.

An earlier example was that of a flat pullback; if f if flat of relative dimension n, then
f ′ is too, and we got f∗ : AkY

′
→ Ak−nX

′, which again behaves well with respect to
everything else.

We’ll now generalize this notion. Define a bivariant class for any f (not just lci) as fol-
lows. It is a collection of homomorphisms AkY

′
→ Ak−pX

′ for all Y ′
→ Y, all k, again

compatible with pushforward, pullback, and intersection products. We’ll call the group
of such things Ap(f : X → Y).

We’ll see that the group A−k(X → pt) will be (canonically) isomorphic to AkX . We’ll

see that Ak(id : X → X) is a ring, which Fulton calls the cohomology group; I might call the

resulting ring the Chow ring. We’ll denote this by AkX .

The ring structure is a product of the form ApX ⊗ AqX → Ap+qX. We’ll define more
generally

Ap(f : X → Y) ⊗Aq(g : Y → Z) → Ap+q(g ◦ f : X → Z) .

We’ll prove Poincare duality whenX is smooth: A∗X ∼= A∗X (as rings — recall we defined
a ring structure on the latter). We’ll define proper pushforward and pullback operations
for bivariant groups. Basically, they’ll behave the way you’d expect from homology and
cohomology. This will give a cap product A∗X×A∗X → A∗X. Alarming fact: This ring is
apparently not known to be commutative in general, because the argument requires reso-
lution of singularities. (It is known to be commutative in characteristic 0, and for smooth
things in positive characteristic, and a few more things.) I think it should be possible to
show that the ring is commutative in general using technology not available when this
theory was first developed, using Johan de Jong’s “alteration theorem” in positive char-
acteristic. If you would like to patch this hole, then come talk to me.

Okay, let’s get started. Today I’ll outline the results, and prove a few things; Wednesday
I’ll prove some more things.

2. PRECISE STATEMENTS

Let f : X → Y be a morphism. For each g : Y ′
→ Y, form the fiber square

X ′
f′

//

g′

��

Y ′

g

��

X
f

// Y

.

A bivariant class c in Ap(f : X → Y) is a collection of homomorphisms

c(k)
g : AkY

′
→ Ak−pX

′
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for all g : Y ′
→ Y, and all k, compatible with proper pushforwards, flat pullbacks, and in-

tersection products. I’ll make that precise in a moment, by stating 3 conditions explicitly.
But first I want to show you that you’ve seen this before in several circumstances.

Example 1. If f is a local complete intersection, or more generally an lci morphism,
we’ve defined f!. This gives some inkling as to why we want to deal with maps X → Y.
We could have just had a class on Y ′, but we have more refined information; we have a
class on X ′, that pushes forward to the more refined class on Y.

Example 2. If f : X → Y is the identity, and V is a vector bundle on Y, then the Chern
classes are of this form: α 7→ (g∗ck(V)) ∩ α.

Example 3 (which generalizes further): pseudodivisors. Let L be a line bundle on Y,
and X the zero-scheme of a section s of L. (s might cut out a Cartier divisor, i.e. X will
contain no associated points of Y; at the other extreme, s might be 0 everywhere.) Then
we defined “capping with a pseudo-divisor”: f∗AkY → Ak−1X. Because pseudodivisors
“pull back”, X ′ is a pseudodivisor on Y ′ (with corresponding line bundle g∗L, and corre-
sponding section g∗s), so we get a map f∗AkY

′
→ Ak−1X

′, and this behaves well respect
to everything else.

So we’re creating a machine that in some sense incorporates most things we’ve done so
far.

Here are the conditions.

(C1): If h : Y ′′
→ Y is proper, g : Y ′

→ Y is arbitrary, and one forms the fiber diagram

(1) X ′′

h′

��

f′′

// Y ′′

h

��

X ′

g′

��

f′

// Y ′

g

��

X
f

// Y

,

then for all α ∈ AkY
′′,

c(k)
g (h∗α) = h ′

∗
c

(k)

ghα

in Ak−pX
′.

(C2): If h : Y ′′
→ Y is flat of relative dimension n, and g : Y ′

→ Y is arbitrary, and one
forms the fiber diagram (1), then, for all α ∈ AkY

′,

c
(k+n)

gh (h∗α) = h ′∗c(k)
g α

in Ak+n−pX
′′.
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(C3): If g : Y ′
→ Y, h : Y ′

→ Z ′ are morphisms, and i : Z ′′
→ Z ′ is a local complete

intersection of codimension e, and one forms the diagram

(2) X ′′

f′′

//

i′′

��

Y ′′

i′

��

h′

// Z ′′

i

��

X ′

f′

//

g′

��

Y ′

g

��

h
// Z ′

X
f

// Y

then, for all α ∈ AkY
′,

i!c(k)
g (α) = c

(k−e)

gi′ (i!α)

in Ak−p−eX
′′.

2.1. Basic operations and properties. Here are some basic operations on bivariant Chow
groups A∗(X→ Y).

(P1) Product: For all f : X → Y, g : Y → Z, we have

· : Ap(f : X → Y) ⊗Aq(g : Y → Z) → Ap+q(gf : X → Z).

It is pretty immediate to show this: given any Z ′
→ Z, form the fiber diagram

(3) X ′
f′

//

��

Y ′
g′

//

��

Z ′

��

X
f

// Y g
// Z.

If α ∈ AkZ, then d(α) ∈ Ak−1Y
′ and c(d(α)) ∈ Ak−q−pX

′, so we define c · d by

c · d(α) := c(d(α)).

(P2) Pushforward: Let f : X → Y be proper, g : Y → Z any morphism. Then there is a
homomorphism (“proper pushforward”):

f∗ : Ap(gf : X → Z) → Ap(g : Y → Z).

Again, it’s straightforward: given Z ′
→ Z, form the fiber diagram (3). If c ∈ Apgf), and

α ∈ Ak(Z
′), then c(α) ∈ Ak−p(X ′). Since f ′ is proper, f ′

∗
(c(α)) ∈ Ak−p(Y

′). Define f∗(c) by

f∗(c)(α) = f ′
∗
(c(α)).

(P3): Pullback (not necessarily flat!!): Given f : X → Y, g : Y1 → Y, form the fiber square

(4) X1

f1
//

��

Y1

��

X
f

// Y.

For each p there is a homomorphism

g∗ : Ap(f : X → Y) → Ap(f1 : X1 → Y1).
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Again, we just follow our nose. Given c ∈ Ap(f), Y ′
→ Y1, then composing with g gives a

morphism Y ′
→. Therefor c(α) ∈ Ak−p(X

′), X ′ = X×Y Y
′ = X1 ×Y1

Y ′. Set

g ∗ (c)(α) = c(α).

Here are seven more axioms, which can also be easily verified.

(Apr) Associativity of products. If c ∈ A(X→ Y), d ∈ A(Y → Z), e ∈ A(Z→ W), then

(c · d) · e = c · (d · e) ∈ A(X→ W).

(Apf) Functoriality of proper pushforward. If f : X → Y and g : Y → Z are proper, Z → W

arbitrary, and c ∈ A(X → W), then

(gf)∗(c) = g∗(f∗c) ∈ A(Z → W).

(Apb) Functoriality of pullbacks. If c ∈ A(X→ Y), g : Y1 → Y, h : Y2 → Y1, then

(gh)∗(c) = h∗g∗(c) ∈ A(X×Y Y2 → Y2).

(Aprpf) Product and pushforward commute. If f : X → Y is proper, Y → Z and Z → W are
arbitrary and c ∈ A(X → Z), d ∈ A(Z → W), then

f∗(c) · d = f∗(c · d) ∈ A(Y → W).

(Aprpb) Product and pullback commute. If c ∈ A(f : X → Y), d ∈ A(Y → Z), and g : Z1 → Z

is a morphism, form the fiber diagram

X1
f′

//

��

Y1
//

g′

��

Z1

g

��

X
f

// Y // Z.

Then
g∗(c · d) = g ′∗(c) ·∗ (d) ∈ A(X1 → Z1).

(Apfpb) Proper pushforward and pullback commute. If f : X → Y is proper, Y → Z, g : Z1 →

Z, and c ∈ A(X → Z) are given, then, with notation as in the preceding diagram

g∗f∗c = f ′
∗
(g∗c) ∈ A(Y1 → Z1).

(A?): Projection formula. Given a diagram

X ′
f′

//

g′

��

Y ′

g

��

X
f

// Y
h

// Z.

with g proper, the square a fiber square, and c ∈ A(X → Y), d ∈ A(Y ′
→ Z), then

c · g∗(d) = g ′

∗
(g∗(c) · d) ∈ A(X → Z).
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3. PROVING THINGS

Let S = SpecK, where K is some base field. There is a canonical homomorphism

φ : A−p(X → S) → Ap(X)

given by c 7→ c([S]).

Proposition. This is an isomorphism.

Proof. We will define the inverse morphism. Given a ∈ Ap(X), define a bivariant class
ψ(a) ∈ A−p(X → S) as follows: for any Y → S, and any α ∈ AkY, define

ψ(a)(α) = a× α ∈ Ap+k(X×S Y).

(Here a × α is the exterior product.) Since exterior products are compatible with proper
pushforward, flat pullback, and intersections, ψ(a) is a bivariant class.

Let’s check that this really is an inverse to φ. ψ(a)([S]) = a immediately, so φ ◦ ψ is
the identity. To show that ψ ◦ φ is the identity, we have to show that c(α) = φ(c) × α ∈

Ak+p(X×SY) for all α ∈ AkY. By compatibility with pushforward, we can assume α = [V],
and V = Y a variety of dimension k:

X×S V //

��

V

cl. imm.

��

X×S Y //

��

Y

��

X // S

Then α = p∗[S], where p : V → S is the morphism from V to S. Since c commutes with
flat pullback,

c(α) = c(p∗[S]) = p∗c([S]) = φ(c) × [V]

as desired. �

3.1. The Chow (“cohomology”) ring. Define ApX := Ap(id : X → X). We have a cup
product. We also have an element 1 ∈ A0X, which acts as the identity. We have a cap
product

∩ : ApX×AqX → Aq−pX

determined by

Ap(X → X) ×A−q(X → S) → A−(q−p)(X → S)

which makes A∗X into a left A∗X-module. All of this follows formally from our axioms.
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4. THINGS YOU MIGHT WANT TO BE TRUE

4.1. Poincare duality. Theorem. Let Y be a smooth, purely n-dimensional scheme (va-
riety) — not necessarily proper (compact).
(a) The canonical homomorphism ∩[Y] : ApY → An−pY is an isomorphism.
(b) The ring structure on A∗Y is compatible with that defined on A∗Y earlier. More gen-
erally, if f : X → Y is a morphism, β ∈ A∗Y, α ∈ A∗X, then the class f∗(β) ∩ α ∈ A∗X

coincides with that constructed earlier.

We’ll show something more general.

Theorem. Let g : Y → Z be a smooth morphism of relative dimension n, and let [g] ∈

A−n(g : Y → Z) be the bivariant class corresponding to “flat pullback”. Then for any
morphism f : X → Y and any p,

·[g] : Ap(f : X → Y) → Ap−n(gf : X → Z)

is an isomorphism.

In general, if f : X → Y is a flat morphism, or a local complete intersection, or a local
complete intersection morphism, the (flat or Gysin) pullback we’ve defined earlier defines
a bivariant class, which we’ll denote [f]. ([f∗] might be better.) Fulton calls this bivariant
class a canonical orientation. I’m not sure of the motivation for this terminology, so I’ll
avoid it.

Proof. We’ll define the inverse homomorphism

Ap−n(gf : X → Z) → Ap(f : X → Y).

Consider the fiber diagram

X

γ

��

f
// Y

δ
��

X×Z Y

p′

��

f′

// Y ×Z Y

p

��

q
// Y

g

��

X
f

// Y g
// Z

where δ is the diagonal map, and p and q are the first and second projections. Here γ is
the “graph” of the morphism X → Y over Z. Define

L : Ap−n(gf : X → Z) → AP(X → Y)

by L(c) = [γ] · g∗(c). Notice that γ and δ is a local complete intersection of codimension
n, with f ′∗[δ] = [γ]. (This requires a check in the case of γ.)

Notice that p ′ ◦ γ : X → X and q ◦ δ : Y → Y are both the identity morphisms (on X and
Y respectively).
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Let’s verify that L and “multiplication by [g]” are inverse homomorphisms. (This is
easier to understand if you see someone pointing at diagrams!) First,

L(c) · [g] = [γ] · (g∗[c] · [g]) (axiom (Apr))

= [γ] · [p ′] · c (axiom (C2))

= [p ′ ◦ γ] · c = 1 · c = c (axiom (Apr))

Second,

L(c · [g]) = f ′
∗

[δ] · p∗(c) · g∗[g] (axioms (Aprpb), (Apr))

= (p ◦ δ)∗(c) · [δ][q] (axiom (C2))

= c · [δ ◦ q] = c · 1 = c (axiom (Apr)).

�

4.2. Chern classes commute with all bivariant classes. Put another way, any operation
which commutes with proper pushforward, pullback, and intersections, automatically
commutes with Chern classes. Precisely:

Proposition. Let c ∈ Aq(f : X → Y), Y ′
→ Y, α ∈ Ak(Y

′), E a vector bundle on Y ′. Then

c(cp(E) ∩ α) = cp(f
′∗E) ∩ c(α) ∈ Ak−q−pX

′

where f ′ : X ′ = X×Y Y
′
→ Y.

Proof. Recall our definition of Chern classes. They are certain polynomials in Segre classes.
Segre classes are defined using operations of the form α 7→ p∗(c1(O(1))i∩p∗α), and since
c commutes with p∗ and p∗, we just have to show that c commutes with c1(L)∩, where
L is a line bundle on Y ′. We may assume α = [V]. Because c commutes with proper
pushforward, we may assume V = Y ′. Let L = O(D),D a Cartier divisor on V .

We can replace V by V ′, where V ′
→ V is proper and birational, so we may assume

D = D1 − D2, where D1 and D2 are effective. (Recall our trick in chapter 2: it isn’t true
that a Cartier divisor is a difference of two effective Cartier divisors, but we can do a clever
blow-up and turn it into a difference of two effective Cartier divisors.) Let i : D ↪→ V be
the inclusion. Then we’ve shown that c1(L)∩α = i∗i

!α, and since c commutes with i∗ and
i!, c commutes with c(L). �

4.3. Bivariant classes vanish in dimensions that you’d expect them to. Proposition. Let
f : X → Y be a morphism. Let m = dim Y, and let n be the largest dimension of any fiber
f−1y, y ∈ Y.

Ap(f : X → Y) = 0 if p < −n or p > m.

(Think about why this is what you’d expect!) In particular, for any X, ApX = 0 unless
0 ≤ p ≤ dimX.

(Proof omitted.)
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