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Where we are: proper pushforwards and flat pullbacks. We need a disproportionate
amount of algebra to set ourselves up. This will decrease in later chapters.

Last day: Rob proved the excision exact sequence:

Proposition. Let Y be a closed subscheme of X, and let U = X − Y. Let i : Y ↪→ X be the
closed immersion (proper!) and j : U → X be the open immersion (flat!). Then

AkY
i∗

// AkX
j∗

// AkU // 0

is exact for all k.

(Aside: you certainly expect more on the left!)

Proof. We quickly check that

ZkY
i∗

// ZkX
j∗

// ZkU // 0

is exact. Hence we get exactness on the right in our desired sequence. We also get the
composition of the two left arrows in our sequence is zero.

Next suppose α ∈ ZkX and j∗α = 0. That means j∗α =
∑

i div ri where each ri ∈ R(Wi)
∗,

where Wi are subvarieties of U. So ri is also a rational function on R(Wi) where Wi is the
closure in X. To be clearer, call this rational function ri Hence j∗(α −

∑
[div(ri)]) = 0 in

ZkU, and hence j∗(α −
∑

[div(ri)]) ∈ ZkY, and we’re done. �

Date: Monday, October 11, 2004.
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Definition. Y → X is an affine bundle of rank n over X if there is an open covering ∪Uα

of X such that f−1(Ui) ∼= Ui × A
n → Ui. This is a flat morphism.

Proposition. Let p : E → X be an affine bundle of rank n. Then the flat pullback
p∗ : AkX → Ak+nE is surjective for all k.

Immediate corollary: AkA
n = 0 for k 6= n.

Homework: Example 1.9.3 (a). Show that Ak(P
n) is generated by the class of a k-

dimensional linear space. (Hint: use the excision exact sequence.)

Example 1.9.4: Let H be a reduced irreducible hypersurface of degree d in P
n. Then

[H] = d[L] for L a hyperplane, and An−1(P
n−H) = Z/d/Z. Thus the codimension 1 Chow

group is torsion. (Caution: where are you using reduced and irreducible?)

ZkX ⊗ ZlY → Zk+l(X × Y) by [V] × [W] = [V × W].

Proposition.

(a) if α ∼ 0 then α × β ∼ 0. There are exterior products AkX ⊗ AlY → Ak+l(X × Y).
(b) If f and g are proper, then so is f × g, and (f × g)∗(α × β) = f∗α × g∗β. Hence

exterior product respects proper pushforward.
(c) If f and g are flat of relative dimensions m and n, (so f×g is flat of relative dimen-

sion m + n), then

(f × g)∗(α × β) = f∗α × g∗β.

Hence exterior product respects flat pullback.

1. DIVISORS

There are three related concepts of divisors: Weil divisors, Cartier divisors, and (a con-
cept local to intersection theory) pseudodivisors.

A Weil divisor on a variety X is a formal sum of codimension 1 subvarieties.

The notion of Cartier divisor looks more unusual when you first see it. A Cartier divisor
is defined by data (Uα, fα) where the Uα form an open covering of X and fα are non-zero
functions in R(Uα) = R(X), subject to the condition that fα/fβ is a unit (regular, nowhere
vanishing function) on the intersection Uα∩Uβ. There is an equivalence classes of Cartier
divisors.

The rational functions are called local equations. Local equations are defined up to mul-
tiplication by a unit.

Baby Example: X = Uα = A
1 − {1}, local equation 1/t2. Another local equation for the

same Cartier divisor: (t − 1)/t2.
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1.1. Crash course in Cartier divisors and invertible sheaves (aka line bundles). (See
Appendix B.4 for an even faster introduction!)

Pic X = { Car. div.} / lin. equiv. oo // {invertible sheaves}

= {Car. div. / princ. Car. div. }

��

= {line bundles}

��

{ Cartier divisors } oo // { inv. sheaves w. nonzero rat’l sec. }/inv. funcs.Γ(X,O∗

X)

Given a Cartier divisor (Uα, fα), here’s how you produce an invertible sheaf F . I need
to tell you F(U). F(U) = {(gα ∈ O∗

X(Uα ∩ U))α = R(X) : gαfα ∈ OX(Uα ∩ U)), gαfα =

gβfβ ∈ OX(U∩Uα∩Uβ)}. You can check that this is indeed a sheaf, and it is locally trivial:
check for U = Uα that F(Uα) consists of rational functions gα on Uα such that gαfα is a
regular function. Thus the gα are all of the form O(Uα)/fα (regular functions divided by
fα), and thus as a O(Uα)-module, it is isomorphic to O(Uα) itself.

Baby Example: X = Uα = A
1 − {1}, fα = 1/t2. The rational functions on X are K[t, 1/(t −

1)]. The module corresponding to this Cartier divisor is K[t, 1/(t − 1)]t2, which is clearly
isomorphic to K[t, 1/(t − 1)].

A Cartier divisor is effective if the fα are all regular functions (“have no poles”). Thus
we can add to that square above: { effective Cartier divisors } correspond to invertible
sheaves with nonzero sections.

A Cartier divisor is principal if it is the divisor of a rational function i.e. div(r) where
r ∈ R(X)∗. Two Cartier divisors differing by a principal Cartier divisor give rise to the
same invertible sheaf.

Rob told you that the Cartier divisor form an abelian group Div(X). When you mod
out by the subgroup of principal Cartier divisors, you get the group of invertible sheaves
Pic X.

The support of a Cartier divisor D, denoted |D|, is the union of all subvarieties Z of X

such that the local equation for D in the ring OZ,X is not a unit. This is a closed algebraic
subset of X of pure codimension one.

Notice: invertible sheaves pull back, but Cartier divisors don’t necessarily. (Give an
example.)

We have a map from Cartier divisors to Weil divisors. Linear equivalence of Cartier di-
visors rational equivalence of Weil divisors, hence this map descends to Pic X → AdimX−1X.

1.2. Pseudo-divisors. A pseudo-divisor on a scheme X is a triple where L is an invertible
sheaf on X, Z is a closed subset, and s is a nowhere vanishing section of L on X − Z.
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As of last day, you know: Pseudo-divisors pull back. And if X is a variety, any pseudo-
divisor on X is represented by some Cartier divisor on X. (A Cartier divisor D represents
a pseudo-divisor (L, Z, s) if |D| ⊂ Z, and there is an isomorphism OX(D) → L which away
form Z takes sD (the “canonical section”) to s.) Furthermore, if Z 6= X, D is uniquely
determined. If Z = X, then D is determined up to linear equivalence.

Hence given any pseudo-divisor D, we get a Weil divisor class in An−1X. But we can
do better. Given a pseudo-divisor D, we get a Weil divisor class [D] ∈ An−1(|D|).

2. INTERSECTING WITH DIVISORS

We will now define our first intersections, that with Cartier divisors, or more generally
pseudo-divisors. Let D be a pseudo-divisor on a scheme X. We define D · [V] where V is
a k-dimensional subvariety. D · [V] := [j∗D] where j is the inclusion V ↪→ X. This lies in
Ak−1V ∩ |D|. Hence we can do this with any finite combination of varieties. Note that we
get a map ZkX → Ak−1X, but we’re asserting more: we’re getting classes not just on X,
but on subsets smaller than X.

Proposition 2.3.

(a) (linearity in α) If D is a pseudo-divisor on X, and α and α ′ are k-cycles on X, then

D · (α + α ′) = D · α + D · α ′ in Ak−1(|D| ∩ (|α| ∪ |α ′|)).

(b) (linearity in D) If D and D ′ are pseudo-divisors on X, and α is a k-cycle on X, then

(D + D ′) · α = D · α + D ′ · α in Ak−1((|D| ∪ |D ′|) ∩ |α|).

(c) (projection formula) Let D be a pseudo-divisor on X, f : X ′ → X a proper mor-
phism, α a k-cycle on X ′, and g the morphism from f−1(|D|) ∩ |α| to |D| ∩ f(|α|)

induced by f. Then

g∗(f
∗D · α) = D · f∗(α) in Ak−1(|D| ∩ f(|α|)).

(d) (commutes with flat base change) Let D be a pseudo-divisor on X, f : X ′ → X a flat
morphism of relative dimension n, α a k-cycle on X, and g the induced morphism
from f−1(|D| ∩ |α|) to |D| ∩ |α|. Then

f∗D · f∗α = g∗(D · α) in Ak+n−1(f
−1(|D| ∩ |α|).

(e) If D is a pseudodivisor on X whose line bundle OX(D) is trivial, and α is a k-cycle
on X, then

D · α = 0 in Ak−1(|α|).

Proof next day.

Example: Intersection of two curves in P
2, C1 and C2. We get a number. Old-fashioned

intersection theory (Hartshorne V): O(C1)|C2
gives you a number.

This tells you a bit more: the class has “local contributions” from each connected com-
ponent of the intersection.
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Excess intersection can happen! Example: A line meeting itself.

Remark: This proves some of the things Fulton said about Bezout in the first chapter.

Here’s a natural question: if you intersect two effective Cartier divisors, then if you
reverse the order of intersection, you had better get the same thing!

D · [D ′] = D ′ · [D]?

Big Theorem 2.4 Let D and D ′ be Cartier divisors on an n-dimensional variety X. Then
D · [D ′] = D ′ · [D] in An−2(|D| ∩ |D ′|).

We’ll prove this next day, or the day after.

Corollary. Let D be a pseudo-divisor on a scheme X, and α a k-cycle on X which is
rationally equivalent to zero. Then D · α = 0 in Ak−1 |D|.

Corollary. Let D and D ′ be pseudo-divisors on a scheme X. Then for any k-cycle α on
X,

D · (D ′ · α) = D ′ · (D · α)

in Ak−2(|D| ∩ |D ′| ∩ |α|).

Hence we can make sense of phrases such as D1 · D2 · · · · Dn · α.

2.1. The first Chern class of a line bundle. If L is a line bundle on X, we define “c1(L)∩”.
If V is a subvariety, then write the restriction of L to C as OV(C) for some Cartier divisor
C. Then define c1(L)∩ [V] = [C]. (C is well-defined up to linear equivalence, so this makes
sense in Adim V−1V ↪→ AdimV−1X.) Extend this by linearity to define c1(L)∩ : ZkX → Ak−1X.

Proposition 2.5.

(a) If α is rationally equivalent to 0 on X, then c1(L) ∩ α = 0. There is therefore an
induced homomorphism c1(L)∩ : AkX → Ak−1X. (That’s what we’ll usually mean
by c1(L) ∩ ·.)

(b) (commutativity) If L, L ′ are line bundles on X, α a k-cycle on X, then

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α) in Ak−2X.

(c) (projection formula) If f : X ′ → X is a proper morphism, L a line bundle on X, α a
k-cycle on X ′, then

f∗(c1(f
∗L) ∩ α) = c1(L) ∩ f∗(α) in Ak−1X.

(d) (flat pullback) If f : X ′ → X is flat of relative dimension n, l a line bundle on X, α a
k-cycle on X, then

c1(f
∗L) ∩ f∗α = f∗(c1(L) ∩ α) in Ak+n−1X

′.

(e) (additivity) If L and L ′ are line bundles on X, α a k-cycle on X, then

c1(L ⊗ L ′) ∩ α = c1(L) ∩ α + c1(L
′ ∩ α) and

c1(L
∨) ∩ α = −c1(L) ∩ α in Ak−1X.
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We’ll prove this next day.

2.2. Gysin pullback. Define the Gysin pullback as follows. Suppose i : D → X is an
inclusion of an effective Cartier divisor. Define i∗ : ZkX → Ak−1D by

i∗α = D · α.

Proposition.

(a) If α is rationally equivalent to zero on X then i∗α = 0. (Hence we get induced
homomorphisms i∗ : AkX → Ak−1D.)

(b) If α is a k-cycle on X, then i∗i
∗α = c1(OX(D)) ∩ α in Ak−1X.

(c) If α is a k-cycle on D, then i∗i∗α = c1(N) ∩ α in Ak−1D, where N = i∗OX(D). N is
the normal (line) bundle. (Caution to differential geometers: D could be singular,
and then you’ll be confused as to why this should be called the normal bundle.)

(d) If X is purely n-dimensional, then i∗[X] = [D] in An−1D.
(e) (Gysin pullback commutes with c1(L)∩) If L is a line bundle on X, then

i∗(c1(L) ∩ α) = c1(i
∗L) ∩ i∗α

in Ak−2D for any k-cycle α on X.

Proof next day; although in fact you may be able to see how all but (d) comes from
what we’ve said earlier today. (Part (d) comes from something we discussed earlier, but
I’ll leave that for next time.)

E-mail address: vakil@math.stanford.edu
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