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1. Introduction

I’m going to present an algebraic proof of Riemann-Roch. This is a hefty task,
especially as I want to say enough that you can genuinely fill in all the details
yourself. There’s no way I can finish in an hour without making this less self-
contained, so what I’ll do is explain a bit about cohomology, and reduce Riemann-
Roch to Serre duality. That should be do-able within an hour. Then I’ll give people
a chance to leave, and after that I’ll prove Serre duality in the following half-hour.

Also, these notes should help. And you should definitely stop me and ask ques-
tions. For example, if I mention something I defined last semester in my class, and
you’d like me to refresh your memory as to what the definition was, please ask.

The proof I’ll present is from Serre’s Groupes algébriques et corps de classes, Ch.
2, [S]. I found out this past Tuesday that this proof is originally due to Weil.

Throughout, C is a non-singular projective algebraic curve over an algebraically
closed field k.

Date: Friday, February 11, 2000.
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2. Cohomology of sheaves

Definition. If S is a sheaf on C, define H0(C,S) to be the set of global sections
of S over C. If S is an OC-module, then H0(C,S) has the structure of a k-vector
space. In this situation, define h0(C,S) to be the dimension of H0(X,S) as a vector
space. (I made this definition in the last class of last semester.)

I’ll now define H1(C,S) (Cech cohomology), a little loosely. Here again, S is an
OC-module. Elements of H1(C,S) are given by the following data. Let U1, . . . ,
Un be an open cover of C. Let Uij = Ui ∩Uj , Uijk = Ui ∩Uj ∩Uk for convenience.
Then the data (fij ∈ H0(Uij, S)) satisfying fij−fjk+fik = 0 in H0(Uijk, S) (called
a cocycle) gives an element of H1(C,S).

This element is declared to be 0 if there are sections gi ∈ H0(Ui, S) such that
fij = gi− gj in H0(Uij , S), and in general 2 cocyles give the same element of H1 if
their difference is 0.

If you take a finer partition than Ui, and take the corresponding cocycle, then
this is declared to be the same element of cohomology.

You can clearly add cocyles given using the same covering (describe); and any
two coverings have a common refinement, so you can add any two cocycles.

The proper way to define H1(C,S) is to take the direct limit over all coverings.

You can actually define H2, H3, etc. in an analogous way, but we won’t need
them here. It is a fact (due to Grothendieck, see [H] Theorem III.2.7 for the pretty
proof) that Hi(C,S) = 0 for all i > 1 (and more generally if X is a noetherian
topological space of dimension n, then for all sheaves of abelian groups S on X and
all i > n, Hi(X,F ) = 0).

Define χ(C,S) = h0(C,S) − h1(C,S). (It would be better to define χ(C,S) =∑
i≥0 h

i(C,S), but that would make this proof longer.)

Example of a sheaf with no higher cohomology: a constant sheaf. Let
G be an abelian group. Suppose G is a constant sheaf over C, whose sections over
any open set of C is G, with the restriction map being the identity.

Easy Exercise. Check from the definition that H1(C,G) = 0.

Another example: a skyscraper sheaf. If P is a given point of C, define a
sheaf kP as follows. The sections of kP over U (i.e. kP (U)) are 0 if P /∈ U , and k
if P ∈ U . This is clearly a sheaf. We make it an OC-module in the only reasonable
way we could: any section of OC(U) (i.e. function on U) has a value at P , so the
action of this section on the vector space k = kP (U) is multiplication by this value.

We immediately have H0(C, kP ) = k.

2



Easy Exercise. H1(C,S) = 0.

Hence χ(kP ) = h0(C, kP )− h1(C, kP ) = 1− 0 = 1.

Short exact sequences of sheaves. Suppose F , G, H are sheaves of OC-
modules on C. A morphism of sheaves F → G is given by morphisms F (U)→ G(U)
that agree with restriction maps:

F (U) → G(U)
↓ ↓

F (V ) → G(V )

commutes. It is easy to check that a morphism of sheaves induces morphisms of all
the stalks. Then we say that F → G→ H is exact at G if the morphism of stalks
is exact. (This isn’t the best way to say it, but it’ll work.)

Lemma/Exercise. Suppose 0 → F → G → H → 0 is a short exact sequence of
sheaves of OC-modules on C. Then the following sequence is exact.

0→ H0(C,F )→ H0(C,G)→ H0(C,H)→ H1(C,F )→ H1(C,G)→ H1(C,H).

This just involves diagram chasing. As you have probably guessed, this sequence
continues with H2’s etc.

Example: an important short exact sequence of sheaves.

Let P be some point on C. Let OC(−P ) be the sheaf of functions vanishing on
P ; in other words, sections of OC(−P ) over an open set U are those functions on
U vanishing on P .

Then there is a short exact sequence of sheaves

0→ OC(−P )→ OC → kP → 0.

(Describe the morphisms.)

Similarly, if L is any invertible sheaf, there is a short exact sequence of sheaves

0→ L(−P )→ L→ kP → 0.

Again, sections of L(−P ) over an open set U are sections of L that vanish at P .

We played around with these objects a fair bit in class, and we saw for example
that L(−P ) was an invertible sheaf too.

Taking the long exact sequence associated to that short exact sequence, we get:

0→ H0(C,L(−P ))→ H0(C,L)→ H0(C, kP )

→ H1(C,L(−P ))→ H1(C,L)→ H1(C, kP ) = 0.

In particular, χ(C,L(−P )) = χ(C,L)− χ(C, kP ) = χ(C,L)− 1.
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Lemma (Cheap Riemann-Roch). χ(C,L) = χ(C,OC) + deg(L). Written
explicitly (with L = OC(D)):

h0(C,O(D))− h1(C,O(D)) = d+ 1− h1(C,OC).

We’ll use this later in the proof of Serre duality.

Proof. Remember that every invertible sheaf was of the form OC(p1 + · · ·+ pa−
q1 − · · · − qb) for some points p1, . . . , qb, where a− b = degL. Then just do it by
induction on a+ b. (Do the first step for them.)

That’s it for the background.

3. Statements of Riemann-Roch and Serre Duality; Riemann-Roch

from Serre Duality

Recall the invertible sheaf of differentials Ω1.

The Riemann-Roch Theorem (for nonsingular projective algebraic
curves over an algebraically closed field). L a degree d invertible sheaf on C.
Then h0(C,L)− h0(C,Ω1 ⊗L∨) = d− g + 1.

I’ll assume that you have some idea as to why this is such an incredibly impor-
tant result. It is actually just the smallest case of important Riemann-Roch-type
theorems. The hard part of the proof requires:

Serre duality (curve case). There is a natural perfect pairing H0(C,Ω1 ⊗
L∨)×H1(C,L)→ k. Hence h1(C,L) = h0(C,Ω1 ⊗L∨).

The form we will prove is: there is a natural perfect pairing H0(C,Ω1
C(−D))×

H1(C,OC(D))→ k (leave on board).

Proving Riemann-Roch using Serre duality. Recall that genus g of C was
defined as g = h0(C,Ω1

C).

h0(C,L)− h0(C,Ω1 ⊗L∨) = h0(C,L)− h1(C,L)
= χ(C,L)
= d+ χ(C,OC)
= d+ h0(C,OC)− h1(C,OC)
= d+ 1− h0(C,Ω1

C)
= d+ 1− g.

So we’re left with proving Serre duality.

Let people leave!
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4. Proof of Serre duality

4.1. Repartitions, I(D), and J(D). I’ve divided the proof into several parts. I
think this first section is the hardest, so if it gets heavy, don’t lose heart! The main
idea of this proof is to interpret H1(C,O(D)) in the language of repartitions, or
adeles. These are quite strange objects the first time you see them!

A repartition is an indexed set {rP }P∈C where rP is an element of k(C), and
rP ∈ OP for all but finitely many P . This is a (hideously huge) ring; call it R.
Notice that k(C) is naturally a subring of R (recall that an element of k(C) is
regular at all but finitely many points of C). R is also a k(C)-algebra.

If D is a divisor on C, define R(D) as the (additive) subgroup of repartitions
consisting of {rP }P∈C where vP (rP ) + vP (D) ≥ 0. (This is analogous to OC(D)
being the sheaf of rational functions where, at each point, the valuation of the
function plus the valuation of D is non-negative.) Note that if D′ ≥ D then that
R(D) ⊂ R(D′); informally, “the bigger D is, the bigger R(D) is”.

(Pause for questions.)

Proposition. I(D) := H1(C,OC(D)) ∼= R
R(D)+k(C) (canonically). (Write I(D)

with Serre duality statement.)

Proof. Let k(C) be the constant sheaf whose sections are k(C). There’s a natural
injection OC(D) ↪→ k(C); let S be the cokernel.

We have a short exact sequence

0→ OC(D)→ k(C)→ S → 0

so we have the long exact sequence in cohomology, which gives us:

k(C)→ H0(C,S)→ H1(C,OC(D))→ H1(C, k(C)) = 0

To complete the proof of the proposition, we just need to check that the global
sections of S are R/R(D).

To do this, we’ll need to know what a quotient sheaf really is; I didn’t do it in
my class, but I think those who are taking Johan’s followup class may have seen it.

The stalk SP of S at a point P is the quotient of the stalks of k(C) by stalks of
OC(D), which is k(C) modulo those functions with valuation at P at least −vP (D).
This is the “P -part” of R/R(D), and R/R(D) = ⊕PSP . Let TP be the skyscraper
sheaf at P , with values in this stalk SP . We’ll soon see that S = ⊕PSP . In
other words, a section of S is a selection of values of SP over all P , where almost
all choices are 0. Then you can check that the global sections of S are indeed
⊕PSP = R/R(D).

The way we’ll check that S really is the direct sum of skyscraper sheaves, is
by showing that if you’re given a point P ∈ C, and a local section s of S defined
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on a neighborhood U , there is a smaller neighborhood U ′ such that the section s
vanishes on U ′ \ P . This proof is getting long, so perhaps this last statement is
best left as an exercise: given a section s in the stalk of SP , it has a lift (in some
neighbourhood) to a section s′ of k(C), and this lift is an element of k(C). Let U ′

be a smaller neighbourhood of P away from {suppD \ P} and also { the poles of
s′ \ P}.

That was the first of two tricky parts.

Define J(D) := I(D)∗ = (R/(R(D)+k(C)))∗. (Add to Serre duality statement.)
An element of J(D) is a linear form on R, that is 0 on R(D) and k(C). Now if
D′ ≥ D, R(D) ⊂ R(D′), so J(D′) ⊂ J(D). Let J := ∪DJ(D). (Elements of J are
linear functionals on R that vanish on k(C), and also on some R(D).)

We next show that J is a k(C)-vector space. Suppose f ∈ k(C), α ∈ J . Consider
fα : R → k, r 7→ 〈α, fr〉. This is a linear functional on R, vanishing on k(C). If
α ∈ J(D), and (f) = ∆ then fα vanishes on R(D − ∆) (r ∈ R(D − ∆) ⇒ fr ∈
R(D)⇒ 〈α, fr〉 = 0), so it belongs to J(D−∆), and hence it belongs to J . Hence
(f, α)→ fα gives J the structure of a k(C)-vector space.

Proposition. dimk(C) J ≤ 1.

Proof. (I’ll skip this argument if I’m short on time, which I likely will be.)
Otherwise, suppose α and α′ are 2 elements of J that are linearly independent
(over k(C)). Suppose α, α′ ∈ J(D), and let d = deg(D). Suppose ∆n is any divisor
of degree n (with n to be declared later, large enough to give a contradiction).
Then for any f ∈ H0(C,O(∆n)), fα ∈ J(D − ∆n), by the argument above, and
ditto with f replaced by g and α replaced by α′. Now as α and α′ are linearly
independent over k(C), we know that fα+ gα′ = 0⇒ f = g = 0. Thus the map

(f, g) 7→ fα+ gα′

is an injection of the direct sum H0(C,O(∆n)) ⊕H0(C,O(∆n)) into J(D −∆n),
so we have the inequality dimk J(D −∆n) ≥ 2h0(C,O(∆n)).

Now let’s estimate both sides.

The left side is dim I(D − ∆n) = H1(C,OC(D −∆n)). By “cheap” Riemann-
Roch, this is H0(C,OC(D−∆n))− (d− n) + constant = n+ constant if we pick n
big enough so the degree d − n of D −∆n is negative. (By constant, I mean that
it doesn’t depend on n or ∆n.)

By cheap Riemann-Roch, the right side is twice at least deg(∆n) + constant,
which is at least 2n + constant. When n is chosen to be huge, there’s no way in
which the left side can be bigger than the right.

That was the second tricky point.
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4.2. Differentials enter the picture. Recall the invertible sheaf of differentials
Ω1
C ; also the invertible sheaf Ω1

C(D). Let M be the set of meromorphic differentials;
note that it is a one-dimensional k(C)-vector space. Recall that one can define a
residue map resP : M → k. It vanishes on any differential that has no pole at P .

Definitions / Proofs that resP is well-defined. 1) If k = C, you can use the
complex analytic definition and proof. 2) Otherwise, you can write it locally as
(a−n/tn + · · ·+ a−1/t)dt+ something regular, where t is a uniformizing parameter,
define the residue as a−1, and show that this definition is independent of t. If the
characteristic is 0, this latter step isn’t too hard, but if the characteristic is positive,
it can be tricky; see [S] for a proof, and [T] for a nicer proof.

Kiran also told me a slick proof that a−1 is indepenendent of choice of uniformizer
t that I’ll put in the notes: the fact that

∑−1
i=−n ant

ndt has the same (-1)-coefficient
as
∑−1
i=−n bnu

ndu for t = u+
∑∞
k=2 cku

k is (for a fixed choice of the pole order of
the differential in question) a polynomial identity in the a’s and b’s with coefficients
in Z. It holds identically over C by the analytic proof 1), so it holds in every field.

Residue Theorem. For every meromorphic differential ω ∈M ,
∑
P∈C resP (ω) =

0.

Proofs. 1) If k = C, Stokes’ theorem works. 2) In characteristic 0, it isn’t hard.
3) In positive characteristic, see [S] or [T].

4.3. Proving duality. For every meromorphic differential ω ∈ M , define the
divisor (ω) =

∑
P∈C vP (ω)P , so Ω1(−D) is “the sheaf of differentials satisfying

(ω) ≥ D”. Next define a pairing 〈ω, r〉 between meromorphic differentials ω and
repartitions r given by 〈ω, r〉 =

∑
P∈C resP (rPω). (This is well-defined — only a

finite number of terms in the sum are non-zero.)

Note that:

a) 〈ω, r〉 = 0 if r ∈ k(C) (Residue theorem).
b) 〈ω, r〉 = 0 if r ∈ R(D) and ω ∈ H0(C,Ω1(−D)) (as then rPω has no pole at

P for all P ∈ C).
c) If f ∈ k(C), then 〈fω, r〉 = 〈ω, fr〉. (Both are

∑
P∈C resP (fωr).)

Hence for each differential ω in H0(C,Ω1(−D)), this defines a linear functional θ(ω)
on R/(R(D) + k(C)). θ : H0(C,Ω1(−D))→ J(D). (Also θ : M → J .)

Lemma. If ω is a meromorphic differential such that θ(ω) ∈ J(D), then ω ∈
Ω1(−D).

Proof. Otherwise, assume ω /∈ Ω1(D). We’ll get a contradiction, and find an
element of R(D) that θ(ω) doesn’t kill.
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There’s some point P ∈ C such that vP (ω) < vP (−D) (i.e. ω has a bigger
pole than allowed by D). Define a repartition r ∈ R(D) by rQ = 0 for Q 6= P ,
and rP = 1/tvP (ω)+1 (where t is some uniformizer). Then as vP (rPω) = −1,
〈ω, r〉 =

∑
Q res(rQω) 6= 0, proving the lemma.

Theorem (Serre duality). θ gives an isomorphism from H0(C,Ω1(−D)) to
J(D) = H1(C,OC(D))∗.

Proof. First, θ is injective. Reason: if θ(ω) = 0, then by the lemma, ω ∈ Ω(−∆)
for every ∆, so ω = 0. (Explain.)

Next, θ is surjective. By c), θ is a k(C)-linear map from M to J . As M
has dimension 1 (as a k(C)-vector space), and J has dimension at most 1 (earlier
Proposition), we get surjectivity.

That’s it! The proof at first appears to be sleight of hand, but there’s a lot going
on under the surface that one eventually finds quite enlightening.

I hope you’re not too shelshocked; if there are any parts of the argument I can
elaborate on, please let me know. Thank you!

References

[F] W. Fulton, Algebraic curves. He gives a low-tech proof, but I didn’t find it enlightening. (The
first five chapters are great.)

[H] R. Hartshorne, Algebraic geometry. His proof of duality is quite general, but you don’t need
that big machinery if you’re just dealing with curves.
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149–159. He gives a nice characteristic-free definition of residues of differentials on curves.
His proof of invariance of the definition (in positive characteristic) is an improvement on [S].

8


