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I’m going to start by telling you about this course, and about the field of algebraic
geometry.

Goals:

• geometric insight
• concrete examples (geometric and arithmetic)
• hands on calculations (no fear of commutative algebra)
• no cohomology, flatness, differentials

Modern algebraic geometry lies somewhere between differential geometry, num-
ber theory, and topology. In a loose sense, it is polynomial equations, and sets
defined by polynomial equations. This seems to be extremely narrow and low-tech,
but it surprisingly ends up being extremely broad, powerful, and abstract.

Some of the philosophy — get at geometry via algebra, algebra via “pictures”.
High school reference. Here’s a high-powered example of the link between geometry
and arithmetic. xn + yn = zn. Finite number of solutions for each n > 1: the
Mordell Conjecture, Faltings’ Theorem. Vojta’s conjecture. Weil conjectures.

Give out handout of motivating problems.

This will be a tools course: examples and pictures, but with generality.

• fast-moving, but grounded by intuition
• exercises are important
• concepts really generalize, but become more abstract.

Date: September 9, 1999.
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Objects:

smooth varieties over C (over k)

varieties over C (over k)

schemes

(stacks)

We won’t be shy about schemes in this course.

Administrative stuff. Give out handout. Go through it. Headcount.

Theme: curves. Examples: Z and k[t].

1. Commutative algebra

Don’t worry about it. See books on handout.

Ideas you should know: ring (commutative, has 1), field, integral domain, has
quotient field, prime ideal, maximal ideal.

Sample problem (to appear on problem set):

Let A be a (commutative) ring. An element a ∈ A is nilpotent (that is, an = 0
for some n > 0) if and only if a belongs to every prime ideal of A.

2. Algebraic sets

Throughout this course: k is a field. k is an algebraically closed field.

For now we work over k. Feel free to think of this as C for now.

k
n

will be rewritten An(k), affine n-space; we’ll often just write An when there’s
no confusion about the field. Coordinates x1 to xn.

Algebraic geometry is about functions on the space, which form a ring. The only
functions we will care about will be polynomials, i.e. k[x1, . . . , xn]. We’ll eventually
think of that ring as being the same thing as An.

We’ll next define subsets of An that we’ll be interested in. Because we’re being
very restrictive, we won’t take any subsets, or even analytic subsets; we’ll only
think of subsets that are in some sense defined in terms of polynomials.
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Let S be a set of polynomials, and define V (S) to be the locus where these
polynomials are zero. (“Vanishing set”.) Definition: Any subset of An(k) of the
form V (S) is an algebraic set.

Exercise (to appear on problem set): prove that the points of the form (t, t2, t3)
in A3 form an algebraic set. In other words, find a set of functions that vanish on
these points, and no others.

Example/definition: hypersurface, defined by 1 polynomial.

Facts.

• If I = (S), then V (I) = V (S). So we usually will care only about ideals.
Hence: subsets of k[x1, ..., xn] give us subsets of An; specifically, ideals give
us algebraic sets
• V (∪Ia) = ∩V (Ia) (Say it in english.)
• I ⊂ J , then V (I) ⊃ V (J)
• V (FG) = V (F ) ∪ V (G)

Note: Points are algebraic. Finite unions of points are algebraic.

Definition. A radical of an ideal I ⊂ R, denoted
√
I, is defined by

√
I = {r ∈ R|rn ∈ I for some n}.

Exercise. Show that
√
I is an ideal.

Definition. An ideal I is radical if I =
√
I.

Claim. V (
√
I) = V (I). (Explain why.)

Conversely, subsets of An give us a subset of k[x1, ..., xn] For each subset X, let
I(X) be those polynomials vanishing on X.

Claim. I(X) is a radical ideal. (Explain.)

Facts. If X ⊂ Y , then I(X) ⊃ I(Y ). I(∅) = k[x1, ..., xn]. I(An) = (0).

Question. What’s I((a1, ..., an))?

(Discuss.)

Notice: ideal is maximal. Quotient is field. Quotient map can be interpreted as
“value of function at that point”.

Exercise. (a) Let V be an algebraic set in An, P a point not in V . Show that
there is a polynomial F in k[x1, ..., xn] such that F (Q) = 0 for all Q in V , but
F (P ) = 1. Hint: I(V ) 6= I(V ∪ P ).
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(b) Let {P1, ..., P2} be a finite set of points in An(k). Show that there are
polynomials F1, ..., Fr ∈ k[x1, ..., xn] such that Fi(Pj) = 0 if i 6= j, and Fi(Pi) = 1.

Exercise. Show that for any ideal I in k[x1, ..., xn], V (I) = V (
√
I), and

√
I is

contained in I(V (I)).

3. Nullstellensatz (theorem of zeroes)

Earlier, we had: algebraic sets → radical ideals and ideals → algebraic sets.

This theorem makes an equivalence. In the literature, the word “nullstellensatz”
is used to apply to a large number of results, not all of them equivalent.

Nullstellensatz Version 1. Suppose F1, . . . , Fm ∈ k[x1, . . . , xn]. If the ideal
(F1, . . . , Fm) 6= (1) = k[x1, . . . , xn] then the system of equations F1 = · · · = Fm = 0
has a solution in k.

Proof next day. (There is a better version for fields that are not necessarily
algebraically closed, but we’re not worrying about that right now.)

Nullstellensatz Version 2. Supopse m is a maximal ideal of k[x1, . . . , xn].
Then

m = (x1 − a1, . . . , xn − an)
for some a1, . . . , an ∈ k.

Show that this is equivalent to version 1, modulo fact that ideals are finitely
generated.

Nullstellensatz Version 3 (sometimes called the “Weak Nullstellen-
satz”). If I is a proper ideal in k[x1, ..., xn], then V (I) is nonempty. (From Version
2.)

Nullstellensatz Version 4. Let I be an ideal in k[x1, ..., xn]. Then I(V (I)) =√
I. Equivalently: Radical ideals are in 1-1 correspondence with algebraic sets: If I

is a radical ideal in k[x1, ..., xn] then I(V (I)) = I. So there is a 1-1 correspondence
between radical ideals and algebraic sets.

Nullstellensatz Version 5. A radical ideal of k[x1, . . . , xn] is the intersection
of the maximal ideals containing it. This is the geometric rewording of 4. By
version 4, a radical ideal is I(X) for some algebraic set X. Functions vanishing on
X are precisely those functions vanishing on all the points of X.

Nullstellensatz Version 6. If F1, ..., Fr, G are in k[x1, ..., xn], and G vanishes
wherever F1, ..., Fr vanish, then there is an equation GN = A1F1 + ...+ ArFr for
some N > 0 and some Ai in k[x1, ..., xn].

This has a cute proof, with a useful trick in it.
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Proof. The case G = 0 is obvious, so assume G 6= 0. Introduce a new variable
U , and consider the polynomials

F1, . . . , Fm, and UG− 1 ∈ k[x1, . . . , xn, U ].

They have no common solutions in k, so by Version 1 they generate the unit
ideal, so there are polynomials P1, . . . , Pm, Q ∈ k[x1, . . . , xn, U ] such that

P1F1 + · · ·+ PmFm +Q(UG− 1) = 1.

Now set U = 1/G in this formula, and multiply by some large power GN of G to
clear denominators. Then the right side is GN , and the left side is in (F1, . . . , Fm).
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