INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1

RAVI VAKIL

Contents

1.	Commutative algebra	2
2.	Algebraic sets	2
3.	Nullstellensatz (theorem of zeroes)	4

I'm going to start by telling you about this course, and about the field of algebraic geometry.

Goals:

- geometric insight
- concrete examples (geometric and arithmetic)
- hands on calculations (no fear of commutative algebra)
- no cohomology, flatness, differentials

Modern algebraic geometry lies somewhere between differential geometry, number theory, and topology. In a loose sense, it is polynomial equations, and sets defined by polynomial equations. This seems to be extremely narrow and low-tech, but it surprisingly ends up being extremely broad, powerful, and abstract.

Some of the philosophy — get at geometry via algebra, algebra via "pictures". High school reference. Here's a high-powered example of the link between geometry and arithmetic. $x^n + y^n = z^n$. Finite number of solutions for each n > 1: the Mordell Conjecture, Faltings' Theorem. Vojta's conjecture. Weil conjectures.

Give out handout of motivating problems.

This will be a tools course: examples and pictures, but with generality.

- fast-moving, but grounded by intuition
- exercises are important
- concepts really generalize, but become more abstract.

Date: September 9, 1999.

Objects:

```
smooth varieties over \mathbb{C} (over k)
```

varieties over \mathbb{C} (over k)

schemes

(stacks)

We won't be shy about schemes in this course.

Administrative stuff. Give out handout. Go through it. Headcount.

Theme: curves. Examples: \mathbb{Z} and $\overline{k}[t]$.

1. Commutative algebra

Don't worry about it. See books on handout.

Ideas you should know: ring (commutative, has 1), field, integral domain, has quotient field, prime ideal, maximal ideal.

Sample problem (to appear on problem set):

Let A be a (commutative) ring. An element $a \in A$ is nilpotent (that is, $a^n = 0$ for some n > 0) if and only if a belongs to every prime ideal of A.

2. Algebraic sets

Throughout this course: k is a field. \overline{k} is an algebraically closed field.

For now we work over \overline{k} . Feel free to think of this as \mathbb{C} for now.

 \overline{k}^n will be rewritten $\mathbb{A}^n(\overline{k})$, affine *n*-space; we'll often just write \mathbb{A}^n when there's no confusion about the field. Coordinates x_1 to x_n .

Algebraic geometry is about functions on the space, which form a ring. The only functions we will care about will be polynomials, i.e. $\overline{k}[x_1,\ldots,x_n]$. We'll eventually think of that ring as being the same thing as \mathbb{A}^n .

We'll next define subsets of \mathbb{A}^n that we'll be interested in. Because we're being very restrictive, we won't take any subsets, or even analytic subsets; we'll only think of subsets that are in some sense defined in terms of polynomials.

Let S be a set of polynomials, and define V(S) to be the locus where these polynomials are zero. ("Vanishing set".) Definition: Any subset of $\mathbb{A}^n(\overline{k})$ of the form V(S) is an algebraic set.

Exercise (to appear on problem set): prove that the points of the form (t, t^2, t^3) in \mathbb{A}^3 form an algebraic set. In other words, find a set of functions that vanish on these points, and no others.

Example/definition: hypersurface, defined by 1 polynomial.

Facts.

- If I=(S), then V(I)=V(S). So we usually will care only about ideals. Hence: subsets of $\overline{k}[x_1,...,x_n]$ give us subsets of \mathbb{A}^n ; specifically, *ideals* give us algebraic sets
- $V(\cup I_a) = \cap V(I_a)$ (Say it in english.)
- $I \subset J$, then $V(I) \supset V(J)$
- $V(FG) = V(F) \cup V(G)$

Note: Points are algebraic. Finite unions of points are algebraic.

Definition. A radical of an ideal $I \subset R$, denoted \sqrt{I} , is defined by

$$\sqrt{I} = \{r \in R | r^n \in I \text{ for some } n\}.$$

Exercise. Show that \sqrt{I} is an ideal.

Definition. An ideal I is radical if $I = \sqrt{I}$.

Claim.
$$V(\sqrt{I}) = V(I)$$
. (Explain why.)

Conversely, subsets of \mathbb{A}^n give us a subset of $\overline{k}[x_1,...,x_n]$ For each subset X, let I(X) be those polynomials vanishing on X.

Claim. I(X) is a radical ideal. (Explain.)

Facts. If
$$X \subset Y$$
, then $I(X) \supset I(Y)$. $I(\emptyset) = \overline{k}[x_1, ..., x_n]$. $I(\mathbb{A}^n) = (0)$.

Question. What's $I((a_1,...,a_n))$?

(Discuss.)

Notice: ideal is maximal. Quotient is field. Quotient map can be interpreted as "value of function at that point".

Exercise. (a) Let V be an algebraic set in \mathbb{A}^n , P a point not in V. Show that there is a polynomial F in $\overline{k}[x_1,...,x_n]$ such that F(Q)=0 for all Q in V, but F(P)=1. Hint: $I(V)\neq I(V\cup P)$.

(b) Let $\{P_1,...,P_2\}$ be a finite set of points in $\mathbb{A}^n(\overline{k})$. Show that there are polynomials $F_1,...,F_r \in \overline{k}[x_1,...,x_n]$ such that $F_i(P_i)=0$ if $i \neq j$, and $F_i(P_i)=1$.

Exercise. Show that for any ideal I in $\overline{k}[x_1,...,x_n]$, $V(I)=V(\sqrt{I})$, and \sqrt{I} is contained in I(V(I)).

3. Nullstellensatz (theorem of zeroes)

Earlier, we had: algebraic sets \rightarrow radical ideals and ideals \rightarrow algebraic sets.

This theorem makes an equivalence. In the literature, the word "nullstellensatz" is used to apply to a large number of results, not all of them equivalent.

Nullstellensatz Version 1. Suppose $F_1, \ldots, F_m \in \overline{k}[x_1, \ldots, x_n]$. If the ideal $(F_1, \ldots, F_m) \neq (1) = \overline{k}[x_1, \ldots, x_n]$ then the system of equations $F_1 = \cdots = F_m = 0$ has a solution in \overline{k} .

Proof next day. (There is a better version for fields that are not necessarily algebraically closed, but we're not worrying about that right now.)

Nullstellensatz Version 2. Supopse \mathfrak{m} is a maximal ideal of $\overline{k}[x_1,\ldots,x_n]$. Then

$$\mathfrak{m} = (x_1 - a_1, \dots, x_n - a_n)$$

for some $a_1, \ldots, a_n \in \overline{k}$.

Show that this is equivalent to version 1, modulo fact that ideals are finitely generated.

Nullstellensatz Version 3 (sometimes called the "Weak Nullstellensatz"). If I is a proper ideal in $\overline{k}[x_1,...,x_n]$, then V(I) is nonempty. (From Version 2.)

Nullstellensatz Version 4. Let I be an ideal in $\overline{k}[x_1,...,x_n]$. Then $I(V(I)) = \sqrt{I}$. Equivalently: Radical ideals are in 1-1 correspondence with algebraic sets: If I is a radical ideal in $\overline{k}[x_1,...,x_n]$ then I(V(I)) = I. So there is a 1-1 correspondence between radical ideals and algebraic sets.

Nullstellensatz Version 5. A radical ideal of $\overline{k}[x_1,\ldots,x_n]$ is the intersection of the maximal ideals containing it. This is the geometric rewording of 4. By version 4, a radical ideal is I(X) for some algebraic set X. Functions vanishing on X are precisely those functions vanishing on all the points of X.

Nullstellensatz Version 6. If $F_1, ..., F_r, G$ are in $\overline{k}[x_1, ..., x_n]$, and G vanishes wherever $F_1, ..., F_r$ vanish, then there is an equation $G^N = A_1F_1 + ... + A_rF_r$ for some N > 0 and some A_i in $\overline{k}[x_1, ..., x_n]$.

This has a cute proof, with a useful trick in it.

Proof. The case G=0 is obvious, so assume $G\neq 0$. Introduce a new variable U, and consider the polynomials

$$F_1, \ldots, F_m$$
, and $UG - 1 \in \overline{k}[x_1, \ldots, x_n, U]$.

They have no common solutions in \overline{k} , so by Version 1 they generate the unit ideal, so there are polynomials $P_1, \ldots, P_m, \ Q \in \overline{k}[x_1, \ldots, x_n, U]$ such that

$$P_1F_1 + \dots + P_mF_m + Q(UG - 1) = 1.$$

Now set U=1/G in this formula, and multiply by some large power G^N of G to clear denominators. Then the right side is G^N , and the left side is in (F_1,\ldots,F_m) .