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Problem sets can be handed in and picked up at the end of class.

Discuss late policy.

Aside. There were several points last day that I wish I’d described differently.
Here is one. (Again, please tune out.)

Given a ring R, and a prime ideal p, I described the residue field as: (i) localize
the ring R at p, and then mod out by the maximal ideal: Rp/pRp. You can quickly
check that this is equivalent to: (ii) Mod out by p to get a domain, and then take
the fraction field.

The second point of view is often much more convenient. For example, an element
f of R, which you should think of as being a function, vanishes at a point p if f ∈ p.
(Describe this in the case of p = (y − x2) in k[x, y].) In particular, we get the fact
that V (f) is the set of prime ideals containing f , and more generally V (I) is the
set of prime ideals containing I.

Back to our regularly-scheduled program.

1. Products

We know what we mean when we discuss products of sets. We’ll now define
products more generally.

Categorical products. Suppose you have two sets X and Y . Then the product
set Z has two natural “projection” maps pX and pY to X and Y respectively.
Moreover, if you have any other set W with maps to both X and Y , then there
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is a unique map W → Z such that the maps to X and Y can be obtained by
composition with the projections.

Definition. Suppose X and Y are objects in a category. Then a product of X
and Y is the data of another object Z, along with projection maps pX : Z → X
and pY : Z → Y , such that for any other object W , maps from W to Z correspond
to the data of maps from W to X, and maps from W to Y . Equivalently,

Mor(Z,W )→Mor(Z,X)×Mor(Z, Y )

is a bijection.

You should check that this works with sets, i.e. in the category of sets.

Remark. Then the product is defined up to unique isomorphism.

Products in the category of topological spaces. Define product topology. Ex-
plain why this is called the product topology: this is a product in the category of
topological spaces.

Products in the cateogry of prevarieties?

If there is a product of X and Y in the category of prevarieties, then the points
of the product are the products of the points. Reason: take Z to be a point.

To save you the suspense: products indeed exist, and we’ll construct them.

Topologies will be weird. It will turn out that A1 × A1 = A2, but the Zariski
topology on A2 isn’t the same as the product of the Zariski topologies on the factor
(Exercise).

1.1. Products in the category of affine varieties, and in the category of
varieties. Recall that the category of affine varieties (over k) is just the category of
“nice” rings, with the arrows reversed, where nice means “finitely generated algebra
over k that is an integral domain”.

Let X and Y be affine varieties (over k). Let’s diagram-chase.

If we have some “nice” ring A(W ), the question is: given maps (ring morphisms
over k) A(X) → A(W ) and A(Y ) → A(W ), is there some ring A(X × Y ) along
with morphisms A(X), A(Y )→ A(X × Y ) through which this has to factor?

Answer: Yes, A(X)⊗k A(Y ), with the morphism A(X)→ A(X)⊗k A(Y ) given
by x 7→ x⊗ 1, and similarly for A(Y ). (Remind them what tensor product is; show
that tensor product has this property.)

All that’s left to show is that the tensor product is also “nice”.
2



Finitely-generated is easiest: if f1, . . . , fm are generators for A(X) and g1, . . . ,
gn are generators for A(Y ), then fi ⊗ 1 and 1⊗ gj generate the tensor product.

Then we invoke a fact from commutative algebra: Let R and S be integral
domains over k. Then R⊗k S is also an integral domain.

Remarks. Hence ⊗ is the coproduct in the category of rings. And we’ve also
shown that the product in the category of affine schemes is given by tensor product.

Theorem. Let X and Y be affine varieties. Then there is product prevariety
Z := X × Y ; it is affine with coordinate ring A(X)⊗k A(Y ).

Proof. We’ve shown that this is the product in the category of affine varieties;
what’s different is that W may now be any prevariety. Suppose we have morphism
W → X and W → Y . How do we get the morphism W → Z?

(This is where patching arguments make life really easy.) Cover W with affines
Ui. We have maps Ui → X,Y so (as Z is a product in the category of affine
varieties) we get map Ui → Z.

We now need to show that these maps “glue together” to give us a map from
W to Z, i.e. that if you consider the overlap Uij := Ui ∩ Uj , then the induced
morphism Uij → Ui → Z is the same as the induced morphism Uij → Uj → Z.

Cover Uij with affines Vk; then again because Z is a product in the category of
affine varieties, and we have a morphism Vk → X,Y , there is only one morphism
Vk → Z compatible with them.

Examples. It isn’t hard working out what products of affine varieties actually
are. For example, A1 × A1 ∼= A2. If X is the affine variety in A2 cut out by
v3 + w3 = 1, and Y is the affine variety in A3 cut out by xyz = 3, then X × Y is
the affine variety in A5 cut out by v3 +w3 = 1 and xyz = 3. Keep these examples
in mind.

Looking at the product of affines more closely.

i) Topology. Note that the distinguished opens on X×Y are of the formD(
∑
fi⊗

gi) where fi ∈ A(X), gi ∈ A(Y ); this gives the beginning of an insight as to why
the topology on the product is not the product of the topologies.

ii) Function field. Note also that the function field of the product k(X × Y ) is
the quotient field of the tensor product of the function fields: k(X)⊗k k(Y ).

iii) Stalks of the structure sheaf. Let’s interpret the local ringOX×Y,(x,y) in terms
of the local rings OX,x and OY,y. Let the maximal ideals of these local rings be mx

and my respectively. (This is concrete! The local rings are quotients of polynomials
where the denominator doesn’t vanish at the point, and the maximal ideal is where
the numerator does vanish at the point.)
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Lemma. Then OX×Y,(x,y) is the localization of OX,x ⊗k OY,y at the maximal
ideal mxOY,y + myOX,x.

We’ll need this technical fact (which isn’t too hard) only once, in a few minutes,
and then you can forget about it.

If you try to parse what this means, you’ll realize that it’s reasonable.

Proof. Here’s a real explanation. OX×Y,(x,y) is the localization of A(X)⊗kA(Y )
at the maximal ideal of all functions vanishing at (x, y). Now A(X) × A(Y ) ⊂
OX,x ⊗k OY,y ⊂ OX×Y,x×y, so we can describe the last term by localizing at the
maximal ideal of all functions vanishing at (x, y), so we need to check that this
really is mxOY,y + myOX,x. One inclusion is clear. Conversely, if

h =
∑

fi ⊗k gi ∈ OX,x ⊗k OY,y

vanishes at (x, y), with fi(x) = ai and gi(y) = bi, then

h = h−
∑

aibi =
∑

(fi − ai)⊗ gi +
∑

ai ⊗ (gi − bi)

which lies in mx ⊗OY,y +OX,x ⊗my as desired.

Theorem. Let X and Y be prevarieties over k. Then they have a product.

Proof. Let’s first build a reasonable candidate from affines, and then later check
that it really is a product. We’ll start with the set, add the topology, and finally
the structure sheaf.

For the underlying set, we just take the product set.

For the topology, we give a base: For all open affines U ⊂ X, V ⊂ Y , and all
finite sets of elements fi ∈ A(X), gi ∈ A(Y ), consider D(

∑
fi ⊗ gi) ⊂ U × V .

(Small check required to make sure that this really gives the topology you want on
U × V .)

Now for the structure sheaf. Let K be the quotient field of k(X)⊗k k(Y ), which
is our candidate for the function field of the product. For x ∈ X, y ∈ Y , let
OX×Y (x,y) ⊂ K be the localization of OX,x⊗kOY,y at the ideal mx⊗OY,y+OX,x⊗
my, and define

OX×Y (U) =
⋂

(x,y)∈U
OX×Y,(x,y).

This is a sheaf of functions, which coincides on each U × V (U , V affine) with
the structure sheaf of OU×V (by our analysis of the affine case).

Then this is a prevariety! (Check: covered by finitely many affines, and con-
nected.)
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Next to check: that this prevariety is a product. We have our projection maps
X×Y to X and Y . Suppose we’re given some morphisms fX : W → X, fY : W →
Y . Then we automatically get a map of sets W → X × Y , as the underlying set
o f X × Y is just the product of the underlying sets of X and Y . We just need
to check that this is a morphism. To do that, we can cover X and Y by affines
Ui and Vj respectively, and cover W with f−1

X Ui ∩ f−1
Y Vj ; we need only show that

f−1
X Ui ∩ f−1

Y Vj → Ui × Vj ⊂ U × V is a morphism; but it is because we’ve already
shown that Ui × Vj is a product in the category of prevarieties when Ui and Vj are
affines.

It isn’t hard to check:

Corollary. If U is an open subprevariety of X, then U × Y is an open sub-
prevariety of X × Y . If Z is a closed subprevariety of X, then Z × Y is a closed
subprevariety of X × Y .

Remark. If k = C, then you might reasonably have the classical topology in
mind. It is true that if X and Y are complex varieties, then the classical topology
on X × Y is the same as the product of the classical topologies.

2. Coming soon

1. products of projective prevarieties are projective prevarieties; the Segre map
2. rational maps; open sets of definition; birational maps
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